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Abstract
Non-selective effects, like genetic drift, are an important factor in modern conceptions of

evolution, and have been extensively studied for constant population sizes (Kimura, 1955;

Otto andWhitlock, 1997). Here, we consider non-selective evolution in the case of growing

populations that are of small size and have varying trait compositions (e.g. after a population

bottleneck). We find that, in these conditions, populations never fixate to a trait, but tend to a

random limit composition, and that the distribution of compositions “freezes” to a steady

state. This final state is crucially influenced by the initial conditions. We obtain these findings

from a combined theoretical and experimental approach, using multiple mixed subpopula-

tions of two Pseudomonas putida strains in non-selective growth conditions (Matthijs et al,

2009) as model system. The experimental results for the population dynamics match the

theoretical predictions based on the Pólya urn model (Eggenberger and Pólya, 1923) for all

analyzed parameter regimes. In summary, we show that exponential growth stops genetic

drift. This result contrasts with previous theoretical analyses of non-selective evolution (e.g.

genetic drift), which investigated how traits spread and eventually take over populations (fix-

ate) (Kimura, 1955; Otto and Whitlock, 1997). Moreover, our work highlights how deeply

growth influences non-selective evolution, and how it plays a key role in maintaining genetic

variability. Consequently, it is of particular importance in life-cycles models (Melbinger et al,

2010; Cremer et al, 2011; Cremer et al, 2012) of periodically shrinking and expanding

populations.

Introduction
Stochastic effects play an important role in population dynamics [8–11], particularly when
competition between individuals is non-selective. Most previous theoretical analyses have stud-
ied how a non-selectively evolving trait can spread and eventually replace all other variants
(fixate) under conditions in which the population size remains constant [2, 12, 13]. However,
both natural and laboratory populations frequently experience exponential growth. Here we
show that genetic diversity in growing populations is maintained despite demographic noise,
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and reaches a stationary but random limit. We used a well-controlled model system in which
well-mixed co-cultures of a wild-type Pseudomonas putida strain and an isogenic mutant were
grown under non-selective conditions. Multiple subpopulations were generated, each contain-
ing a random number of individuals of each strain. Depending on the average initial popula-
tion size and the strain ratio, we observed distinct stationary probability distributions for their
genetic composition. Moreover, we showed that the dynamics of growing populations can be
mapped to Pólya urn models [4], permitting the observed maintenance of genetic diversity to
be understood as the random limit property of a fair game between individual strains. General-
izing the Pólya urn model to include the effects of random initial sampling and exponential
growth allowed us to predict the evolution of the composition distribution. Using numerical
and analytical methods we found that the distribution broadens at first but quickly “freezes” to
a stationary distribution, which agrees with the experimental findings. Our results provide new
insights into the role of demographic noise in growing populations.

Results and Discussion
Evolutionary dynamics is driven by the complex interplay between selective and non-selective
(or neutral) effects. The paradigm of non-selective evolution originates from the seminal work
of Kimura [1], in which he solved the Wright-Fisher model, thus showing that non-selective
effects—and specifically genetic drift—can have a determinant role in evolution. His results
sparked an ongoing debate about the nature and potency of randomness as a fundamental evo-
lutionary force [13–15]. For very small populations genetic drift is generally considered an
important factor [13], as the theory successfully predicts the outcomes of neutral evolution
experiments [9, 16].

In most theoretical analyses, constant (or effectively constant) population sizes are assumed,
and the role of population growth is neglected. Bacterial populations, however, often undergo
rapid growth—especially when they are small. For example, as few as 10 individuals of some
highly virulent pathogens (e.g. enterohemorrhagic Escherichia coli or Shigella dysenteriae) suf-
fice to initiate a deadly infection in a human host [17, 18]. Another case of small, growing pop-
ulations are water-borne bacteria that feed on phytoplankton products. Due to nutrient
limitation in open water, these bacteria typically live in small populations in close proximity to
the planktonic organism [19]. During spring blooms, the phytoplankton releases more organic
material, boosting the bacterial growth rate [19–21]. In nature, such small populations often
form by adventitious dispersal from a larger reservoir population [22]. A typical example is the
spreading of pathogens from host to host. This random “sampling” from a reservoir yields
small populations whose genetic compositions differ from that of the reservoir (a phenomenon
known as the founder effect [23]). Recent studies also showed that the combination of popula-
tion growth and stochastic fluctuations can have a major impact on the evolution [5–7, 24] and
genetics [25] of small populations.

To probe how population growth shapes genetic diversity, we used a well-characterized
microbial model system, namely the soil bacterium Pseudomonas putida KT2440 [3, 29, 27].
The wild-type strain KT2440 produces pyoverdine, an iron-scavenging molecule that supports
growth when iron becomes scarce in the environment. Here we consider co-cultures of two
genetically distinct strains: the wild-type, pyoverdine-producing strain KT2440 (strain A) and
the mutant non-producer strain 3E2 (strain B). We set up conditions of non-selective competi-
tion between these strains by using an iron-replete medium (casamino acids, supplemented
with 200 μM FeCl3). In this medium, production of pyoverdine is effectively repressed [27],
such that both strains have the same growth rate and neither has an advantage (see S2 Table).
Producer (KT2440 wild type) and non-producer (3E2) strains were first mixed and diluted to
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yield Poisson dilution conditions. Then we initiated a large number of subpopulations from
this reservoir by pipetting aliquots of the cell suspension into the wells of a 96-well plate,
thereby generating a large ensemble of subpopulations with a random distribution of initial cell
number N0 and producer fraction x0 (Fig 1). Use of shaken liquid cultures ensured homoge-
neous well-mixed conditions for all cells in the same well (access to nutrients, oxygen, etc.),
and exponential growth was observed in all cases (see S2 Fig).

This experimental setting is well described within the mathematical framework of a Pólya
urn model. Consider each bacterium in the population as a marble in an urn, and its genotype
as the color of the marble (e.g. red for strain A, and blue for strain B). Population growth results
from single reproduction events in which an individual randomly divides. This is mathemati-
cally equivalent to a stochastic event in which a marble is chosen at random from the urn and
put back, together with another one of the same color. This random process, introduced by
Eggenberger and Pólya [4], exhibits several important properties [28–31]. It is self-reinforcing:
each time a marble is extracted, another one of the same color is added, increasing the likeli-
hood of extracting a marble of that color again. In the context of bacterial populations, this
means that every birth event for one strain makes it more likely that further birth events of that
same strain will occur in the future. Note, however, that fixation, i.e., complete loss of one type

Fig 1. Schematic depiction of urn sampling and growth. (a) Schematic illustration of the random initial
conditions. An infinite reservoir contains a diluted mixture of bacteria, a fraction �x0 of which are of strain A. We
draw small volumes of liquid from the reservoir containing small, random numbers of individuals, which
conform to a Poisson distribution with mean (determined by the dilution of the reservoir population). A certain
fraction of this initial population is of strain A. The mean value of this fraction is equal to �x0. We use these
individuals to initiate populations in the wells of a microtiter plate, so that each population starts with a random
sizeN0 and a random fraction of A-individuals x0. (b) Illustration of the Pólya urn model. If a bacterial
population is represented as an urn, each individual as a marble and each bacterial strain as a color, this urn
model captures the essentials of bacterial reproduction in our populations. At each iteration, a marble is
drawn at random and returned to the urn, together with another one of the same color. The probability of
extracting a marble of either color is determined solely by its relative abundance, making the process non-
selective (since no strain has inherent advantages, see S2 Table). The rate of growth in population size can
be rendered exponential (see S2 Fig) by letting the waiting time between successive iterations be
exponentially distributed (also known as Poissonization).

doi:10.1371/journal.pone.0134300.g001
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of marble from the population, cannot occur, simply because in the Pólya urn model marbles
are neither removed nor do they change their color. This fully reflects the experimental condi-
tions: During exponential growth, rates of cell death are negligible, and within the observation
time mutations will be extremely rare, given the population sizes considered. The bacteria in
each well reproduce randomly at a per-capita (average) rate μ. To translate this to the urn
model, drawing of a marble is assumed to be a stochastic Poisson process, with a “per-marble”
rate μ (a procedure known as Poissonization or embedding [32, 33]). Mathematically, the
growth process in then described by a Master Equation: The time evolution for the probability
P(NA, t) of finding NA individuals of strain A at time t reads

d
dt

PðNA; tÞ ¼ ðNA � 1ÞPðNA � 1; tÞ � NAPðNA; tÞ ; ð1Þ

where we have set the growth rate to μ = 1 in order to fix the time scale (for an introduction to
the mathematical concepts see, e.g., [34]); the corresponding Master equation for individuals of
strain B is of identical form. To study the composition of the populations, we use the more con-
venient quantities N = NA + NB (total size) and x = NA/N (fraction of individuals of strain A).

To start the experiment, we inoculated the wells of 96-well-plates by drawing small volumes
of diluted liquid bacterial culture from a large reservoir (Fig 1(a)). Each volume contains a ran-
dom number of bacteria whose mean value is controlled by the dilution of the reservoir. The
fraction of bacteria of strain A (wild type) in that volume is also random, with its mean value
�x0 given by the fraction of strain A in the reservoir. In the mathematical formulation, this setup
corresponds to stochastic initial conditions for the Pólya urn model: the initial population size
N0 for each well is given by a Poisson distribution with mean �N 0, and each individual is
assigned to strain A or B with probability �x0 and 1� �x0), respectively. This procedure is also
equivalent to treating the initial numbers of A- and B-individuals as independent, Poisson-
distributed random variables with mean values �N 0�x0 and �N 0ð1� �x0Þ), respectively [6].

Fig 2 shows a time series of the histogram for the composition x of all subpopulations con-
sidered, as obtained from a stochastic simulation of the Master Eq (1) for a given random initial
condition (with �N 0 ¼ 10 and �x0 ¼ 0:33). Surprisingly, the distribution first broadens, but then
quickly “freezes” to a steady state (see S1 Video). This is genuinely different from Kimura“s
result for populations with constant size [1] (or similar results with effectively constant size
[2]) where the balance between stochastic birth and death events leads to genetic drift, and
thereby eventually to the extinction of one of the two strains. In contrast, for a growing popula-
tion, death events are negligible, and therefore there is no fixation of the population during
growth. Instead, fixation arises as a direct consequence of the initial sampling process, as can
be seen from the heights of the black bins in the histogram (at x = 0 and x = 1), which remain
constant over time (Fig 2). During growth, the composition of each subpopulation, instead of
drifting to fixation at either x = 0 or x = 1, reaches a stationary limit value x�, where it remains
thereafter [35]. This limit value is random: starting several subpopulations (urns) from the
exact same initial composition of strain A and B (blue and red marbles), each reaches a limit,
but in general these limits differ from one another. Once all of the subpopulations in an ensem-
ble reach their limit, the distribution of the population composition freezes to a steady state,
which is equal to the probability distribution of x�. Similar random limit properties appear in
other fields, with lock-in in economics as the best-known example [30].

The inset in Fig 2 shows approximate solutions for the time evolution of mean, standard
deviation, and skewness of the composition x, which we obtained by analytically solving the
Master Eq (1) (see S2 Text). The analytical results agree well with their numerical counterparts.
In particular, the mean value remains constant over time, as it must for a non-selective process.
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For the time evolution of the variance, which is a measure for the spread of a distribution, we
obtain to leading order in population size

Varpoi½x�ðtÞ ¼
2� e�t

�N 0

�x0ð1� �x0Þ : ð2Þ

The broadening and freezing of the distribution is reflected in the exponential decay term of
the variance. Note that the skewness increases as well, because growth is self-reinforcing (see
inset in Fig 2). To further test the validity of the stochastic simulations, we also calculated the
limit values of the average and variance after extended periods of evolution exactly, and found
that they match the numerical solutions of the Master Equation perfectly (see S1 Text).

We tested these theoretical predictions using P. putida as a bacterial model system. We
mixed the wild-type and mutant strains in order to obtain different initial fractions �x0. The
degree of dilution of the mixture determines the average initial cell number �N 0, with which we
inoculated 120 wells per experiment (96-well plate format). In order to compare the experi-
mental data with our model, we set up simulations that matched the experimental configura-
tion by initializing �N 0 and �x0 with the same values as measured in the experiments. We
simulated the time evolution of about 104 populations, grouped in “virtual plates” of 120 wells
each. Every virtual plate produced a histogram like the one we obtained from experiments. We
then generated an average histogram of the virtual plates and used its values to compute the

Fig 2. Time series for the simulated distribution of the population composition x. The distribution
initially broadens, then freezes to a steady state (see S1 Video). The fraction of populations that have x = 0 or
x = 1 (indicated by the black bins) remains constant during the time evolution, as expected for a Pólya urn
process, and in contrast to expectations from genetic drift (see S1 Table). In each well the population follows
a stochastic path and reaches a (random) limit composition, and the distribution freezes only when all
populations reached their limit. The parameter values used in the simulation are �N0 ¼ 10 and �x0 ¼ 0:33 The
inset shows the mean, standard deviation and skewness as a function of the number of generations, with
symbols denoting numerical simulations, and the solid lines corresponding to the theoretical prediction of Eq
(2) (and also those in S2 Text). Analytical and numerical values agree. The mean hxi remains constant
throughout the evolution, as expected for a non-selective process; standard deviation and skewness saturate
to limit values, confirming the freezing of the distribution.

doi:10.1371/journal.pone.0134300.g002
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binomial confidence intervals [36] for the count in each bin, and compared those with the
experimental distribution.

Fig 3(a) shows a representative experimental histogram of the initial population sizes N0 for
strong dilution with �N 0 ¼ 2:55. It is well approximated by a Poisson distribution, and agrees
with the simulation results within statistical errors (blue line and shaded gray areas in Fig 3(a)).
Fig 3(b) shows the probability distribution of the corresponding initial compositions x0 of the
populations, where again theoretical and experimental values agree well within statistical error.
Note also that in every well the composition x0 must be a simple fraction; this means that only
a few numerical values are possible for small initial population sizes N0. This small-number
effect explains why the distribution of x0 in Fig 3(b) is so ragged. The distribution becomes
much smoother for larger initial population sizes (see S3 Fig). Taken together, these results for
the distribution of initial population size and composition confirm that the inoculation of the
individual wells is a stochastic sampling process with Poissonian statistics.

Next, we were interested in how the composition of the bacterial population would evolve
under non-selective (neutral) growth conditions. To this end we let the 120 populations grow
for an 11-hour period, during which they remained in exponential growth phase (see S2 Fig).
Then we measured the population size N(t) in each well by counting colony-forming units, and
x(t) by counting the pyoverdine-producing colonies (see Materials and Methods). Fig 4 shows
the final outcome for four different initial conditions, i.e. combinations of the initial average
population size �N 0 and composition �x0. We first wanted to know what determines the number
of wells that contain only individuals of either strain A or strain B, i.e. that are fixated. To this
end we compared the experimentally observed values with the corresponding predictions from
the numerical simulations of the Pólya urn model (Fig 4). Since both results agree within statis-
tical error, we conclude that fixation of a population is a consequence of the initial sampling
process and is not due to fixation during population growth (see also S1 Table). This is espe-
cially obvious for small average initial population size or compositions close to x = 0 or x = 1,
where a large fraction of the wells contains cells of strain A or B only (Fig 4(a) and 4(d)). Next
we wished to learn how the final distribution of the population composition (i.e. the random
limits, x�) depends on the initial average composition �x0. For �x0 ¼ 0:5, we observed both by
experiment and theoretically that the initial distribution significantly broadened (by a factor

Fig 3. Initial distributions for population sizeN0 and composition x0 (parameter values �N0 ¼ 2:55,
�x0 ¼ 0:45). The experimental distributions (bars) for N0 (panel (a)) and x0 (panel (b)) are measured from
120-well ensembles. The average �N0 and �x0 calculated from the measured values determine the parameters
for the simulated distributions. The theoretical average distribution (solid blue line) is the average of the same
distributions generated for 84 sets of 120 wells. Using that average we calculate theWilson binomial
confidence intervals (gray areas) for 68% (between dashed lines), 95% (between dotted lines) and 99.73%
confidence. The measured and simulated distributions agree well within statistical error, confirming our
assumption that individuals of strain A and B in the experiments start Poisson-distributed with mean �N0

�x0 and
�N0ð1� �x0Þ, respectively. The ragged distribution of x0 derives from a small-number effect, and disappears at
larger values of N0 (see main text, and also S3 Fig).

doi:10.1371/journal.pone.0134300.g003
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) but remained symmetrical (Fig 4(c) and S1 Fig). In contrast, starting from distributions
with average values below or above 0.5 caused the final distribution to broaden and also
become skewed towards smaller or larger values of x, respectively (Fig 4(b) and 4(d)). More-
over, we found quantitative agreement between experiment and numerical simulations within
statistical errors in all analyzed parameter regimes (see blue lines and shaded areas in Fig 4):
most experimental histograms fall within the first confidence interval of the prediction (darkest
gray areas, between dashed lines), and almost all fall within the 99.73% confidence interval.

Taken together, our combined theoretical and experimental analysis gives a coherent pic-
ture of evolution during non-selective (exponential) growth. We have shown, experimentally
and by analogy with the Pólya urn model, that for each well-mixed population the composition
of the population reaches a random stationary limit, and, unlike populations with constant
size, generally does not fixate. For a large ensemble of populations, this implies that the proba-
bility distribution for the population composition converges to limit distributions (Figs 2 and
4), which are nothing like Kimura“s result for constant-sized populations. Our result is also
quite different from that obtained in range expansion experiments [37] or other settings featur-
ing population growth without death on two-dimensional substrates. There, monoclonal sec-
toring patterns arise as a consequence of random genetic drift, which drives population
differentiation along the expanding fronts of bacterial colonies, unlike our well-mixed popula-
tions that freeze to coexistence.

Our study also shows that, in a growing population with stochastic initial conditions, demo-
graphic noise has two possible sources: the initial sampling process by which subpopulations
are formed, and the subsequent growth process. The initial average population size �N 0 sets

Fig 4. Steady-state distributions of population composition x for different initial conditions. The
experimental distribution (bars) is the result of growth on 120 independent wells. We use the measured
average x0 andN0 from the experiments to initialize the simulations of several 120-well ensembles. After
growth, we compute the histogram for each of these ensembles and obtain the average theoretical
distribution (blue line). Using the values from this distribution, we compute the three confidence intervals
(shaded gray areas) for each bin for 68% (between dashed lines), 95% (between dotted lines) and 99.73%
confidence. The two sets of data match: most experimental data agree with the first prediction confidence
region, practically all with the second one. The limit distributions are clearly different from the initial ones (see
S1 Fig). The importance of growth in changing the distributions depends on the initial size N0 (see main text,
and S1 Fig). Parameter values: �N0 ¼ 2:9, �x0 ¼ 0:32 (panel (a)); �N0 ¼ 18:4, �x0 ¼ 0:22 (panel (b)); �N0 ¼ 19:6,
�x0 ¼ 0:52 (panel (c)); �N0 ¼ 14:5, �x0 ¼ 0:71 (panel (d)).

doi:10.1371/journal.pone.0134300.g004
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their relative weight (see S3 Text and S1 Fig). For very small �N 0, of the order of one or two indi-
viduals, the formation process already determines the final composition distribution: most
populations start off fixated, many with just a single founder individual, and the composition
of each well remains the same during growth. For very large �N 0, of the order of a few hundreds,
the sampling process is again central: the composition distribution changes very little before
freezing, and growth generates only a very limited amount of variation. In these two limiting
regimes, neglecting stochastic effects during growth leaves the evolutionary outcome practically
unchanged. In contrast, for small founder colonies such as those typically found during popu-
lation bottlenecks [18, 19, 38] ( �N 0 � 10), population growth is responsible for the major part
of the variation observed in the final distribution.

Moreover, our results reveal that a growing population reaches a random limit composition
much faster than genetic drift leads to fixation in populations of constant size. Typical fixation
times for genetic drift increase logarithmically with the population size [11], while the time
scale for freezing is independent of population size. This has important consequences for the
role of stochastic effects when a population passes from exponential growth phase to stationary
phase, in which growth rate and death rate are equal. Then, the composition of the population
shows both freezing and fixation, albeit at quite distinct times because the relevant time scales
differ markedly. During growth the composition distribution quickly freezes, as described
above. Once the population reaches its stationary size, it slowly drifts to fixation, following
Kimura-like dynamics.

We also believe that our results have a broad range of applications since growing populations
are ubiquitous in nature. For example, experimental studies of P. aeruginosa [22, 39] have
shown that typical life cycles pass through different steps with regularly occurring dispersal
events being followed by the formation of new colonies. As initial colony sizes are typically
small, such dispersal events coincide with population bottlenecks and subsequent exponential
growth. During these phases of the life cycle, population dynamics is often selectively neutral
and hence falls within the framework of the present work. The degree of diversity generated dur-
ing these population bottlenecks has been shown to be crucial for some proposed mechanisms
for the evolution of cooperation under selective pressure [5–7, 40–42]. Our analysis quantifies
the ensuing degree of diversity and points to the relative importance of sampling versus growth
for long-term behavior of the reservoirs. This may have important consequences for the degree
of genetic diversity observed in natural populations with life-cycle structures [38].

Materials and Methods

Strains and cultivation conditions
The P. putida strains KT2440 (wild type) and 3E2 (mutant with defective pyoverdine synthesis)
[3] were used as pyoverdine producers and non-producers, respectively. Cells were grown in
casamino acid medium (CAA) containing per liter: 5 g casamino acids, 0.8445 g K2HPO4,
0.1404g MgSO4•(H2O) [3]. The CAA medium was supplemented with 200 μM FeCl3
(CAA-Fe) to suppress pyoverdine production (see S2 Table). Overnight cultures of the individ-
ual strains in CAA-Fe medium were adjusted to an OD600 of 1, diluted 10

-2 fold, mixed to yield
the desired producer fraction, and further diluted to create Poisson distribution conditions.
Producer/non-producer co-cultures were started by inoculating the central 60 wells of two
96-well plates thereby adjusting the average initial cell number �N 0 to values between 2 and 25
cells/150 μL. Wells at the border of the plates were filled with water to minimize evaporation
from central wells. For non-selective growth, co-cultures were grown in CAA-Fe medium shak-
ing at 30°C for given periods of time. Due to the random distribution of initial cell number N0

and producer faction x0 in the 120 wells, each experiment was unique. An experiment was
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limited to 120 wells to allow initiation of the analysis of the subpopulations in the individual
wells without uncontrolled changes of growth parameters during analysis. The experiment
duration was set to 11h to allow evolution to act for a significant number of generations (see S1
Table), while leaving bacteria in exponential growth phase (see S2 Fig)

Determination of growth parameters
Cell numbers N0 and N(t) were determined by counting the colony forming units (cfu) of indi-
vidual wells. For this purpose 100μL aliquots of the individual wells were plated on cetrimide
[43] or King’s B agar (contains per liter: 20 g peptone, 10 g glycerol, 1.965 g K2HPO4(3H2O),
0.842 g MgSO4(H2O) [44]. Producer fractions x0 and x(t) were determined based on the capa-
bility of cells to produce the green fluorescent pyoverdine either by direct counting of fluores-
cent and non-fluorescent colonies on the plates or after growth in iron-limited CAA medium.
The fraction of dead cells was determined by life/dead staining with propidium iodide [45],
and was always<0.02 of the total cell number under the experimental conditions.

Simulation of growing populations
We performed simulations of 10080 wells using a Gillespie algorithm [46]. The initial numbers
of “cells” per well were drawn at random from a Poisson distribution with a mean value of �N 0

measured in the corresponding experiment. The strain assigned to every individual in each
well was determined by the outcome of a Bernoulli trial (i.e., coin-flip-like process) and the
probability of assignment to strain A was set to the value of �x0 measured in the experiment.
After initialization, wells were grouped into 84 virtual 120-well “plates”, and a random waiting
time was selected for each well, drawn from an exponential distribution with the population
size as parameter. The Gillespie algorithm was run until the average size across all wells
matched the average size measured at the end of the growth experiments, or until a specified
time had elapsed (see S2 Fig).

Supporting Information
S1 Video. Time evolution of composition distribution. The distribution of compositions x
first broadens due to demographic noise, but soon “freezes” to a steady state. The steady state

form is maintained as long as the populations grow. Parameter values are �N0 ¼ 10, �x0 ¼ 0:33

(as for Fig 2).
(MP4)

S1 Text. Exact calculations for steady-state composition distribution and moments. Using
the theory of Pólya urns, we calculate exactly the steady state values of: (i) the distribution of
population compositions x, (ii) its mean value, and (iii) its variance.
(PDF)

S2 Text. Approximate calculations for the time evolution of the distribution moments.We
use the Master equation of the growth process (Eq (1)) to determine the time evolution of vari-
ance and skewness of the composition distribution. These values are used in Eq (2) and Fig 2.
(PDF)

S1 Fig. Initial and steady state distributions, relative entropy. Panels (a),(b),(c): Initial and

final distributions of x for three regimes of �N0. When �N0 is very small or very large (panels (a)
and (b)), the evolutionary fate of the population is largely determined by the initial population
sampling. Therefore, the initial distribution (red bars) and the steady-state one (green bars)

look qualitatively very similar. For intermediate values of �N0, however, population growth
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becomes more important, and the distributions look very different. The amount of composi-
tion values the population can access through growth can be quantified looking at the “unpre-
dictability” of the steady-state composition, once the initial one is known: the more
unpredictable, the more are made accessible by growth. Mathematically, the measure for this is
called conditional entropy: the higher the entropy, the more unpredictable the outcome. Panel

(d) shows the conditional entropy as function of �N0. Indeed, very small or very large initial
populations experience little to no additional noise from growth, while in populations with

intermediate values of �N0 (�N0 ’ 15) growth is a major source of demographic noise. (Parame-

ter values: �N0 ¼ 2 (a), �N0 ¼ 2000 (b), �N0 ¼ 20 (c); �x0 ¼ 0:25 in all panels)
(TIF)

S3 Text. Comparison of initial and steady-state distributions of x, and entropy of the
steady state distribution conditioned on the initial one.We use conditional entropy to ana-
lyze the impact of growth on the distribution of compositions x. The results are also depicted
in S1(d) Fig
(PDF)

S2 Fig. Growth curve of a mixed population. The population consists of pyoverdine producer
(P. putida KT2440) and non-producer (P. putida 3E2) under non-selective (iron replete) con-
ditions. Individual precultures of the strains were mixed and diluted in iron replete medium to

yield �N0 ¼ 4 (in 150 μL), and �x0 ¼ 0:5. Cells were grown aerobically at 30°C for 24 hours. The
dots represent the mean N(t) of three independent replications, the bars the corresponding
standard deviation. After a lag phase of about 2 hours, the cells start to grow exponentially and
reach the stationary phase after about 14 h of growth. For the non-selective growth experi-
ments used to test the predictions of the Pólya urn model, cells were grown for 11.5 h to ensure
exponential growth conditions.
(TIF)

S3 Fig. Additional initial conditions measurements. The experimental distributions (bars)
are measured from 120-well ensembles, the average N0 and x0 from those sets the parameters
for the simulated distributions. The theoretical average distribution (solid line) is the average
of the same distributions generated for 84 sets of 120 wells. Using that average we calculate
three Wilson binomial confidence intervals (gray areas). Experiments and theory agree within
statistical error: the distribution of sizes (panels (a) and (c)) follows a Poisson distribution. The

raggedness of the distribution of x for at small �N0 (see panel (b) and Fig 3(b) in main text) is
due to a small size effect: since xmust be a simple fraction, when N0 is small only a few values

are available (see main text). This effect disappears for average initial sizes �N0 ’ 10 (see panel

(d)). Parameter values: �N0 ¼ 5:75, �x0 ¼ 0:43 (a) and (b); �N0 ¼ 26:49, �x0 ¼ 0:45 (c) and (d).
(TIF)

S1 Table. Comparison between results from our experiments and those in [9].While experi-
ments for constant-sized populations of Drosophila observe significant fixations within the
first tens of generations, we instead observe freezing of the probability distribution for the pop-
ulation composition, without any fixation.
(PDF)

S2 Table. Comparison of growth and pyoverdine production per cell of P. putida KT2440
and 3E2. Separate cultures of producer (P. putida KT2440) and non-producer (P. putida 3E2)
were grown in iron-limiting (no addition of FeCl3) and iron-replete medium (addition of
200 μM FeCl3) at 30°C. The cell density was measured at 600 nm, and specific growth rates
were calculated from density values of the exponential phase. The pyoverdine production was
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determined by fluorescence emission measurements (excitation 400 nm, emission at 460 nm).
The pyoverdine production per cell represents the ratio of pyoverdine fluorescence and optical
density measured after 24 h of growth. The values in the table are averages over a minimum of
five experiments, with the corresponding standard deviation. The fluorescence value for the
non-producing mutant in iron-limiting medium is 0 because the culture failed to grow.
(PDF)
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