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Abstract: Land cover classification has been widely investigated in remote sensing for 

agricultural, ecological and hydrological applications. Landsat images with multispectral 

bands are commonly used to study the numerous classification methods in order to 

improve the classification accuracy. Thermal remote sensing provides valuable information 

to investigate the effectiveness of the thermal bands in extracting land cover patterns. k-NN 

and Random Forest algorithms were applied to both the single Landsat 8 image and the 

time series Landsat 4/5 images for the Attert catchment in the Grand Duchy of 

Luxembourg, trained and validated by the ground-truth reference data considering the three 

level classification scheme from COoRdination of INformation on the Environment 

(CORINE) using the 10-fold cross validation method. The accuracy assessment showed 

that compared to the visible and near infrared (VIS/NIR) bands, the time series of thermal 

images alone can produce comparatively reliable land cover maps with the best overall 

accuracy of 98.7% to 99.1% for Level 1 classification and 93.9% to 96.3% for the Level 2 

classification. In addition, the combination with the thermal band improves the overall 

accuracy by 5% and 6% for the single Landsat 8 image in Level 2 and Level 3 category 

and provides the best classified results with all seven bands for the time series of Landsat 

TM images.  

Keywords: thermal remote sensing; land cover classification; Landsat image; k-NN; 

random forest; cross validation 
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1. Introduction 

Land cover is defined as the observed biophysical state of the earth’s surface, and is largely 

described by the presence or absence of various vegetation types [1]. In contrast, land use normally 

refers to the arrangements, activities and inputs people engage in a certain land cover type to produce, 

change or maintain it [2]. As previous studies reported, land cover information is a fundamental 

variable for many hydrological and climate studies. Land cover characteristics have close links to the 

human and physical environments, also govern and affect many environmental variables [3], including 

surface roughness, albedo, moisture availability, mechanisms for runoff generation [4], and water 

quality [5]. Therefore, accurate land-cover mapping becomes essential for modeling and understanding 

these biogeophysical properties of the land surfaces. 

Remote sensing provides an effective way to depict land cover as it produces a map-like 

representation of the Earth’s surface that is spatially continuous and highly consistent, as well as 

available at a range of spatial and temporal scales [1]. The Landsat satellites have monitored the 

Earth's terrestrial surfaces for about 40 years [6], from which the long, consistent and free record 

allows scientists to study the current and also the past land surface patterns. Because of that, Landsat 

data are widely applied in land cover classification and monitoring on a regional or global scale. 

Numerous studies have proved the usefulness of Landsat imagery in agricultural land cover 

classification [7], forest dynamics monitoring [8], urban land use classification [9], other land cover 

dynamics or land use land cover (LULC) change detection [6,10,11]. Other satellite products such as 

the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor imagery 

have also been widely used for regional scale land cover classification [12–14] or land cover change 

detection [15,16]. 

In most cases, the LULC classification is based on the multispectral characteristics and/or the  

multi-temporal biological properties of the Earth’s surface. In previous studies, numerous efforts have 

been made to improve the classification accuracy by constructing different spectral features, 

developing new methods, or integrating multi-source data for the single or time series of images. 

Lunetta and Balogh [17], for example, evaluated the identification of wetlands with the bands 2 to 5 of 

the single-date and multi-temporal Landsat 5 images. The overall accuracy (OA) was 69% of the 

single-date image compared to 88% from the two-date images with a significant increase in the Kappa 

test statistics. Murai and Omatu [18] proposed a pattern classification method which integrates the 

advantages of both the neural network and knowledge-based system. The single Landsat 5 TM image 

with the bands 3 to 5 was used and they found that the misclassification can be revised more easily 

because of introducing the geographical knowledge into the system. Maxwell et al. [19] introduced an 

automated approach to classify four land cover types using only the bands 2 and 4 from Landsat MSS 

with 92.2% OA. 

Langley et al. [20] compared the single-date imagery and multi-temporal images for land cover 

classification with the bands 3 to 5 of TM image. They concluded that the multi-temporal images have 

improved the accuracies of some landscapes but the single-date image may provide a reliable 

vegetation cover map in semi-arid environments. Saadat et al. [21] utilized two single-date Landsat 

ETM+ image without the thermal bands for LULC classification in Iran with OA of 95% and 82% 

respectively for the late summer image and the spring image. He recommended that when the satellite 
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image is limited the late summer image would be most suitable for the LULC classification. 

Guerschman et al. [22] also suggested that, if possible, three images (spring, early summer, late 

summer) be used in the identification of agricultural types. Yuan et al. [23] used multi-temporal TM 

images from 1986 to 2002 to monitor the LULC dynamic with the average OA of 94% and proved the 

potential of multi-temporal Landsat data for accurate and economic land cover change analysis. 

Besides the different band combinations, the normalized difference vegetation index is also commonly 

used for the LULC change detection with the multi-temporal images [6,24–27]. For both single-date 

image and multi-temporal images, several studies focus on the algorithm development such as nearest 

neighbor (NN) [28], modified NN [7,29], random forest classifier [30–32], and rule-based 

classification [33,34], which all provide accurate land cover classification maps.  

However, surprisingly, the thermal information provided by many of the satellite platforms has 

rarely been used for land cover classification [35]. Thermal remote sensing allows for the continuous 

representation of land surface temperature [36], which is widely used for the monitoring of urban 

climate [37], the modeling of the hydrological cycle [38], vegetation monitoring [39] and mapping 

land surface energy and water vapor fluxes [40]. Although the spatial resolution of the thermal band is 

coarser when compared to the visible bands of the same satellite, the thermal information may contain 

valuable information related to the spatial variations of land surface and therefore vegetation  

properties [41,42], which has so far not been explored to its full extent.  

The objective of this study therefore is to investigate the value and effectiveness of the thermal 

remote sensing data for improving land cover classification. The test region is the Attert catchment in 

Luxemburg/Belgium providing a landscape with a variety of land cover types, mainly including forest, 

agriculture land, pasture and residential area. Based on the land cover change maps from 1990 to 2006 

provided by CORINE and the change maps from 1972 to 1990 and 2006 to 2011 from CAOS project 

(not present in this paper), the land cover changes in quite small extent in 5 to 8 years especially in the 

early 1990s. In this study, the variation among different land covers is ignored and the land cover types 

of Level 1 and Level 2 are assumed to be constant during the periods from 1984 to 1990 and 2006 to 

2011. Two of the most often and successfully applied standard methods, the k-NN [43], as well as the 

Random Forest method [44], will be applied to Landsat 4/5 and Landsat 8 images. Three groups of the 

single-date Landsat 8 images with different visible and thermal bands combinations will be classified 

into three levels of land use land cover categories, in order to evaluate the effectiveness of the thermal 

band in single image classification. The combination of band 3 and band 4, principal components,  

6 bands combination without the thermal band, the thermal band and a 7 bands combination including 

the thermal band from time series Landsat 4/5 images listed in two groups will be classified into two 

levels for comparison and performance analysis. Ten-fold cross validation will be applied for the 

accuracy assessment with the overall accuracy. 

2. Data Source 

2.1 Study Area  

The study area of Attert catchment as the main test site of German DFG research project CAOS 

(“Catchments as Organized Systems”) is located in the Midwestern part of the Grand Duchy of 
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Luxembourg and partially in Belgium (Figure 1). The catchment covers a total area of 288 km2. The 

main land cover types consist of dense deciduous and coniferous forests, spacious pasture and 

croplands, and a sparse residential area. According to the CORINE land cover map in 2006, the 

agricultural area takes up 65% and forest accounts for about 30% of the catchment. The elevation of 

the Attert basin ranges from 238 m to 539 m. With a temperate climate, the mean monthly 

temperatures reaches a maximum of about 18 °C in July and a minimum of 0 °C in January. The high 

summer evapotranspiration from July to September and high flows from December to February is 

characterized by the mean annual precipitation of 850 mm and the mean annual actual 

evapotranspiration of 570 mm (1971–2000). 

 

Figure 1. Illustration of the Attert catchment location crossing Luxembourg and Belgium 

in the ESRI map layout (left) and zoomed study area in yellow outline (right) with a 

Landsat 8 image of July, 2013 in RGB combination of band 3, band 2 and band 1. 

2.2. Satellite Data  

The Landsat Thematic Mapper (TM) sensor was carried onboard of Landsat 4 and 5 from July 1982 

to May 2012 with a 16-day repeat cycle, and began decommissioning in January 2013. TM images 

consist of seven spectral bands (Table 1) with a spatial resolution of 30 m for Bands 1 to 5 and 7. The 

spatial resolution for Band 6 (thermal infrared) is 120 m, but is resampled to 30m pixels in the 

provided L1T products after 25 February 2010. A total of 13 cloud-free TM images between 1982 and 

2012 were collected for the Attert catchment (path 197, row 25). The newly launched (on 11 February 

2013) Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) provide nine 

spectral bands and two thermal bands as listed in Table 1. All spectral bands are collected at 30 m, 

except for the thermal bands that are acquired at 100m resolution and resampled to 30 m in the 

delivered product and the panchromatic band 8 providing 15 m data. One cloud-free Landsat 8 image 

was acquired for 21 July 2013 (at the same time the ground-truth field campaign was conducted). The 
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Landsat images available for this study have been divided into three groups (see Table 2): Group 1 

(TS1) and Group 2 each contain time series of images covering spring, summer and autumn (TS1 

covers the Landsat 4/5 images from 1984 to 1990 and TS2 includes the Landsat 5 images from 2003 to 

2011). Both groups were used to investigate the land cover classification performance when based on 

time series of images. The third group (S1) with only one Landsat 8 image from 21 July 2013 was 

tested to explore the effectiveness of single image land cover classification based on thermal data. 

Table 1. Spectral characteristics of the 7 bands from Landsat 4/5 TM image and the  

11 bands from Landsat 8 image. 

Bands Landsat 4/5 Wavelength (Micrometers) Landsat 8 Wavelength (Micrometers) 

Band 1  0.45–0.52 0.43–0.45 (Coastal aerosol) 

Band 2  0.52–0.60 0.45–0.51 (Blue) 

Band 3  0.63–0.69 0.53–0.59 (Green) 

Band 4  0.76–0.90 0.64–0.67 (Red) 

Band 5  1.55–1.75 0.85–0.88 (Near Infrared (NIR)) 

Band 6  10.40–12.50 1.57–1.65 (SWIR 1) 

Band 7  2.08–2.35 2.11–2.29 (SWIR 2) 

Band 8   0.50–0.68 (Panchromatic) 

Band 9   1.36–1.38 (Cirrus) 

Band 10   10.60–11.19 (Thermal Infrared (TIRS) 1) 

Band 11   11.50–12.51 (Thermal Infrared (TIRS) 2) 

Table 2. All Landsat images used for the land cover classification including two groups 

(TS1 and TS2) of time series of Landsat 4/5 images from 1984 to 2011 and the single-date 

Landsat 8 image (S1) in July 2013. 

Group Date Day of Year Sensor Season 

TS1 

1984-08-22 235 Landsat 5 Summer 

1985-08-09 221 Landsat 5 Summer 

1987-10-02 275 Landsat 5 Fall 

1988-04-11 102 Landsat 5 Spring 

1988-05-13 134 Landsat 5 Spring 

1989-05-16 136 Landsat 5 Spring 

1990-07-14 195 Landsat 4 Summer 

TS2 

2003-08-11 223 Landsat 5 Summer 

2006-07-02 183 Landsat 5 Summer 

2006-07-18 199 Landsat 5 Summer 

2009-06-24 175 Landsat 5 Spring 

2011-04-11 101 Landsat 5 Spring 

2011-09-02 245 Landsat 5 Fall 

S1 2013-07-21 202 Landsat 8 Summer 

2.3. Land Cover Classification Scheme and Reference Data 

In this study, the three-level land cover classification system of CORINE established by the 

European Union [45] was utilized to represent the major land cover types (Table 3). Due to the lack of 
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in situ ground truth data of the agricultural area and crop variations in the same area for the images in 

the different years, only the Level 1 (4 land cover classes) and Level 2 (7 land cover classes) were 

considered for the time series classification of Landsat images. While for the single image 

classification in 2013, combined with the ground truth data, all the three levels were classified and 

tested for the study area. 

Table 3. Land use and land cover categories for the three-level classification scheme 

including the 4 classes of Level 1,7 classes of Level 2, 14 classes of Level 3 and the brief 

description of the Level 3 classes. 

Level 1 Level 2 Level 3 Description of Level 3 

Agricultural land 

Bare soil Bare soil Fallow agricultural land or harvested land 

Cropland 

Barley 

Arable land for different crops,  

including the non-irrigated arable  

and permanently irrigated land,  

heterogeneous agricultural areas 

Corn 

Wheat 

Triticale 

Rapeseeds 

Oat and other crops 

Grassland 
Intensive Grassland Dense grass cover, includes areas with hedges 

Extensive grassland Sparse grass cover, includes areas with hedges 

Artificial land Artificial land Artificial land 

Urban fabric, industrial, commercial and 

 transport units, mine, dump and construction sites,  

artificial non-agricultural vegetated areas 

Forest 

Deciduous Forest Deciduous Forest 
Broad-leaved forest species, predominated by  

beech, oak, including shrub and bush understories 

Coniferous Forest Coniferous Forest 
Coniferous forest species, predominated  

by pine, larch, including shrub and bush understories 

Mixed Forest Mixed Forest 
Mixed broad-leaved and coniferous forest, neither species 

predominate, including shrub and bush understories 

Water bodies Water bodies Water bodies Water courses and water bodies 

Training and validating samples were collected from the ground truth data and the reference maps 

(Figure 2). Firstly, the available historical land cover maps were collected including the finer land 

cover maps in 2007 provided by the collaborators in the CAOS project, CORINE land cover datasets 

of 1990, 2000 and 2006. Based on these reference maps and visual interpretation, areas of interest were 

created for the Level 1 and Level 2 category (the right-hand image in Figure 2). Secondly, the various 

agricultural lands (550 sites) in Level 3 were labelled through the fieldwork campaign conducted in the 

Attert catchment from July 8 to 13 July 2013 (the left-hand image in Figure 2). For the single Landsat 8 

image, samples for all the three categories were used, whereas due to the impossibility of gaining 

historical ground truth data, only samples for the Level 1 and Level 2 categories were taken into 

account. The sample screening was performed for each land cover type in the ERDAS software and 

only the pure pixels of the relatively larger site were kept. The principle is to obtain the evenly 

distributed samples over the catchment and to keep the size as similar as possible for both the  

single-date Landsat 8 image and the two time series of images.  
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Figure 2. The agricultural ground truth area labelled in green during the field campaign in 

July 2013 (left) and all the training and validating pixels in yellow for the 7 classes of the 

Level 2 category based on the historical land cover maps of 2007 (right); the background 

image of Attert Catchment (outlined in black) is the composite Landsat 8 image of July 

2013 in RGB combination of band 4, band 3 and band 2. 

The training set size has a great impact on the classification accuracy and appropriate training samples 

are prerequisites for a successful classification [46,47]. Following the recommendations of Foody [32], 

van Genderen [45] and Congalton [46], the size of the training set should not be fewer than 10–30 

observations per spectral band and per class. In this paper, the size of the samples for Level 1 and  

Level 2 categories was set greater than 300 pixels. However, only 40 pixels for the water bodies were 

selected in this catchment because the river courses are normally too small to be distinguished in the 

Landsat image. 

3. Classification Schemes 

3.1. Preprocessing 

As reported by Song et al. [48], atmospheric correction of images might not be necessary in case only a 

single image is used for the classification procedure. However, when multi-temporal or multi-sensor data 

are used, atmospheric correction is mandatory [49]. Existing studies have tested the importance of different 

procedures for obtaining the stable and accurate images [50]. Thirteen images used for the land cover 

classification were corrected by the MODTRAN 4 algorithm [51] embedded in the ATCOR3 module [52] 

in ERDAS software [53] to remove atmospheric and topographic effects within the resampled 30 m 

ASTER GDEM product of METI and NASA [54]. All the corrected images were normally rescaled to the 

8-bit raster images by the scale factor4 for both the reflectance and temperature data, i.e. a digital number 

value of 20 from the temperature image corresponds to a ground temperature of 5 °C. 

For the evaluation of the land cover classification based on the single Landsat 8 image (from 21 

July 2013), three variants of spectral band combinations were considered: (i) only the bands 2–5 from 

Landsat 8 (Bands4); (ii) bands 2–5 plus the 2 thermal bands 10 and 11 (Bands6T); and (iii) all bands 

except the panchromatic band (Bands10T).  
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Figure 3. Flowchart of the land cover classification and accuracy assessment process: the 

time series images were derived from the Landsat 4/5 TM images by preprocessing 

including: the Band 3 and Band 4 combination (TS B3B4), first three principal components 

(TS 3PC) of the VIS/NIR bands from TM images, six bands combination except the 

thermal band (TS 6Bands), the thermal band (TS Thermal) and all the bands combination 

(TS 7Bands); then based on the ground truth and reference maps training data were 

selected and used for the k-nearest neighbor and Random Forest algorithms for Level 1 and 

Level 2 classification; 10-fold cross validation was applied to the both classification 

methods and then calculated for the accuracy statistics.  

For the assessment of the land cover classification based on time series of images (Groups TS1 and 

TS2, Table 2), five variants of time series were classified and compared. The five variants include time 

series of the combinations of band 3 and band 4 of Landsat TM images (B3B4), time series of three 

(PC3) principal components of all the VIS/NIR bands in the TM image, time series of 6 bands except 

the thermal band (6 bands), time series of only the single thermal bands and time series of all 7 bands 

from the TM images. Bands 3 and 4 of the Landsat TM image refer to the red and near infrared 

spectrum, of which the combination (e.g. as NDVI) is useful for distinguishing the vegetation, soil, 

water and land interface. Principal Component Analysis (PCA) was applied to the atmospheric 

corrected images with 6 bands (excluding the thermal band 6) for dimension reduction. The 

effectiveness of PCA for the identification of land cover changes has been reported in previous  

studies [55,56]. The three components of the 6 Landsat/TM bands are mainly related to the information 
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of the land cover and land use, which explains approximately 98% of the data variability of all bands. 

Figure 3 shows the general classification procedure of all the time series Landsat images.  

3.2. Classification Algorithms 

In the field of land-cover classification based on satellite images, numerous machine learning methods 

are available and have been investigated and reviewed [49,57]. Since the general intercomparison of 

classification methods was not the focus of this study, experience from previous investigations was  

used [7,29], and two widely applied methods, the simplest k-NN and the more complex Random Forest 

algorithms were chosen for the land-cover classification given their good performance. 

The k-NN method is one of the particularly simple classifiers in the concept, which is easy to apply 

but can be time consuming [58]. Given an object, it examines the training samples in the multispectral 

feature space and chooses the closest class among the pre-specified number k of nearest neighbors. k is 

an integer value specified by the user and is highly data-dependent. In general, a larger k suppresses 

the effects of noise, but makes the classification boundaries less distinct. Normally, k-NN needs a 

priori definition of a metric in the predictor space [29]. There are several studies focusing on finding a 

reasonable distance to improve the performance of the classification algorithm [7,28], such as the 

Manhattan distance, Euclidean distance, Chebychev distance, the similarity measures or the Modified 

Nearest Neighbor which searched for a metric in a lower dimensional space for separating a given 

class [29]. Here, based on the previous study [7,28] and comparison of the classification performance 

with different k values and metrics, the optimal number of nearest neighbors is defined as 5 and the 

distance metric is determined by the standard Euclidean metric. 

Another ensemble learning algorithm called Random Forest (RF) is also applied in this study. RF is 

an ensemble of classification trees and each tree contributes with a single vote for the assignment of 

the most frequent class to the input data [44]. Breiman [44] introduced RF by using bagging or 

bootstrap aggregating with a random subset of input features in the division of every node to make the 

trees grow from different training data subsets. The RF algorithm can handle high dimensional data 

and uses a large number of trees in the ensemble without variable deletion and estimates the 

importance of variables in the classification [59]. The RF method has increasingly been applied in the 

land-cover classification given its higher accuracy and more robust capability to noise and outliners 

than other machine learning algorithms [30,34]. 

3.3. Validation and Accuracy Assessment 

The k-fold cross validation, also called rotation estimation [60], is a model validation method for 

estimating generalization error. In k-fold cross-validation, the training set is split into k smaller sets and the 

classification model is trained using the k-1 of the folds as training data, then the resulting model is 

validated on the remaining part of the data. The accuracy of cross-validation is the average of value in the 

loop. In this study, 10-fold cross validation was performed with the samples obtained in the Section 2.3. 

The water body category was not considered in the accuracy assessment due to its small proportion based 

on the recommendation of the minimum of 50 samples for each category validation by Congalton [61]. 

Error metrics were calculated to assess the classification accuracy, from which the OA, user’s 

accuracy (UA) and producer’s accuracy (PA) were derived [62]. The OA present in this paper is the 
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averaged value from 10-fold validation for each k-NN and Random Forest classification. User’s 

accuracy refers to the fraction of correctly classified pixels with regard to all pixels classified as this 

class in the classified image and is also known as the reliability or commission error. Producer’s 

accuracy means the fraction of correctly classified pixels with regard to all pixels of that ground truth 

class and can also be referred to the accuracy or omission error. 

4. Results and Discussion  

4.1. Classification Based on A Single Image (S1) 

The land cover classification based on a single image was carried out with the Landsat 8 image 

from 21 July 2013. As detailed in Section 3.1, three variants with different bands combination were 

considered and classified into the three land cover levels using the k-NN and Random Forest algorithm. 

The classification results and the accuracy statistics are summarized in Figure 4 and Tables 4 and 5.  

Figure 3b,d illustrates the land cover maps with the best OA among all the variants for each category. 

The consistent patterns can be visually observed in the forest and artificial areas, meanwhile the road 

in the west part of the catchment is clearly distinguished. For level 2 and level 3, the agricultural areas 

were classified in more detail based on the ground truth data. The major cropland and grassland areas 

have been well recognized but misclassification still exist especially between the different crops in 

Figure 3d with the low accuracy data in Table 5. 

 

Figure 4. Four land cover maps from Landsat 8 of July 2013: (a) False color composite image in 

RGB combination of bands 5, 4, 3; (b) Level 1 classification image with 4 classes by k-NN 

based on the 10 bands combination of the Landsat image; (c,d) Level 2 and Level 3 classification 

images with 7 and 14 classes by Random Forest based on the 10 bands combination. 
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It is clear that the variant Bands10T always achieved the best OA by making use of the available 

maximum spectral information with 10 bands (Table 4). The high overall accuracies around 98% for the 

Level 1 classification indicates that the Bands4 variant has sufficient information to classify the Level 1 

category. The classification accuracy drops down strongly with the 80.7% OA value for Level 3 

category, which is much lower than the commonly recommended 85% target for planning and 

management purposes [63]. However, it is worth noting that the additional information from the short 

wave infrared and the thermal spectrum provide more information and better accuracy especially for 

the Level 2 and Level 3 classification, which improve the OA of Bands10T about 5% to 8% for the 

Level 2 category and 6% to 12% for the Level 3 category than the Bands6T and Bands4. 

Table 4. The mean value calculated by 10-fold cross validation method for the OA of the 

three images from Landsat 8 in 2013 with different band combination classified by k-NN 

and Random Forest: Bands4 represents the image with bands 2 to 5; Bands6T represents 

the image with bands 2 to 5 and the thermal bands 10 and 11; Bands10T indicates the 

image with all the 10 bands from Landsat 8 except the panchromatic band; k-NN5 and RF 

represents the nearest neighbor method with k = 5 and Random Forest, respectively. 

Level 1 (%) Level 2 (%) Level 3 (%) 

Image classification accuracy in 2013  k-NN5 RF k-NN5 RF k-NN5 RF 

Bands4 OA 97.6 97.6 83.9 84.7 68.7 69.9 

Bands6T OA 98.1 98.1 87.0 87.9 74.1 74.7 

Bands10T OA 98.3 98.2 91.9 92.3 79.6 80.7 

Table 5. The best classification accuracy statistics from the 10-fold validation by Random 

Forest chosen for the data analysis of the single Landsat 8 image with 10 bands 

combination in 2013. PA refers to the Producer’s accuracy, UA refers to the User’s 

accuracy, -- represents no validation pixel available. 

Level 1 PA UA Level 2 PA UA Level 3 PA UA 

Agriculture 99.3% 98.7% Artificial 94.2% 94.3% Artificial 89.1% 91.8% 

Artificial 89.4% 93.1% Cropland 91.8% 92.0% Bare soil 80.4% 86.5% 

Forest 98.8% 99.3% Grassland 92.5% 91.9% Barley 56.7% 59.7% 

Water -- -- Conifer 98.8% 94.6% Corn 72.3% 64.9% 

Deciduous 97.3% 95.5% Wheat 62.7% 60.2% 

OA 98.7% Mixed forest 79.5% 92.1% Triticale 30.4% 47.1% 

  Water -- -- Rapeseeds 47.8% 66% 

Oat 48.4% 68.2% 

OA 92.7% Intensive Grassland 93.1% 90.7% 

  Conifer 99.0% 98.1% 

Deciduous 97.9% 94.9% 

Mixed forest 81.9% 92.6% 

Extensive grassland 88.2% 90.9% 

Water -- -- 

OA 81.2% 
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Table 6. Confusion matrix for the Level 3 category of single Landsat 8 image in July 2013 with 10 bands combination. The column indicates 

the referred data points for the 14 classes from field campaign and the row represents the classified data by Random Forest. 

          Referred 

 

Classified 
Artificial 

Bare 

Soil 
Barley Corn Wheat Triticale Rapeseeds Oat 

Dense 

Grassland 
Conifer Deciduous 

Mixed 

Forest 
Sparse 

Grassland 
Water Sum 

Artificial 156 6 0 9 1 0 0 0 2 0 0 0 1 0 175 

Bare Soil 5 45 2 4 0 0 0 0 0 0 0 0 0 0 56 

Barley 0 0 102 20 39 4 7 0 2 0 0 0 6 0 180 

Corn 4 1 17 310 56 4 5 0 17 0 2 1 12 0 429 

Wheat 1 0 30 85 274 15 2 5 21 0 1 0 3 0 437 

Triticale 0 0 4 13 31 24 3 1 3 0 0 0 0 0 79 

Rapeseeds 0 0 7 6 18 4 33 0 0 0 0 0 1 0 69 

Oat 0 0 2 2 8 0 0 15 3 0 1 0 0 0 31 

Dense Grassland 2 0 2 23 13 0 0 1 674 0 0 0 9 0 724 

Conifer 0 0 0 0 1 0 0 0 0 205 0 1 0 0 207 

Deciduous 0 0 0 1 0 0 0 0 1 0 428 7 0 0 437 

Mixed Forest 0 0 0 1 0 0 0 0 2 3 19 113 0 0 138 

Sparse 

Grassland 
2 0 5 4 14 0 0 0 18 0 0 0 321 0 364 

Water 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

Sum 170 52 171 478 455 51 50 22 743 209 451 122 353 0 3327 



Remote Sens. 2015, 7 8380 

 

Table 5 lists the UA and PA for all the three classification levels considering the best OA value 

between the k-NN and Random Forest algorithm in the classification procedure. For the various land 

covers among the three levels, forest category is one of the best classified with high PA and UA above 

95%. For instance, the conifer got highest accuracy in Level 2 and Level 3, followed by the deciduous 

and the mixed forest. At the acquired date of image, the cropland including wheat, barley, rapeseeds, 

corn and other types show various maturity, i.e. a few corn fields were newly planted whereas several 

wheat or barley grew mature enough for harvest. Therefore, compared to the classification between 

cropland and grassland in Level 2, serious misclassification existed in Level 3 category among the 

different crop fields. The confusion matrix in Table 6 shows the validation data for the 14 classes of 

Level 3. Because of limited reference pixels from the field campaign, the validation pixels of oat did 

not exceed the recommended number of 50. Here it was kept for the comparison need. The matrix 

provides detail information about the mixture of different crops with similar growing characteristics, 

such as barley and wheat, triticale and wheat. All in all, this single-date Landsat 8 image did not 

provide sufficient information for distinguishing between detailed croplands, and at least one other 

image at spring or autumn will be needed to supplement the classification. However, such an 

(cloudfree) image was not available for this year. 

4.2. Level 1 Classification Based on Time Series of Images (TS1 and TS2) 

Besides the evaluation of the single-date Landsat 8 image, the land cover classification with the 

time series of images for the Level 1 and Level 2 categories (Figure 5) was carried out via five 

different variants of spectral bands combination as described in Section 3.1. 

 

Figure 5. Level 1 and Level 2 land cover maps classified by the k-NN algorithm with time 

series of thermal images from Landsat 4/5 TM for TS1 and TS2. 
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Table 7 lists the OA for the times series TS1 and TS2 images with regard to the Level 1 land cover 

category by k-NN and Random Forest. The accuracy data are given for both classification methods 

with the image from the earliest time and then successively adding the images up to each time step. As 

expected, the OA improves with the increase of the images for all the variants. Taking the full set of 

images in TS1 into account, the B3B4 provides the lowest OA compared to the results of the 3PC, 

6Bands and 7Bands images. The OA from 3PC is very close to the data from the 6Bands starting from 

the image number of 4. The overall accuracies of the thermal images classified by k-NN varies greatly 

in the first three time steps. In comparison, the Random Forest demonstrated more stable performance 

illustrated in Figure 6. When the image number is greater than 5, the thermal bands began to show 

their superiority with higher OA than the B3B4, 3PC and 6Bands combination. Both the thermal and 

the 7Bands images obtained the best OA of 99.1% by the k-NN algorithm. 

Table 7. Overall Accuracy of Level 1 classification by k-NN and Random Forest based on 

the time series images of the combination of band 3 and band 4 (B3B4), the first three 

principal components (3PC), the combination of 6 bands (6Bands), the thermal bands and 

the combination of 7 bands (7Bands).  

Image Number 
B3B4 (%) 3PC (%) 6Bands (%) Thermal (%) 7Bands (%) 

k-NN RF k-NN RF k-NN RF k-NN RF k-NN RF 

TS1-1 78.0 88.7 91.9 91.8 95.9 95.8 70.1 91.0 96.9 96.9 

TS1-2 92.3 91.6 95.5 95.3 96.9 96.9 79.1 92.8 97.6 97.9 

TS1-3 95.6 95.3 97.1 96.8 97.4 97.4 88.3 94.8 98.3 98.1 

TS1-4 96.3 96.4 98.0 97.6 98.0 97.8 94.0 95.7 98.5 98.3 

TS1-5 97.2 97.1 98.2 97.8 98.4 98.0 97.6 97.5 98.7 98.7 

TS1-6 97.4 97.2 98.4 98.0 98.3 98.2 98.6 98.1 98.9 98.7 

TS1-7 97.5 97.5 98.6 98.1 98.7 98.3 99.1 98.6 99.1 99.0 

TS2-1 83.7 90.2 95.6 93.5 96.2 95.3 54.8 84.8 97.1 96.9 

TS2-2 96.1 95.7 97.9 97.0 97.9 97.7 85.6 91.5 98.5 98.4 

TS2-3 97.5 97.2 98.4 98.1 98.5 98.2 93.5 95.0 98.9 98.7 

TS2-4 98.2 98.0 98.6 98.2 98.7 98.7 96.5 97.0 99.1 99.1 

TS2-5 98.6 98.3 99.0 98.5 98.9 98.7 97.9 98.0 99.2 99.2 

TS2-6 98.7 98.6 99.0 98.7 99.0 98.8 98.7 98.5 99.2 99.1 

The classification results from group TS2 indicate the same tendency that the 3PC and 6Bands 

show higher OA than the data of the B3B4 and the thermal band. In contrast to the results of group 

TS1, the thermal images of TS2 with a maximum of six images did not exceed the corresponding 

results of the 3PC and 6Bands. The thermal band (the right plot in Figure 6) varies when image 

number is small and the OA increases to the same level as the B3B4 classification at the image number 

of 6. From Table 7, it is noteworthy that the time series of 7Bands classification performed by k-NN 

get the best OA at each time step compared to the other group data. The 3PC images provide nearly 

similar OA data as the 6Bands when the image number is greater than 3.The best OA among all the data 

is 99.2% from the 7Bands classification calculated by the k-NN. The best OA of the thermal images is 

98.7% by k-NN and 98.5% by Random Forest, which is slightly lower than the best OA of 7Bands. 
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Figure 6. TS1 and TS2 boxplot of the 10-fold Level 1 classification overall accuracy 

variation by Random Forest for the time series images of the combination of band 3 and 

band 4 (B3B4), the first three principal components (3PC), the combination of 6 bands 

(6Bands), the thermal bands and the combination of 7 bands (7Bands). 

4.3. Level 2 Classification Based on Time Series of Images (TS1 and TS2) 

The boxplot in Figure 7 shows the variation of the OA data with regard to the Level 2 land cover 

classification performed by the Random Forest. Similar to the Level 1 classification, the k-NN 

algorithm has larger variations compared to the Random Forest method when only using the thermal 

information with an image number smaller than 4. The OA data by Random Forest varies relatively 

stable for both TS1 and TS2 data. 

 

Figure 7. TS1 and TS2 boxplot of the 10-fold Level 2 classification overall accuracy 

variation by Random Forest for time series images of the combination of band 3 and  

band 4 (B3B4), the first three principal components (3PC), the combination of 6 bands 

(6Bands), the thermal bands and the combination of 7 bands (7Bands). 

The best OA of TS1 Level 2 classification is 96.6% achieved by the time series of 7Bands images 

(Table 8). The largest OA from the thermal images is obtained by k-NN as 96.3%, which is about 0.9% 
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to 3.6% higher than the accuracies of B3B4, 3PC and 6Bands. Starting from 5 images, the time series 

of 3PC and 6Bands in TS1 obtain OA. The classification results using the thermal information by the 

Random Forest algorithm start to exceed the accuracy of time series of B3B4, 3PC and 6Bands with 

image number 6. The bold data in Table 7 and Table 8 imply the best accuracy data among all the OA 

at each time step. The best OA of 96.9% from the Level 2 classification results of TS2 (Table 8) comes 

from the 7Bands image classified by the k-NN algorithm, followed by the 6Bands (96.5%), 3PC 

(96.1%), B3B4 (94.8%) and the thermal band (93.9%). In contrast to the TS1 Level 2 classification 

results, the time series of thermal images obtains the lowest OA at each time step for the TS2. The best 

value from the thermal band is 93.9% and the OA starts to exceed 85% when the images are more than 

4. The 3PC and 6Bands also achieve the similar accuracy from four images. The TS2 boxplot in  

Figure 7 illustrates that the OA increases with the image number for all the time series images, 

whereas the performance of Level 2 classification based on the TS2 thermal images is not as good as 

that of the TS1 thermal images. 

Table 8. Overall Accuracy of Level 2 classification by k-NN and Random Forest based on 

the time series images of the combination of band 3 and band 4 (B3B4), the first three 

principal components (3PC), the combination of 6 bands (6Bands), the thermal bands and 

the combination of 7 bands (7Bands). 

Image Number 
B3B4 (%) 3PC (%) 6Bands (%) Thermal (%) 7Bands (%) 

k-NN RF k-NN RF k-NN RF k-NN RF k-NN RF 

TS1-1 51.0 64.3 74.6 74.6 81.0 80.6 37.0 56.6 82.9 83.6 

TS1-2 76.3 76.1 85.7 84.0 87.1 86.6 52.1 68.0 90.3 89.7 

TS1-3 83.7 83.6 89.8 87.8 90.1 88.8 65.4 77.8 92.5 90.9 

TS1-4 87.7 87.4 92.2 90.3 92.8 90.3 81.0 85.8 94.0 92.3 

TS1-5 89.7 89.2 93.5 90.9 93.7 91.2 89.7 91.3 95.2 93.3 

TS1-6 91.2 90.4 94.5 92.1 94.6 92.0 93.9 93.9 95.9 94.0 

TS1-7 92.7 91.7 95.3 92.8 95.4 93.3 96.3 95.3 96.6 94.9 

TS2-1 55.9 65.6 81.4 80.7 84.5 84.3 37.8 56.5 88.4 88.0 

TS2-2 80.9 80.6 91.0 90.5 91.5 91.0 51.4 66.9 94.6 93.8 

TS2-3 89.8 88.9 93.9 93.3 94.6 93.9 65.7 76.5 95.6 95.0 

TS2-4 92.8 91.6 95.2 94.2 95.1 94.7 81.0 84.6 96.4 96.0 

TS2-5 93.8 93.4 95.8 94.6 96.1 95.2 88.0 89.1 96.8 96.2 

TS2-6 94.8 94.2 96.1 95.1 96.5 95.3 93.9 93.3 96.9 96.3 

The results of Sections 4.1 to 4.3 can be summarized as follows: For the single image classification:  

(i) Bands4 (97.6%), Bands6T (98.1%) and Bands10T (98.3%) achieved similar OA value of 98% ± 0.4% 

for the Level 1 classification; (ii) Bands6T and Bands10T including the two thermal bands got about 5% 

and 8% higher OA value than that of the Bands4 for the Level 2 classification; (iii) Bands6T and 

Bands10T obtained 6% and 12% higher accuracy than the Bands4 for the Level 3 classification. 

For the Level 1 classification by the time series of images: (i) the thermal images provide 

comparatively similar OA for both the TS1 and TS2 Level 1 classification, with the best OA of 99.1% 

for the TS1 and 98.7% for the TS2; (ii) When the image number is greater than five, the thermal band 

shows better OA compared to the B3B4, 3PC and 6Bands for the TS1; (iii) the 7Bands combination 
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achieved the best OA at each time step mostly classified by the k-NN, with the OA of 99.1% for the 

TS1 and 99.2% for the TS2; (iv) starting from four images, the 3PC and 6Bands provided comparable 

accuracy data. 

For the Level 2 classification by the time series of images: (i) the best accuracy data of TS1 and 

TS2 are derived from the 7Bands among all the other images by k-NN with the OA of 96.6% and 

96.9% respectively; (ii) the thermal images get the largest OA at the image number of 6 with 96.3% 

for TS1 at the image number of 7, which is higher than B3B4, 3PC and 6Bands; (iii) the TS2 obtained 

the lowest OA at each time step compared to the other variants and the best OA of 93.9% at the image 

number of 6; (iv) the same feature also exists in the Level 2 classification for the 3PC and 6Bands with 

the similar accuracy data when the image number is greater than 4.  

5. Conclusions  

The effectiveness of the thermal information/bands with regard to land cover classification using a 

single Landsat 8 image (including two thermal bands) and time series of Landsat 4/5 images (including 

one thermal band) was investigated for the Attert Catchment in Luxemburg. The single image was 

classified into three levels with 4, 7 and 14 LULC classes, respectively, and the time series of images 

were classified into the first two levels (Level 3 could not be analyzed due to the lack of ground truth 

data during the time frame of available images). The k-NN and the Random Forest algorithm were 

applied and assessed within a 10-fold cross-validation framework. 

Firstly, the accuracy results from three variants of the single-date Landsat 8 image indicate that 

adding the thermal bands has clearly improved the accuracy of the Level 2 and Level 3 classification. 

The three variants achieved similar high OA of 98% ± 0.4% for the Level 1 classification. For the 

Level 2 and Level 3, Bands10T performed well with the best accuracy data, followed by the Bands6T 

and Bands4, which is 6% and 12% higher for the Level 3 classification. The OA from Bands6T 

including the two thermal bands are 3% and 6% higher respectively for the Level 2 and Level 3 

category than the data of Bands4 without thermal bands. The results indicate that for the single Landsat 8 

image classification, adding the thermal band to the VIR/NIR bands could improve the accuracy by 

3% to 6% for Level 2 and Level 3 classification. As thermal bands are routinely available from 

different sensor platforms, their incorporation as input into the classification should also be done on a 

routine base, thereby significantly increasing classification accuracy. 

Secondly, the results from time series of thermal images also demonstrate that the inclusion of 

thermal band significantly improves the LULC classification, compared to using standard VIS/NIR 

bands. The classification based on time series of thermal images provided comparably high OA when 

compared to the B3B4, 3PC, 6Bands and 7Bands images. TS1 thermal images obtained the best OA of 

99.1% for Level 1 classification and 96.3% for the Level 2 classification. The time series of TS2 

thermal images achieved the OA of 98.2% for the Level 1 and 93.9% for the Level 2. It is interesting 

to observe that the time series of thermal images could provide OA that are as good or even better than 

using the visible and near-infrared bands in the land cover classification, especially when the 

combination number of images used is higher than five. 

Time series of TS2 thermal images also achieved comparatively high accuracy at the image number 

of 6, although the value is not higher than other images. Based on our results, a time-series of at least 5 
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or 6 thermal images is recommended as being almost optimal for situations that are similar to our study 

area. If the images from different years are obtained in the area with varying land cover and land use, 

the classification catalog and the selection of training set should be paid more attention with more land 

cover catalogs or taking the land cover change as the new class to ensure the consistence of the images 

in different years. In this study, the cloud free Landsat images were received mainly in the spring and 

summer time. They demonstrate the temperature discrepancies between various types of land cover 

especially for the agriculture areas, which is very effective for the Level 2 classification with the high 

OA from 93.9% to 96.3%. For the classification with the time series of images in the same year, at 

least two images from spring or summer time are recommended as the complementary sources. 

Our study is not aimed at replacing the existing profound classification methods, but trying to add 

the thermal bands to improve the land cover classification based on the single image or the time series 

of images. The incorporation of thermal information improved the land cover classification indicated 

by better OA and Kappa statistics. However, in addition, thermal information alone provides similar or 

even better results when compared to the other time series of visible and near-infrared bands 

combination and/or principal components. Therefore, in case of failures or non-availability of VIS/NIR 

band data (as has been the case e.g. for the ASTER NIR bands), the thermal information could serve as 

a good substitute input in land cover classification experiments. 

So far, the study area is limited to the Attert catchment in Luxembourg and the detailed land cover 

catalog is only classified at Level 2 (seven classes) when using time series of images, due to the lack of 

images in the same year for the agricultural area and therefore missing ground truth information. 

Because of the complicated atmosphere conditions, the preprocessing of the time series images 

probably could further benefit from other novel correction procedures, such as relative radiometric 

normalization [50]. Further investigation of the time series of thermal remote sensing will be extended 

to the more specific classification for higher level with more specific land covers (such as Level 3 

CORINE classes and/or application in agricultural and hydrological land cover types). The thermal 

bands in Landsat satellites have the limitation of a coarser spatial resolution when compared to the 

VIS/NIR bands, but the developed data fusion methods (such as e.g. the wavelet fusion method [64] or 

the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [65,66]). Other thermal 

sensors with wider spectral range such as ASTER or the sensor installed on the drone with finer spatial 

resolution and hyperspectral data [67] should also be explored to aggregate the information for the 

regional land cover classification, but this is subject of ongoing and future research. 
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