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SUMMARY

At what point during translation do proteins fold?
It is well established that proteins can fold cotrans-
lationally outside the ribosome exit tunnel, whereas
studies of folding inside the exit tunnel have so far
detected only the formation of helical secondary
structure and collapsed or partially structured folding
intermediates. Here, using a combination of co-
translational nascent chain force measurements, in-
ter-subunit fluorescence resonance energy transfer
studies on single translating ribosomes, molecular
dynamics simulations, and cryoelectron microscopy,
we show that a small zinc-finger domain protein
can fold deep inside the vestibule of the ribosome
exit tunnel. Thus, for small protein domains, the
ribosome itself can provide the kind of sheltered
folding environment that chaperones provide for
larger proteins.
INTRODUCTION

Cotranslational folding of proteins that have emerged from the

ribosome exit tunnel has been studied for decades using either

stalled ribosome-nascent chain complexes (RNCs) (Kolb et al.,

2000; Kowarik et al., 2002; Kosolapov and Deutsch, 2009; Kaiser

et al., 2011; Kelkar et al., 2012; Lin et al., 2012; Waudby et al.,

2013; Nissley and O’Brien, 2014) or kinetic measurements

(Nicola et al., 1999). Isolated elements of secondary structure

and collapsed or partially structured folding intermediates have

been detected inside the exit tunnel (Mingarro et al., 2000;

Bhushan et al., 2010; Tu et al., 2014), but in no case has a protein

domain been shown to be able to fold into its native structure

while still inside the ribosome.
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On the basis of our finding that cotranslational processes such

as protein translocation across, or insertion into, a membrane

generate pulling forces on the nascent polypeptide chain (Ismail

et al., 2012, 2015; Cymer and von Heijne, 2013), we previously

suggested that proteins that start to fold cotranslationally while

still in contact with the ribosome should exert a similar pulling

force on the nascent chain (Ismail et al., 2012); that is, the free en-

ergy released by the folding reaction should be at least in part

stored as an increased tension in the nascent chain (Figure 1A).

This was recently confirmed in a study of cotranslational folding

of the Top7 protein, a 93-residue protein that folds just outside

the exit tunnel while exerting a force of �10 pN on the nascent

chain (Goldman et al., 2015).

Here, we have set out to follow the folding of a protein domain

as it progressively moves out of the ribosome in step with chain

elongation, using an assay that takes advantage of the force

sensitivity of translational arrest peptides (APs) (Butkus et al.,

2003; Ismail et al., 2012; Goldman et al., 2015). APs from bacte-

rial SecM proteins are exquisitely sensitive to the tension present

in the nascent chain at the precise moment when the ribosome

translates the last codon in the AP, with the efficiency of the

translational arrest being reduced in proportion to an increase

in tension (Ismail et al., 2012, 2015; Goldman et al., 2015). By

making a series of constructs in which a suitable AP is separated

by a varying number of residues, L, from the protein to be studied

andmeasuring the efficiency of translational arrest for each value

of L, we can obtain an indirect measure of the instantaneous ten-

sion in the nascent chain during translation. We now demon-

strate that such ‘‘force profiles’’ appear to give a direct insight

into the folding transition that a protein undergoes as it passes

down the exit tunnel. We compare the experimental profile re-

corded for a small zinc-finger domain with folding simulations

based on coarse-grained molecular dynamics and determine

the location of the domain inside the ribosome exit tunnel at

the point of maximal folding force by cryo-EM (electron micro-

scopy). Our results show that small protein domains can fold
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Figure 1. Cotranslational Folding of the ADR1a Zinc-Finger Domain

(A) Force measurement assay. The ADR1a domain is placed L residues away from the C-terminal Pro residue in the E. coli SecM AP. An unrelated segment from

the E. coli LepB protein (LepB residues 78–226) is added to the N terminus in order to increase the size of the protein such that it can be readily visualized by SDS-

PAGE, and a 23-residue C-terminal segment ensures that arrested and full-length forms of the protein can be easily separated on the gel. The LepB part is

composed of five small b-hairpin segments that do not interact with one another in the LepB structure (PDB: 1B12) and hence cannot fold in itself. The cartoon

below shows three ADR1a-AP constructs with different values of L (L1 < L2 < L3). The ribosomal tunnel is too tight for the protein to fold at L1, and the protein is

already folded and outside the tunnel when the ribosome reasches the AP at L3. Only at L2 will folding of the protein against the widening ribosomal exit tunnel

generate a pulling force F on the AP, leading to inefficient ribosomal stalling and an increase in the fraction full-length protein, fFL.

(B) Structure of ADR1a (PDB: 2ADR). The Zn2+ ion is shown in gold.

(C) In vitro translation the PURE systemof the ADR1a-SecM (L= 24) (top) and ADR1a-SecM (L= 37) (bottom) constructs. Full-length (FL) and arrested (A) forms are

indicated. Ac, control construct with a stop codon inserted directly after the AP; FLc, full-length control construct, where the critical Pro at the end of the AP is

mutated to Ala; TPEN, translation carried out in the presence of 50 mM of the Zn2+ chelator TPEN; Zn2+, translation carried out in the presence of 50 mM Zn2+.

(D) Fraction full-length protein, fFL, plotted as a function of L for the ADR1a-AP constructs translated in the PURE in vitro system either in the absence (blue curve;

to deplete the translation mix of Zn2+, the Zn2+ chelator TPEN was included at 50 mM) or presence (red curve) of 50 mM Zn2+. SEMs are indicated.

See also Figures S1 and S2.
while still in the exit tunnel and establish the use of AP-mediated

force measurements for the study of cotranslational protein

folding.

RESULTS

To explore the possibility of protein folding inside the exit tunnel,

we chose the second of the two zinc-finger domains in the yeast

ADR1 protein (Párraga et al., 1988) (Figure 1B). The domain
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(called ADR1a) is 29 residues long and folds around a Zn2+ ion

using two histidines and two cysteines to chelate the ion. The

folding of ADR1a is totally dependent on the presence of Zn2+

(Párraga et al., 1988) and can hence be easily manipulated (Conti

et al., 2014). Moreover, the protein is small enough that it might

be able to fold inside the exit tunnel, a possibility suggested by

previous theoretical studies (O’Brien et al., 2010, 2011).

We made a series of constructs in which ADR1a is placed L

residues upstream of the critical C-terminal Pro residue in the
thors



relatively weakly stalling Escherichia coli SecM AP (Yap and

Bernstein, 2009; Ismail et al., 2012; Goldman et al., 2015), which

in turn is 23 residues upstream of the stop codon (Figure 1A; see

Figure S1 for amino acid sequences). In constructs in which

there is little tension in the nascent chain at the precise moment

when the ribosome reaches the critical Pro codon, the ribosome

will stall on the AP and a short, arrested version of the protein will

be produced. In contrast, in constructs in which there is high ten-

sion (�10 pN or more; Goldman et al., 2015) in the nascent chain

at this moment, stalling will be inefficient, and mostly full-length

protein will be produced. The fraction full-length protein, fFL, can

therefore serve as a proxy for the tension in the nascent chain, as

shown in previous studies (Ismail et al., 2012, 2015).

ADR1a Folds inside the Ribosome Exit Tunnel
Translation of ADR1a-SecM constructs in the PURE in vitro

translation system (Shimizu et al., 2001, 2005), either in a Zn2+-

depleted translation mix or in the presence of 50 mM Zn2+ (Fig-

ures 1C and 1D), showed efficient stalling in the absence of

Zn2+ (fFL z 0.1 for all values of L). In the presence of Zn2+, the

picture is dramatically different, with fFL starting to increase at

L z 20 residues, going through a sharp maximum at Lmax =

24–26 residues and returning to baseline at L z 30 residues.

Mutating one or both of the Zn2+-binding His residues in

ADR1a-SecM (L = 24) to Ala returns fFL to baseline (Figure S2A).

Translation of ADR1a-SecM constructs in an E. coli S135 extract

yields similar results, albeit with a lower maximal value of fFL (Fig-

ure S2B). Titration of Zn2+ in the S135 extract translation reaction

shows that the half-maximal fFL value is reached at [Zn2+]z 1 mM

(Figure S2C); Zn2+ dissociation constants for typical zinc-finger

domains are in the range 0.1–2 mM (Rich et al., 2012). A small

signal can also be detected at Lmax = 25–27 residues when the

constructs are expressed in live E. coli cells in the absence or

presence of 500 mM Zn2+ in the medium (Figure S2B). We

conclude that ribosomal stalling on the SecM AP is prevented

when ADR1a folds and that, as it takes about 30 residues of

extended nascent chain to span the �100 Å from the P-site to

the tunnel exit (Bhushan et al., 2011), ADR1a folds inside the

exit tunnel. This conclusion holds regardless of whether transla-

tion is carried out in vitro or in vivo.

Analysis of Ribosome Stalling on the SecM AP by
Single-Ribosome Tracking
To characterize the effect of protein folding on the AP-induced

translational arrest in more detail, we applied real-time fluores-

cence resonance energy transfer (FRET)-based single-ribosome

tracking of ribosomes translating the ADR1a-SecM (L = 24)

construct, that is, a construct for which there is very little stalling

at 50 mM Zn2+ (see Figure 1C). In this case, the N-terminal 158-

residue-long segment upstreamofADR1awasdeleted (compare

Figures 1A and S1). Using a previously established method of

attaching fluorescent probes to the large and small ribosomal

subunits, the transitions between the non-rotated and rotated

states of individual ribosomes can be tracked as they translate

along an mRNA (Marshall et al., 2008) (Figures 2A and S3),

providing translation times at each codon. As shown in Figure 2B,

very few ribosomes translate beyond the AP when translation of

the ADR1a-SecM (L = 24) construct is carried out in the absence
Cell Re
of Zn2+, as has been shown previously for another SecM con-

struct (Tsai et al., 2014). Mutating the critical Pro residue at the

end of the AP to Ala inhibits stalling, as expected (Figure 2C).

Strikingly,when translationof theADR1a-SecM (L=24) construct

is carried out in the presence of 50 mMZn2+, stalling is completely

inhibited, and ribosomes progress unhindered beyond the AP

(Figure 2D), providing additional evidenceof aSecMAP response

to the folding of ADR1a. The complete disappearance of the

stalling signal in the presence of Zn2+ (i.e., no long dwells in the

rotated state beyond codon 48 or in the non-rotated state at co-

dons around Pro54, compare Figures 2B and 2D) suggests that

folding of the ADR1a domain occurs on a significantly shorter

timescale than theelongation timescale in theexperimental setup

(�5 s per codon) and that the pulling force exerted by the ADR1a

domain is present alreadywhen the ribosome is a fewcodons up-

stream of the critical Pro54 codon, in accordance with the data

shown in Figure 1D. It should be noted that the mRNA construct

in the present study is much longer than what has been used

before in these types of experiment (Tsai et al., 2014) and that un-

certainty in codon assignment increases with codon number

because of possible mis-assignments of state transitions (e.g.,

because of fluorophore blinking or very fast state transitions).

However, an uncertainty in exact codon numbering around the

arrest codons does not affect our conclusions.

Molecular Dynamics Modeling of ADR1a Folding in the
Exit Tunnel
We next used a previously developed coarse-grained molecular

dynamics protocol (O’Brien et al., 2010) to ask whether, as sug-

gested by the fFL profile measurements, there is enough room in

the exit tunnel to allow folding of ADR1a. ADR1a-SecM con-

structs with different tether lengths were modeled into a high-

resolution structure of the E. coli ribosome (Zhou et al., 2012),

and replica-exchange Langevin dynamics (Sugita and Okamoto,

1999) were run at each tether length. Figure 3A shows the prob-

ability that the ADR1a segment is found in its folded state as a

function of tether length. The folding transition is predicted to

take place over the interval L z 24–32 residues with a midpoint

at L = 28 residues (i.e., at �3 residues higher L values than seen

in the force profile). Analysis of the data obtained with a tether

length of L = 25 residues shows that folded ADR1a is found in

the exit tunnel, with His21 located at a distance of 65–75 Å

from the tRNA (Figure 3B, top). To provide a comparison with

the cryo-EM results reported below, a simulation of the L = 25

construct was also carried out at T = 140 K, just above the water

glass transition temperature; under these conditions, folded

ADR1a is found in a more restricted portion of the exit tunnel,

with His21 located 65–67 Å from the tRNA (Figure 3B, bottom).

Visualization of ADR1a in the Exit Tunnel by Cryo-EM
To confirm that ADR1a folds inside the exit tunnel, we sought

to visualize it in the ribosome at tether length L = Lmax (i.e.,

at the top of the fFL profile; Figure 1D) by cryo-EM. Because,

with the relatively weak SecM AP from E. coli, fFL z 1 at L =

Lmax, stably stalled ribosome-ADR1a-SecM complexes of

this kind cannot be isolated. We therefore introduced the previ-

ously described strongly stalling SecM (Ms-Sup1) AP (Ismail

et al., 2012) instead (Figure S4A). Using the ADR1a-SecM
ports 12, 1533–1540, September 8, 2015 ª2015 The Authors 1535



Figure 2. Folding of the ADR1a Domain Prevents Ribosomal Stalling on the SecM AP

(A) The dynamics of ADR1a-SecM (L = 24;D1–158) translation were assayed in real time using inter-subunit FRET between Cy3B and BHQ-2. Transition from low

Cy3B intensity (high FRET) to high intensity (low FRET) and back to low intensity again, as a consequence of the inter-subunit rotations, reports on one elongation

cycle (i.e., peptidyl transfer and subsequent translocation). The time-trace example shows how one ribosome translates the whole ADR1a-SecM (L = 24) ORF in a

construct in which the critical C-terminal Pro54 in the AP has been changed to Ala.

(B) Survival plot (left) and lifetimes of the rotated and non-rotated states (right) for each individual codon summarized from ADR1a-SecM (L = 24) translation time

traces (n = 149). The critical Pro54 codon is shown in red for clarity.

(C) Inter-subunit FRET data from elongation of an ADR1a-SecM (L = 24) construct in which the Pro54 has been changed to Ala (n = 147).

(D) Inter-subunit FRET data from elongation of the ADR1a-SecM (L = 24) construct in the presence of 50 mM Zn2+ (n = 147). Lifetimes are fitted to single-

exponential distributions. SEMs are indicated.

See also Figure S3.
(Ms-Sup1; L = 25) construct (with an added N-terminal purifica-

tion tag and lacking the 158-residue-long segment upstream of

ADR1a; compare Figure 1A), we purified stalled RNCs from a

translation reaction in the PURE system supplemented with

50 mM Zn2+ (Figures S4B and S4C) and obtained a 4.8 Å 3D

reconstruction by cryo-EM (Figures 4 and S4D–S4F). Parts

of the SecM AP can be seen in the exit tunnel, as well as the

P-site tRNA. Strikingly, an extra density, not present in empty ri-

bosomes, is clearly visible in the exit tunnel,�60 Å from the tRNA

(Figure 4A). Rigid-body docking of a molecular model of ADR1a

derived from nuclear magnetic resonance (NMR) analysis (Pro-

tein Data Bank [PDB]: 2ADR) revealed an excellent fit, with a

cross-correlation of 0.93 between the model and the density.

The ADR1a domain is lodged between ribosomal proteins

uL22 and uL23 and ribosomal rRNA helices H23, H24, and H50

(Figure 4C) and is located a few angstroms deeper in the exit tun-

nel in the cryo-EM reconstruction than in the ensemble of folded

structures seen in the 140 K molecular dynamics trajectory (Fig-

ure 3B, bottom, arrow). The ADR1a snapshot structure (gold)

from the 140 K simulation ensemble that best fits the cryo-EM

reconstruction (red) in the exit tunnel is shown in Figure 3C.
1536 Cell Reports 12, 1533–1540, September 8, 2015 ª2015 The Au
DISCUSSION

Here, we present an integrated approach to the study of cotrans-

lational protein folding, in which the folding transition as a func-

tion of position relative to the exit tunnel is mapped by AP-medi-

ated force measurements and molecular dynamics simulations.

The location of the partially or fully folded protein or protein

domain in the ribosome at relevant L values is then determined

by mutating the AP such that it can withstand the folding force

(see Cymer et al., 2015, for a large collection of APs of different

stalling potency) and determining the structure of the resulting

RNCs by cryo-EM. Using this approach, we show that the small

zinc-finger domain ADR1a folds cotranslationally as the tether

connecting it to the ribosome grows in length from �20 to �30

residues. Both coarse-grained molecular dynamics simulation

and cryo-EM visualization of ribosome-bound ADR1a at a tether

length corresponding to the midpoint of the folding transition

show ADR1a buried deep in the vestibule of the exit tunnel,

providing a clear demonstration that small proteins or protein do-

mains can fold within the ribosome, as predicted by computa-

tional studies (O’Brien et al., 2010, 2011). Although the zinc finger
thors



Figure 3. Molecular Dynamics Simulation of Cotranslational Folding of ADR1a

(A) The probability that the ADR1a domain is folded at 37�C is plotted as a function of L.

(B) Distance distribution of the folded (root-mean-square deviation [rmsd] < 3.5 Å from the cryo-EM ADR1a model, after alignment of the isolated domains; red)

and unfolded (rmsd > 5.5 Å from the cryo-EM ADR1a model; blue) ADR1a domains in the exit tunnel. Distance distributions were calculated as a function of the

distance between the last P atom in the tRNA of the cryo-EM structure and the Ca of His21 in ADR1a (2Å bins). Alignment of the cryo-EM and simulated ribosome

structures was performed in advance. Top: Simulation run at 310 K. Bottom: Simulation run at 140 K. The arrow indicates the distance between the tRNA and

His21 in the cryo-EM reconstruction.

(C) Snapshot of the folded structure of ADR1a (green) from the 140 K simulation that best overlaps the cryo-EM structure (red) in the exit tunnel at tether length L =

25. His21 is displayed in in its coarse-grained two-ball representation for the simulation model and in ball-and-stick representation for the cryo-EM structure.
is one of the smallest independently folding protein domains, it

has been estimated that �9% of all structural domains found

in the PDB are less than 40 residues long, and �18% are less

than 60 residues long (Wheelan et al., 2000). Folding of protein

domains wholly or partly inside the exit tunnel may thus be not

too uncommon, despite its relatively constrained geometry

(Voss et al., 2006).

Although we cannot completely rule out that ADR1a relieves

the translational stall not by exerting a pulling force but by

some kind of indirect mechanism whereby, for example, interac-

tions between folded ADR1a and the tunnel wall give rise to a

long-range (>60 Å) allosteric effect on the peptidyl transferase

center, we consider this unlikely. First, published 3.5–5.5 Å res-

olution cryo-EM structures of SecM and MifM APs stalled in

the exit tunnel show conformational changes in the ribosome

only close to the peptidyl transferase center (Bhushan et al.,

2011; Sohmen et al., 2015), and not over such long distances

as would be required for an allosteric effect of ADR1a. Second,

direct pulling on a stalled SecM AP by optical tweezers shows

that themean life time of the stalled state is reduced in proportion

to the pulling force (Goldman et al., 2015). Third, qualitatively

similar effects on fFL as seen with ADR1a are seen when pulling
Cell Re
forces are induced by processes as diverse as the insertion of a

transmembrane helix into the inner membrane (Ismail et al.,

2012), the translocation of negatively charged residues across

the inner membrane (Ismail et al., 2015), and folding of a larger

protein, Top7, just outside the exit tunnel (Goldman et al.,

2015). The most parsimonious hypothesis is thus that, also for

ADR1a, it is the pulling force rather than some ADR1a-specific

allosteric interaction with the tunnel wall that is responsible for

the variation in fFL with L.

Taken together with a recent study of the Top7 protein (Gold-

man et al., 2015), our results demonstrate that APs can be used

to study folding both inside and outside the exit tunnel; optical

tweezer measurements (Goldman et al., 2015) or comparison

of AP-based fFL measurements with forces calculated from a

physical model of the same process (Ismail et al., 2015) can pro-

vide estimates of the relation between the actual folding force (in

piconewtons) and fFL. Future studies will allowmore precise def-

initions of how the size and shape of a protein domain dictate

where it folds in relation to the exit tunnel and may allow us to

probe the interactions between a cotranslationally folding pro-

tein and, for example, chaperones or cofactors of various kinds

as a function of its degree of exposure outside the ribosome.
ports 12, 1533–1540, September 8, 2015 ª2015 The Authors 1537



Figure 4. Visualization by Cryo-EM of the ADR1a Domain in a Stalled

Ribosome-ADR1a-SecM (Ms-Sup1; L = 25) Complex

(A) Schematic of the construct used for in vitro translation (top) and cryo-EM

reconstructions of stalled E. coli ribosome-SecM-ADR1a complexes (left). The

30S subunit is depicted in yellow, the 50S subunit in gray, and the peptidyl-

tRNA with the nascent polypeptide chain in green. Additionally, a cross-sec-

tion through the cryo-EM density is shown in which the density for the nascent

chain and the ADR1a domain (PDB: 2ADR) are depicted in green and red,

respectively. A close-up of the tunnel and a schematic view are shownwith the

structure of the ADR1a domain fitted as rigid body depicted in red.

(B) Isolated density for the ADR1a domain (red) shown at different contour

levels (top) compared with corresponding densities calculated from the NMR-

derived molecular model of ADR1a (middle). Isolated cryo-EM density is

shown transparent with the dockedmodel (red) and the coordinated Zn2+ ion in

yellow (bottom).

See also Figure S4.
EXPERIMENTAL PROCEDURES

Plasmids

All ADR1a constructs were generated from the previously described pING1

plasmid carrying a truncated lepB gene containing a [6L,13A] H segment insert

and the E. coli SecM AP under the control of an arabinose-inducible promoter

(Ismail et al., 2012), as detailed in the Supplemental Information. For RNA tran-

scription using the T7 promoter, all constructs were subcloned into plasmid

pET19b (Novagen) using NcoI and BamHI.

In Vitro Transcription and Translation

In vitro transcription was performed with T7 RNA polymerase according to the

manufacturer’s protocol (Promega) using PCR products as templates for the

generation of truncated nascent chains. RNA obtained was purified using
1538 Cell Reports 12, 1533–1540, September 8, 2015 ª2015 The Au
RNeasy Mini Kit (Qiagen). Translation was performed in the commercially

available PUREfrex system (Shimizu et al., 2005) and in a Zn2+-free S135

E. coli extract (Welte et al., 2012) modified from Schwarz et al. (2007). Proteins

were separated by SDS-PAGE, visualized on a Fuji FLA-3000 phosphoimager,

and quantified. Values of fFL were calculated as fFL = IFL/(IFL + IA), where IFL is

the intensity of the band corresponding to the full-length protein, and IA is the

intensity of the band corresponding to the arrested form of the protein

(compare Figure 1C). Experiments were repeated three times, and SEMs

were calculated.

In Vivo Pulse-Labeling Analysis

Expression of ADR1a-SecM constructs in E. coli MC1061 cells was induced

with arabinose for 5 min. ZnCl2 was added to a final concentration of

0.5 mM at the point of induction. Cells were then pulse-labeled with [35S]-

Met for 2 min at 37�C, trichloroacetic acid-precipitated, and prepared for

SDS-PAGE analysis.

Single-Ribosome Inter-Subunit FRET Experiments

fMet-tRNAfMet-bound 30S pre-initiated complexes, Cy3B labeled on the 16S

rRNA (Marshall et al., 2008), were formed on the ADR1a-SecM (L = 24;

D1–158) mRNA constructs and immobilized to the surface of pre-treated

zero-mode waveguide (ZMW) chips through hybridization of the mRNAs to

biotinylated splint DNA oligos (Tsai et al., 2014). Elongation mixtures were

delivered to the ZMW chips in a modified PacBio RS sequencer whereby all

individual ZMWs are illuminated with 532 nm laser and fluorescence data

are acquired over time (Tsai et al., 2014). Preparation of native or fluoro-

phore-labeled biomolecules was performed as described in Johansson et al.

(2014). The elongation reactions were carried out in a Tris-based polymix

buffer at 20�C in the presence of 1 mM IF2, 4 mM guanosine triphosphate,

2 mM Trolox, and a protocatechuic acid/protocatechuate-3,4-dioxygenase

oxygen-scavenging system. Fluorescence data were collected at 10 Hz for

10 min and filtered and analyzed using MATLAB (The MathWorks) scripts, as

has been described previously (Tsai et al., 2014).

Molecular Dynamics Simulations

The cotranslational folding curve of the ribosome-ADR1a nascent chain com-

plex was calculated on an arrested ribosome using the coarse-grained model

of O’Brien et al (2011, 2012). In the simulations, the 50S subunit of the E. coli

ribosome (PDB: 3UOS) and the nascent chain are explicitly represented. Zinc

ions were not represented in the simulation; instead their effect on protein sta-

bility was implicitly accounted for by linearly scaling the Lennard-Jones well

depth of residue pairs that are in contact in the native state (O’Brien et al.,

2011, 2012) such that the stability of the folded zinc finger in isolation was

equal to �2.0 kcal/mol at 310 K. ADR1a was then covalently attached to un-

structured linkers having the same sequences as used in the experiments

(see Figure S1). At each linker length, replica-exchange simulations (Sugita

and Okamoto, 1999) were run with eight temperature windows ranging be-

tween 290 and 370 K.

Cloning and Purification of ADR1a-SecM (Ms-Sup1; L = 25) RNCs

The E. coli SecM stalling sequence in the ADR1a-SecM (L = 25) construct was

modified by mutating five residues to obtain the Sup1 version of theMannhei-

mia succiniciproducens SecM AP (HPPIRGSP) (Yap and Bernstein, 2009),

yielding ADR1a-SecM (Ms-Sup1; L = 25). The construct was subsequently

cloned into the p7XNH vector. The final sequence used was MHHHHHHH

HHHLEVLFQGPSYPYDVPDYAKPYPCGLCNRCFTRRDLLIRHAQKIHSGNSG

SGVMSSFSTPVWISQHPPIRGSPA, including N-terminal His10-CT-HA tags

for purification.

In vitro translation in the presence of 50 mM ZnCl2 was performed using

500 ml of the PURE system (NEB) following the manufacturer’s instructions.

RNCs were prepared as described in the Supplemental Information.

Cryo-EM Specimen Preparation, Data Collection, Processing,

and Model Building

Carbon-coated holey grid preparation of ADR1a-SecM (Ms-Sup1; L = 25)

RNCs was carried out as described previously (Bischoff et al., 2014). Cryo-

EM data were collected on a Titan Krios TEM (FEI) operated at 300 keV and
thors



equipped with a back-thinned Falcon II (FEI) direct electron detector, as

described in the Supplemental Information.

All processing was performed using the SPIDER software package (Frank

et al., 1996). The final data set contained 151,900 particles and was refined

to a final average resolution of 4.8 Å according to the Fourier shell correlation

criterion at a cutoff of 0.14.

For structural comparison and interpretation of the cryo-EM density ob-

tained, we fitted the structure of the E. coli 70S ribosome (PDB: 3OFR) using

UCSF Chimera (Pettersen et al., 2004). A poly-alanine model of the SecM-

stalled nascent chain was built on the basis of the model of a TnaC stalled

peptide (PDB: 4YU8) (Bischoff et al., 2014). The extra density at the end of

the stalled SecM was compared with PDB-derived density maps of the

ADR1a domain (PDB: 2ADR) at different resolutions and contour levels.

Finally, the structure of the ADR1a domain was rigid-body-fitted according

to the highest cross-correlation between the density model maps and the

electron density.
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