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Bacteria trigger host defense and inflammatory processes, such as cytokine production, 
pyroptosis, and the chemotactic migration of immune cells toward the source of infection. 
However, a number of pathogens interfere with these immune functions by producing 
specific so-called “effector” proteins, which are delivered to host cells via dedicated 
secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and 
potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic 
pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates 
in alveolar macrophages and accidentally infects humans. The bacteria employ the 
intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion 
system and as many as 300 different effector proteins to govern host–cell interactions 
and establish in phagocytes an intracellular replication niche, the Legionella-containing 
vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity 
or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle 
trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed 
cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic 
insights into the subversion of cellular immune functions by L. pneumophila.

Keywords: bacterial pathogenesis, Dictyostelium, inflammasome, Legionella, macrophage, pathogen vacuole, 
phosphoinositide, small GTPase

introduction

Phagocytic cells of the innate immune system, such as macrophages, neutrophils, and dendritic cells 
(DC), produce pathogen recognition receptors (PRRs) comprising families of membrane-bound 
or cytosolic receptors (1–4). The membrane-bound receptors are toll-like receptors (TLRs) and 
C-type lectin receptors (CLRs), such as the mannose receptors. TLRs trigger cytokine production 
by signaling through the adaptor molecules MyD88 or TRIF and activate the transcription factor 
NF-κB or MAP kinase pathways. Cytosolic receptors are Nod-like receptors (NLRs) involved in 
inflammatory responses and cell death pathways through the activation of multiprotein complexes 
termed inflammasomes (5), as well as retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs). 
Collectively, these receptors recognize pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs), thus alerting the infected host cell, if material arising from 
cell infection or cell damage is present. Subsequent cytokine production promotes the clearance of 
invading microorganisms. The conserved process of cell-autonomous immunity includes not only 
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inflammasome activation and interleukin (IL)-1β production, as 
well as autophagy, but also NF-κB- and type I interferon (IFN)-
dependent cytokine production (6, 7).

Pathogenic bacteria target eukaryotic cells either as adversar-
ies in the case of potentially bactericidal cells of the metazoan 
immune system and/or as a rich source of nutrients (8, 9). 
Accordingly, pathogens developed means to counteract the 
arsenal of the humoral and cellular components of the innate 
and acquired immune system and to survive and replicate within 
eukaryotic cells, including phagocytes (10). To this end, a number 
of pathogens produce specific so-called “effector” proteins, which 
are delivered via dedicated secretion systems into host cells, where 
they interfere with immune functions and cell migration (11).

Legionella pneumophila employs the intracellular multiplica-
tion/defective for organelle trafficking (Icm/Dot) type IV secre-
tion system (T4SS) and as many as 300 different effector proteins 
to govern host–cell interactions. The role and molecular mode of 
action of effectors involved in pathogen vacuole formation has 
recently been reviewed in detail (12). Here, we will review mecha-
nistic insights into the subversion of cell-autonomous immunity 
and cell migration by L. pneumophila.

Pathogenesis of Legionella pneumophila

Legionella pneumophila is an opportunistic pathogen and causes 
a severe pneumonia termed Legionnaires’ disease. The Gram-
negative genus Legionella comprises more than 55 species with 
several serogroups; yet, at least 85% of human infections are 
caused by L. pneumophila (13). Evolutionary adaptation allows 
L. pneumophila to persist in a variety of extra- and intracellular 
niches. The aerobic bacterium can not only replicate in biofilms 
but also resists degradation by free-living protozoa and replicates 
within, e.g., Acanthamoeba, Hartmannella, and Tetrahymena 
species, as well as in Dictyostelium discoideum, although the lat-
ter amoeba is likely not a natural host (14, 15). L. pneumophila 
is ubiquitously found in natural and technical water systems, 
including cooling towers, whirlpools, and showers.

Upon inhalation of contaminated aerosols, L. pneumophila 
resists degradation and replicates within alveolar macrophages, 
which is a precondition for the onset of disease (16). The acqui-
sition of the pathogen from environmental sources is the only 
infection route; transmission between humans has never been 
observed. Since L. pneumophila probably mainly evolved as 
a parasite of free-living protozoa, the human host represents a 
dead-end for this “accidental” pathogen. Thus, L. pneumophila 
likely has not been exposed to a rigorous evolutionary selection 
to avoid recognition by mammalian PRRs, and accordingly, the 
bacteria trigger the activation of all PRR families (17).

Most humans and mice are able to clear a Legionella infec-
tion, and therefore, the development of a suitable small animal 
model was crucial. Initial studies using guinea pigs exposed to  
L. pneumophila-containing aerosols revealed a high susceptibility 
of these animals, which developed an illness reminiscent of typi-
cal human Legionnaires’ disease (18). While most inbred mouse 
strains are resistant to L. pneumophila infection and disease 
progression, the A/J mouse strain was found to be susceptible 
and to present with acute pneumonia that resembled human 

disease  (19). These results correspond to in  vitro infections of 
peritoneal mouse  macrophages, which indicated that cells from 
A/J mice were much more permissive for intracellular replication 
of L. pneumophila than macrophages from other mouse strains, 
such as C57BL/6 and BALB/c (20, 21). Macrophages from C57BL/6 
and BALB/c mice restrict L. pneumophila by the activation of 
a programed cell death pathway as an ultimate line of defense 
against the intracellular pathogen (see below). Accordingly, mice 
lacking components of this pathway fail to restrict L. pneumophila 
and faithfully mimic Legionella pathology (17, 22).

In A/J mice, L. pneumophila elicits an acute inflammatory 
reaction, including production of the cytokines tumor necrosis 
factor (TNF)-α, IFN-γ, IL-12, and IL-18, which restrict pathogen 
replication (17, 22). IFN-γ is particularly important to inhibit 
bacterial growth in monocytes and alveolar macrophages, thus 
contributing to limiting the infection by L. pneumophila (23–25). 
These inflammatory cytokines recruit and activate polymorpho-
nuclear neutrophil granulocytes (PMNs) (26–28). PMNs are 
central innate effector cells that not only resolve L. pneumophila 
infection but  –  in concert with IFN-γ-producing natural killer 
(NK) cells – also secrete cytokines, such as IL-18 (29, 30). In a 
feedback loop, IFN-γ triggers IL-12 production by DC, which 
activate NK cells. Therefore, DC are also essential to control 
L. pneumophila infection (31). Interestingly, DC restrict the 
intracellular growth of L. pneumophila, despite that the pathogen 
resides in an apparently non-bactericidal compartment derived 
from the endoplasmic reticulum (ER) (32).

Formation of the intracellular  
Replication Niche

In permissive macrophages as well as in protozoa, L. pneumophila 
employs a complex and apparently evolutionarily conserved 
mechanism to establish its replication-permissive membrane-
bound niche, the Legionella-containing vacuole (LCV) (Figure 1). 
LCV formation is governed by the Icm/Dot T4SS, which trans-
locates approximately 300 different effector proteins into the 
host cell (12, 33–37). Since L. pneumophila–host interactions 
are defined to a large extent by the Icm/Dot apparatus, the T4SS 
represents a major virulence factor of L. pneumophila.

The Icm/Dot T4SS and translocated effectors control every 
step in the infection process of L. pneumophila (Figure 1), i.e., 
the uptake (38, 39), inhibition of fusion with lysosomes (40) and 
acidification (41), subversion of retrograde trafficking (42), as 
well as interception of secretory vesicle trafficking (43), coales-
cence with the ER (44–46), and finally, egress from the host cell 
(47). To interfere with host cell processes, many L. pneumophila 
effector proteins target pivotal components of eukaryotic mem-
brane dynamics, such as phosphoinositide (PI) lipids and small 
GTPases (12, 33, 37). The PI lipids PtdIns(4)P and PtdIns(3)P 
control the secretory and the endosomal pathway, respectively, 
while the small GTPases Arf1 and Rab1 are pivotal regulators of 
ER-Golgi secretory trafficking.

Some Icm/Dot substrates subvert PI lipids by using PtdIns(4)P 
and PtdIns(3)P as membrane anchors, both of which are found 
on LCVs (33, 48–50). Accordingly, the effectors SidC, SdcA, 
SidM, LidA, Lpg1101, and Lpg2603 bind PtdIns(4)P (51–57), and 
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the effectors LidA, LptD, RidL, SetA, and LpnE bind PtdIns(3)P 
(42, 52, 58–60). Two L. pneumophila “CX5R” domain PI phos-
phatases have been identified: SidF, a PI 3-phosphatase that 
hydrolyzes PtdIns(3,4)P2 [and also PtdIns(3,4,5)P3] in vitro (61), 
and SidP, a PI 3-phosphatase that hydrolyzes PtdIns(3)P as well 
as PtdIns(3,5)P2 in vitro (62). Thus, these PI phosphatases might 
cause PtdIns(4)P to be formed on and PtdIns(3)P to be removed 
from LCV membranes. LppA is another Icm/Dot substrate 
that hydrolyzes polyphosphorylated PIs to mainly produce 
PtdIns(4)P in vitro (49). However, LppA does not affect the LCV 
PI pattern in infected cells, but rather functions as a translocated 
hexakisphosphate inositol phosphatase (phytase), which possibly 
promotes intracellular replication of L. pneumophila by removing 
the intracellular micronutrient chelator phytate.

Intracellular multiplication/defective for organelle trafficking 
T4SS substrates modulate the activity of the small GTPases Arf1 
(RalF) (63) or Rab1 (SidM) (55, 64–67) by acting as guanine 
nucleotide exchange factors (GEFs), GTPase-activating proteins 
(GAPs; LepB) (68), AMPylase/deAMPylase (SidM, SidD) 
(69–72), or phosphocholinase/dephosphocholinase (AnkX, 
Lem3) (73–77). The covalent modifications of Rab1 by AMP 

FiGURe 1 | LCv formation and LegG1-dependent modulation of cell 
migration. The intracellular phases of L. pneumophila can be divided in seven 
main steps: (1) Adhesion and entry into the host cell via macropinocytosis; 
(2) Formation of the LCV in an Icm/Dot T4SS-dependent manner and 
recruitment of vesicles from the ER as well as mitochondria; (3) Evasion from 
the lysosomal trafficking; (4a) The bacterial effector protein LegG1 activates the 
GTPase Ran, stabilizes microtubules in the vicinity of the LCV or possibly at a 
distance (?), and (4b) promotes cell migration. In the nucleus, Ran activation is 

triggered by the eukaryotic GEF RCC1. (5) The LCV communicates with host 
vesicle trafficking pathways, and acquires and eventually fuses with the ER; (6) 
The pathogen compartment turns in a rough-ER-like vacuole, wherein the 
bacteria replicate; (7) L. pneumophila is released and re-infects new host cells 
or is transmitted to other environmental niches. Abbreviations: ER, 
endoplasmic reticulum; LCV, Legionella-containing vacuole; MTOC, 
microtubule organizing center; Ran, Ras-related nuclear protein; RCC1, 
regulator of chromosome condensation 1; T4SS, type IV secretion system.

or phosphocholine cause a prolonged activation of the GTPase, 
by preventing its inhibition by the GAP LepB. Similarly, the 
Icm/Dot substrate LidA binds to activated Rab1 and prevents 
inactivation by LepB, as well as covalent modifications by SidM 
or AnkX (64, 78–80). Finally, the PtdIns(4)P-binding effector 
SidC and its paralog SdcA promote the monoubiquitination of 
Rab1, in agreement with their function as an E3 ubiquitin ligase 
containing a catalytic Cys–His–Asp triad (81–83). In summary, 
after their translocation a number of L. pneumophila Icm/Dot 
substrates employ PI lipids on the cytoplasmic side of the LCV 
membrane as membrane anchors. Thus, PI lipids determine at 
least in part the subcellular localization of the effectors, which 
show different biochemical activities, including subversion of 
small GTPases, ubiquitinylation, or binding to and modulation 
of vesicle trafficking machinery.

inhibition of Retrograde Trafficking and 
Autophagy

Retrograde trafficking in eukaryotes comprises the trans-
port from early or late endosomes through the trans-Golgi 
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network (TGN) to the ER (84). The cation-independent mannose  
6-phosphate receptor (CI-MPR) is a well-documented substrate 
of the retrograde transport pathway. CI-MPR binds mannose 
present on hydrolases and transports the cargo destined for the 
endocytic pathway from the TGN to the endosomal system. 
After releasing the cargo in the lysosomal lumen, the receptor is 
recycled back through the retrograde pathway to the TGN (85). 
Proper recycling requires a protein complex termed the retromer, 
composed of a cargo recognition subcomplex (Vps26, Vps29, and 
Vps35) and a membrane-deforming subcomplex, which consists 
of a dimer of sorting nexins (SNXs) (86). The cargo recognition 
complex is recruited to the membrane by the activated small 
GTPases Rab5 and Rab7 (87).

Recent findings indicate that L. pneumophila communicates 
with the retrograde trafficking pathway. The small GTPases Rab5 
and Rab7 (88–91), as well as the retromer subunits Vps26, Vps29, 
and Vps35 (42, 92) localize to the LCV. Interestingly, the Icm/
Dot T4SS-translocated substrate RidL functions as a bacterial 
interactor of the eukaryotic retromer complex (42). RidL, which 
localizes on LCVs in D. discoideum cells and macrophages, 
binds to the Vps29 subunit of the cargo recognition subcomplex 
of the retromer. Subunits of the retromer cargo recognition 
complex localize to the LCV in an Icm/Dot-dependent but RidL-
independent manner. RidL competes with SNX1 and SNX2 in its 
capacity for membrane binding specifically through PtdIns(3)P, 
thus possibly triggering the removal of SNXs. By altering the ret-
rograde trafficking cascade, RidL might promote the formation 
of a non-lysosomal replicative vacuole and intracellular replica-
tion of L. pneumophila in protozoan and metazoan phagocytes 
(42). Earlier work already indicated that the retrograde pathway 
might control intracellular replication of L. pneumophila. The 
PtdIns(4,5)P2 5-phosphatase OCRL1 and its D. discoideum 
homolog Dd5P4 are implicated in retrograde trafficking (93, 94) 
and localize to LCVs (60). Depletion of OCRL by RNA inter-
ference (42) or deletion of Dd5P4 (60) increased intracellular 
growth of L. pneumophila, indicating that the PI 5-phosphatase 
OCRL/Dd5P4 indeed restricts pathogen replication.

Autophagy is a major cell-autonomous defense mechanism 
used by infected cells against intracellular bacteria. The process 
of macroautophagy is responsible for the degradation of cytoplas-
mic constituents, such as bacteria or damaged organelles, which 
are engulfed by autophagosomes and subsequently fuse with 
lysosomes (95). In the course of microautophagy, the constituents 
are directly delivered to the lysosomes. Over 30 autophagy-related 
genes (Atg) have been discovered during the last years (96). An 
Atg protein essential for autophagy is the microtubule-associated 
protein light chain 3 (LC3, alias Atg8), which is conjugated to 
phosphatidylethanolamine and localized on autophagosomal 
membranes (97). Measurement of LC3/Atg8 during L. pneu
mophila infection revealed an Icm/Dot-dependent inhibition 
of autophagy by the bacteria. Intriguingly, the bacterial protein 
RavZ was identified as an effector required for autophagy inhibi-
tion, yet further effectors could be involved, since L. pneumophila 
lacking ravZ still evaded the autophagy cascade (98). RavZ is a 
cysteine protease, which irreversibly deconjugates phosphati-
dylethanolamine from LC3/Atg8, thus reducing its membrane 
accumulation and activity. While most autophagy factors are not 

necessary for L. pneumophila replication in D. discoideum (99), 
amoebae lacking Atg9 do not internalize the pathogen as efficient 
as wild-type cells, yet allow more effective intracellular growth 
(100). In summary, these findings suggest that L. pneumophila 
inhibits retrograde vesicle trafficking as well as autophagy to 
promote intracellular growth.

Modulation of Organelle Motility and  
Cell Migration

The Icm/Dot T4SS is crucially involved in the formation of the 
LCV, and many L. pneumophila effectors selectively decorate the 
pathogen vacuole membrane. Intact LCVs can be purified by a 
straight-forward two-step protocol involving immuno-affinity 
enrichment using an antibody against the L. pneumophila effector 
SidC selectively decorating the pathogen vacuole and a secondary 
antibody coupled to magnetic beads, followed by a conventional 
density centrifugation step. Proteomics analysis of purified 
preparations of LCVs from infected D. discoideum amoebae (91) 
and RAW 264.7 macrophages (90) revealed the presence of 670 
and 1150 host proteins, respectively, including 13 small GTPases 
of the Rab family, as well as the small GTPase Ran and its effector 
Ran binding protein 1 (RanBP1).

Ran is a member of the Ras superfamily of small GTPases and 
is fundamental in numerous cellular processes, such as nuclear 
pore translocation (101), or mitotic spindle assembly and post-
mitotic nuclear envelope formation (102, 103). Ran GTPase also 
plays an important role in cytoplasmic processes involving non-
centrosomal microtubules, e.g., endocytic receptor trafficking 
and retrograde signaling along microtubules in nerve axons (104). 
Ran can be activated by a nuclear (or in mitotic cells: chromatin 
bound) Ran GEF termed regulator of chromosome condensation 
1 (RCC1) (105). Ran(GTP) is inactivated by the cytoplasmic Ran 
GTPase-activating protein 1 (RanGAP1) together with RanBP1, 
which harbors a Ran(GTP)-binding domain (104).

Intriguingly, L. pneumophila produces an Icm/Dot-
translocated effector termed LegG1 that harbors eukaryotic-like 
RCC1 domains (106, 107). The corresponding gene is conserved 
among the L. pneumophila genomes sequenced to date, includ-
ing the strains Philadelphia-1, Paris, Lens, Corby, Alcoy, and 
Lorraine. LegG1 (Lpg1976/PieG) is encoded in the plasticity 
island of effectors (Pie) gene cluster (108). The C-terminal CAAX 
tetrapeptide motif of LegG1 is lipidated by the host prenylation 
machinery (109), thus promoting the membrane localization of 
the effector to small vesicular structures upon ectopic expression 
in eukaryotic cells (108).

Recent work revealed that LegG1 is indeed an L. pneumophila 
virulence factor, which promotes intracellular bacterial repli-
cation but is dispensable for uptake (110) (Figure 1). A ΔlegG1 
mutant strain is not less cytotoxic than the parental strain, but 
outcompeted by wild-type L. pneumophila upon co-infection 
of A. castellanii amoebae. Moreover, Ran, RanBP1, and LegG1 
accumulate in an Icm/Dot-dependent manner on the LCV, and 
the bacterial effector localizes to the cytosolic face of the LCV 
in L. pneumophila-infected phagocytes. L. pneumophila wild-
type but not the ΔlegG1 mutant strain activates Ran on LCVs 
and in cell lysates; yet, while LegG1 promotes the accumulation 
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cellular migration cycle can be divided into four major steps: (1) protrusion at 
the leading edge, (2) cell adhesion, (3) contraction to generate the required 
forces, and (4) retraction at the rear edge. Microtubules and the actin 
cytoskeleton in concert with Rho GTPases are fundamental components of 
each phase. Abbreviations: aPKC, atypical protein kinase C; Cdc42, cell 
division control protein 42; CLIP170, cytoplasmic linker protein 170; FA, focal 
adhesion; GAP, GTPase-activating protein; GEF, guanine nucleotide exchange 

factor; GSK3, glycogen synthase kinase 3; IQGAP1, IQ motif-containing 
GTPase-activating protein 1; MLC, myosin light chain; MTOC, microtubule 
organizing center; Par3/6, partitioning defective 3/6 homolog; Rac1, 
Ras-related C3 botulinum toxin substrate 1; RhoA, Ras homolog gene family 
member A; ROCK, Rho-associated protein kinase. The L. pneumophila effector 
protein LegG1 promotes cell migration by activating the small GTPase Ran and 
stabilizing microtubules. Other L. pneumophila factors modulating cell 
migration are not known.
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of RanBP1 on LCVs, the effector is dispensable for the recruit-
ment of the small GTPase. Several experimental approaches 
indicated that in infected phagocytes L. pneumophila triggers 
the polymerization of microtubules in a LegG1-dependent 
manner (110) (Figure 1). “Microbial microinjection” of LegG1 
by Yersinia enterocolitica  confirmed the positive effect of 
LegG1 on microtubule stabilization. Here, Y. enterocolitica 
harboring a T3SS, but lacking endogenous effectors, translo-
cated LegG1 fused to a type III secretion signal into HeLa cells. 
Furthermore, while LCVs harboring wild-type L. pneumophila 
vividly move along microtubules in infected D. discoideum, the 
pathogen vacuole harboring ΔlegG1 mutant bacteria is stalled 
(110). In summary, the discovery and characterization of the 
L. pneumophila Ran activator LegG1 revealed an unexpected 
role of the small GTPase Ran in the formation of pathogen 
vacuoles.

Microtubule polarization and dynamics represent pivotal 
determinants of eukaryotic cell migration (111) (Figure  2). 
Given the prominent role of Ran and LegG1 on the dynamics 
of the microtubule cytoskeleton, we investigated the effect of L. 
pneumophila and LegG1 on host cell motility (112). Studies using 
D. discoideum amoebae or immune cells, such as RAW 264.7 
macrophage-like cells or primary PMN, in different migration 
assays (under-agarose and Boyden chamber assays), revealed an 
Icm/Dot-dependent inhibition of migration. Phagocytes infected 
with wild-type L. pneumophila or Legionella longbeachae showed 

a substantially reduced migration when compared to cells lack-
ing a functional Icm/Dot T4SS. Uptake and cytotoxicity assays 
demonstrated that the observed effect is not due to a defect in 
infection.

Based on these findings, the modulation of cell migration 
by LegG1 was assessed in D. discoideum as well as in RAW 
264.7 macrophages or PMN (112) (Figure 1). Interestingly, the 
ΔlegG1 mutant strain hyper-inhibited the directed migration 
of phagocytes in the under-agarose assay, even to a larger extent 
than wild-type L. pneumophila. Overproduction of LegG1 in 
the ΔlegG1 mutant background re-established the migration 
range to an extent comparable to cells infected with a ΔicmT 
mutant strain. Single cell tracking revealed that the forward 
migration and the velocity of cells infected with wild-type or 
ΔlegG1 L. pneumophila was impaired. Similarly, upon “micro-
bial microinjection” by Y. enterocolitica, LegG1 was sufficient 
to stimulate migration of epithelial cells in scratch assays. 
Moreover, using RNA interference a role of Ran in the LegG1-
dependent migration inhibition was demonstrated. Upon 
depletion of Ran, cells infected with the strain overproducing 
LegG1 were not able to migrate and to close scratch wounds over 
time (112). Taken together, the Ran activator LegG1 promotes 
cell motility by modulating microtubule dynamics and thus 
antagonizes Icm/Dot-dependent inhibition of cell migration. 
LegG1 might reverse the otherwise deleterious impact of other 
L. pneumophila effectors on the host cytoskeleton, and thereby 
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sustain vesicle trafficking and organelle motility required for the 
establishment and maintenance of LCVs.

Triggering inflammasomes and  
Programed Cell Death

Maintenance of LCV integrity and regulation of programed cell 
death is critical for preserving the intracellular replication niche 
of L. pneumophila (113). Accordingly, impaired activation of 
programed cell death turned out to account for the failure of A/J 
mice to restrict L. pneumophila. The allele conferring sensitivity 
against L. pneumophila was mapped to the NAIP5 gene (114, 
115) within the Lgn1 locus (116). The Naip5 (Birc1e)/Nlrc4 
(Ipaf) inflammasome recognizes flagellin and triggers caspase-1 
activation, pore formation, and pyroptosis (117–125). Naip5/
Nlrc4 inflammasome activation represents a crucial mechanism 
of L. pneumophila restriction. In agreement with this notion, 
macrophages as well as DC restrict L. pneumophila replication 
through a cell death pathway mediated by Naip5, caspase-1, and 
caspase-3 (126). Yet, neither inflammasomes nor caspases are 
conserved in amoebae (127).

In addition to PAMPs, such as flagellin, a number of specific 
Icm/Dot substrates are implicated in the regulation of programed 
host cell death. The L. pneumophila PI 3-phosphatase SidF 
inactivates the pro-apoptotic factors BNIP3 and Bcl-rambo by 
an unknown mechanism, and thereby counteracts cell death 
induction (128). Furthermore, the effector SdhA plays a role in 
maintaining the LCV membrane integrity and also contributes 
to the prevention of cell death (129, 130). Cell death induction in 
absence of sdhA is suppressed by a secreted bacterial phospholi-
pase A through an unknown mechanism. L. pneumophila lacking 
sdhA resides in the cytoplasm and triggers caspase-1 activation 
and IL-1β secretion, as well as macrophage pyroptosis through 
the DNA-sensing AIM2 inflammasome (131). The Icm/Dot sub-
strate SdhA is also a key suppressor of the type I IFN (IFN-α/β) 
response to L. pneumophila through nucleic acid-sensing PRRs. 
Accordingly, RNA from L. pneumophila lacking sdhA triggers the 
RIG-I-dependent production of type I IFNs (132).

Legionella pneumophila also promotes programed cell death in 
an Icm/Dot-dependent manner. The phospholipase VipD desta-
bilizes mitochondrial membranes by means of its phospholipase A 
activity, thus potentially contributing to the release of cytochrome 
c into the cytosol. This triggers pro-apoptotic caspase-3 activation 
and subsequently promotes host cell death (133). Analogously, 
the Icm/Dot-translocated phospholipase PlcC hydrolyzes several 
lipids, including phosphatidylcholine, phosphatidylglycerol, and 
phosphatidylinositol, which might destabilize target membranes 
and cause cell toxicity (134). Stimulation of apoptosis by an intra-
cellular pathogen seems counterintuitive, but might reflect a tight 
spatial and temporal control of LCV maturation, followed by the 
release of the bacteria from the pathogen compartment and the 
host cell at the end of an infection cycle. Thus, the elaborate coor-
dination of anti- and pro-apoptotic factors optimally supports 
intracellular bacterial proliferation.

Finally, caspases not only regulate cell death during L. pneu
mophila infection but also control vesicle trafficking pathways 
and thus contribute to the formation of LCVs. Dependent on the 

Nlrc4 inflammasome and Naip5, L. pneumophila activates cas-
pase-7 downstream of caspase-1, and consequently, the pathogen 
is delivered to lysosomes (117, 135). In turn, upon deletion of 
the caspases, L. pneumophila forms an ER-derived replicative 
compartment. Similarly (but independently of caspase-1), active 
caspase-11 restricts the replication of L. pneumophila by promot-
ing the fusion of the pathogen compartment with lysosomes 
(136).

Activation of the Transcription Factor 
NF-κB

The transcription factor NF-κB is a master regulator of the mam-
malian innate immune response and controls the production of 
anti-apoptotic and pro-survival factors as well as inflammatory 
mediators (137). Thus, the activation of NF-κB (which is not 
conserved in amoebae) represents another, more indirect way to 
prevent host cell death. NF-κB is composed of five Rel family 
proteins: RelA, RelB, c-Rel, and the precursors p100 and p105, 
which are processed to their mature forms, p52 and p50. The 
transcription factor is maintained in its inactive form in the 
cytoplasm by a family of inhibitors termed IκBs (IκBa, IκBb, 
IκBe, and Bcl-3).

Bacterial PAMPs, including LPS or flagellin, initiate the 
NF-κB cascade through TLR2 or TLR5 and the adaptor MyD88. 
L. pneumophila triggers the production of pro-inflammatory 
cytokines, such as IL-1β, and the activation of the inflammasome 
platform through these receptors (138–141). The deletion of 
single TLRs does not dramatically alter L. pneumophila infection; 
yet, mice lacking MyD88 fail to produce cytokines, such as NK 
cell-derived IFN-γ, and are highly susceptible to L. pneumophila 
infection (142–144, 29). Moreover, mice lacking the IL-1 receptor 
are impaired for PMN recruitment and bacterial clearance (145). 
Therefore, IL-1R/MyD88-dependant signaling is critical for host 
resistance to L. pneumophila infection.

The NF-κB pathway can be activated not only by bacterial 
PAMPs via a TLR-dependent pathway but also by distinct bacte-
rial effectors (146). The Icm/Dot T4SS and its substrates LnaB and 
LegK1 strongly induce NF-κB (147–149). While the molecular 
mechanism of the novel effector LnaB is not understood, LegK1 
is a Ser/Thr kinase that phosphorylates the NF-κB inhibitor IκBα, 
leading to a robust NF-κB activation by triggering the release 
and nuclear translocation of the transcription factor (150). 
Since L. pneumophila lacking legK1 is not impaired for intracel-
lular replication, other effectors might also modulate the NF-κB 
response. Among the five L. pneumophila Icm/Dot substrates that 
show protein kinase activity in  vitro (LegK1–LegK5), LegK2 is 
a virulence factor, which promotes intracellular replication and 
efficient recruitment of the ER to LCVs (151).

Translation inhibition by the Icm/Dot substrates Lgt1-3, 
SidI, and SidL also specifically decreases the production of IκB, 
even though the effectors are overall cytotoxic (152, 153). To 
shut down translation, the UDP-glucosyltransferases Lgt1–3 
modify the elongation factor eEF1A (154, 155), and SidI 
inactivates eEF1A/eEF1Bγ by an unknown mechanism (153). 
Finally, L.  pneumophila also modulates host transcription 
more directly. The Icm/Dot substrate RomA/LegAS4 promotes 
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intracellular replication as a SET domain-containing histone 
methyltransferase that modifies (immune) gene expression 
(156, 157). In summary, L. pneumophila modulates protein pro-
duction and turnover through the activation of NF-κB and by 
altering the epigenetic pattern, as well as through the inhibition 
of translation.

Conclusion and Outlook

The ubiquitous environmental bacterium L. pneumophila triggers 
an acute and potential fatal pneumonia termed Legionnaires’ 
disease. The opportunistic pathogen employs the Icm/Dot T4SS 
and as many as 300 different effector proteins to govern interac-
tions with phagocytes and form an intracellular replication niche, 
the LCV. Some Icm/Dot-translocated effector proteins interfere 
with (i) endocytic, secretory, or retrograde vesicle trafficking 

pathways, (ii) organelle or cell motility, (iii) the inflammasome 
and programed cell death, or (iv) the transcription factor NF-κB. 
Future studies will address the molecular mechanisms of action 
of the many Icm/Dot substrates, which remain uncharacterized 
to date. The further analysis of L. pneumophila effector proteins 
will likely continue to provide novel insights into the elaborate 
pathogen–host interactions between a highly adapted opportun-
istic pathogen and its phagocytic host cells.
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