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It is shown that Starobinsky-like potentials can be realized in non-geometric flux compactifications of 
string theory, where the inflaton involves an axion whose shift symmetry can protect UV-corrections to 
the scalar potential. For that purpose we evaluate the backreacted, uplifted F-term axion-monodromy 
potential, which interpolates between a quadratic and a Starobinsky-like form. Limitations due to the 
requirements of having a controlled approximation of the UV theory and of realizing single-field inflation 
are discussed.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The recent release of the PLANCK 2015 data provides improved 
experimental results and bounds on the �CDM cosmology [1]. In 
particular, the BICEP2 observation [2] of a tensor-to-scalar ratio as 
big as r = 0.2 can now be completely explained by a foreground 
dust contamination of the signal, and is replaced by the upper 
bound r < 0.113. Moreover, for the spectral index PLANCK 2015 re-
ports ns = 0.9667 ±0.004 and for its running αs = −0.002 ±0.013.

As a consequence, large-field inflationary potentials of the type 
V ∼ �p are essentially ruled out for p ≥ 2, and the currently 
best class of models fitting the data is plateau-like [3]. This class
contains the Starobinsky model [4], as well as more general 
Starobinsky-like models

V (�) = M4
Pl

(
A − B e−γ �

)
, (1)

(see also [5], as well as [6] for a historical perspective on the 
Starobinsky model). Starobinsky-like models have been constructed 
in string theory in the LARGE volume scenario (LVS), where the 
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role of the inflaton is played by a canonically normalized Kähler 
modulus [7,8].

When working with a model of large-field inflation, Planck sup-
pressed higher-order operators need to be controlled, since oth-
erwise they lead to an η-problem. For the LVS, corrections are 
suppressed by an exponentially large volume, while in the case 
of the inflaton being an axion, the shift symmetry of the latter can 
protect the potential against perturbative corrections. Various sce-
narios for axion inflation have been constructed, such as natural 
inflation [9], N-flation [10], or aligned inflation [11].

Another promising string-theoretic approach, still allowing for 
some control over the higher-order corrections, is axion mon-
odromy inflation [12,13], for which a field theory version has been 
proposed in [14] (for a review see [15]). In [16–18] this scenario 
has been realized via the F-term scalar potential induced by back-
ground fluxes, which has the advantage that supersymmetry is 
broken spontaneously by the very same effect by which usually 
moduli are stabilized. Such models were studied in [19,20] for the 
possibility to provide a quadratic potential for the axion.

In this letter, we analyze a toy model for the flux-induced scalar 
potential for a large excursion of a prospective axion/inflaton. For 
concreteness, we consider a simple type IIB superstring flux com-
pactification, where a superpotential for all moduli is generated 
by turning on NS–NS and R–R three-form fluxes as well as non-
geometric fluxes. Following [21], taking the backreaction of the 
stabilized moduli onto the evolution of the inflaton into account, 
we find the expected flattening of the uplifted potential, which af-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ter canonical normalization interpolates between a quadratic and 
a Starobinsky-like form. Here we discuss the cosmological conse-
quences of this model, whereas more details on the formal frame-
work and on the phenomenology will be discussed elsewhere [22].

2. Large-field inflation

Let us recall the expressions of the cosmological parameters for 
the large-field polynomial and Starobinsky-like inflationary mod-
els. For polynomial inflation with V ∼ �p , the slow-roll parameters 
ε = 1

2

( V ′
V

)
2 and η = V ′′

V can be written in the following way

ε = 1

2

p2

�2
, η = p (p − 1)

�2
, (2)

and the number of e-foldings is expressed as

Ne =
�∗∫

�end

V

V ′ d� = 1

p

�∗∫
�end

�d� � �2∗
2 p

. (3)

This implies that Ne � p
4ε , and the spectral index, its running and 

the tensor-to-scalar ratio are obtained as

ns = 1 + 2η − 6ε ∼ 1 − p + 2

2Ne
,

αs = − (p − 1)(9 p − 14)

2 N2
e

, r = 16ε ∼ 4p

Ne
. (4)

For the Starobinsky-like model (1), the slow-roll parameters be-
come

ε = 1

2γ 2
η2 , η = − 1

Ne
, (5)

so that

ns = 1 − 2

Ne
, αs = − 2

N2
e

, r = 8

(γ Ne)2
. (6)

Independently of the parameters A, B and γ , for Ne = 60
e-foldings this gives the experimental value ns ∼ 0.967. Note that 
ns and αs in (6) agree with the values for a quadratic potential 
in (4), except that the tensor-to-scalar ratio comes out smaller.

The amplitude of the scalar power spectrum takes the exper-
imental value P = (2.142 ± 0.049) · 10−9, and can be expressed 
as

P ∼ H2
inf

8π2 ε M2
Pl

. (7)

From this one can extract the Hubble constant during inflation, 
and consequently the mass of the inflaton via M2

� = 3 η H2. The 
relation V inf = 3 M2

Pl H2
inf then fixes the mass scale of inflation.

3. Fluxes and moduli stabilization

We now turn to the framework of type IIB orientifolds on 
Calabi–Yau (CY) threefolds, equipped with geometric and non-
geometric fluxes. The NS–NS and R–R fluxes H3 and F3 generate a 
potential for the complex-structure and axio-dilaton moduli, where 
the latter is written as S = s + i c with s = exp(−φ) and c de-
noting the R–R zero-form. Non-geometric Q -fluxes can generate a 
tree-level potential for the Kähler moduli Tα = τα + iρα , where τα

denotes a four-cycle volume (in Einstein frame) and ρα is the R–R 
four-form reduced on that cycle. The details for such flux com-
pactifications have been worked out in [23–26] (see also [27]). The 
resulting scalar potential reads
V = M4
Pl

4π
eK

(
K i j Di W D j W − 3 |W |2

)
, (8)

which is computed from the Kähler potential

K = − log
(
−i

∫
� ∧ �

)
− log

(
S + S

) − 2 logV (9)

and the flux-induced superpotential

W = −(
fλ Xλ − f̃λ Fλ

) + i S
(
hλ Xλ − h̃λ Fλ

)
+ i Tα

(
qλ

α Xλ − q̃λα Fλ

)
. (10)

Note that here V denotes the volume of the Calabi–Yau manifold 
(in Einstein frame), and that we have assumed a large-volume and 
small string-coupling regime so that higher-order corrections can 
safely be ignored. As usual, Xλ and Fλ denote the periods of the 
holomorphic three-form �, and { f , f̃ }, {h, ̃h} and {q, ̃q} denote the 
flux quanta of F3, H3 and Q .

To be more specific, let us consider a simple case of a CY 
manifold with no complex-structure moduli and just one Kähler 
modulus. One might think of it as an isotropic six-torus with fixed 
complex structure. In this case the Kähler potential is given by

K = −3 log(T + T ) − log(S + S) . (11)

Next, we turn on fluxes to generate the superpotential

W = −i f̃+ i h S + i q T , (12)

with f̃, h, q ∈ Z. The resulting scalar potential in units of MPl/(4π)

reads

V =
(

(hs + f̃)2

16s τ 3
− 6hqs − 2qf̃

16s τ 2
− 5q2

48s τ

)
+ θ2

16s τ 3
, (13)

which only depends on s, τ , and the linear combination of axions 
θ = h c + q ρ . One linear combination of axions is not stabilized 
by (13), but can receive a mass from non-perturbative effects. Such 
ultra-light axions can become part of dark radiation [28].

In [19,22] a mechanism to realize axion inflation together with 
moduli stabilization in string theory has been proposed. There the 
idea was to first stabilize all moduli except one axion by turning 
on fluxes proportional to a large parameter λ, and in a second step 
stabilize the massless axion by introducing a deformation depend-
ing on additional small fluxes. The resulting superpotential takes 
the schematic form

Wax = λ W + fax �W . (14)

Instead of analyzing the resulting potential for the rather com-
plicated fully fledged models presented in [22], in this letter we 
mimic the resulting structure of the scalar potential by introduc-
ing a flux parameter λ in (13) as

V = λ2
(

(hs + f̃)2

16s τ 3
− 6hqs − 2qf̃

16s τ 2
− 5q2

48s τ

)
+ θ2

16s τ 3
. (15)

We consider this as a (partly exactly solvable) toy model to analyze 
the possibility of realizing large-field inflation in string theory.

Solving now ∂s V = ∂τ V = ∂θ V = 0, we find three solutions. Be-
sides the supersymmetric AdS minimum with a tachyonic mode, 
there exists a non-supersymmetric, tachyon-free AdS minimum at

τ0 = 6 f̃

5 q
, s0 = f̃

h
, θ0 = 0 . (16)

To ensure τ0, s0 > 0, for definiteness we chose all flux-quanta to 
be positive. Furthermore, f̃/h 	 1 and f̃/q 	 1 implies weak string 
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coupling and large radius, so we can ignore higher-order correc-
tions to the scalar potential. The above fluxes also induce D3- and 
a D7-brane tadpole charges, ND3 = −λ2 f̃h and ND7 = −λ2 f̃q, that 
need to be canceled by D-branes.

To compute the mass eigenvalues and eigenstates in the 
canonically-normalized basis, we consider the matrix Mi

j = K ik Vkj , 
with V ij = 1

2 ∂i∂ j V , evaluated at the minimum. We then find mass 
eigenvalues

M2
mod,i = μi

λ2 h q3

16 f̃2
M2

Pl

4π
, (17)

with the numerical factors

μi =
(

0, 185
54 λ2 ,

25 (17−√
97)

108 ,
25 (17+√

97)
108

)
. (18)

The first two eigenstates are axionic while the last two are sax-
ionic. In particular, the massless state corresponds to an axionic 
linear combination. Note that for sufficiently large λ, the axion can 
be parametrically lighter than the two saxions.

Since the volume and the dilaton are fixed by fluxes, we can 
explicitly evaluate the string scale as

Ms =
√

π MPl

s
1
4 (2τ )

3
4

. (19)

Recalling then (17) and (16), we derive the ratio

Ms

Mmod,i
= 13.03√

μi

1

λh
1
4 q

3
4

. (20)

4. Axion monodromy inflation

We now consider the backreaction effect of a slowly rolling 
and sufficiently light axion θ , i.e. we take into account that dur-
ing the rolling the moduli τ and s adjust adiabatically. Solving the 
extremum conditions for a non-vanishing value of θ , we find

τ0(θ) = 3

20 q

(
4 f̃+

√
10

(
θ
λ

)2 + 16 f̃2
)

,

s0(θ) = 1

4 h

√
10

(
θ
λ

)2 + 16 f̃2 . (21)

For large λ, the motion in the full four-dimensional field space is 
well-described by (21); for λ of order one the trajectories differ, 
but qualitatively our results are still valid. Note also that for large 
excursions of θ , the values of τ0 and s0 are in the perturbative 
regime, so that higher-order α′- and gs-corrections to the scalar 
potential are under control. Using (21) in the potential (15) and 
performing a constant uplift to vanishing cosmological constant 
in the minimum, gives the following backreacted effective inflaton 
potential (in units of M2

Pl/4π )

V back(θ) = 25λ2hq3

108 f̃2

5
(

θ
λ

)2 − 4 f̃
(

4 f̃−
√

10
(

θ
λ

)2 + 16 f̃2
)

(
4 f̃+

√
10

(
θ
λ

)2 + 16 f̃2
)2

. (22)

Note that the initial simple quadratic potential is changed; the ex-
pected flattening of the potential becomes evident in Fig. 1. For 
small values of θ the potential still takes a quadratic form, whereas 
for large values of θ it becomes hyperbolic. In the intermedi-
ate regime there is a turning point, around which the potential 
is linear. We remark that a non-constant uplift term of the form 
V up = ε/τβ with β small is also possible.
Fig. 1. The potential V back(θ) shown in (22) in units of M4
Pl/(4π) for fluxes h = 1, 

q = 1, f̃ = 10 and λ = 10. For this large value of λ, the trajectory (21) correctly 
describes the full motion in field space.

Computing the mass eigenvalues for each value of θ , we find 
that for large θ the eigenvalue along the trajectory becomes tachy-
onic while the two transversal ones are positive. Note also that for 
λ 	 1, the mass hierarchy (17) remains intact for θ �= 0.

Let us now analyze the potential for the canonically-normalized 
inflaton in more detail. For θ/λ � f̃ the shift in the value of the 
minimum (21) is small and the potential takes a quadratic form

V back(θ) ≈ 125 h q3

3456 f̃4
θ2 . (23)

Employing (21), the total kinetic energy

Lkin = 3

(
∂τ

2τ

)2

+
(

∂s

2 s

)2

+ 3

(
∂ρ

2τ

)2

+
(

∂c

2 s

)2

, (24)

determines the kinetic term for θ . To find the latter, we need to 
determine for every value of θ the orthogonal combination σ of 
axions. This can be fixed as

∂θ = h ∂c + q ∂ρ , ∂σ = − q

s2
∂c + 3h

τ 2
∂ρ , (25)

so that the axionic terms in (24) become

Lax
kin = 3(∂θ)2 + τ 2s2(∂σ )2

4(3h2s2 + q2τ 2)
. (26)

For small θ this leads to a θ -dependence of the form Lkin ≈
25

148f̃2 (∂θ)2, and thus the canonically-normalized inflaton takes the 

form � ≈ √
25/74 θ/f̃. Note also that θ/λ � f̃ implies � � λ.

Next, we consider the large-field regime θ/λ 	 f̃. Here we ex-
pand the backreacted potential (22) as

V back(θ) ≈ 25

216

h q3 λ2

f̃2
− 20

27

h q3 λ4

θ2
. (27)

We also approximate (21) by τ0(θ) ≈ 3
2
√

10 q λ
θ and s0(θ) ≈

√
10

4 h λ
θ . 

Then, taking into account all fields from (24), we derive

Lkin ≈ 2

γ 2

(
∂θ

θ

)2

+ 15

896h2q2λ2
θ2(∂σ )2, (28)

with γ 2 = 28/(14 +5λ2). Note that γ is independent of the fluxes, 
but it depends on λ. It can also be shown that, for appropri-
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Fig. 2. The potentials V back(�) and (23) in units of M4
Pl/(4π) for fluxes h = 1, q = 1, 

f̃ = 10 and λ = 60. The lower (blue) curve is the exact backreacted potential. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

ate initial conditions, ∂σ vanishes along the trajectory. Canonically 
normalizing the inflaton via

θ = 4

√
2

5
f̃λ exp

(γ

2
�

)
, (29)

the potential in the large-field regime becomes Starobinsky-like

V back(�) = 25

216

h q3 λ2

f̃2

(
1 − e−γ �

)
. (30)

We emphasize that in contrast to the potential (23) in the small-
field regime, the potential (30) is exponential due to the backreac-
tion.

In the intermediate regime θ/λ ≈ 1, it is not possible to take 
the canonical normalization into account analytically. However, we 
show below that the full backreacted potential interpolates be-
tween a quadratic and a Starobinsky-like form.

5. Qualitative picture of inflation

Let us discuss how inflation can take place in this set-up, and 
how its features depend on the value of λ. Here our intuition has 
to be based on the potential V (θ) for the non-canonically normal-
ized potential, whereas a more accurate computation is presented 
in Section 6.

Quadratic inflation For sufficiently large λ the backreacted poten-
tial (22) is well approximated by the quadratic term for the region 
0 < � < 15, i.e. slowly rolling down the potential one collects 60 
e-foldings. As is illustrated in Fig. 2, this is expected to happen 
for λ � 60. In this case, the inflaton is the lightest state and the 
heavy moduli having masses of the order Mmod ∼ λ M� , which is 
larger than the Hubble scale H ∼ √

2Ne/3 M� ∼ 6.32 M� . There-
fore, we have a model of single-field inflation and all predictions 
agree with the ones of chaotic inflation, in particular r ∼ 0.133. 
However, for such a large value of λ, the relation (20) implies that 
the string scale becomes smaller than the heavy moduli masses. 
Therefore, from the UV-complete point of view, using the effective 
supergravity approximation becomes questionable.

Linear inflation Lowering the value of λ, the non-trivial backreac-
tion becomes more and more relevant, that is the potential be-
comes flatter in the large-field region. For λ = 10 the full potential 
and the quadratic approximation are shown in Fig. 3. Thus it is 
Fig. 3. The potentials V back(θ) and (23) in units of M4
Pl/(4π) for fluxes h = 1, q = 1, 

f̃= 10 and λ = 10.

Fig. 4. The potential V back(θ) in units of M4
Pl/(4π) for fluxes h = 1, q = 1, f̃ = 10

and λ = 1.

expected that most of the 50–60 e-foldings occur along the ap-
proximately linear potential. A more precise computation would 
require the determination of the canonically normalized inflaton. 
However, the expectation is that the tensor-to-scalar ratio becomes 
smaller, namely r ∼ 0.08 for linear inflation. The tension between 
the string scale and the heavy moduli masses becomes weaker, 
while the heavy masses come closer to the Hubble scale.

Starobinsky-like inflation As Fig. 4 shows, for λ = O (1) the number 
of e-foldings mainly would occur on the Starobinsky-like plateau. 
In this case the tensor-to-scalar ratio becomes even smaller and 
approaches the value r ∼ 0.0015. However, even though the heavy-
moduli masses are lighter than the string scale, they are now even 
lighter than the Hubble scale. Therefore, this is not a model of 
single-field inflation and the discussion of the inflationary trajec-
tory becomes more involved.

6. Numerical analysis

In this section, we numerically evaluate the tensor-to-scalar ra-
tio and the number of e-foldings, taking also the kinetic term into 
account. We see that qualitatively, the intuition from the previous 
section is confirmed.
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Fig. 5. The tensor-to-scalar ratio as a function of λ for fixed ns = 0.967.

Fig. 6. The number of e-foldings as a function of λ for fixed ns = 0.967.

Starting from the kinetic terms (24), we can determine an ef-
fective Lagrangian for the field θ of the form

L = 1

2
f (θ) (∂θ)2 + V (θ) . (31)

Expressing the Lagrangian in terms of the canonically-normalized 
field is not always possible analytically, but one can determine the 
slow-roll parameters also in terms of θ via

ε = 1

2 f

(
V ′

V

)2

, η = V ′′

f V
− f ′ V ′

2 f 2 V
, (32)

where the prime denotes the derivative with respect to θ . The 
number of e-foldings is given by

Ne =
θ∗∫

θend

dθ
f V

V ′ . (33)

To evaluate f (θ) we substitute (21) and (26) in (24). We can 
then numerically determine the tensor-to-scalar ratio in terms of λ

(for fixed fluxes) by fixing ns = 0.967. The resulting behavior is dis-
played in Fig. 5, whereas Fig. 6 shows the corresponding number 
of e-foldings.

The curves show the expected behavior, namely that with de-
creasing λ the model changes from chaotic to Starobinsky-like in-
flation.
7. Conclusions

In a simple string compactification with two complex mod-
uli, after introducing by hand a scaling parameter λ, we were 
able to stabilize all moduli except a single axion using NS–NS 
and R–R three-form flux together with non-geometric Q -flux. The 
hierarchically-light but massive axion served as an inflaton can-
didate. Taking into account the backreaction and assuming an 
uplift to Minkowski, we evaluated the resulting potential, which 
turned out to interpolate between a quadratic and a Starobinsky-
like potential. We analyzed the cosmological consequences for 
three different regimes of λ. Depending on λ, the tensor-to-scalar 
ratio interpolates between the one for chaotic and the one for 
Starobinsky-like inflation.

From a controllable UV-complete theory point of view, large-
field inflation models require a hierarchy of the form

MPl > Ms > MKK > Mmod > H inf > M� , (34)

where neighboring scales can differ by (only) a factor of O (10). 
Our main observation was: the larger λ, the more difficult it be-
comes to separate the high scales on the left of (34). Contrarily, 
for small λ, the smaller (Hubble-related) scales on the right of (34)
become difficult to separate.

Corrections to the scalar potential are expected to be un-
der control, due to the shift symmetry of the axion/inflaton and 
due to the adiabatic adjustment of the saxionic moduli into the 
perturbative regime. Our string-motivated analysis shows how a 
Starobinsky-like inflation model could arise from string-theory ax-
ions. For a more realistic scenario, however, more string model 
building is needed, including the introduction of an MSSM-like 
D7-brane set-up and the computation of soft-supersymmetry 
breaking terms [22]. Note also that since the inflaton in our model 
is a linear combination of the universal axion and a Kähler axion, 
we can realize the stringy reheating mechanism proposed in [17].
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