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Abstract

Derivative assets analysis usually takes a model of the underlying price process
as given and attempts to value derivative securities relative to that model. This
paper studies the following “inverse” problem: given a valuation formula for a
derivative asset, what can be inferred about the underlying asset price process?
Assuming continuous sample paths, we show that a sufficiently regular pricing
formula for some derivative asset completely determines the risk-neutral law of
the underlying price. In particular, such a valuation formula implies a unique set
of state prices for payoffs contingent on the price path of the underlying security.
As an illustration of our main result, we analyse certain pricing formulae for
European options on zero-coupon bonds.
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Introduction

Derivative assets analysis usually takes a model of the underlying price processes as
given and attempts to value derivatives relative to that model. The recent literature
on “implied trees”1 has renewed the interest in the “inverse” problem: given some
set of derivatives prices, what can we say about the price processes of the underlying
securities? More precisely, this literature tries to construct models which, in contrast
to the Black-Scholes model, are consistent with the observed market prices of standard
European options and thus provide a better framework for the hedging and pricing of
“exotic” over-the-counter derivatives.

This paper studies a different variant of the “inverse” problem: given a valuation
formula for a derivative asset, what can be inferred about the underlying asset prices?
We assume that the price of a derivative asset is a deterministic function of the underly-
ing security prices and time, and investigate the restrictions such a pricing relationship
imposes on the underlying price dynamics.2

We restrict ourselves to the simplest possible setting with a riskless cash account,
one risky security, and one derivative. Assuming that asset prices are continuous
semimartingales, we consider pricing formulae that satisfy a variant of the fundamental
valuation equation which is familiar from derivative asset pricing in a diffusion setting.
In fact, such a formula will hold whenever the risk-neutralised price of the underlying
asset follows a diffusion process.3 We show that this condition is also necessary: a
pricing formula of this type can hold only if the risk-neutralised price process of the
underlying asset is a diffusion; moreover, the diffusion coefficient is uniquely determined
by the valuation formula. In other words, the formula completely determines the risk-
neutral law of the underlying asset price, thus implying a unique system of state prices
for payoffs contingent on the price path of the underlying security.

While similar in spirit to Breeden and Litzenberger’s (1978) calculation of state
prices implicit in option prices, the approach of this paper relies on rather different
mathematical tools, based mainly on semimartingale calculus. The main result follows
directly from a characterisation theorem for continuous local martingales which extends
work by McGill, Rajeev and Rao (1988) on Brownian motion.

Of course, this result is based on a purely theoretical assumption – knowledge of
the price of a derivative asset at all dates and in all states of the world. However, it
could have some practical relevance for nonparametric approaches to derivative asset
pricing via learning networks.4 In principle, once a pricing formula has been learnt by
a network, the techniques presented here could be used to identify the risk-neutral law
of the underlying asset prices.

As an illustration of these techniques, we analyse pricing formulae for options on
zero-coupon bonds which have been proposed in the literature. We consider option

1Cf. Rubinstein (1994) and the references therein, in particular Dupire (1994).
2This can be seen as an analogue to the problem of identifying necessary conditions which equi-

librium asset price processes must satisfy in a given exchange economy; see Bick (1990) and He and
Leland (1993).

3Provided the diffusion coefficient is almost always non-zero; see Duffie (1991).
4See Hutchinson, Lo and Poggio (1994).
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price formulae of two types. The first one goes back to Merton’s (1973) paper on the
valuation of stock options, and has been obtained in a variety of bond price or interest
rate models.5 These models have in common that they allow for negative interest rates.
A direct application of our result confirms that such formulae are indeed inconsistent
with non-negative interest rates.

The second type of pricing formula is closely related to the first. Schöbel (1986)
and, more recently, Briys, Crouhy and Schöbel (1991) proposed this type of formula
for the valuation of discount bond options in an environment where interest rates do
remain non-negative. Their formula is obtained by solving Mertons’s fundamental
valuation equation with an additional boundary condition that follows from the non-
negativity of interest rates. Applying our martingale technique, we show that this
pricing formula implies a positive probability for a certain process of implied forward
rates to be absorbed at its lower bound 0 during the life of the option. Thus, while these
authors obtain a pricing formula that is formally consistent with non-negative interest
rates, they implicitly accept an implausible bond price and interest rate behaviour.

The rest of the paper is organised as follows. After introducing the setup, Section
1 states and interprets the main result. Section 2 analyses pricing formulae for options
on zero-coupon bonds. Section 3 concludes the paper. All proofs are given in an
appendix.

1 Martingale Measures and Pricing Formulae

We fix a finite time interval T = [0, T ], a probability space (Ω,F , P ) and a filtration
(Ft)t∈T satisfying the usual conditions. F0 is assumed to be almost trivial, and FT = F .

Consider three securities, labelled 0, 1 and 2. We make the following assumptions:

• Trade in these securities is continuous and frictionless.

• The securities pay no dividends.

• Security 0 has a constant price X0
t ≡ 1.

• The price processes of securities 1 and 2, denoted by X1 and X2, are positive
continuous semimartingales.

Security 0 can be thought of as a riskless cash account with zero interest. Alternatively,
we can interpret (X0, X1, X2) as a normalised price system, expressed in units of some
numeraire asset.

Note that we do not assume that the filtration (Ft)t∈T is generated by the price
processes of assets 0, 1 and 2. We allow the filtration to contain more information
than just past prices of these three assets. This additional information could be the
price history of other securities or, more generally, non-price information about arbi-
trary economic variables. For later use, let (Gi

t)t∈T be the completion of the filtration
generated by X i, and write Gi = Gi

T .

5See for example Ball and Torous (1983), El Karoui and Rochet (1989), Kemna, de Munnik and
Vorst (1989), Hull and White (1990), Jamshidian (1991), Heath, Jarrow and Morton (1992).
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A martingale measure for the price system (X0, X1, X2) is defined as a probability
measure Q equivalent to P such that both processes X i (i = 1, 2) are Q-martingales.
The existence of a martingale measure ensures absence of arbitrage opportunities in a
suitably chosen space of admissible trading strategies. Such a measure, if it exists, is
in general not unique.6

We say that the price of asset 2 is given by a pricing formula if there is some
function u(t, x) such that

X2
t = u(t,X1

t )

for all t ∈ T . The literature on the valuation of derivative assets has calculated
pricing formulae for a variety of securities. Adopting for a moment the perspective
of derivative assets analysis, think of assets 0 and 1 as primitive securities, and of
asset 2 as a derivative with payoff depending on the price of asset 1 at the terminal
date. Given the price processes of the primitive assets, the task is to determine the
fair price of asset 2. Typically, this involves the following steps.7 First, one establishes
the existence of a martingale measure for the system (X0, X1) of primitive asset prices.
Next, one proves that the derivative claim is attainable, i.e., that it can be replicated by
a dynamically adjusted self-financing trading strategy in the primitive assets. The price
of the derivative asset must then be equal to the value of the replicating portfolio; any
deviation would lead to arbitrage opportunities. Moreover, the price of the derivative is
again a martingale under the given martingale measure, so it can be calculated without
reference to a replicating strategy, just by taking expectations of the final payoff under
the martingale measure. Finally, if the primitive asset prices have the Markov property,
then the solution of the valuation problem indeed takes the form of a pricing formula.

Assume for example that (X0, X1) has a martingale measure Q such that X1 solves
the stochastic differential equation

dX1
t = σ(t,X1

t ) dWt (SDE)

with σ(t, x) sufficiently regular and W a Wiener process under Q. Then one has the
following well-known result. Asset 2 is attainable, and its price process is of the form
X2

t = u(t,X1
t ) with u(t, x) being a solution of the partial differential equation

ut + 1
2
σ2uxx = 0. (PDE)

Thus, if X1 has a martingale measure under which it is a diffusion satisfying (SDE),
we get pricing formulae for derivatives involving solutions to the valuation equation
(PDE). Our aim is to prove a converse to this statement.

Returning to the general setup, let us assume that (X0, X1, X2) has a martingale
measure, and let the price of asset 2 be given by a pricing formula X2

t = u(t,X1
t ) where

u is once continuously differentiable with respect to t and twice with respect to x. Fix
a time t and a realisation x of the random variable X1

t . Suppose that uxx(t, x) > 0, say,
so u is strictly convex in its second argument around (t, x). By Jensen’s inequality, the

6Uniqueness of the martingale measure corresponds to completeness of the securities market. See
Harrison and Pliska (1981, 1983).

7Cf. Harrison and Piska (1981).
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holder of asset 2 can therefore expect a gain from the random movements of X1 over a
short time interval. The existence of a martingale measure, however, precludes such a
gain. To balance the Jensen effect, the passing of time must therefore have a tendency
to reduce the value of asset 2, in other words, ut(t, x) < 0. By the same argument,
uxx(t, x) < 0 implies ut(t, x) > 0.8 Thus, whenever uxx(t, x) 6= 0, we can define

σ(t, x) =

√√√√−2 ut(t, x)

uxx(t, x)

and thereby satisfy (PDE) at the given point (t, x). In this sense, (PDE) is just a
consequence of a simple “no expected gain” argument, and does not impose restrictions
on the underlying process X1. In the theorem below, we shall therefore make the
additional assumption that the above function σ(t, x) which we defined point by point
on a subset of the domain of u has in fact a continuous extension to the whole of that
domain.

For a similar reason, we shall also stipulate that u be sufficiently non-linear, i.e.,
that uxx does not vanish too often. Clearly, a linear pricing formula will not restrict
the underlying process at all – a statement like “two shares cost twice the price of one
share” will not tell us anything about the underlying stock price model.

We are now ready to formulate the main result of this paper.

Theorem 1.1 Let the price system (X0, X1, X2) on (Ω,F , P, (Ft)t∈T ) satisfy

X2
t = u(t,X1

t )

where u(t, x) is a solution of (PDE) with a continuous function σ(t, x). Assume that
{t ∈ T : σ(t, X1

t ) = 0} has Lebesgue measure zero almost surely.9 In addition, suppose
that at least one of the following two conditions holds:

uxx(t,X
1
t ) 6= 0 for all t ∈ T almost surely,

or

{t ∈ T : uxx(t,X
1
t ) = 0} is almost surely a Lebesgue null set,

u(t, x) is analytic, and σ2(t, x) has partial derivatives of all order.10

8A mathematically precise argument runs as follows. For T > t, Itô’s lemma implies

X2
T −X2

t −
∫ T

t

ux(s,X1
s ) dX1

s =
∫ T

t

ut(s,X1
s ) ds + 1

2

∫ T

t

uxx(s,X1
s ) d〈X1〉s .

Under a martingale measure, the left hand side is a continuous local martingale while the right hand
side is of finite variation, so both must vanish identically. This requires ut(t,X1

t ) and uxx(t,X1
t ) to

be of opposite sign whenever the latter expression is non-zero.
9This assumption is inessential. See Remark A.5 in the Appendix.

10This condition allows for derivatives whose payoff profile has both concave and convex sections,
such as option spreads.
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Finally, let Q be a martingale measure for this price system. Then there is a Wiener
process W under Q such that the price process X1 satisfies (SDE) with the given func-
tion σ(t, x).

The theorem is a direct consequence of a somewhat more general mathematical
result which we prove in the Appendix.

According to Theorem 1.1, a pricing formula satisfying (PDE) under the stated
conditions completely characterises the behaviour of the price of asset 1 under the
martingale measure Q.11 Indeed, (SDE) and the fact that W is a Wiener process
completely determine the law of X1 under Q. As a first consequence, note that the
pricing formula implies the Markov property for X1 under Q.12 (PDE) is then just the
associated backward equation.

More important, the law of X1 is the same under all martingale measures. In
other words, all martingale measures coincide on G1. By a theorem of Jacka (1992),
this implies that all G1-measurable contingent claims are attainable, hence priced by
arbitrage.13 This holds in particular for the Arrow-Debreu security with time T payoff
1A where A ∈ G1. The pricing formula thus implies a unique system of Arrow-Debreu
or state prices for events in G1. As usual, these prices are obtained by taking the
expectation of the corresponding Arrow-Debreu payoffs under any martingale measure.

The idea of extracting state prices from derivative prices goes back at least to
Breeden and Litzenberger (1978).14 In the present setting, their argument can be
rendered as follows. Assume that we have a securities market with assets 0 and 1 as
before but, instead of asset 2, European call options written on asset 1 for any strike
price and exercise date. Let CT,K

0 denote today’s call price for exercise date T and strike
price K. Assume that there exists a martingale measure for this securities market, and
let FT be the corresponding distribution function for the random variable X1

T . Call
prices must satisfy

CT,K
0 =

∫ ∞

K
(x−K) dFT (x)

by definition of a martingale measure. Integration by parts yields

CT,K
0 =

∫ ∞

K
(1− FT (x)) dx

and hence

FT (K) = 1 +
∂

∂K
CT,K

0 .

Thus the distribution function FT is uniquely determined by the given option prices.15

11We assume in the following that σ satisfies the regularity conditions for uniqueness of weak
solutions of (SDE). See for example Karatzas and Shreve (1988).

12Recall that we merely assumed this price to be a continuous semimartingale.
13Alternatively, this result follows from the martingale representation property of X1 with respect

to the smaller filtration (G1
t )t∈T ; cf. Ikeda and Watanabe (1989).

14See also Ross (1976).
15The value FT (K) is the price of the Arrow-Debreu claim 1X1

T
≤K . Differentiating once more,

where possible, we get the state price density fT (K) = ∂2

∂K2 CT,K
0 . This is Breeden and Litzenberger’s

original result.
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Dupire (1994) takes this analysis one step further. He assumes the existence of a
martingale measure under which X1 is a diffusion process satisfying (SDE) for some
unknown function σ(t, x). Using the forward equation associated with such a diffusion,
he shows that given the call price CT,K

0 for all T and K, it is possible, under certain
regularity conditions, to back out the function σ from the distribution functions FT .
Therefore, the law of the process is completely determined by these call prices, and we
have again a unique set of Arrow-Debreu prices for events in G1.16

Our approach, as summarised in Theorem 1.1, and Dupire’s approach can be re-
garded as “dual” to each other. This feature appears most clearly in the analysis of call
option prices. Suppose that time t call prices are given by some function u(t, x; T, K)
where x is the concurrent price of the underlying asset, T the exercise date, and K the
exercise price. Dupire’s result means that a unique set of state prices can be extracted
from the values u(0, x0; T,K) where the initial price of the underlying asset is fixed,
while T and K are variable. Theorem 1.1, on the other hand, determines state prices
on the basis of the values u(t, x; T , K) for fixed option characteristics, but variable t
and x.17 Thus, Dupire’s result and Theorem 1.1 are “dual” in the sense that the former
varies the “forward variables” (T, K), and the latter the “backward variables” (t, x).

Finally, note that under the stated conditions, our theorem also allows us to check
the consistency of pricing formulae for different derivatives written on the same under-
lying asset. In fact, these can only be consistent if the implied diffusion coefficient

σ(t, x) =

√√√√−2 ut(t, x)

uxx(t, x)

is the same for all derivatives.

2 Bond Options and Implied Forward Yields

In this section, we use our result to analyse pricing formulae for European options on
zero-coupon bonds. We fix a time interval T = [0, T ] and a filtered probability space
(Ω,F , P, (Ft)t∈T ) as in Section 1. Let S0 be the price process of a default-free discount
bond maturing at T , i.e., satisfying S0

T = 1 almost surely. This bond, which we call the
reference bond, will serve as numeraire. Consider a second bond, called the underlying
bond, that matures at a time T ′ > T . Let S1 be its price process up to time T . The
third security is a European call option written on the underlying bond with exercise
date T and strike price K. Its price process is denoted by S2. By definition, the
terminal value of the option is S2

T = [S1
T −K]+. We make the following assumptions:

• Trade in the bonds and the option is continuous and frictionless.

• The price processes of the bonds and the option are positive continuous semi-
martingales.

16Dupire’s work is one of the first contributions to the recent literature on “implied trees”; see
Rubinstein (1994) and the references therein.

17The choice of T and K is irrelevant, of course, since Theorem 1.1 does not depend on the particular
form of the derivative’s terminal value.
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In order to obtain the setting studied in Section 1, we define the processes

X i =
Si

S0
(i = 0, 1, 2)

which describe asset prices in units of the reference bond. In less abstract terms, X1
t

and X2
t are just the time t forward prices of the underlying bond and the option for

delivery at T . These processes are again positive continuous semimartingales.
The forward yield Yt implied by the bond prices S0

t and S1
t is

Yt = − log S1
t − log S0

t

T ′ − T
= − log X1

t

T ′ − T
.

This is the continuously compounded interest rate as seen at time t for a loan which
starts at T and is repaid at T ′. The bond price model (S0, S1) is said to generate
negative forward yields if P ({ω ∈ Ω : ∃t ∈ T Yt(ω) < 0}) > 0; otherwise, the bond
price model satisfies P ({ω ∈ Ω : ∀t ∈ T Yt(ω) ≥ 0}) = 1 and is said to have non-
negative forward yields. Finally, we say that the bond price model has positive forward
yields if P ({ω ∈ Ω : ∀t ∈ T Yt(ω) > 0}) = 1.

2.1 Merton Type Option Prices

This section deals with the type of valuation formulae going back to Black and Scholes
(1973) and Merton (1973). Let a positive continuous function ν : T → IR++ be given.
We say that the price system (S0, S1, S2

t ) satisfies the Merton call price formula for
volatility function ν if

S2
t = S0

t u(t, X1
t )

or, equivalently,
X2

t = u(t,X1
t )

with u defined as follows:

u(t, x) = x Φ


 1√

s(t)

[
log

x

K
+

s(t)

2

]
−K Φ


 1√

s(t)

[
log

x

K
− s(t)

2

]


where Φ is the standard normal distribution function and

s(t) =
∫ T

t
ν2(ξ) dξ.

On {T} × IR+ and T × {0}, u satisfies the standard boundary conditions for a call
option,

u(T, x) = (x−K)+,

u(t, 0) = 0.

It is well known that u solves (PDE) with σ(t, x) = ν(t) x, that is,

ut + 1
2
ν2x2uxx = 0. (1)
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Bond option formulae of this type hold in so-called linear Gaussian models of the
term structure of interest rates. Examples are Vasicek (1977) and its extension by Hull
and White (1990). A systematic analysis of Gaussian models, as well as derivations of
the pricing formulae we are considering here, can be found in El Karoui and Rochet
(1989), Jamshidian (1991), and El Karoui, Myneni and Viswanathan (1992). The
deterministic volatility examples in Heath, Jarrow and Morton (1992) belong also to
this category. Using the framework of Merton (1973), Ball and Torous (1983) and
Kemna, de Munnik and Vorst (1989) derived bond option formulae of this type in
bond price based models.18

The common characteristic of all these models is that they allow for negative interest
rates. A direct application of Theorem 1.1 confirms that option price formulae of the
Merton type are indeed inconsistent with non-negative interest rates. Of course, the
fact that u solves (1) and is strictly convex in x for all t < T is all we need in order
to infer properties of the forward price X1 or the forward yield Y . Applying Theorem
1.1, we get

Proposition 2.1 Assume that the price system (S0, S1, S2) on (Ω,F , P, (Ft)t∈T ) sat-
isfies the Merton call price formula for volatility function ν. Let Q be a martingale
measure for this price system. Then the forward price of the underlying bond solves
the stochastic differential equation

dX1
t = ν(t) X1

t dWt (2)

where W is a Wiener process under the measure Q.

By the formula for the martingale exponential, (2) is equivalent to

X1
t = X1

0 exp
(∫ t

0
ν(s) dWs − 1

2

∫ t

0
ν2(s) ds

)
. (3)

Thus, up to the time change

t 7→
∫ t

0
ν2(s) ds,

the forward price process X1 is a driftless geometric Brownian motion under any mar-
tingale measure Q, and the forward yield Y is simply a Brownian motion with drift.
This implies in particular that Q and, by equivalence of measures, P assign a positive
probability to the event {ω : ∃t Yt(ω) < 0}. Thus, we obtain the well-known

Result 2.1 A bond price model in which an option formula of the Merton type holds
necessarily generates negative forward yields.

2.2 An Upper Bound on the Forward Bond Price

Next consider a price system (S0, S1, S2) where forward yields remain non-negative,
i.e., Yt ≥ 0 and X1

t ≤ 1 for all t. Assume that the strike price of the call option

18See Rady and Sandmann (1994) for a survey of the bond price based approach to debt option
pricing.
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satisfies 0 < K < 1; as S1
T = X1

T ≤ 1, only these exercise prices are of interest.
Using a portfolio dominance argument, Schöbel (1986) derives the following necessary
condition for absence of arbitrage:19

S2
t = S0

t (1−K) whenever S1
t = S0

t ,

that is,
X2

t = 1−K whenever X1
t = 1. (4)

Thus, the forward call price assumes the deterministic value 1 −K when the forward
yield Yt is at its lower bound 0.

Of course, Merton type call prices violate (4). In view of this, Schöbel tries to
correct for negative yields by imposing (4) as an additional boundary condition on the
Merton valuation equation (1). More precisely, he proposes a modified pricing formula

X2 = u∗(t,X1
t )

where u∗ : T × [0, 1] → IR+ solves (1) subject to the following conditions:

u∗(T, x) = (x−K)+,

u∗(t, 0) = 0,

u∗(t, 1) = 1−K.

The first and second condition are the usual ones for a call option, while the last
condition expresses (4). The solution is

u∗(t, x; K) = u(t, x; K)−K u(t, x; K−1)

where u(t, x; K) denotes the Merton call price function for strike price K.
Briys, Crouhy and Schöbel (1991) use a formula of this type to value interest rate

caps and floors. They see the second term in u∗ as a price correction which ensures
consistency of bond option prices with non-negative interest rates. Moreover, they
interpret the additional boundary condition as the effect of an absorbing barrier, but
do not clarify the nature of the absorption phenomenon. We shall see in a while that
the additional boundary condition corresponds in fact to an absorbing barrier for the
forward bond price at its upper bound 1.20

Before applying the technique underlying Theorem 1.1, let us first point out that
absorption of the forward price and the forward yield at their respective boundaries is
indeed the only behaviour consistent with the absence of arbitrage.

Lemma 2.1 Let (S0, S1) be a bond price model on (Ω,F , P, (Ft)t∈T ) with a martingale
measure Q. Assume that the model has non-negative forward yields and consider the
hitting time χ = inf{t ∈ T : X1

t = 1}. Then X1
t = 1 on [χ, T ] almost surely under

either measure.

19The argument can also be found in Briys, Crouhy and Schöbel (1991) .
20See Sondermann (1988) for a similar absorption phenomenon in discrete-time binomial approxi-

mations to the Black-Scholes model.
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There is a simple intuition behind Lemma 2.1. Assume that in a world of non-
negative forward yields, the underlying bond and the reference bond have the same
price at some time t0. A portfolio short one underlying bond and long one reference
bond costs nothing at t0. After t0, the portfolio value cannot fall below zero since
the underlying bond will never cost more than the reference bond. On the other
hand, the portfolio cannot rise in value either, otherwise it would certainly trade at a
positive price now. Therefore, the two bond prices must coincide for ever, that is, until
the shorter lived bond expires. By the same token, forward bond prices and forward
yields are absorbed at their upper and lower bound, respectively. Any other boundary
behaviour, for example reflection, would lead to arbitrage opportunities.

As a corollary, we get the following simple classification.

Proposition 2.2 Let (S0, S1) be a bond price model admitting a martingale measure.
Then exactly one of the following statements holds true:

(i) The model generates negative forward yields.

(ii) The model has non-negative forward yields, the probability that the forward yield
reaches its lower bound 0 is positive, and 0 is an absorbing barrier for the forward
yield.

(iii) The model has positive forward yields.

We have seen that bond price models consistent with a Merton type formula belong
to category (i). As for models with non-negative yields in which an option formula of
the Schöbel type holds, we have to establish which of the two properties (ii) and (iii)
is satisfied, that is, whether the bound is reached with positive probability or not.
The following proposition does more than that: it gives a complete description of the
behaviour of the forward bond price under a martingale measure.

Proposition 2.3 Assume that the price system (S0, S1, S2) on (Ω,F , P, (Ft)t∈T ) has
non-negative forward yields and satisfies the Schöbel call price formula for volatility
function ν. Let Q be a martingale measure for this price system. Then there is a
Wiener process W on an extension (Ω,F , Q, (F t)t∈T ) of (Ω,F , Q, (Ft)t∈T ) such that
the forward price of the underlying bond satisfies

dX1
t = 1{t≤χ} ν(t) X1

t dW t (5)

with χ = inf{t ∈ T : X1
t = 1}.

Let Q and W be as in the proposition. By the formula for the martingale exponen-
tial, (5) implies that X1 is the stopped process

X1
t = X t∧χ

with

X t = X1
0 exp

(∫ t

0
ν(s) dW s − 1

2

∫ t

0
ν2(s) ds

)
.
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Thus, the forward bond price process implied by Schöbel’s option price formula is
obtained by imposing an absorbing barrier at 1 on X, a forward price process of the
Merton type. Q assigns positive probability to the event that X t = 1 for some t ∈ T .
Under both Q and P , the forward bond price therefore reaches its upper boundary
with positive probability.

Result 2.2 A bond price model with non-negative forward yields which satisfies an
option price formula of the Schöbel type assigns positive probability to the event that
the forward yield reaches its lower bound 0, where it is absorbed.

With positive probability, therefore, there will be no reward for holding the underlying
bond from T to T ′. Put differently, the Arrow-Debreu security paying one unit if and
only if the forward yield is zero at T commands a positive price.

3 Conclusion

The validity of a valuation formula for a derivative asset has strong implications for
the behaviour of the underlying asset price under a martingale measure. In a setting
with continuous sample paths, we have studied pricing formulae that depend on a single
underlying price and satisfy the fundamental valuation PDE. We have shown that such
a formula completely determines the risk-neutral law of the underlying asset price. In
particular, there is a unique set of state prices for payoffs contingent on the price path
of the underlying asset.

As an illustration of our main result, we have analysed certain pricing formulae
for European options on discount bonds. This analysis has shown that the valuation
formulae proposed by Schöbel (1986) and Briys, Crouhy and Schöbel (1991) imply an
implausible behaviour of the forward yield, involving absorption of this yield at zero.
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Appendix

A Characterisation Theorem for Continuous Local Martingales

In this section, we state and prove the mathematical result which underlies Theorem 1.1. We extend
the work of McGill, Rajeev and Rao (1988) on Brownian motion to a larger class of continuous local
martingales.21 Throughout the section, we consider a finite time interval T as before and a filtered
probability space satisfying the usual conditions.

Theorem A.1 Let Xt be a continuous local martingale, σ(t, x) a continuous function, and u(t, x) a
solution of

ut + 1
2σ2uxx = 0 (PDE)

such that

(A1) the process u(t, Xt) is a local martingale;

(A2) {t ∈ T : σ(t,Xt) = 0} is almost surely a Lebesgue null set;

(A3) uxx(t,Xt) 6= 0 for all t ∈ T almost surely.

Then there exists a Wiener process W such that

Xt = X0 +
∫ t

0

σ(s,Xs) dWs. (6)

Moreover, this continues to hold if (A3) is replaced with the two conditions

(A4) {t ∈ T : uxx(t, Xt) = 0} is almost surely a Lebesgue null set;

(A5) u(t, x) is analytic, and σ2(t, x) has partial derivatives of all orders.

Remark A.1 Note that if (PDE) holds, conditions (A2) and (A4) together are equivalent to the
condition that {t ∈ T : ut(t,Xt) = 0} is almost surely a Lebesgue null set. This is the condition used
in McGill, Rajeev and Rao (1988).

Remark A.2 McGill, Rajeev and Rao (1988) study the case σ(t, x) ≡ 1 with infinite time horizon,
i.e., T = IR+. In this case, (PDE) is just the heat equation, (A5) is automatic, and a continuous
local martingale satisfying the above conditions is a Brownian motion in accordance with (6). Lévy’s
characterisation of Brownian motion is recovered as the special case where the solution of the heat
equation is taken to be u(t, x) = x2 − t.

Remark A.3 To obtain Theorem 1.1, let Q be a martingale measure for the price system (X0, X1, X2)
and apply Theorem A.1 to the martingales X1 and u(t,X1

t ) = X2
t on (Ω,F , Q, (Ft)t∈T ).

Remark A.4 Obviously, Theorem 1.1 holds as well for the larger set of local martingale measures,
that is, for measures Q equivalent to P such that the price processes Xi are local martingales. Such
measures have been studied for example by Schweizer (1992) and Babbs and Selby (1993).

The proof of Theorem A.1 is given in a sequence of lemmata.

Lemma A.1 Let Xt be a continuous local martingale with quadratic variation process

〈X〉t =
∫ t

0

σ2(s,Xs) ds. (7)

Assume that (A2) holds. Then there exists a Wiener process W satisfying (6).

21I am grateful to Lucien Foldes for having drawn my attention to McGill, Rajeev and Rao (1988)
after I had obtained a weaker version of Theorem A.1 independently.
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Proof: If (7) holds, we can define a process W by setting

Wt =
∫ t

0

φs dXs

where φs = σ(s,Xs)−1 if σ(s,Xs) 6= 0, and φs = 0 otherwise. W satisfies (6) and has quadratic
variation 〈W 〉t =

∫ t

0
1{σ(s,Xs)6=0} ds. (A2) implies 〈W 〉t = t, and the assertion follows from Lévy’s

characterisation theorem.

Remark A.5 If (A2) is not satisfied, i.e., if {t ∈ T : σ(t,Xt) = 0} is not a null set, (7) still implies the
representation (6). However, W is then no longer a Wiener process on the original filtered probability
space, but on an extension of it. See Ikeda and Watanabe (1989, Theorem 7.1′ on page 90) for details.

Lemma A.2 Let Xt be a continuous local martingale. If there exist a continuous function σ(t, x)
and a solution u(t, x) of (PDE) such that (A1) and (A3) are fulfilled, then Xt has quadratic variation
given by (7).

Proof: Itô’s rule, (PDE) and (A1) imply
∫ t

0

uxx(s,Xs)[d〈X〉s − σ2(s,Xs) ds] = 0.

(7) follows by (A3).

This completes the proof of Theorem A.1 for conditions (A1)-(A3). The case where we replace
(A3) by (A4) and (A5) is covered in the following lemma. Its proof builds on the arguments in McGill,
Rajeev and Rao (1988).

Lemma A.3 Let Xt be a continuous local martingale. If there exist functions σ(t, x) and u(t, x) such
that (PDE), (A1), (A4) and (A5) are fulfilled, then the quadratic variation process of Xt satisfies (7).

Proof: We start from the obvious equation

〈X〉t =
∫ t

0

σ2(s,Xs) ds

+
∫ t

0

1{uxx(s,Xs)6=0} [d〈X〉s − σ2(s,Xs) ds]

+
∫ t

0

1{uxx(s,Xs)=0} [d〈X〉s − σ2(s,Xs) ds].

As in the proof of the previous lemma, one obtains
∫ t

0

uxx(s, Xs) [d〈X〉s − σ2(s,Xs) ds] = 0

and hence ∫ t

0

1{uxx(s,Xs)6=0} [d〈X〉s − σ2(s,Xs) ds] = 0.

On the other hand, (A4) implies
∫ t

0

1{uxx(s,Xs)=0} σ2(s,Xs) ds = 0.

Thus

〈X〉t =
∫ t

0

σ2(s,Xs) ds +
∫ t

0

1{uxx(s,Xs)=0} d〈X〉s,

13



and (7) holds if ∫ T

0

1{uxx(s,Xs)=0} d〈X〉s = 0. (8)

Consider a new time variable ξ ≥ 0 and set tξ = inf{t ∈ T : 〈X〉t > ξ} if this set is not empty, and
tξ = T otherwise. Then, after extending the filtered probability space, there is a Brownian motion
(Bξ)ξ≥0 such that Xt = B〈X〉t ; see Ikeda and Watanabe (1989, Theorem 7.2′ on page 91). Write
ξ = 〈X〉T . (8) is equivalent to {ξ ≤ ξ : uxx(tξ, Bξ) = 0} being a Lebesgue null set. Consider now
the stopped continuous semimartingale Yξ = uxx(tξ, Bξ∧ξ). As a direct consequence of the occupation
density formula for semimartingale local time, we have

∫
1{Yξ=0} d〈Y 〉ξ = 0 and hence

∫ ξ

0

1{uxx(tξ,Bξ)=0} u2
xxx(tξ, Bξ) dξ = 0

which means
{ξ ≤ ξ : uxx(tξ, Bξ) = 0} ⊆ {ξ ≤ ξ : uxxx(tξ, Bξ) = 0}

up to a Lebesgue null set. Assuming that (8) does not hold and arguing inductively, one shows that
there exists at least one point (t0, x0) where uxx and all its space derivatives vanish. Next, using
(PDE) and another induction argument, one can easily show that all partial derivatives of uxx vanish
at (t0, x0). But then, due to the analyticity of uxx postulated in (A5), condition (A4) is violated.
Thus (8) must hold.

Further Proofs

Proof of Proposition 2.1: Apply Theorem 4.16 of Elliott (1982) to the Q-martingale 1−X1.

Proof of Proposition 2.3: Note the following properties of the Schöbel call price function: u∗

solves (PDE) with σ(t, x) = ν(t)x, is strictly convex in x for x < 1 and satisfies u∗t (t, 1) = u∗xx(t, 1) = 0
for all t. Using these properties and Lemma 2.1, one shows as in the proof of Lemma A.2 that

〈X1〉t =
∫ t

0

1{s≤χ} ν2(s) (X1
s )2 ds.

The proposition now follows directly from Ikeda and Watanabe (1989, Theorem 7.1′ on page 90). The
process W is constructed as

W t =
∫ t

0

1{s≤χ}
ν(s)X1

s

dX1
s +

∫ t

0

1{s>χ} dW ′
s

where W ′ is a Wiener process on some filtered probability space (Ω′,F ′, Q′, (F ′t)t∈T ). The extension
(Ω,F , Q, (F t)t∈T ) is obtained by taking the products Ω = Ω× Ω′, Q = Q⊗Q′ and F t = Ft ⊗F ′t.
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