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Abstract

We perform a density-matrix renormalization-group study of strongly interacting bosons on a three-
legladder in the presence of a homogeneous flux. Focusing on one-third filling, we explore the phase
diagram in dependence of the magnetic flux and the inter-leg tunneling strength. We find several
phases including a Meissner phase, vortex liquids, a vortex lattice, as well as a staggered-current (SC)
phase. Moreover, there are regions where the chiral current reverses its direction, both in the Meissner
and in the SC phase. While the reversal in the latter case can be ascribed to spontaneous breaking of
translational invariance, in the first it stems from an effective flux increase in the rung direction.
Interactions are a necessary ingredient to realize either type of chiral-current reversal.

1. Introduction

Experimental progress with ultracold quantum gases has made feasible engineering the coupling between the
different states of the atoms, in order to realize synthetic gauge fields [1, 2]. The effective magnetic fields acting
on the neutral atoms can be much larger than what is possible in solid-state systems. These advances bring the
simulation of a wide range of Hamiltonians into reach that are important in condensed matter physics [3-8].
Indeed, some of the most intriguing phenomena in condensed matter physics involve the presence of strong
magnetic fields. For instance, topological states of matter are realized in quantum Hall systems [9, 10], which are
insulating in the bulk, but bear conducting edge states. Remarkably, topological phase transitions were observed
in experiments with cold atoms [11-13].

Recently, there has been a growing theoretical (see, e.g., work on fermions [14—16] and bosons [17-23]) and
experimental [24—26] interest in quasi-one dimensional relatives of the square lattice [27-37], the N-legladder
systems with synthetic gauge fields. Besides using superlattices [24] to realize these geometries, a synthetic lattice
dimension can be exploited where the sites on the rungs of the ladder correspond to different hyperfine states
[38]. The latter has motivated several recent theoretical studies [39—44]. Chiral edge currents on two- and three-
legladders subjected to a homogeneous flux have been observed using both experimental approaches, for
bosons [24, 26] and fermions [25]. The physics of interacting bosons on ladders has also been studied in the
context of Josephson junction arrays [45—48], albeit in the weakly-interacting regime.

Such N-legladder systems, similar to their counterparts in quantum magnetism [49], provide an elegant
bridge between the physics in one and two dimensions [50]. Interacting bosons on two-leg ladders in
homogeneous magnetic fields harbor very rich physics, featuring Meissner and vortex phases [17-19, 21, 23, 51—
53], abiased-ladder phase that breaks the symmetry between the two legs [22, 54, 55], analogues of Laughlin
states [56] as well as an interaction-driven reversal of the direction of the current due to spontaneous breaking of
translational invariance in vortex lattices (VLs) [22].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic representation of the three-legladder model (1). (r, £) labels the site on the rth rung and on the th leg. The
tunneling strength along the legs(rungs) is J (J| ). We choose the gauge such that the phase is picked up on the rungs, resulting in a net
flux of ¢ through each plaquette. The on-site interaction strength is given by U.

Here, we use density-matrix renormalization-group (DMRG) [57-59] simulations to explore the phase
diagram of strongly interacting bosons on a three-leg ladder subjected to a homogeneous flux. We focus on a
filling of one-third of a boson per site, which can easily be realized in experiments [26]. At this filling, the system
is expected to be in a Mott-insulating state, based on the existence of a magnetization plateau at one-third of the
saturation magnetization in the closely related three-leg spin-1/2 ladders [60, 61] and on work on the MI-SF
transition in bosomic three-ladders at zero flux a zero flux [74]. We present the phase diagram for hard-core
bosons (HCBs) in dependence of the inter-leg coupling strength and the magnitude of the magnetic flux. Asa
main result, we observe vortex phases that cannot be traced back to features in the single-particle dispersion. In
the Meissner phase in this system, there is a fascinating reversal of the direction of the current, driven by the
magnetic flux. We provide an explanation for this effect and we show that it persists at intermediate interaction
strengths. Finally, a staggered-current (SC) phase, generalizing the one found on the two-legladder [17, 18], is
observed around ¢ ~ 7, which also triggers a chiral-current reversal.

2.Model and method

We consider the Bose-Hubbard Hamiltonian on a three-leg ladder of length L (see figure 1):

L 2
H=—1], ZZ (e—iréazfa,’erl + h. C.)

r=1/=1
_ ]Lz_li(ﬂzfaﬁ-l,f + h.c.) ZZn,f(nrf ), (1)
r=1£=1 r=17=1

where aZ ¢ creates aboson on the rth rung and the #th leg of the system and n,,, = af) , 4, 1s the on-site number
operator. Jand ], are the tunneling matrix elements along the legs and rungs, respectively, U'is the on-site
interaction strength, and ¢ is the magnetic flux through a plaquette of the ladder.

We compute the ground state of (1) numerically with a single-site DMRG algorithm [62]. While exploiting
the U(1) symmetry of the Hamiltonian associated to particle number conservation, we keep up to 4000 DMRG
states and the data in the figures of the main text are for L = 100, while we have considered L as large as L =200 in
the appendix. For U/J < oo, we limit the number of bosons per site to six at maximum. For the determination
of the Mott insulator (MI) to superfluid (SF) transitions, we use infinite-size DMRG [63] with up to 600 DMRG
states (see appendix B).

The different phases are primarily characterized by their local current configurations. The associated
operators are

iy = (afreane —alsai), @
1 .
;= lh( “al, ane — eaf far,erl) (€)

We compute the chiral current from
- Z <]rH1 - ]rH 4)

Throughout the paper, we fix the filling to 1/3 bosons per site.

2
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Figure 2. Phase diagram for HCBs with 1/3 particle per site on average, as a function of J; and ¢. The dotted lines are upper bounds
for the Mott-insulator (MI) to superfluid (SF) transition, as determined by an analysis of the Binder cumulant corresponding to an
appropriate string-order parameter (see appendix B). The phase diagram features Meissner (M-MI/M-SF), vortex-liquid (V), vortex-
lattice (VL) and staggered-current (SC-MI/SC-SF) phases. While the SC region is split into a Mott insulating and a superfluid phase,
the V.and VL phases are Mott insulating, in the Meissner phase, the color encodes the amplitude of the chiral current j... The gray ‘+
symbols mark the parameter points analyzed with DMRG. Large black diamonds denote the parameter values for which the local-
current patterns are presented in figure 3. The vortex-liquid region contains one- and two-component Luttinger liquids. The VL is
expected to be surrounded by a (possibly very thin) vortex-liquid phase.

3. Phase diagram

3.1. Summary of results for two-leg ladders

Let us first briefly summarize some results for the corresponding two-leg ladder model in the low density regime
(obtained by limiting the number of legs to two in figure 1), which will help to appreciate our results for the
three-legladder to be presented in the following. The phase diagram for HCBs at a filling of one boson per rung
hasbeen reported in [21, 23]: at fixed rung coupling ], /] < 1.6, there is a transition from a phase with
Meissner-like currents to a vortex phase when increasing the flux. Above a critical value J§ ~ 1.6], the Meissner
phase is stable at any flux. Furthermore, at certain commensurate vortex densities, VLs are expected to form
[51], which, however, do not seem to exist in the limit of HCBs [21]. At smaller interaction strength, though,
stable VLs at vortex densities of 1 /2 and 1/3 have been identified in [22]. In those phases, the translation
invariance associated with translations along the legs of the ladder is spontaneously broken and an enlarged unit
cell forms. As a consequence, the effective flux sensed by the bosons is modified. This leads to a spontaneous
reversal of the direction of the chiral current, under certain conditions on the flux and interaction strength [22].

3.2. Overview of the phase diagram for the three-legladder

Figure 2 shows the ground-state phase diagram for HCBs [(a, ,)?> = 0; U/J — oo] of the three-legladder
model equation (1) asa function of J; € [J, 2J]and flux. Results are displayed for ¢ € [0, 7] since all physical
quantities are 27 -periodic, odd or even, functions of the flux [22]. We find the following phases: (i) a Meissner
phase (M-MI/M-SF), which shows a reversal of the current direction for large values of the flux, (ii) vortex-
liquid phases (V), (iii) a VL phase, and (iv) SC phases (SC-MI/SC-SF). The corresponding transitions are located
by solid lines in figure 2, in which the gray ‘4 symbols indicate the parameter points that were analyzed
numerically. For ], /] 2 1.6 or ¢ 2 0.37, we observe a finite mass gap (see appendix B) indicating that the
system is in a Mott-insulating state. This is inherited from the ], /] > 1limit, in which the ground state is the
product of the local ground state on each rung, separated by a gap ~/2 ], from all excited states (similar to the
two-legladder with one boson per rung [64]). Upon lowering ], at fixed ¢, the mass gap eventually closes. The
computation of the Binder cumulant [65] of an appropriate string-order parameter for the Mott insulator yields
an upper bound for the transition to a SF phase when lowering ], (see the dotted line in figure 2). This transition
is, for ¢/ < 0.3, compatible with a Berezinskii—Kosterlitz—Thouless transition (see appendix B) as expected
from the theoretical work on magnetization plateaux in N-leg spin ladders [60, 61] and numerical work at ¢ =0
[74]. The transition at 0.9 < ¢/7 < 1, onthe other hand, is compatible with a second-order phase transition
(see appendix B). In the following, we refer to states with a Meissner-like current configurations using the label
M, and to states with a SC pattern using the label SC (irrespective of whether these are MI or SF phases).
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Figure 3. Current patterns for HCBs in (a) the Meissner phase (J, /] = 2, ¢/m = 0.2); (b—c) in the vortex-liquid phases (J, /] = 1.2,
¢/m = 0.375and 0.4); (d) in the VL phase (J, /] = 1.2, ¢/ = 0.6); (e) in the Meissner phase, where the chiral current is reversed
/] = 1.2, ¢/7 = 0.9); and (f) in the staggered-current phase (J, /] = 1, ¢ = 7). The width of the arrows is proportional to the
current strength and normalized to the strongest current in the region displayed for each parameter point.
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Figure 4. (a) Chiral current j (see equation (4)) as a function of the magnetic flux ¢ for J, /] = 1.2 and 1.8 and HCBs. Inset:
comparison with perturbation theory (PT) (equation (5)) for J; /J = 5. (b) Average rung current j, = Z, i z| 'rit,> | / 2L asa
function of flux ¢ for J, /] = 1.2and 1.8. o

3.3. Meissner phases

For J, /] > 1.6, only a Meissner phase exists, characterized by currents occurring exclusively in the upper and
the lower leg (see figures 3(a) and (e)), with a finite mass gap. The existence of such a Meissner-Mott insulator
(M-MI) on the three-leg ladder has been predicted in reference [56]. For ¢/7 < 0.3, we find a transition from
this Mott-insulator to a SF phase with Meissner currents (M-SF) by lowering the inter-chain coupling J, (dashed
line in figure 2). Intriguingly, the chiral current reverses its chirality from counterclockwise (figure 3(a)) to
clockwise (figure 3(e)) for ¢/ 2 0.75, meaning that the atoms flow in the direction opposite to the one favored
by the effective magnetic field. As a consequence, at the point at which the reversal occurs, no current flows even
though the bosons feel a very strong, non-staggered, magnetic flux. A typical example for the j. = j.(¢) curve
in the Meissner phase is shown in figure 4(a) for ], /] = 1.8. The curve is smooth as there is no phase transition.

3.4. Vortex phases

Upon lowering ], to J, /] < 1.5, the Meissner phase is split by vortex phases at intermediate values of the flux.
Typical current patterns in the vortex phases, which, for open boundary conditions, exhibit non-zero rung
currents (jr)i,> , are presented in figures 3(b)—(d). We also plot the chiral current j (see figure 4(a)) as a function

of pfor J| /] = 1.2, together with the average absolute value of the rung current j, = Er’ P },l£> | / 2L (see

figure 4(b)). The transition from the Meissner into the vortex phases is characterized by j; becoming non-zero
and by kinks inthe j = j(¢) curves (see the example of ], /] = 1.2). The vortex phases can be further divided

4
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Figure 5. Vortex densities p/® asa function of magnetic flux ¢ for J| /J = 1.2 and HCBs. They are extracted from the Fourier
transform of UrLf:1>’ which show two dominant wavelengths in the vortex phase as illustrated in the inset for ¢/7 = 0.45.

into vortex-liquid (V) phases, which are incommensurate, gapless phases (see, e.g., figures 3(b)—(c)) and a VL,
which is fully gapped and forms at a commensurate vortex density [51] (see, e.g., figure 3(d)).

3.4.1. Vortex lattice
The commensurability of the phases can be unveiled by studying the spatial patterns of the rung currents
'rlf: )+ Ingeneral, their Fourier transforms bear two typical wavelengths g, and g (see the inset of figure 5, we

choose |gg| < |g,]). Motivated by this observation, we define two vortex densities pf’B =q,za" / (2m) (witha
the lattice spacing), which are shown in figure 5 for J| /J = 1.2.In the Meissner and VL phases, both vortex
densities are commensurate with o = 0and p = 1/2 (with a = A, B), respectively. These two phases are
fully gapped. In the case of the VL, we ascribe this behavior to the incompressibility of the vortex pattern: it costs
afinite energy to add a vortex to the system, even in the thermodynamic limit. The transitions to the vortex-
liquid phases are continuous commensurate-incommensurate transitions [51]. We therefore expect the vortex-
liquid region to surround the VL phase everywhere, even though the proximity of various phase transitions
renders it very difficult to resolve numerically.

3.4.2. Vortex liquids

The incommensurate vortex-liquid region (V) encompasses phases in which both vortex densities are
incommensurate (e.g., at ¢/7 = 0.7 in figure 5) as well as phases where one mode is commensurate (at either
Py = 0or p = 1/2) and the otheris not (e.g., at ¢/7 = 0.375and 0.5 in figure 5). This is fully corroborated by
the study of the von Neumann entropy, yielding either a central charge c =2 or c=1 (see appendix A) in the
vortex-liquid phases, corresponding to two- and one-component Luttinger liquids, respectively (we do not
distinguish between the ¢ = 1 and ¢ = 2 vortex-liquid phase in the figures). In principle, the study of current-
current correlations could also permit to distinguish the different vortex phases. However, the superposition of
the behaviours of the different components renders the analysis of correlations less conclusive for finite-size
systems.

We stress that the emergence of vortex phases for bosons on the three-leg ladder is a many-body effect: the
minimum of the single-particle dispersion is always at zero momentum, corresponding to a Meissner phase with
counterclockwise chiral-current. The vortex phases are thus not inherited from finite-momentum global
minima in the single-particle dispersion relation, unlike in two-legladders [11, 21, 22, 52].

3.4.3. Staggered-current phase

Around J; ~ Jandfor ¢ < m,aphasewith SC emerges (see figure 3(f)). It is characterized by strong currents
going around each plaquette. This phase breaks translation invariance along the legs of the ladder and has a
commensurate vortex density o = 1/2, corresponding to a spatial periodicity of two lattice sites. It can be
visualized as two VL states on the upper and lower two-leg ladder, shifted by one site with respect to each other.
This phase shows a Mott-insulator to SF transition when lowering J, /J (see figure 2 and appendix B). At ¢ = T,
the Hamiltonian (1) is real, and therefore, time-reversal invariant. The SC phases then spontaneously break this
symmetry (see figure 3(f)): reversing all currents does not leave the pattern invariant; they can thus be viewed as a
generalization of the chiral Mott-insulator and SF phases realized on two-legladders [17, 18].

3.5. Chiral-current reversal in the Meissner phase
Let us further investigate the region ¢ /7 > 0.75 where the chirality of the chiral currents is opposed to the one
favored by the bare flux. In the strong-runglimit ], > J, the three-site problem is solved analytically and
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Figure 6. Schematic representation of the two contributions to equation (5) for 7/2 < ¢ < 7.
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Figure 7. Chiral current j asa function of on-site interaction Ufor J, /J = 1.6 and ¢/ = 0.8 and 0.85.

standard perturbation theory (PT) can be applied. To first orderin J /], , the chiral current is then given by

]2
]'PT —
¢ 242],

(sin o+ % sin 2¢), (5)

which implies a reversal of the current at ¢ = arccos(—2/3) ~ 0.73, independently of J, . Equation (5) agrees
very well with the DMRG calculations for J, /J = 5 (see the inset of figure 4(a)), and the parameter point at
which the reversal occurs barely moves for J, /] 2 1.6 (see figure 2).

The flux dependence j. o< sin(¢) is directly inherited from that of the two-leg ladder in the Meissner phase
[21]. The two terms of (5) can therefore be interpreted as stemming from two contributions, which are sketched
in figure 6. The first term (left panel) corresponds to chiral currents flowing on the two sub-ladders (formed by
the middle leg and the upper or lower leg) resulting in a zero net-current on the middle leg, whereas the second
term (right panel) corresponds to particles propagating only along the top and bottom leg of the three-leg ladder.
This can be thought of as a Meissner phase with an effective flux ¢4 = 2¢.For /2 < ¢ < m, thesecond
contribution is negative, which can lead to a total chiral current with a reversed chirality. This reversal is thus
associated with a doubling of the effective flux along the rung direction. It can already be captured in the minimal
model of two plaquettes (L = 2), in which a qualitatively similar reversal occurs in the strongly interacting limit.
Anincrease of the effective flux also underlies the chiral-current reversal in the case of two-leg ladders [22], yet
there, the increase results from spontaneous breaking of translation symmetry.

The ], > J limitalso permits to understand another numerical observation: the density is imbalanced
between the legs, in all phases. PT indeed predicts a density twice as large on the middle leg than on the outer
ones. This difference decreases when lowering J, /J.

3.6. Finite interactions U /] < oo

In the single-particle case (U /] = 0), the Meissner phase has counterclockwise chirality for any choice of
parameters. Therefore, there must be a reversal of the chiral current as the interaction strength increases. This is
indeed the case as shown in figure 7, displaying j. asa function of U, for ¢ /7 = 0.8and 0.85and J, /J = 1.6.
The reversal from a negative to a positive current occurs at a finite interaction strength U whose value depends
on ¢. For ¢/m = 0.85, the system enters into a SC phase at intermediate values of U, as indicated in the figure.
Translational invariance is spontaneously broken in the SC phase and the unit cell comprises four plaquettes (see
figure 3(f)). For ¢ € [37/4, m], the effective fluxis ¢4 = 4¢ € [—m, 0] modulo 27, and the current is
reversed. This realizes another instance of the chiral-current reversal due to spontaneously enlarged unit cells
first presented in reference [22]. The presence of the SC phases stabilizes the current reversal down to much
smaller values of U /] compared to parameters for which the SC phase is absent (compare the data for

¢/m = 0.8and 0.85 shown in figure 7). Note that the VL phase leads to the same unit-cell enlargement.
However, as it occurs for ¢ € [7/2, 37/4]in the HCBs case (see figure 2), one has ¢4 = 4¢ € [0, ] modulo
27, and the chiral current is not reversed.
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Figure 8. Chiral current j, (see equation (4)) as a function of the magnetic flux ¢ for J, /J = 0.2, 0.4 and 1, for long-range interactions
along the rungs (see equation (6)) and U /] = 10.

4. Experimental realizations

The most straightforward experimental approach would be to use a superlattice to split a two-dimensional
lattice into three-leg ladders [66]. This would create an energy offset between the middle and the outer two legs,
which could easily be compensated by another superlattice with a two-site periodicity. For systems with a
synthetic lattice dimension [25, 26, 38], the interaction in the rung direction is not on-site as considered here,
but depends on the total density n,! = 22:1 n,¢ in all three rung sites. Thus, the appropriate form is

Hin = %rfjln:(n: ~ 1), 6)

Our DMRG results for U/J = 10 show that this type of long-range interactions suppresses vortex phases. This is
qualitatively consistent with the study of the two-legladder, in which this type of interaction also favors the
Meissner phase over the vortex phase [19, 56]. The chiral-current reversal in the Meissner phase at a filling of
one-third survivesatsmall ], /] < 0.3 (see figure 8).

5. Summary

We presented the phase diagram of strongly-interacting bosons on a three-leg ladder subjected to a
homogeneous magnetic flux. We identified several phases, including vortex-liquid phases, a vortex lattice and a
Meissner phase. Moreover, there is a state with staggered currents, which leads to a reversal of the chiral current
due to the spontaneous increase of the unit cell, similar to the situation discussed in [22]. Fascinatingly, the
Meissner phase also shows a chiral-current reversal when increasing the strength of the magnetic flux per
plaquette, yet in the Meissner phase, translational invariance is not broken. The analysis of the strong-rung and
large-interaction limit indicates that a doubled flux is experienced along the rung direction. Therefore, the
chiral-current reversal in the Meissner phase is qualitatively different. We argue that interactions are a necessary
ingredient to obtain these behaviors.
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Figure Al. The entanglement entropy S,y as a function of the relative length of the subsystem r /L for L = 100. Symbols show DMRG
results for (a) J, /] = 2.0, ¢/m = 0.2 in the Meissner phase; (b) J, /] = 1.2, ¢/m = 0.375 in the vortex-liquid phase; (¢) J. /] = 1.2,
¢/m = 0.6 in the vortex-lattice phase; (d) J, /] = 1.2, ¢/7 = 0.7 in the vortex-liquid phase; (e) ], /] = 1.2, /7 = 0.9 in the
Meissner phase with currents with reversed chirality; (f) J, /] = 1.0, ¢/m = 1.0 in the staggered-current phase. The red line is a fit of
(A.2) to the DMRG data. The insets show the mass gap AE); as a function of inverse system length which is extrapolated to the infinite
length limit with a linear fit.

Appendix A. Entanglement entropy

The entanglement entropy S,y is defined as the von Neumann entropy corresponding to a bipartition of the
wavefunction into two subsystems A and B:

Sw=—-Trp,Inp,, (A1)

where p, = Trg|9)) (1| is the reduced density matrix of subsystem A. In conformal field theory, for a one-
dimensional system with open boundary conditions and total length L, the von Neumann entropy of a
subsystem of length ris given by [67, 68]

S (r) = % log [% sin (%)] +g (A.2)

where cis the central charge of the conformal field theory and g is a non-universal constant. The central charge
measures the number of gapless modes in the system.

Infigure A1 we show the entanglement entropy Syn(r) for straight cuts through the three-leg ladder between
rungsrand r + 1. Byfitting (A.2) to the data we obtain estimates for the central charge. Oscillations of the
entropy in the vortex phases make the fit very sensitive to the fitting region used. This applies, in particular, to the
vortex-liquid phases. Nevertheless, the behavior of the central charge provides further insights into the nature of
the commensurate-incommensurate transition.

In the Meissner phase (figures Al(a) and (e)) the values of the central charge are very close to zero in
agreement with an entanglement entropy independent of the subsystem size, which corresponds to the area law
of a fully gapped phase [69].

The vortex phases can be divided into vortex-liquid and VL phases with incommensurate and
commensurate vortex densities, respectively. As illustrated in figure 5 of the main text there are two vortex
densities that undergo a transition from the Meissner to a vortex-liquid and VL phase with increasing flux ¢ /7
and atlow enough J, /J. This picture is consistent with the behavior of the central charge. More precisely, at
J./] = 1.2and ¢/ = 0.375, we find one incommensurate vortex density in the Fourier transform of the rung
currents and a central charge of ¢ &~ 1 (figure A1(b)). Atflux ¢/m = 0.7, there are two incommensurate vortex
densities. The central charge is ¢ ~ 2 in agreement with the presence of two gapless modes (figure A1(d)). At
¢/m = 0.6, both vortex densities are commensurate and we find an entanglement entropy independent of
subsystem size (up to oscillations due to the increased unit cell), or c = 0 in terms of the central charge
(figure A1(c)).
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This suggests that the modes, which are measured by the central charge, can be related to the dominating
vortex densities in the Fourier transform of the rung currents. An incommensurate vortex density would be
associated with a gapless mode while a commensurate vortex density would correspond to a gapped mode.

In the SC phase the vortex densities are commensurate, while the fit gives a central charge ¢ ~ 1. But the
scaling of the entanglement spectrum indicates that it is two independent ¢=0.5 modes, and also the scaling of
the correlation function gives the scaling dimension A ~ 1/8 (not shown), consistent with ¢=0.5. This
indicates that the mass gap is closed, which is compatible with the analysis of the mass gap and the Binder
cumulant presented in the next section.

Appendix B. Mott insulator to superfluid transition

The mass gap AEy; is defined as
1
AEM:E[E(N— 1)+ EN + )] — E(N), (B.1)

where E(N) is the total ground-state energy of the system with N particles.

We generally observe a finite mass gap that becomes smaller when decreasing the inter-leg coupling J; . In
the J; = 0 limit, the mass gap is known to be closed. As already mentioned in the main text, in the ¢/7 = 0
limit, the transition to the SF phase at finite J, /] can be expected to be of the Berezinskii—Kosterlitz—Thouless
type [60, 61], and, therefore, is very hard to pinpoint numerically.

In the insets of figure A1 we show the mass gap as a function of the inverse system size 1 /L extrapolated with
alinear fit to the thermodynamic limit. We find a finite mass gap in the Meissner phase for J /], = 2, ¢/7 = 0.2
and J /]| = 1.2, ¢/m = 0.9 (figures Al(a) and (e)). The mass gap closes in the Meissner phase when lowering
J/]. . The vortex-liquid phases (figures A1(b) and (d)) and the VL phase (figure A1(c)) have finite mass gaps with
weak system-size dependence. The finite mass gap in the vortex-liquid phases confirms that the charge mode
does not contribute to the values of the central charges in figures A1(b) and (d) but they are fully accounted for by
the two other modes on the three-leg ladder that undergo the commensurate-incommensurate transition.

The analysis of the central charge is more difficult in the regions where the mass gap can not be resolved (or is
actually zero) with the system sizes studied in this work. This is the case in the Meissner phase for J, /] < 1.6
and ¢/7 < 0.3 and in the SC phase (see the inset of figure A1(f)).

Calculating energy gaps is a quite difficult calculation when the gap is small, so where an order parameter
exists it is generally better to use it instead to detect the phase boundary of the Mott-insulating region. A suitable
order parameter for a Mott phase is the non-local string order parameter [70], given by

0= |jJ§|rEOC<HZ:"(_1)I_n;>’ (B.2)
where n! = Z;Zl n,¢ is the total particle density on rung r.
This can be expressed in terms of a ‘kink’ operator,

p() =i (=D, (B.3)
from which Of, takes the form of a correlation function,

0; = lim (p@p(), (B.4)
lj—il—o00
or, we can construct an extensive order parameter P = Zi p (i). We cannot evaluate (P) directly, since the sign
is indeterminate, however, we can calculate (Pz) , which is simply related to 02, as

0, = (P?) /12, (B.5)

where L is the length of the lattice. The great advantage of this construction is that the P operator is easy to
construct for matrix-product-state algorithms using the triangular matrix-product-operator (MPO) formula-
tion [63, 71], and the expectation value of such triangular MPO’s can be evaluated directly in the thermodynamic
limit [72]. This allows us to calculate the Binder cumulant [65] of P,

(~)
B=1- 5 (B.6)
3(P?)
For an infinite matrix-product-state (iMPS), the expectation value of the nth power of an operator P" is obtained

as a degree n polynomial of the lattice size L, which is exact in the asymptotic large-L limit. Hence the quantity
O, = (P?) /1*is evaluated directly as the coefficient of the degree 2 component of (P2).

9
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Figure B1. Binder cumulant B,,, for various number of states m, for (a) ¢ /7 = 0.2 and (b) ¢/7 = 0.95, to analyze the Mott insulator
to superfluid transition. In (a) the crossing point moves towards lower ], /J as m increases, compatible with a Berezinskii—Kosterlitz—
Thouless transition at J, /] < 1.25.In (b) the crossing point does not move significatively when m increases, compatible with a
second-order transition at J| /] ~ 1.035. The average rung current jy, as defined in the main text, is also displayed. It shows that the
Meissner to SC transition occurs at J, /J ~ 1.135.

If we evaluate the Binder cumulant directly for an iMPS in the large L limit, then it simply probes where OIZ, is
zero or non-zero, so does not give any additional information. Since the coefficient of the nth degree term in (P")
is simply Oy, it follows that if Of, is non-zero then the Binder cumulant in the large L limit is identically equal to

2/3. Similarly, if O; = 0, then the cumulant expansion of (P*) reduces to 3 (P2)? and the Binder cumulant is
identically zero. Hence we have a step function located at the point where 012, becomes non-zero, which is what
one would expect if one takes the large-L limit of a finite-size Binder cumulant.

However, for an iMPS the correlation length is always finite, so one might expect that finite-entanglement-
scaling with the basis size m can be used instead of finite-size scaling. This is indeed the case, if we evaluate the
polynomial (P") at L = b¢, where £ is the correlation length, and b is some scaling factor. This is equivalent to
calculating the order parameter over a finite section of size L = b€ of the infinite lattice.

Since £ depends on the number of states 11, we can plot a family of curves of the Binder cumulant B,, for
different values of m. For a finite system, the value of the Binder cumulant at a second-order critical point is
independent of L (up to higher order corrections). For an iMPS, the analogous result is that the critical value of
the Binder cumulant is independent of 1. Note that for finite size systems the actual value of the Binder
cumulant at the critical point is not universal and depends on the boundary conditions [73]. For an iMPS, the
value of the m-dependent Binder cumulant depends on the chosen scale factor b. For the calculations here, we
useb=1.

As an example, we show in B1 (a) the Binder cumulant as a function of J, for ¢/ = 0.2. The datais
compatible with a Berezinskii—Kosterlitz—Thouless transition from the Meissner Mott-insulating region into the
Meissner SF region as ]| /] decreases and permits to give an upper bound for the critical point, which is reported
in figure 2 in the main text. For ¢/ = 0.95 (see figure B1(a)), a Mott-insulator to SF transition also occurs in
the SC phase and it is compatible with a second-order critical pointat J| /J ~ 1.035. The Meissner to SC phase
transition, which can be characterized by a rise of the average rung-current jy , occurs ata distinct point

J./J ~ 1.135.
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