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Abstract

Background

Conflicting reports in the literature have raised the question whether radial extracorporeal

shock wave therapy (rESWT) devices and vibrating massage devices have similar energy

signatures and, hence, cause similar bioeffects in treated tissues.

Methods and Findings

We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging

and x-ray film analysis to compare fundamental elements of the energy signatures of two

rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor

200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare;

G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of

these treatment modalities we investigated the influence of rESWT and vibrating massage

devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms.

Results

FOPHmeasurements demonstrated that both rESWT devices generated acoustic waves

with comparable pressure and energy flux density. Furthermore, both rESWT devices gen-

erated cavitation as evidenced by high-speed imaging and caused mechanical damage on

the surface of x-ray film. The vibrating massage device did not show any of these character-

istics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after

exposure to radial extracorporeal shock waves but was unaffected after exposure of worms

to the vibrating massage device.

Conclusions

The results of the present study indicate that both energy signature and bioeffects of

rESWT devices are fundamentally different from those of vibrating massage devices.
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Clinical Relevance

Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic

sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biologi-

cal alteration that “kick-starts” the healing response. Due to their different treatment indica-

tions and contra-indications rESWT devices cannot be equated to vibrating massage

devices and should be used with due caution in clinical practice.

Introduction
Radial extracorporeal shock wave therapy (rESWT) is widely used in the non-invasive treat-
ment of various diseases of the musculoskeletal system and other soft tissue disorders (see, e.g.,
[1–3]). Several studies addressed the molecular and cellular mechanisms of rESWT on these
conditions including the mediation of cell apoptosis, enhanced angiogenesis and wound heal-
ing as well as new bone formation (see, e.g., [4,5,6]). The working principle of rESWT devices
is illustrated in Fig 1A. Compressed air (or an electromagnetic field) is used to fire a projectile
within a guiding tube that strikes a metal applicator placed on the patient’s skin. The projectile
generates stress waves in the applicator that transmit pressure waves (radial shock waves) non-
invasively into tissue.

Because radial shock waves are not real shock waves in the strict physical sense (for details
see [2,7,8]) some authors called rESWT “radial pressure wave treatment (RPWT)” [4] or
“radial pulse therapy (RPT)” [9]. Furthermore, conflicting reports exist in the literature as to
whether at all radial extracorporeal shock waves (rESW) can generate cavitation, which refers
to the rapid formation, expansion, and forceful collapse of vapor bubbles in liquids subject to
rapid pressure changes [2,10,11]. Cavitation can, next to exerting therapeutic bioeffects, also
produce unwanted side effects including hematomas, blood vessel rupture, and permanent
injury to organs such as kidneys and lungs [11–17]. In this respect an early review about ESWT
published in 2003 [18] concluded that for the only rESWT device available at that time, the
Swiss DolorClast (Electro Medical Systems, Nyon, Switzerland) (Fig 1B), it was not possible to
detect cavitation at all. Three years later, another group reported that this rESWT device was in
fact capable of generating cavitation [7]. Since then the Swiss DolorClast has been used in
many prospective, randomized controlled clinical trials that are listed in the open access Phys-
iotherapy Evidence Database, PEDro [19] (i.e. [20–38]).

Recently a novel device, D-Actor 200 (Storz Medical, Tägerwilen, Switzerland) (Fig 1C),
was introduced into the treatment for Achilles tendinopathy [39], calf strains [40] and cellu-
lite [41]. Yet whereas one research group called this treatment modality “low-energy radial-
pulsed–activated (EPAT) shockwave (sound wave)” and referred to the D-Actor 200 as a radial
shock wave device [39] the other research group named treatments performed with the
D-Actor 200 “Acoustic Wave Therapy (AWT)” and called the D-Actor 200 a “vibrating mas-
sage system (EPAT) that operates via compressed air to perform AWT on targeted tissue” [41].
In fact, the manufacturer of the D-Actor 200 (Storz Medical) listed several vibrating massage
devices as predicate device of the D-Actor 200 in Appendix G of the 510[k] summary of the
D-Actor 200 with the U.S. Food and Drug Administration (FDA). Among these vibrating mas-
sage devices is the Vibracare (G5/General Physiotherapy, Earth City [St. Louis], MO, USA)
(Fig 1D). The latter device is electrically powered and causes vibrations by means of a flywheel
mass that rotates around a vertical axis within a chamber (Fig 1E). In fact, with regard to design
and working principle the D-Actor 200 appears very similar to the Swiss DolorClast but very
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different to that of vibrating massage devices such as the Vibracare. Furthermore, to our
knowledge the Vibracare has so far only been studied for percussion treatment of patients with
cystic fibrosis [42] and children with cerebral palsy suffering from lung infections [43], but not
for treatments of diseases of the musculoskeletal system and cellulite. On the other hand, the
D-Actor 200 must not be applied over air-filled tissue such as the lung.

These conflicting descriptions of the D-Actor 200 in the literature have raised the general
question whether or not the energy signature of rESWT devices resembles the energy signature
of vibrating massage devices. In particular, we compared the energy signature of the D-Actor
200 and the Swiss DolorClast to the energy signature of the Vibracare. This was done by apply-
ing techniques that have been established in the literature for the characterization of the energy
signature of therapeutic ESW devices: (i) acoustic measurements using a laser fiber optic probe
hydrophone (FOPH) [11,44]; (ii) high-speed imaging of cavitation bubbles [45,46]; and (iii)
exposure of x-ray films to pressure waves [10]. Furthermore, to investigate cavitation-mediated
bioeffects induced by rESWT devices and/or vibrating massage devices we analyzed cultures of
the nematode worm Caenorhabditis elegans (C. elegans) for locomotion ability after their expo-
sure to either treatment modality, a method that has been established recently for radial shock
waves generated with the Swiss DolorClast [47].

Fig 1. Devices investigated in the present study and their working principles. (A) Working principle of radial extracorporeal shock wave therapy
(rESWT) devices. Compressed air (1) is used to fire a projectile (2) within a guiding tube (3) that strikes a metal applicator (4) placed on the patient’s skin. The
projectile generates stress waves in the applicator that transmit pressure waves (5) non-invasively into tissue. Note that both the Swiss DolorClast (B) and
the D-Actor 200 (C) share this construction principle. (B) “Radial” handpiece of the Swiss DolorClast (EMS) with the 15-mm applicator. (C) Handpiece of the
D-Actor 200 (Storz Medical) with the 15-mm applicator. (D) Vibracare (G5/General Physiotherapy). The arrow indicates the direction of view into the chamber
of the Vibracare head that was opened in (E); the asterisk indicates the backside of the chamber. (E) Working principle of the Vibracare. A flywheel mass (6)
rotates around a vertical axis (7) within a chamber (asterisk).

doi:10.1371/journal.pone.0140541.g001
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Methods

Investigated devices
The following devices and applicators were investigated in the present study (see also Fig 1): (i)
D-Actor 200 (Model 2007; Storz Medical) operated with the 15-mm applicator as used in [39];
(ii) Swiss DolorClast (EMS) operated with the “Radial” handpiece and the 15-mm applicator as
used in many clinical trials (e.g., [21,22,25,27,29,30]); and (iii) Vibracare (Item SKU VC24B;
G5/General Physiotherapy, Inc.).

The Supporting Information (S1 File, S1 and S2 Figs) contains additional data from high-
speed imaging analysis of cavitation (outlined further down) generated by the D-Actor 200,
Swiss DolorClast (“Radial” handpiece) and the following rESWT devices/handpieces: (i) BTL-
5000 SWT Power (BTL, Prague, Czech Republic) operated with the 15-mm applicator (used in
[48]); (ii) Swiss DolorClast (EMS) operated with the “EvoBlue” and “Power+” handpieces and
their 15-mm applicators; and (iii) en Puls V. 2.0 (Zimmer, Neu-Ulm, Germany) with its
15-mm applicator.

Acoustic measurements using a laser fiber optic probe hydrophone
Measurements of the pressure of the acoustic waves generated by the D-Actor 200 and the
Swiss DolorClast were carried out according to IEC-61846:1998 (Ultrasonics—Pressure pulse
lithotripters—Characteristics of fields) in a tank of 300 liters filled with demineralized water
(conductivity approximately 5μS/cm) at the laboratories of Electro Medical Systems (Nyon,
Switzerland). The inner dimensions of the tank were 960×560 mm with a height of 660 mm.
The water level rose to 470 mm when the applicators were immerged at a height of 330 mm.

Measurements were performed with a laser fiber optic probe hydrophone (FOPH 2000; RP
Acoustics, Leutenbach, Germany) coupled to an oscilloscope (LeCroy 9361; LeCroy, Chestnut
Ridge, NY, USA) in the x-axis of the applicator. Positioning of the laser hydrophone probe was
controlled with step motors, allowing a resolution of the position of 0.1 mm. Measurements
were performed at various distances to the applicators (1, 5, 10 and 20 mm) and operating the
D-Actor 200 and the Swiss DolorClast at various air pressures (D-Actor 200: 3 bar and [maxi-
mum] 5 bar; Swiss DolorClast: 3 bar and [maximum] 4 bar). All measurements were repeated
five times and the results were averaged.

The electrical signal recorded by the oscilloscope was linked to the pressure signal (P)
according to Eq 1:

P ¼ �412MPa� ð1þ aÞ � DU
UWater � UB

ð1Þ

with α the reflection factor (given at 0.07), ΔU the measured electrical signal, UWater the refer-
ence voltage of the noise of the measurement (probe without laser), and UB the reference volt-
age of the probe (with laser activated).

The energy flux density (J) is the integral of the pressure as shown in Eq 2:

J ¼ 1

Z

Z b

a

PðtÞ2dt ð2Þ

with Z the impedance of sound in water (1.5×106 kg×m-2×s-1), P(t) the pressure as a function
of time, a the first positive extreme of the first measured pressure peak, and b the second posi-
tive extreme of the first measured pressure peak.

Results were graphically represented using GraphPad Prism software (version 5; GraphPad,
San Diego, CA, USA).
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Because of the oscillating movements of the Vibracare head it was not possible to investigate
this device with the laser hydrophone.

High-speed imaging of cavitation bubbles
These investigations were performed at the Hydraulic Machines Laboratory of the École Poly-
technique Fédérale de Lausanne (Lausanne, Switzerland). The tips of the 15-mm applicators of
the D-Actor 200 and the Swiss DolorClast, mounted on their respective handpieces, as well as
the tip of the Vibracare head were submerged one after another in de-ionized water contained
within a custom-built transparent cubic vessel made of clear high-density polycarbonate (20
cm side length, 1 cm wall thickness). Measurements of the D-Actor 200 were performed at 3
bar and (maximum) 5 bar air pressure, and measurements of the Swiss DolorClast at 3 bar and
(maximum) 4 bar air pressure. Measurements were performed at 1 Hz and 15 Hz. The Vibra-
care was operated at maximum energy settings (i.e. 50 cycles per second, according to the oper-
ation manual). All measurements were run in triplicates. The water was systematically
degassed before each test to reduce the nuclei content. To this end, a vacuum pump connected
to the vessel was operated for several minutes.

To monitor the cavitation occurrence for each device, a high-speed charge coupled device
(CCD) camera (Photron Ultima APX; Photron, Tokyo, Japan) with a framing rate of 300,000
frames per second and exposure time of 1/2,700,000 seconds was used. Each captured frame
comprised a total of 8.192 (64 x 128) pixels, encompassing an area of approximately 8.8 x 17.6
mm. A parallel LED background illumination (IMG Stage Line 3W LED-36Spot; Monacor
International, Bremen, Germany) provided a white background, against which cavitation bub-
bles appear as black absorption features. Using the minimal exposure time of 370 ns, this illu-
mination also allows the visualization of shock waves in shadowgraphy [49].

The applicators of the D-Actor 200 and the Swiss DolorClast were lowered from above into
the camera frame’s top section. Camera recordings were triggered manually prior to the release
of a single pulse generated by the D-Actor 200 or the Swiss DolorClast, respectively. Individual
film sequences were subsequently visualized using FASTCAM viewer software (Photron,
Tokyo, Japan), converted into individual images with 256 greyscales (with zero and 256 repre-
senting black and white, respectively), exported as TIF files, and then reduced for data analysis
to 1,001 frames each (equivalent to film duration of 3.3 ms) to capture only those frames that
showed the cavitation peak caused by a single pulse generated by the D-Actor 200 or the Swiss
DolorClast, respectively, plus 500 frames before and after the cavitation peak (i.e., with the
peak in between). In case of the Vibracare the head of the device was brought from the side
into the camera’s field-of-view, the camera was switched on during continuous running of the
device, and film sequences were reduced for data analysis to 10,000 frames.

Quantitative evaluation of the individual frames for the presence or absence of labeled pixels
caused by cavitation bubbles was performed using a custom macro for Zeiss KS400 software
(Carl Zeiss Vision, Eching, Germany). Each greyscale image was binarized with the threshold
set to a grey level of 35, and the number of labeled pixels was determined. To account for
potential artifacts in the film sequences (caused by, e.g., dirt in the water introduced during the
measurements) the numbers of labeled pixels found in the first frame were subtracted from the
corresponding numbers of labeled pixels found in all consecutive frames (no. 2–1001) of the
corresponding film sequence.

Results were also graphically represented using Prism software (GraphPad).
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Exposure of x-ray films to pressure waves
Coleman et al. [10] reported that shock waves can blacken silver grains in x-ray films due to
the mechanical impact of collapsing cavitation bubbles on the film sheets’ surface. We therefore
tested the hypothesis that silver grains in x-ray films can also be blackened by exposing x-ray
films to the pressure waves generated by the D-Actor 200, Swiss DolorClast and Vibracare
devices. Measurements were performed at the Department of Anatomy II of the Ludwig-Maxi-
milians University of Munich (Munich, Germany) in a dark room that was sparsely illumi-
nated with red light. Individual x-ray films not sensitive to the red light (STRUCTURIX,
D4DW, Agfa Gevaert, Mortsel, Belgium) were fixed at their outer edges within a custom-made
frame in a horizontal position such that the sheet’s main surface was left unrestrained by the
frame. The entire construction was then submerged in de-ionized water. The applicators of the
D-Actor 200 and the Swiss DolorClast as well as the head of the Vibracare were placed under-
water, exactly 3 mm above the center of an individual x-ray sheet. To this end the handpieces
of the D-Actor 200 and the Swiss DolorClast were vertically mounted on a drill-stand (Wolf-
craft, Kempenich, Germany), with the applicators facing downward into the water. Then a
total of 10,000 pulses each were applied to the sheets’ center at maximum energy settings (i.e.,
5 bar for the D-Actor 200 and 4 bar for the Swiss DolorClast) at a frequency of 1 Hz. The
Vibracare was mounted in a custom-made frame with the head facing downward into the
water, and was again operated at maximum energy settings (i.e. 50 cycles per second) for one
hour.

The exposed films were developed with an x-ray film developing device (Protec C2; Protec,
Oberstenfeld, Germany) and examined using a Zeiss Axiophot Microscope (Zeiss, Goettingen,
Germany) for evidence of blackened silver grains and potential damage. Photomicrographs
were taken using a 2.5x objective (Neofluar, Zeiss) and a camera (AxioCam HRc, Zeiss)
attached to the microscope.

Influence of rESWT and vibrating massage devices on C. elegans
locomotion ability
Maintenance of adult wild type nematodes (N2, Bristol) obtained from the Caenorhabditis
Genetics Center (Minneapolis, MN, USA), their exposure to shock waves with subsequent
transfer from liquid to agar plates as well as analysis of worm locomotion data after shock wave
exposure was performed at the Department of Anatomy II of the Ludwig-Maximilians Univer-
sity of Munich as described in detail previously [47]. Briefly, 20 adult worms were placed
together with either 300 μl S-Medium [50] or 31,000 g/mol polyvinyl alcohol (PVA) (i.e.
Mowiol 4–88, Karl Roth, Karlsruhe, Germany) into non-adjacent U-bottom wells (n = 5 each
for S-medium and PVA) of 96-well plates (VWR, Radnor, PA, USA). With its high viscosity
PVA effectively suppresses cavitation generation, thus, by exclusion criterion, enabling to attri-
bute shock wave effects to cavitation [14,47].

In order to assess the effects of rESW on worm locomotion ability, the handpiece of the
Swiss DolorClast was set vertically into a drill stand (Wolfcraft, Kempenich, Germany). Here,
instead of the 15-mm applicator the handpiece of the Swiss DolorClast was equipped with its
6-mm applicator as it fits into individual wells of 96-well plates (a 6-mm applicator was not
available for the D-Actor 200). The handpiece of the Swiss DolorClast was lowered from above
into the well and a 5.5 x 2 mm fluorinated rubber O-ring (Vi 670/FKM 80, C. Otto Gehrckens,
Pinneberg, Germany) was placed externally around the applicator to provide a tight connection
with the well plate and to guard against loss of sample during rESW exposure (Fig 2A). Five
hundred impulses of radial shock waves at an intensity of 2 bar (corresponding to an energy
flux density of 0.08 mJ/mm2) and a frequency of 1 Hz were then applied to wells containing
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worms. To assess the effects of the Vibracare on worm locomotion ability the 96-well plates
containing worms with either S-Medium or PVA (n = 5 wells each) as described were sealed
with parafilm (M1 PM999; Pechiney Plastic Packaging, Chicago, IL, USA) to prevent sample
loss. The Vibracare was again placed in the custom-made frame as described above although
with the massage head facing upward. Sealed wellplates were then fixed from above on the
upward facing massage head using adhesive tape (Fig 2B). The Vibracare was then operated at
maximum energy settings (50 cycles per second) for 10 seconds (resulting in 500 vibrations).
Control samples (n = 5 wells for each S-Medium and PVA) were treated identically except that
the devices (D-Actor 200, Swiss DolorClast, Vibracare) remained switched off.

After exposure to either rESW or the movements of the head of the Vibracare worms were
rapidly transferred from their liquid medium to nematode growth media (NGM) agar plates
(for details see [47]). After transfer of worms NGM-agar plates were placed under a dissecting
microscope (MZ75, Leica, Wetzlar, Germany; equipped with a 1.0x PlanApo objective) with an
LCD light illumination set to a color temperature of 2800 K (KL 1500, Schott, Mainz, Ger-
many). Using a 5.0 megapixel, mono digital camera (Grasshopper 2, Point Grey Research,
Richmond, BC, Canada) and the video capture function of the software WormLab (Version
2.0.1, MBF Bioscience, Williston, VT) one minute long videos where then captured at 15
frames per second (FPS) with a resolution of 1280 x 960 pixels. Videos were investigated for
percent of worms moving (by means of tracking wormmid-point position; i.e. x, y coordinates)
and average speed of worm locomotion using Microsoft Excel 2010 (Microsoft, Redmond,
WA) transformation of raw data.

Statistical analysis was performed on speed of worm locomotion data. To this end the
D'Agostino and Pearson omnibus normality test of the data of all groups (separately for each
group) was performed: no group passed the normality test. Kruskal-Wallis test was then per-
formed separately for the worms in S-medium and the worms in PVA, followed each by

Fig 2. Exposure ofC. elegansworms to radial shock waves and the movements of the Vibracare head. In (A) the “Radial” handpiece of the Swiss
DolorClast (Electro Medical Systems) with the 6-mm applicator was lowered from above into one U-bottom well of a 96-well plate containingC. elegans
worms either in S-Medium or PVA (see main text). A fluorinated rubber O-ring (green) was used to seal the U-bottom well. In (B) a 96-well plate containing C.
elegansworms, sealed with parafilm and closed with its lid, was fixed with adhesive tape onto the upwards facing massaging head of the Vibracare (G5/
General Physiotherapy).

doi:10.1371/journal.pone.0140541.g002
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Dunn's multiple comparison test (comparing all groups with each other). Significance was
established at p< 0.05.

Results

Acoustic measurements using a laser fiber optic probe hydrophone
The pressure waves generated by the D-Actor 200 and the Swiss DolorClast showed very simi-
lar waveforms (Fig 3). All pressure waves were characterized by an initial peak of positive pres-
sure (P+), followed by a peak of negative pressure (P-), and subsequent waves of positive and
negative pressure. The pressure waves lasted approximately 15 μs. Table 1 summarizes P+, P-
and the energy flux densities of the pressure waves shown in Fig 3. Note that at 3 bar air pres-
sure the pressure waves generated by the two devices had almost the same energy flux density,
and operating the D-Actor 200 at (maximum) 5 bar air pressure did not result in a higher
energy flux density than operating the Swiss DolorClast at (maximum) 4 bar air pressure
(Table 1). For the Vibracare any potential pressure curves could not be measured due to the
device’s oscillation.

High-speed imaging of cavitation bubbles
High-speed imaging sequences for both the D-Actor 200 and the Swiss DolorClast revealed the
build-up of cavitation bubbles as soon as 10 μs following the pressure wave front, and a

Fig 3. Pressure as a function of time generated by the D-Actor 200 and the Swiss DolorClast devices. The panels show the pressure as a function of
time generated by the D-Actor 200 operated at 3 bar (A,E,I,M) and (maximum) 5 bar (B,F,J,N) as well as with the Swiss DolorClast operated at 3 bar (C,G,K,
O) and (maximum) 4 bar (D,H,L,P). Measurements were performed five times each; the data shown here represent the measurements (one out of five
repetitions) that resulted in the highest positive pressure each. Measurements were performed with a laser hydrophone at a distance of 1 mm (A-D), 5 mm
(E-H), 10 mm (I-L) and 20 mm (M-P) to the applicator.

doi:10.1371/journal.pone.0140541.g003
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cavitation maximum approximately 120 μs later (Fig 4). Both devices produced larger cavita-
tion bubbles at 1 Hz than at 15 Hz, irrespective of the devices’ energy settings (Fig 5). Quantita-
tive analysis of the film sequences also showed that both devices generated more cavitation at
1 Hz than at 15 Hz, with cavitation persisting for approximately 1 ms (Fig 6).

No cavitation bubbles were found in the high-speed imaging film sequences generated for
the Vibracare (Fig 7).

Exposure of x-ray films to pressure waves
The pressure waves generated by the D-Actor 200 and the Swiss DolorClast caused clearly dis-
cernible damage on the x-ray film’s surface (Fig 8). Damage was always characterized by a cen-
tral impression surrounded by a black ring. The D-Actor 200 caused complete penetration of
the x-ray film, leaving a hole within the central impression (Fig 8A). In case of the Swiss Dolor-
Clast the central impression on the x-ray film was not entirely penetrated (Fig 8B). In contrast,
the Vibracare had no detectable impact on the x-ray film (Fig 8C).

Influence of rESWT and vibrating massage devices on C. elegans
locomotion ability
When C. elegans worms were kept in S-Medium mean speed of locomotion was statistically sig-
nificantly reduced (p< 0.001) following exposure to rESW (8 ± 1 μm/s; Mean ± SEM) relative
to controls (88 ± 6 μm/s) (Fig 9, top panel). Accordingly, 77% of worms exposed to rESW were
rendered paralyzed compared to 18% in controls (Fig 9, bottom panel). In contrast, mean
speed of movement remained virtually unchanged between worms exposed to the movements
of the Vibracare head (84 ± 6 μm/s) and controls (Fig 9, top panel). Here, only 8% of worms
exposed to the movements of the Vibracare head were rendered paralyzed (Fig 9, bottom
panel).

Table 1. Peak positive pressure (P+), peak negative pressure (P-), rise time (Rt) and positive energy flux density (EFD+) of pressure waves gener-
ated by the D-Actor 200 and Swiss DolorClast devices at different distances to the applicator.

Device Operating air pressure [bar] Distance to the applicator [mm] P+ [MPa] P- [MPa] Rt [μs] EFD+ [mJ/mm2]

D-Actor 200 3 1 8.6 -6.7 2.6 0.10

5 6.2 -4.5 2.7 0.04

10 4.9 -4.2 2.1 0.02

20 2.4 -2.8 1.3 <0.01

5 1 10.5 -9.0 3.0 0.14

5 8.2 -6.5 2.7 0.07

10 6.5 -5.0 1.8 0.04

20 3.8 -3.6 2.6 0.02

Swiss 3 1 10.1 -5.7 2.9 0.10

DolorClast 5 6.6 -4.8 1.9 0.04

10 5.9 -3.0 1.9 0.02

20 4.2 -2.6 2.5 0.02

4 1 11.3 -6.0 3.4 0.14

5 8.4 -4.8 2.5 0.06

10 6.2 -3.2 1.8 0.03

20 4.5 -2.0 2.5 0.01

All values represent the average of five measurements.

doi:10.1371/journal.pone.0140541.t001
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Fig 4. Pressure waves and cavitation bubbles generated by the D-Actor 200 and the Swiss DolorClast
devices.Representative frames of the high-speed imaging experiments described in the main text, showing
pressure waves (arrows) emitted from the applicators of the D-Actor 200 operated at (maximum) 5 bar air
pressure (on the left) and the Swiss DolorClast operated at (maximum) 4 bar air pressure (on the right). The
panels show five consecutive frames each 3.33 μs apart, plus a subsequent frame that was captured 120 μs
after the first frame. Asterisks indicate the tip of the applicators lowered from above into the top section of the
camera’s field-of-view. Note that the first cavitation bubbles were already detected at 10 μs after occurrence
of the pressure wave (arrowheads in frames “+10 μs”). The scale bar represents 5 mm.

doi:10.1371/journal.pone.0140541.g004
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When worms were kept in PVA, which effectively diminishes the build-up of cavitation
bubbles, no significant differences in mean speed of movement were observed between controls
(57 ± 5 μm/s) and worms exposed to either rESW (47 ± 4 μm/s) or the movements of the
Vibracare head (59 ± 5 μm/s) (Fig 9, top panel). Consequently, there was no large difference in
the percentage of worms paralyzed between controls (17%), and worms exposed to either
rESW (29%) or the movements of the Vibracare head (17%) (Fig 9, bottom panel).

Discussion
The main outcome of the present study was that the D-Actor 200 (Storz Medical) more closely
resembles the radial extracorporeal shock wave therapy (rESWT) device Swiss DolorClast
(Electro Medical Systems) but not the vibrating massage device Vibracare (G5/General Physio-
therapy, Inc.), both in terms of working principle and energy signature. Both rESWT devices
(D-Actor 200 and Swiss DolorClast) generated characteristic pressure waves and cavitation,

Fig 5. Cavitation bubbles generated by the D-Actor 200 and the Swiss DolorClast devices. The panels
show the frames with the highest number of labeled pixels (from the corresponding high-speed imaging film
sequences described in the main text) generated by the D-Actor 200 (A-D) operated at 3 bar and 1 Hz (A), 3
bar and 15 Hz (B), (maximum) 5 bar and 1 Hz (C), and 5 bar and 15 Hz (D), as well as with the Swiss
DolorClast (E-H) operated at 3 bar and 1 Hz (E), 3 bar and 15 Hz (F), (maximum) 4 bar and 1 Hz (G), and 4
bar and 15 Hz (H). The scale bar represents 5 mm.

doi:10.1371/journal.pone.0140541.g005

Radial ShockWave Devices and Cavitation

PLOS ONE | DOI:10.1371/journal.pone.0140541 October 28, 2015 11 / 19



Radial ShockWave Devices and Cavitation

PLOS ONE | DOI:10.1371/journal.pone.0140541 October 28, 2015 12 / 19



and caused clearly discernible damage on x-ray films. For the Swiss DolorClast the present
study confirms and expands results from earlier studies [2,3,7,8,47,51]. However, this was in
sharp contrast to the vibrating massage device, whose energy signature could not be measured
due to the device’s oscillation, and which neither produced cavitation bubbles nor damage on
x-ray films. From its lacking potential to generate cavitation it can be deduced that the Vibra-
care did not generate a negative (tensile) pressure phase capable of creating cavitation [2,7].
Consequently, the vibrating massage device investigated in the present study per definition
“massages” biologic tissues (respectively “move around” water in the present study) whereas
rESWT devices generate acoustic pressure waves that propagate in tissues (respectively in
water) and, in the process, generate cavitation. The massaging effect could be visualized in high
speed imaging by the displacement of the head of the Vibracare (Fig 7) as compared to the
rESWT devices’ applicator tips, which did not displace (Figs 4 and 5).

The fundamental constructional differences between rESWT devices and the vibrating mas-
sage device investigated in the present study (Fig 1) are also reflected in their different bioef-
fects on locomotion ability in C. elegans worms observed in the present study. We found a
substantial reduction in the average speed of locomotion and an increase in the percentage of
worms rendered paralyzed after their exposure in S-medium to rESW (very similar to our ear-
lier results reported in [47]), but not to the movements of the Vibracare head. However, when
worms were exposed to rESW in PVA, which diminishes cavitation due to its high viscosity,
these effects were drastically reduced; thus demonstrating that cavitation was one of the bio-
logic working mechanisms primarily responsible.

Fig 6. Results of the quantitative analysis of the high-speed imaging experiments. Number of detected pixels as a function of time in the high-speed
imaging experiments described in the main text, obtained for the D-Actor 200 (A-D) operated at 3 bar and 1 Hz (A), 3 bar and 15 Hz (B), (maximum) 5 bar and
1 Hz (C), and 5 bar and 15 Hz (D), as well as with the Swiss DolorClast (E-H) operated at 3 bar and 1 Hz (E), 3 bar and 15 Hz (F), (maximum) 4 bar and 1 Hz
(G), and 4 bar and 15 Hz (H).

doi:10.1371/journal.pone.0140541.g006

Fig 7. Absence of cavitation bubbles when investigating the Vibracare device with high speed
imaging. The arrows point to the surface of the moving head of the device in frames of the high-speed
imaging experiments, showing minimum (A) and maximum (B) deflection of the device’s head.

doi:10.1371/journal.pone.0140541.g007
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So far, two models have been established in the literature to observe cavitation-mediated
bioeffects of extracorporeal shock waves, both of which utilized PVA to diminish cavitation in
comparison to other fluids/media enabling cavitation. The first was an ex vivomodel estab-
lished by Schelling et al. [14], who were able to attribute the electrical stimulation of frog sciatic
nerves following shock wave administration ex vivo unambiguously to cavitation by alternately
using in their experiments Ringer’s solution and PVA. More recently, Angstman et al. [47]
established a C. elegansmodel in vivo, in which worms were investigated alternately in S-
medium and PVA to demonstrate cavitation-mediated bioeffects of rESW on the musculoskel-
etal system. Using the latter model, we were able to corroborate the finding that bioeffects of
rESWT devices are indeed (at least in part) cavitation-mediated and, to demonstrate that the
Vibracare device, due to its lacking cavitation generation potential, does not generate the same
bioeffects than rESWT devices.

In more general terms we hypothesize that rESWT devices do not resemble vibrating mas-
sage devices, neither in terms of construction principle nor in terms of energy signature nor in
terms of bioeffects induced. Hence we propose to sharply separate these two fundamentally dif-
ferent therapeutic systems.

It should be mentioned that for the following reasons an in-depth quantitative comparison
of the cavitation output between the two rESWT devices investigated in the present study was
not possible: (i) The images obtained with the high-speed camera due to their nature represent
maximum intensity projections [52], which project the maximum volume elements of 3D data
(i.e., the applicator’s head plus cavitation bubbles) onto the camera’s two-dimensional field-of-
view. Accordingly, from all cavitation bubbles positioned along an axis perpendicular to the
CCD chip the camera will only register the cavitation bubble most closely to the CCD chip. (ii)
Both rESWT devices generated smaller cavitation bubbles at 15 Hz than at 1Hz. The reason for
this phenomenon that has not been addressed in the technical literature, is unknown. Thus, the
cavitation fields (i.e. maximum number of labeled pixels) at 15 Hz did not represent the same
characteristics of the cavitation fields at 1 Hz. The images shown in Fig 5 demonstrate that it
was impossible to separately count small and large cavitation bubbles.

However, the following general conclusions with high clinical relevance can be drawn: (i)
Due to their cavitation generating potential, rESWT devices come with clear contraindications
such as the proscribed application to target areas located above air filled tissues (e.g. lungs).
The Vibracare, on the other hand, is intended for respiratory therapy applications. Thus at
least one of the intended uses for the Vibracare represents a clear contraindication for rESWT

Fig 8. Damage of the surface of x-ray film caused by pressure waves generated by the D-Actor 200 and the Swiss DolorClast devices. The figures
show the surface of x-ray film after exposure to 10,000 pressure waves generated by the D-Actor 200 (A) and the Swiss DolorClast (B) at maximum energy
settings (i.e., 5 bar for the D-Actor 200 and 4 bar for the Swiss DolorClast). The asterisk in (A) indicates a hole in the x-ray film. The Vibracare device operated
at maximum energy settings (50 cycles per second) had no detectable impact on x-ray film (C). The scale bars represent 500 μm.

doi:10.1371/journal.pone.0140541.g008
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Fig 9. Influence of radial shock waves and the movements of the Vibracare head onC. elegans
locomotion ability. The upper panel shows mean and standard error of the mean (SEM) of the speed of
locomotion of the following groups of C. elegans: C-S, control worms in S-medium; SW-S, exposure of worms
to 500 impulses of radial shock waves (rESW) in S-medium; MA-S, exposure of worms to the movements of
the Vibracare head in S-medium; C-PVA, control worms in polyvinyl alcohol (PVA); SW-PVA, exposure of
worms to 500 impulses of rESW in PVA; MA-PVA, exposure of worms to the movements of the Vibracare
head in PVA. The lower panel shows the percentages of worms paralyzed (red bars) and not paralyzed
(green bars) of the same groups of C. elegans. The numbers in red above the bars in the upper panel indicate
the numbers of worms per group. ***, p < 0.001 (results of Dunn's multiple comparison test).

doi:10.1371/journal.pone.0140541.g009
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devices. Characterizing the D-Actor 200 (Storz) as a vibrating massage system (as done in [41])
appears inadequate from a technical and biomedical point of view. (ii) The air pressure of
rESWT devices does not predict the energy output of these devices to the patient. This is
because for the devices investigated in the present study no linear relationship was found
between these two parameters. For example, at 3 bar air pressure both devices generated almost
exactly the same amount of energy (i.e. positive energy flux density, EFD+; Table 1), and yet
again when operated at their highest air pressure settings although this was 5 bar in case of the
D-Actor 200 and 4 bar in case of the Swiss DolorClast. (iii) Both rESWT devices investigated in
the present study generated more cavitation with increasing air pressure settings. Accordingly,
the intensity of rESW treatments in the clinic can be adjusted by the device settings. Again,
however, no linear relationship exists between cavitation output and air pressure settings: at 3
bar the D-Actor 200 generated substantially more cavitation than the Swiss DolorClast (Fig 6)
whereas both devices generated almost the same amount of cavitation when operated at their
highest energy settings (i.e. 5 bar for the D-Actor 200 and 4 bar for the Swiss DolorClast). (iv)
Both rESWT devices investigated in the present study produced less cavitation at 15 Hz than at
1 Hz, and this was more pronounced for the D-Actor 200 than the Swiss DolorClast. The rea-
son for this phenomenon is unknown. This must be considered in clinical application because
rESW treatments performed with these devices at high frequencies may save time but may be
less effective than rESW treatments at low frequencies.

Conclusion
This is the first study demonstrating that the potential to generate cavitation is a common fea-
ture of rESWT devices which sharply separates them from certain vibrating massage devices,
the latter of which do not generate cavitation. Cavitation exerts important therapeutic bioef-
fects associated with shock waves, but may also cause serious negative effects on the body. Due
to the non-linearity between the cavitation output and the devices’ energy settings and/or pulse
frequencies, future studies should investigate the clinical effects of these observed differences
among the various rESWT devices that are available today.
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