Stringy origin of diboson and dijet excesses at the LHC

Luis A. Anchordoquia,b,c,*, Ignatiou Antoniadisd,e, Haim Goldbergf, Xing Huangg, Dieter Lüsthb,i, Tomasz R. Taylorf

a Department of Physics and Astronomy, Lehman College, City University of New York, NY 10468, USA
b Department of Physics, Graduate Center, City University of New York, NY 10016, USA
c Department of Astrophysics, American Museum of Natural History, NY 10024, USA
d LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005 Paris, France
e Albert Einstein Center, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern, Switzerland
f Department of Physics, Northeastern University, Boston, MA 02115, USA
g Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan
h Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München, Germany
i Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, 80333 München, Germany

\textbf{A R T I C L E I N F O}

Article history:
Received 24 July 2015
Received in revised form 12 August 2015
Accepted 13 August 2015
Available online 17 August 2015
Editor: M. Cvetič

\textbf{A B S T R A C T}

Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into $W+W^-$ pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous $U(1)$ field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z' gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated $Z\gamma$ topology would become a signature consistent only with a stringy origin.

\textcopyright 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Very recently, searches for narrow resonances at the ATLAS and CMS experiments uncovered various peaks in invariant mass distributions near 2 TeV: (i) The ATLAS search for diboson production contains a 3.4σ excess at ∼2 TeV in boosted jets of WZ \cite{Aad:2014nla}. The global significance of the discrepancy above standard model (SM) expectation is 2.5σ. The invariant mass range with significance above 2σ is ∼1.9 to 2.1 TeV. Because the search is fully hadronic, the capability for distinguishing gauge bosons is narrowed. Therefore, many of the events can also be explained by a ZZ or WW resonance, yielding excesses of 2.9σ and 2.6σ in these channels respectively. (ii) The CMS search for diboson production (without distinguishing between the W- and Z-tagged jets) has a 1.4σ excess at ∼1.9 TeV \cite{Khachatryan:2014iha}, and the search for diboson production with a leptonically tagged Z yields a 1.5σ excess at invariant mass ∼1.8 TeV \cite{Khachatryan:2015vwa}. (iii) The CMS search for dijet resonances finds a 2.2σ excess near 1.8 TeV \cite{Khachatryan:2014cla}. (iv) Around the same invariant mass ATLAS also recorded an excess in the dijet distribution with a 1σ significance \cite{Aad:2014xaa}. (v) The CMS search for resonant HW production yields a 2.1σ excess in the energy bin of 1.8 to 1.9 TeV; here the Higgs boson is highly boosted and decays into $b\bar{b}$, whereas the W decays into charged leptons and neutrinos \cite{Khachatryan:2014hea}. Barring the three ATLAS analyses in diboson production, all these excesses are completely independent.

Although none of the excesses is statistically significant yet, it is interesting to entertain the possibility that they correspond to a real new physics signal. On this basis, with the assumption that all resonant channels are consistent with a single resonance energy, a model free analysis of the various excesses has been recently presented \cite{LHCh13}. The required cross sections to accommodate the data are quite similar for WZ and ZZ final states, which can be considered as roughly the same measurement. A pure WW signal is
disfavored and could only describe the data in combination with another signal. This is because the CMS single lepton analysis sets an upper bound of 6.0 fb at 95% C.L. [3] and a cross section of this magnitude is needed to reproduce the hadronic excesses. Moreover, the CMS dilepton search has a small excess that this channel cannot explain [3].

Several explanations have been proposed to explain the excesses including a new charged massive spin-1 particle coupled to the electroweak sector (which can restore the left-right symmetry) [8], strong dynamics engendering composite models of the bosons [9], dark matter annihilation into right-handed fermions [10], a resonant trinorn simulating a diboson through judicious choice of cuts [11], and a heavy scalar [12]. In this Letter we adopt an alternate path. We assume that the source of the excesses originates in the decay of a new abelian gauge boson that suffers a mixed anomaly with the SM, but is made self-consistent by the Green–Schwarz (GS) mechanism [13]. Such gauge bosons occur naturally in D-brane TeV-scale string compactifications [14], in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions [15]. The SM arises from strings stretching between D-branes which belong to the “visible” sector. Additional D-branes are generally required to cancel RR-tadpoles, or to ensure that all space-filling charges cancel. These additional D-branes generate gauge groups beyond the SM which forge the “hidden” sector.

There are two unavowed phenomenological ramifications for intersecting D-brane models: the emergence of Regge excitations at parton collision energies $\sqrt{s} \sim$ string scale $\equiv M_s$; and the presence of one or more additional $U(1)$ gauge symmetries, beyond the $U(1)$ of the SM. The latter derives from the property that, for $N > 2$, the gauge theory for open strings terminating on a stack of N identical D-branes is $U(N)$ rather than $SU(N)$. (For $N = 2$ the gauge group can be $Sp(1) \otimes SU(2)$ rather than $U(2)$.) In a series of recent publications we have exploited both these ramifications to explore and anticipate new-physics signals that could potentially be revealed at the LHC. Regge excitations most distinctly manifest in the $\gamma + \text{jet}$ [16] and dijet [17] spectra resulting from their decay. The extra $U(1)$ gauge symmetries beyond hypercharge have (in general) triangle anomalies, but are canceled by the GS mechanism and the $U(1)$ gauge bosons get St"uckelberg masses. We have used a minimal D-brane construct to show that the massive $U(1)$ field, the Z', can be tagged at the LHC by its characteristic decay to dijets or dileptons [18]. In the framework of this model herein we adjust the coupling strengths to be simultaneously consistent with the observed dijet excess and the lack of a significant dilepton excess. Concurrently we show that the model is also consistent with the ATLAS diboson excess as it allows for production of Z'-pairs. At the level of effective Lagrangian, the operator contributing to the $Z'ZZ$ amplitude is induced by the GS anomaly cancellation.

In our calculations we will adopt as benchmarks:

\begin{align}
\sigma(pp \to Z') \times B(Z' \to ZZ/WW) &\sim 5.5^{+5.1}_{-3.3} \text{ fb} \quad [7], \\
\sigma(pp \to Z') \times B(Z' \to jj) &\sim 91^{+52}_{-40} \text{ fb} \quad [7], \\
\sigma(pp \to Z') \times B(Z' \to e^+e^-) &< 0.2 \text{ fb} (95\% \text{ C.L.}) \quad [19]. \\
\sigma(pp \to Z') \times B(Z' \to HZ) &< 1.29 \text{ fb} (95\% \text{ C.L.}) \quad [20].
\end{align}

To develop our program in the simplest way, we will work within the construct of a minimal model with 4 stacks of D-branes in the visible sector. The basic setting of the gauge theory is given by $U(3)_c \times Sp(1) \times U(1)_x \times U(1)_y$ [21]. The LHC collisions take place on the (color) $U(3)_c$ stack of D-branes. In the bosonic sector the open strings terminating on this stack contain, in addition to the $SU(3)_C$ octet of gluons g^a_{μ}, an extra $U(1)$ boson C_{μ}, most simply the manifestation of a gauged baryon number. The $Sp(1)_b$ stack is a terminator for the $SU(2)_L$ gauge bosons W^a_{μ}. The $U(1)_Y$ boson Y_{μ} that gauges the usual electroweak hypercharge symmetry is a linear combination of C_{μ} and the $U(1)_Y$ bosons B_{μ} and X_{μ} terminating on the separate $U(1)_r$ and $U(1)_b$ branes. Any vector boson orthogonal to the hypercharge, must grow a mass so as to avoid long range forces between baryons other than gravity and Coulomb forces. The anomalous mass growth allows the survival of global baryon number conservation, preventing fast proton decay [22].

The content of the hypercharge operator is given by

\begin{equation}
Q_Y = \frac{1}{6} Q_u - \frac{1}{2} Q_c + \frac{1}{2} Q_d.
\end{equation}

We also extend the fermion sector by including the right-handed neutrino, with $U(1)$ charges $Q_u = 0$ and $Q_c = Q_d = -1$. The chiral fermion charges of the model are summarized in Table 1.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Sector</th>
<th>Representation</th>
<th>Q_u</th>
<th>Q_c</th>
<th>Q_d</th>
<th>Q_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_R^a</td>
<td>$a = d^*$</td>
<td>$(3, 1)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>D_R</td>
<td>$a = d$</td>
<td>$(3, 1)$</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>$-\frac{1}{2}$</td>
</tr>
<tr>
<td>L_{ℓ}</td>
<td>$c = b$</td>
<td>$(1, 2)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$-\frac{1}{2}$</td>
</tr>
<tr>
<td>E_R</td>
<td>$c = d$</td>
<td>$(1, 1)$</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Q_{ℓ}</td>
<td>$a = b$</td>
<td>$(3, 2)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>N_R</td>
<td>$c = d^*$</td>
<td>$(1, 1)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1

Chiral fermion spectrum of the D-brane model.

The covariant derivative for the $U(1)$ fields in the a, b, c, d basis is found to be

\begin{equation}
D_{\mu} = \partial_{\mu} - ig_a C_{\mu} Q_a - ig_c B_{\mu} Q_c - ig_d X_{\mu} Q_d.
\end{equation}

The fields C_{μ}, B_{μ}, X_{μ} are related to Y_{μ}, Y_{μ}', and Y''_{μ} by the rotation matrix

\begin{equation}
R = \begin{pmatrix}
C_{\phi} C_{\psi} -\phi \phi S_{\psi} + \phi S_{\phi} C_{\psi} & -\phi S_{\phi} C_{\psi} + \phi C_{\phi} S_{\psi} & C_{\phi} C_{\psi} + \phi C_{\phi} S_{\psi} \\
C_{\phi} S_{\psi} & C_{\phi} C_{\psi} + S_{\phi} S_{\psi} & -\phi S_{\phi} C_{\psi} + \phi C_{\phi} S_{\psi} \\
-S_{\phi} & C_{\phi} & C_{\phi} S_{\phi}
\end{pmatrix}
\end{equation}

with Euler angles θ, ψ, and ϕ. Equation (6) can be rewritten in terms of Y_{μ}, Y_{μ}', and Y''_{μ} as follows

\begin{align}
\mathcal{D}_{\mu} = \partial_{\mu} - i Y_{\mu} &\left(-S_{\phi} g_{\phi} Q_d + C_{\phi} S_{\phi} g_{\phi} Q_c + C_{\phi} C_{\phi} g_{\phi} Q_d \right) \\
- i Y'_{\mu} &\left(C_{\phi} S_{\phi} g_{\phi} Q_d + (C_{\phi} C_{\phi} + S_{\phi} S_{\phi}) g_{\phi} Q_c \\
+ (C_{\phi} S_{\phi} - S_{\phi} C_{\phi}) g_{\phi} Q_a \right) \\
- i Y''_{\mu} &\left(C_{\phi} C_{\phi} g_{\phi} Q_d - (C_{\phi} S_{\phi} + C_{\phi} C_{\phi} S_{\phi}) g_{\phi} Q_c \\
+ (C_{\phi} C_{\phi} S_{\phi} + S_{\phi} S_{\phi}) g_{\phi} Q_a \right).
\end{align}

\[1\] The Landau–Yang theorem [24], which is based on simple symmetry arguments, forbids decays of a spin-1 particle into two photons.
Now, by demanding that Y_μ has the hypercharge Q_Y given in (5) we fix the first column of the rotation matrix R
\[
\begin{pmatrix}
 C_\mu \\
 B_\mu \\
 X_\mu
\end{pmatrix} = \begin{pmatrix}
 Y_\mu \frac{1}{2} g_Y / g'_a & \cdots \\
 -Y_\mu \frac{1}{2} g_Y / g'_c & \cdots \\
 Y_\mu \frac{1}{2} g_Y / g'_d & \cdots
\end{pmatrix},
\]
(9)
and we determine the value of the two associated Euler angles
\[
\theta = -\arcsin \left(\frac{1}{2} \frac{g_Y}{g'_a} \right),
\]
(10)
and
\[
\psi = \arcsin \left(-\frac{1}{2} \frac{g_Y}{g'_c} \left(g'_c / C_\psi \right) \right).
\]
(11)
The couplings g'_a and g'_d are related through the orthogonality condition,
\[
\left(-\frac{1}{2 g'_c} \right)^2 = \frac{1}{g_Y^2} \left(\frac{c_1}{6 g'_d} \right)^2 - \left(\frac{1}{2 g'_d} \right)^2,
\]
(12)
with g'_d fixed by the relation $g_3(M_t) = \sqrt{3} g'_d(M_t)$. In our calculation we take $M_t = 20$ TeV as a reference point for running down to 1.8 TeV the g'_d coupling, ignoring mass threshold effects of stringy states. This yields $g'_d = 0.36$. We have checked that the running of the g'_c coupling does not change significantly for different values of the string scale. The third Euler angle ϕ and the coupling g'_d will be determined by requiring sufficient suppression to leptons to accommodate (3) and a (pre-cut) production rate $\sigma(pp \to Z') \times B(Z' \to jj)$ in agreement with (2).

The fZ' Lagrangian is of the form
\[
\mathcal{L} = \frac{1}{2} \left(\bar{g}_{Z'}^2 + g_{Z'}^2 \right) \sum_f \left(\bar{\psi}_{fL} \gamma^\mu \psi_{fL} + \bar{\psi}_{fR} \gamma^\mu \psi_{fR} \right) Z'_\mu
\]
\[
= \sum_f \left((g_{Z'} Q_Y)^{fL} \bar{\psi}_{fL} \gamma^\mu \psi_{fL} + (g_{Z'} Q_Y')^{fR} \bar{\psi}_{fR} \gamma^\mu \psi_{fR} \right) Z'_\mu,
\]
(13)
where each $\psi_{fL,R}$ is a fermion field with the corresponding γ^μ matrices of the Dirac algebra, and $\epsilon_{fL,R}$ is the vector and axial couplings respectively. From (8) and (13) we obtain the explicit form of the chiral couplings in terms of ϕ and g'_d
\[
\epsilon_{u_L} = \epsilon_{d_L} = \frac{2}{\sqrt{g_Y^2 + g_{Z'}^2}} \left(C_\psi S_\theta S_\phi - C_\phi S_\psi \right) g'_d,
\]
\[
\epsilon_{u_R} = -\frac{2}{\sqrt{g_Y^2 + g_{Z'}^2}} \left[C_\psi S_\theta g'_d + (C_\theta S_\psi S_\phi - C_\phi S_\psi) g'_d \right],
\]
\[
\epsilon_{d_R} = \frac{2}{\sqrt{g_Y^2 + g_{Z'}^2}} \left[C_\phi S_\theta g'_d - (C_\theta S_\psi S_\phi - C_\phi S_\psi) g'_d \right].
\]
(14)
The decay width of $Z' \to f \bar{f}$ is given by [25]
\[
\Gamma(Z' \to f \bar{f}) = \frac{G_F M_{Z'}^3}{6\pi \sqrt{2}} N_c C(M_{Z'}^2) M_{Z'} \sqrt{1 - 4x} \left[v^2_{\psi} (1 + 2x) + a^2_{\psi} (1 - 4x) \right],
\]
(15)
where G_F is the Fermi coupling constant, $C(M_{Z'}^2) = 1 + \alpha_s / \pi + 1.409 (\alpha_s / \pi)^2 - 12.77 (\alpha_s / \pi)^3$, $\alpha_s = \alpha_s(M_Z)$ is the strong coupling constant at the scale M_Z, $x = m_t^2 / M_{Z'}^2$, and $N_c = 3$ or 1 if f is a quark or a lepton, respectively. The couplings of the Z' to the electroweak gauge bosons are model dependent, and are strongly dependent on the spectrum of the hidden sector. Following [26] we parametrize the model-dependence of the decay width in terms of two dimensionless coefficients,
\[
\Gamma(Z' \to ZZ) = \frac{c_1^2 \sin^2 \theta_W M_Z^3}{192 \pi M_Z^2} \left(1 - \frac{4 M_Z^2}{M_W^2} \right)^{5/2}
\]
\[
\approx c_1^2 (45 \text{ GeV}) \left(\frac{M_Z}{\text{TeV}} \right)^3 + \cdots,
\]
(16)
\[
\Gamma(Z' \to W^+W^-) = \frac{c_2^2 M_Z^3}{48 \pi M_W^2} \left(1 - \frac{4 M_Z^2}{M_W^2} \right)^{5/2}
\]
\[
\approx c_2^2 (1.03 \text{ TeV}) \left(\frac{M_Z}{\text{TeV}} \right)^3 + \cdots,
\]
(17)
\[
\Gamma(Z' \to ZY') = \frac{c_1^2 \cos^2 \theta_W M_Z^3}{96 \pi M_Z^2} \left(1 - \frac{M_Z^2}{M_W^2} \right)^{3} \left(1 + \frac{M_Z^2}{M_{Z'}^2} \right)
\]
\[
\approx c_1^2 (307 \text{ GeV}) \left(\frac{M_Z}{\text{TeV}} \right)^3 + \cdots.
\]
(18)
The Z' production cross section at the LHC8 is found to be [8]
\[
\sigma(pp \to Z') \simeq 5.2 \left(\frac{2 \Gamma(Z' \to u\bar{u}) + \Gamma(Z' \to d\bar{d})}{\text{GeV}} \right) \text{fb}.
\]
(19)

Next, we scan the parameter space to obtain agreement with (1) to (4). In Fig. 1 we show contour plots, in the $\left(g'_d, \phi \right)$ plane, for constant $\sigma(pp \to Z') \times B(Z' \to jj)$; $\sigma(pp \to Z') \times B(Z' \to e^+e^-)$; and $\sigma(pp \to Z') \times B(Z' \to W^+W^-)$. To accommodate (1), (2), and (3) the ratio of branching fractions of electrons to quarks must be minimized subject to sufficient dijet and dijet production. It is easily seen in Fig. 2 that $\phi = 0.96$ and $g'_d(M_t) = 0.29$, $c_1 = 0.08$, and $c_2 = 0.02$ yield $\sigma(pp \to Z') \approx 228 \text{ fb}$, $\Gamma(Z' \to jj) \approx 0.54$, $\Gamma(Z' \to e^+e^-) \approx 8.9 \times 10^{-4}$, $\Gamma(Z' \to W^+W^-) \approx 3.4 \times 10^{-3}$, which are consistent with (1), (2), and (3) at the 1σ level. In addition, $\Gamma(Z' \to HZ) \approx 7.4 \times 10^{-4}$. Thus, the upper limit set by (4) is also satisfied by our fiducial values of ϕ, g'_d, c_1, and c_2. The chiral couplings of Z' and Z'' are given in Table 2. All fields in a given set have a common $g_{Z'} Q_{Y'}$, $g_{Y'} Q_{Y'}$ couplings.

The second constraint on the model derives from the mixing of the Z and the Y' through their coupling to the two Higgs doublets. The criteria we adopt here to define the Higgs charges is to make the Yukawa couplings $(H_u d q_u, H_d q_d, H_u e^+ e^-$), $(H_u ^+ e^+$), $(H_v ^+ e^-)$ invariant under all three $U(1)$'s [27]. Two “supersymmetric” Higgses $H_u \equiv H_v$ and H_d (with charges $Q_u = Q_d = 0$, $Q_u = 1/2$ and $Q_d = 0$, $Q_d = -1$, $Q_Y = -1/2$) are sufficient to give masses to all the chiral fermions. Here, $(H_u) = (0, 0, 0)$, $(H_d) = (0, 0, v_\beta)$.

The last two terms in the covariant derivative
\[
\mathcal{D}_\mu = \partial_\mu - i \frac{1}{\sqrt{g^2_Y + g^2_{Z'}}} Z_\mu (S_{Y'}^2 - S_{Y'} Q_{Y'})
\]
\[
\times - ig_{Y'} Y_{\mu} Y_{\nu} - ig_{Y'} Y^{\prime}_{\mu} Y_{\nu},
\]
(20)

2 Throughout g_3 and g_2 are the strong and weak gauge coupling constants.
are conveniently written as

\[-i \frac{X_{H_i}}{V_{i}} \tilde{M}_Z Y_{\mu}^{\nu} - i \frac{Y_{H_i}}{V_{i}} \tilde{M}_Z Y_{\nu}^{\mu} \] (21)

for each Higgs \(H_i \), with \(T^3 = \sigma^3/2 \), where for the two Higgs doublets

\[x_{H_d} = -x_{H_u} = 1.9 \sqrt{y_d^2 - 0.032} \, S_\phi \] (22)

and

\[y_{H_u} = -y_{H_d} = 1.9 \sqrt{y_d^2 - 0.032} \, C_\phi . \] (23)

The Higgs field kinetic term together with the GS mass terms

\[-\frac{1}{2} M'^2 Y_{\mu}^{\nu} Y^{\mu\nu} - \frac{1}{2} M''^2 Y_{\mu}^{\nu} Y^{\mu\nu} \]

yield the following mass square matrix for the \(Z - Z' \) mixing,

\[
\begin{pmatrix}
\tilde{M}_Z^2 & \tilde{M}_Z^2 (x_{H_u} C_\phi^2 - x_{H_d} S_\phi^2) \\
\tilde{M}_Z^2 (y_{H_u} C_\phi + S_\phi^2) & \tilde{M}_Z^2 C_\phi^2 + S_\phi^2^2 + M^2 \\
\tilde{M}_Z^2 (x_{H_u} C_\phi^2 - x_{H_d} S_\phi^2) & \tilde{M}_Z^2 (y_{H_u} C_\phi + S_\phi^2^2) + M^2 \\
\tilde{M}_Z^2 (y_{H_u} C_\phi + S_\phi^2^2) & \tilde{M}_Z^2 (x_{H_u} C_\phi^2 - x_{H_d} S_\phi^2) + M^2 \\
\end{pmatrix},
\]

which does not impose any constraint on the tan \(\beta \) parameter. We have verified that, for our fiducial values of \(\phi \) and \(g_\nu^2 \), if \(M_{Z'} \gtrsim M_Z \), the shift of the \(Z \) mass would lie within 1 standard deviation of the experimental value.

In summary, we have shown that recent results by ATLAS and CMS searching for heavy gauge bosons decaying into \(WW/ZZ \) and \(jj \) final states could be a first hint of string physics. In D-brane stringifications the gauge symmetry arises from a product of \(U(N) \) groups, guaranteeing extra \(U(1) \) gauge bosons in the spectrum. The weak hypercharge is identified with a linear combination of anomalous \(U(1)' \)’s which itself is anomaly free. The extra anomalous \(U(1) \) gauge bosons generically obtain a St"uckelberg mass. Under the assumption of a low string scale, we have shown that the diboson and dijet excesses can be steered by an anomalous \(U(1) \) field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptonophobic nature of the massive \(Z' \) gauge boson. The resulting loop diagrams, along with tree-level higher-dimension couplings arising from the GS anomaly cancellation mechanism, generate an effective vertex that couples the anomalous \(U(1) \) fields to two electroweak gauge bosons. The effective vertex renders viable the decay of the \(Z' \) into \(Z \)-pairs, which is necessary to fit the data. Should the excesses become statistically significant at the LHC13, the associated \(Z \gamma \) topology would become a signature consistent only with a stringy origin.

Acknowledgements

L.A.A. is supported by U.S. National Science Foundation (NSF) CAREER Award PHY1053663 and by the National Aeronautics and Space Administration (NASA) Grant No. NNX13AH52G. He thanks the Center for Cosmology and Particle Physics at New York University for its hospitality. H.G. and T.R.T. are supported by NSF.
Grant No. PHY-1314774. X.H. is supported by the MOST Grant 103-2811-M-003-024. D.L. is partially supported by the ERC Advanced Grant “Strings and Gravity” (Grant No. 32004) and by the DFG cluster of excellence “Origin and Structure of the Universe.” Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References