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PAPER

Photoionization of few electron systems: a hybrid coupled channels
approach

Vinay PramodMajety, Alejandro Zielinski andArmin Scrinzi
PhysicsDepartment, LudwigMaximiliansUniversität, D-80333Munich, Germany

E-mail: armin.scrinzi@lmu.de

Keywords: strong field physics, photoelectron spectra, coupled channelsmethod, tSURFF

Abstract
Wepresent the hybrid anti-symmetrized coupled channelsmethod for the calculation of fully
differential photo-electron spectra ofmulti-electron atoms and smallmolecules interactingwith
strong laserfields. Themethod unites quantum chemical few-body electronic structure with strong-
field dynamics by solving the time dependent Schrödinger equation in a fully anti-symmetrized basis
composed ofmulti-electron states fromquantumchemistry and a one-electron numerical basis.
Photoelectron spectra are obtained via the time dependent surface flux (tSURFF)method.
Performance and accuracy of the approach are demonstrated for spectra from the helium and
beryllium atoms and the hydrogenmolecule in linearly polarized laserfields at wavelengths from21 to
400 nm.At longwavelengths, helium and the hydrogenmolecule at equilibrium inter-nuclear
distance can be approximated as single channel systemswhereas berylliumneeds amulti-channel
description.

1. Introduction

Understanding laser-atom/molecule interaction has become an important research pursuit with the
introduction ofmany versatile light probes over the past decade. Experimental techniques like re-collision
imaging [1] and attosecond streaking [2] are being pursued to study time resolved electron dynamics. One of the
factors that always creates a certain amount of vagueness in interpreting these strong field ionization
experiments is the possible presence ofmulti-electron effects. An accurate interpretation of the experiments
needs solutions of themulti-electron time dependent Schrödinger equation (TDSE). As perturbation theory is
not valid in the strong field regime, one resorts to direct numerical solutions of the TDSE.

While simple single electronmodels or low dimensionalmodels have been partially successful in explaining
lasermatter interactions, there have been several cases reportedwhere amore elaborate description of electronic
structure becomes important. Some of the examples include inter-channel coupling leading to an enhancement
in high harmonic generation (HHG) fromxenon [3],modification of angle resolved ionization yield of CO2 [4]
and photoionization cross-sections in SF6 [5], enhancement inHHGdue to participation of doubly excited
states in beryllium [6], influence of nuclearmotion [7], presence of conical intersections [8] and so on. All these
instances need amore involved description of the electronic structure.

With one and two electron systems, a full dimensional numerical treatment is possible in linearly polarized
laserfields. For systemswithmore than 6 degrees of freedom a full dimensional calculation is infeasible. There
have been several efforts in the past decade to overcome this barrier of dimensionality for few electron systems by
choosing only a part of theHilbert space that is seemingly important for the dynamics. Some of the approaches
that are being employed are time dependent configuration interactionmethods [9], different variants ofmulti-
configurationmethods [10–17], the time-dependentR-matrixmethod [18], and coupled channelmethods [4].

One of the observables that is typicallymeasured in strong laser-atom/molecule interaction experiments are
photoelectron spectra.While themethods listed above [4, 9–18] have tried to includemulti-electron effects in
photoionization studies, calculation of photoelectron spectra frommulti-electron systems, especially at long
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wavelengths has remained out of computational reach. The particular difficultly arises from the fact that, in
order to compute photoelectron spectra the asymptotic part of thewavefunction is required. This needs large
simulation box volumes and access to exact single continuum states to project thewavefunction onto at the end
of time propagation.Having large simulation boxes and computing single continuum states of amulti-electron
system are expensive tasks,making these kind of computations costly or outright impossible.

In this respect, a recently developedmethod called the time dependent surface flux (tSURFF)method
[19, 20] has turned out to be an attractive solution. In the tSURFF approach, thewavefunction outside a certain
simulation box is absorbed, and the electronflux through the box surface is used to obtain photoelectron
spectra. This way photoelectron spectra can be computedwithminimal box sizes.

We deal with the difficulties of the few body problem and computation of photoelectron spectra by
combining quantum chemical structurewith tSURFF for single electron systems through a coupled channels
approach. The ansatz is similar in spirit to the one presented in [4]. However, unlike in [4], we deal with anti-
symmetrization exactly.We discretize ourmulti-electronwavefunctions with the neutral ground state of the
system andwith anti-symmetrized products of the system’s single ionic states and a numerical one-electron
basis. This ansatz is suitable to study single ionization problems. The ionic and neutral states are computed by
theCOLUMBUS code [21] giving us theflexibility to treat the ionic states at various levels of quantum
chemistry.While the fully flexible active electron basis describes the ionizing electron, the ionic basis describes
the core polarization and the exact anti-symmetrization ensures indistinguishability of the electrons. The
inclusion of thefield-free neutral helps us to get the right ionization potential and start with the correct initial
state correlationwithoutmuch effort.We call ourmethod hybrid fully anti-symmetrized coupled channels
method and use the acronymhaCC to refer to it in this work. Using tSURFFwith haCC,we compute
photoelectron spectrawithminimal box sizes.

We intend to communicate in this article themathematical formulation of ourmethod, and demonstrate its
usefulness by computing photoelectron spectra ofHe,H2 andBe in linearly polarized 21–400 nmwavelength
laserfields and compare themwith fully numerical two electron results.We discuss the advantages and
limitations of such an approach through suitable examples.

2.Mathematical formulation

In this section, we describe ourmathematical setup to solve theN-electron TDSE in the presence of an external
laserfield.We solve

t
Hi ˆ (1)Ψ Ψ∂

∂
=

withfixed nuclei approximation andwith dipole approximationwhich implies neglecting the spatial
dependence of the laserfield. Atomic units m e 1e

2= = = are used unless specified otherwise. The non-
relativisticN-electron field-freeHamiltonian can bewritten as:

H
Z

r a r r
ˆ 1

2

1
, (2)

i

i

p

p

i p i j i j

2
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∑ ∑ ∑= − −

⃗ − ⃗
+

⃗ − ⃗<



whereZp is the nuclear charge and a p⃗ are the nuclear coordinates of the pth nucleus. The interactionwith the
external laser field in length gauge is given by:

D E t rˆ ( ) · (3)L

j

j∑= − ⃗ ⃗

and in velocity gauge by

D A tˆ i ( ) · . (4)V

j

j∑= ⃗ ⃗

Wedescribe ourmulti-electron discretization in detail in 2.1, present the time propagation equations in 2.2
and thematrix elements in 2.3. As the basis is non-orthogonal, an overlapmatrix appears in the computation,
whose efficient inversion by low rank updates will be presented in 2.4. Treating anti-symmetrization exactly and
including neutrals introduces a technical difficulty in the formof linear dependencies in our basis. This is
handled by performing a generalized inverse of the overlapmatrix whichwill be presented in 2.5.Wework in
mixed gauge for the reasons detailed in [22] and briefed in 2.6. Finally, we present tSURFF for our coupled
channels setup in section 2.7.
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2.1.Multi-electron discretization
Wediscretize ourN-electronwavefunction by channel wave functions chosen as anti-symmetrized products of
ionic states with a numerical one-electron basis. To this we add thewave function of the neutral ground state,
resulting in the expansion

t C t C t( ) ( ) ( ), (5)∑Ψ ≈ + 


 

where

i I[ ]. (6)= 
Here,  indicates anti-symmetrization, i∣ 〉 are functions from anumerical one-electron basis, I∣ 〉 and ∣ 〉 are
(N-1) andN particle functions respectively and C t( ) , C t( ) are the time dependent coefficients.

For the single electron basis i∣ 〉weuse a finite element representation on the radial coordinate times spherical
harmonics on the angular coordinates

i r f r Y r( ) ( ) ( ˆ) . (7)i l mi i⃗ =

On eachfinite elementwe use high order scaled Legendre polynomials as basis functions. The typical orders we
use are 10–14. The details of the finite element approach used here can be found in [23, 24]. A brief description is
given in appendix for the convenience of the reader.We refer to this basis as the active electron basis.

We choose I∣ 〉 to be the eigenstates of the single ionicHamiltonian obtained from themulti-reference
configuration interaction singles doubles (MR-CISD) level of quantum chemistry. ∣ 〉 is chosen as the ground
state of the system, also obtained from theMR-CISD level of quantum chemistry. These quantum chemistry
wavefunctions are constructedwith an atom centered primitive Gaussian basis as the starting point.While ∣ 〉 is
the lowest eigenvector of theN particleHamiltonian as obtained fromCOLUMBUS, it is not the ground state of
theHamiltonian in our basis: by treating one of the electronswith the active electron basis that is superior to the
Gaussian basis one further improves the ground state energy.

Thewavefunctions ∣ 〉 and I∣ 〉 can be represented in a general form as sums of determinants:

I d ... (8)
p p p

p p p p p p
, ,..,

, ,..,

n

n n

1 2 1

1 2 1 1 2 1

⎡⎣ ⎤⎦∑ ϕ ϕ ϕ=
−

− −


d ... , (9)
p p p

p p p p p p
, ,..,

, ,..,

n

n n

1 2

1 2 1 2

⎡⎣ ⎤⎦∑ ϕ ϕ ϕ= 

where kϕ are theHartree–Fock orbitals of the neutral system. The same set ofHartree–Fock orbitals are used to
construct both ionic and neutral CI functions. This allows us to use simple Slater–Condon rules to compute any
matrix elements between them.

The explicit inclusion of the neutral ground state ismotivated by the fact that, while the ionization process
itselfmay bewell described by one or a few ionic channels, the initial ground statemay bemore strongly
correlated. In order to avoid inclusion ofmany ionic states just to describe the initial state, we include the neutral
ground state explicitly, thereby reducing the number of basis functions needed. This idea can be easily extended
to include any specific correlated state that is of importance to a particular process.

2.2. Time propagation equations
Substituting the ansatz (5) into the TDSE (1) yields a set of coupled ordinary differential equations for the time
dependent coefficients:

i
C

t

C

t
H C H C

d

d

d

d
ˆ ˆ (10)

⎡
⎣⎢

⎤
⎦⎥+ = +          

i
C

t

C

t
H C H C

d

d

d

d
ˆ ˆ . (11)

⎡
⎣⎢

⎤
⎦⎥+ = +          

The time-derivative of the coefficient vector ismultiplied by an overlapmatrix composed of the blocks 〈 ∣ 〉  ,
〈 ∣ 〉  , and〈 ∣ 〉 〈 ∣ 〉    .

We time propagate the coefficients using an explicit fourth order Runge–Kuttamethodwith adaptive step
size. In order to absorb thewavefunction at the box boundaries we use infinite range exterior complex scaling
(irECS) [23].We typically choose simulation boxes larger than the spatial extent of theHartree–Fock orbitals
and start absorption after theHartree–Fock orbitals vanish. This implies that it suffices to complex scale only one
of theN coordinates.

The cost of time propagation scales with the number of ionic states (say nI) as nI
2 and it is independent of the

exact number of electrons. Thismakes basis sets of the kind (5) attractive for treatingmany electron systems.
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2.3.Matrix elements
In order to solve the TDSEwe need to evaluate various operators. Firstly, we introduce several generalized
reduced densitymatrices with the help of creation (ak

†) and annihilation (ak) operators on the single particle
state kϕ . A pth order generalized reduced densitymatrix between the (N-1) particle ionic functions is given by:

I a a a a J... ... . (12)k k l l
IJ

k k l l, , , , ,
† †

p p p p1 1 1 1ρ =… …

Similarly, we define generalizedDyson coefficients between theN-particle neutral wavefunctions and (N-1)
particle ionicwavefunctions as

a a a a J... ... . (13)k k l l
J

k k l l, , , , ,
† †

p p p p1 1 1 1 1 1η =… … − −

With the help of these objects, we can present the final formof thematrix elements. The overlapmatrix blocks
have the form

i

i j I J i j

i j i j

1

, (14)

k
I

k

l kl
IJ

k

IJ l kl
IJ

k

η ϕ

ϕ ρ ϕ

δ ϕ ρ ϕ

=
=

= −

= −

 
 
 



where k
Iη  can be identifiedwith theDyson orbital coefficients with respect to theHartree–Fock orbitals and kl

IJρ
are the one particle reduced densitymatrices.

Any exchange-symmetric single particle operator can bewritten as

T t t t Nˆ ˆ (1) ˆ (2) ... ˆ ( ), (15)= + + +

where t uˆ ( ) is the single particle operator corresponding to the coordinate u.Matrix elements of T̂ are

T t

T t i t i

T i j I t J i t j I J i t j

i t j i j t

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ , (16)

kl k l

k
I

k klm
I

k m l

l kl
IJ

k

l kl
IJ

k c a b d abcd
IJ

ρ ϕ ϕ

η ϕ η ϕ ϕ ϕ

ϕ ρ ϕ

ϕ ρ ϕ ϕ ϕ ϕ ϕ ρ

=

= +

= + −

− −

 
 
 



 

where klm
Iη  are the three index generalizedDyson coefficients, equation (13), and abcd

IJρ are the two particle
reduced densitymatrices, equation (12).

Finally, the two particle operators

V v ijˆ ˆ ( ) (17)
i j

(2) ∑=
<

have thematrix elements

V v

V v i v i

V v i j i v j i v j

i v j v j i v i j

ˆ 1

2
ˆ

ˆ ˆ
1

2
ˆ

ˆ 1

2
ˆ ˆ ˆ

ˆ ˆ
1

2
ˆ ,

(18)

abcd a b c d

klm
I

k l m abcde
I

a b d e c

abcd a b c d kl
IJ

k l kl
IJ

k l

abcd
IJ

a c d b abcd
IJ

a b c d abcdef
IJ

a b d e f c

(2)

(2)

(2)

Direct term Standard exchange term

Other exchange terms due to non orthogonality

ρ ϕ ϕ ϕ ϕ

η ϕ ϕ ϕ η ϕ ϕ ϕ ϕ ϕ

ρ ϕ ϕ ϕ ϕ ρ ϕ ϕ ρ ϕ ϕ

ρ ϕ ϕ ϕ ϕ ρ ϕ ϕ ϕ ϕ ρ ϕ ϕ ϕ ϕ ϕ ϕ

=

= +

= + −

− − −

‐

 

 

 
     

  



 



where abcde
Iη  are the five index generalizedDyson coefficients, equation(13) and abcdef

IJρ are the three particle

reduced densitymatrices, equation (12). Although it appears from equation (18) that the necessity of abcdef
IJρ ,

abcde
Iη  leads to largememory requirements, wemust point out that the contractions v̂abcdef

IJ
a b d eρ ϕ ϕ ϕ ϕ〈 ∣ ∣ 〉 and

v̂abcde
I

a b d eη ϕ ϕ ϕ ϕ〈 ∣ ∣ 〉 can bemadewhile computing abcdef
IJρ and abcde

Iη  itself, thereby storing only simplematrices

and vectors.
In order to compute the two-electron integrals, we first project theHartree–Fock orbitals onto a single

center expansion:
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r d Y( ) ( , ), (19)k
q l m

q l m l m

k k k

k k k k k∑ϕ θ ϕ⃗ =

where qk are radial quadrature points, l m,k k refer to the angularmomentum functions and use these expansions
with themulti-pole expansion:

( ) ( )
r r L

r

r
Y Y

1 4

2 1
, , (20)

LM

L

L LM LM
1 2

1 1 1
* 2 2∑ π θ ϕ θ ϕ

⃗ − ⃗
=

+
<

>
+

with r r rmin( , )1 2=< and r r rmax( , )1 2=> .The limits for themulti-pole expansion are determined by the
angularmomenta in the one-electron numerical basis and the single center expansion for themolecular orbitals

kϕ . No other truncation schemes are employed. These two particle operators pose a challenge for efficient
computation.While the direct term is relatively easy to handle, the exchange terms consume amajor portion of
theHamiltonian setup time.

2.4. Inverse of the overlapmatrix
The overlapmatrix (14) is not a standard finite element overlapmatrix, whichwould be banded andwould allow
for efficient application of the inverse. Rather, non-orthogonality between the active electron basis and the
Hartree–Fock orbitals leads to extra cross terms that destroy the banded structure in general and complicate the
computation of the inverse. However, the inverse of the overlap can still be computed efficiently using low rank
updates.We use here theWoodbury formula [25], according towhich the inverse of amodifiedmatrix of the
form S U U( )0

†Λ− can be computed as:

S S U U

S S U U S U U S

( )

( ) . (21)

1
0

† 1

0
1

0
1 †

0
1 1 1 †

0
1

Λ

Λ

= −

= − −

− −

− − − − − −

As an example, with 2 ionic states and 1 neutral the overlapmatrix (14) can be cast in the form:

S
s

s
u

u U
0 0

0 0

0 0 1

0 0
0 0
0 0 1

[ ] [ ] 0

(22)

S U

T T

0

0

11 12 1

21 22 2

1 2

†

0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

ρ ρ η
ρ ρ η

η η

= −

Λ

     
  




 

which is suitable for theWoodbury formula (21). Here, s i j( )ij0 = 〈 ∣ 〉 and u iik kϕ= 〈 ∣ 〉. Let na denote the
number of active electron basis functions i∣ 〉 and nhf be the number ofHartree–Fock orbitals kϕ that ismuch
smaller that na. The overlapmatrix s0 has dimensions n na a× but is narrowly banded, and the dimensions of
matrix u are n na hf× .

Let nI be the number of ionic states. Then the overlap S and S0 are n n n n( 1) ( 1)I a I a+ × + matrices, where
the inverse of S0 can be easily applied. ThematrixU is n n n n( 1) ( 1)I a I hf+ × + andΛ is

n n n n( 1) ( 1)I hf I hf+ × + . This low rank structure of the correction terms can be utilized to compute the
inverse efficiently by using theWoodbury formula.

2.5.Handling linear dependencies
Anti-symmetrization and non-orthogonality of the active electron basis with respect to theHartree–Fock
orbitalsmay render our basis linearly dependent. If the i{ }∣ 〉 -basis is near-complete w.r.t. theHF-orbital basis

i s j[ ] , (23)k ij l kl0
1ϕ ϕ δ≈−

it is possible tofind coefficients ci I, such that

c i I[ ] 0. (24)
i I

i I

,

,∑ ≈

Anobvious case where this happens is when one and the sameHForbital k0
ϕ appears in all the ionic

determinants. For a linear combination c i
i i I k, 0

∑ ϕ∣ 〉 ≈ anti-symmetrization renders equation (24) near zero.

As a result, the overlapmatrix becomes non-invertible. A possible solutionwould be to orthogonalize the active
electron basis with respect to theHartree–Fock orbitals. But this is not an easily implementable solutionwith a
CI ionic basis. For each determinant, the set ofHartree–Fock orbitals with respect towhich the active electron
basismust be orthogonal is different.

As an alternative solutionwe use a generalization of theWoodbury formula (21) to compute the inverse of a
matrix only on the subspace of the non-zero eigenvectors of thematrix. LetZ denote the n nz0 × matrix of
eigenvectors with near-zero eigenvalues z p n, 1, ,p zϵ< = … of the generalized eigenvalue problem

5
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SZ S Zd , (25)z0=

with dz denoting the diagonalmatrix of the eigenvalues zp andZ satisfying the orthonormality relation
Z S Z 1†

0 = . In general, therewill be comparatively few such eigenvectors n nz 0≪ and these can be easily
determined by an iterative solver.We can remove these singular vectors fromour calculation by the projector

Q ZZ S1 . (26)†
0= −

The projector property Q Q2 = can be easily verified. As the projector refers to the generalized eigenvalue

problemwith S 10 ≠ ,Q is not an orthogonal projector, that is Q Q† ≠ .We define a pseudo-inverse S̃ 1− of S on
the subspace of generalized eigenvectors with non-zero eigenvalues with the property

S SQ Q˜ . (27)1 =−

One can verify directly that the generalizedWoodbury formula

S QS U U QS U U QS˜ 1 ( ) (28)1
0

1 †
0

1 1 †
0

1⎡⎣ ⎤⎦Λ= − −− − − − −

satisfies the definition (27). Thematrix U QS U( )†
0

1 Λ−− is invertible on all vectors appearing inU Q† to its right,
as exactly the singular vectors are removed by the projectorQ. Apart from the necessity to determineZ during
setup, the correction does not significantly increase the operations count for the inverse overlap.

2.6. Choice of gauge
In [22], we had shown that when an electron is treatedwith a restricted basis, for example, in terms of a few
bound states, the length gauge is amore natural gauge. Compared to pure velocity gauge, the coupled channel
computations converge quickly inmixed gaugewith length gauge spanning the region of the ionic states and
velocity gauge thereafter for asymptotics. In this current work, we use continuous gauge switching, detailed in
[22], for its easy implementation. Starting from the length-gauge, we solve the TDSE after applying the gauge
transformation

U

r r

A t r r r r r

1 for ,

exp i ( ) · ˆ ( ) for .
(29)c

j

N

j j

g

1

g g

⎧
⎨
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⎩
⎪⎪

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑=

⩽

⃗ − >
=

Here, rg is the gauge radius that separates the length gauge and velocity gauge regions.

2.7. Computation of photoelectron spectra
The computation of photoelectron spectra is expensive for two reasons. (1) The asymptotic part of the
wavefunction is needed to extract photoelectron spectra, whichmeans large simulation boxes to preserve the
asymptotic part and to avoid any numerical reflections thatmay corrupt thewavefunction. (2) Single
continuum states are needed intowhich thewavefunctionmust be decomposed, in order to obtain
photoelectron spectra. These two problems are circumvented in a recently developedmethod tSURFF [19, 20]:
one computes the spectra by a time integration of electron flux through a surface defined by a radiusRc called the
tSURFF radius. TheCoulomb potential is smoothly turned off beforeRc, which implies that the scattering
solutions thereafter are thewell knownVolkov solutions.Rc becomes a convergence parameter, and by varying
this radius, one can compute spectra to a given accuracy. Thismethod has been explained in detail in previous
works for single ionization in [19] and for double ionization in [20]. A proposal for extension of thismethod for
single ionization ofmulti-electron systems has been outlined in [20].We describe here the application of the
methodwith our coupled channels setup.

Let kχ be the scattering solutions which take the formofVolkov solutions beyondRc and T( )Ψ be the
wavefunction at some large timeT. According to tSURFF for single electron systems, photoelectron spectra can
be computed as bk k

2σ = ∣ ∣ with bk defined as:

b T R T

t t A t R t

( ) ( ) ( )

i d ( )
1

2
i ( ) · , ( ) ( ) . (30)

k k c

T

k c
0

⎡
⎣⎢

⎤
⎦⎥∫

χ Θ Ψ

χ Θ Ψ

=

= − △ + ⃗ ⃗

Here R( )cΘ is aHeaviside function that is unity for r Rc> and 0 elsewhere.
This formulation can be easily extended to theN electron problem in a coupled channels setup. In the

present setup, wemostly take a set of ionic bound states for the ionic basis. These states have afinite extent.We
may chooseRc such that the electrons described by the ionic basis vanish byRcwhichmeans all the exchange
terms in theHamiltonian vanish afterRc. The remaining direct potential can be smoothly turned off just as the
Coulombpotential. This implies that thewavefunction beyondRc evolves by theHamiltonian:
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H r R H A t( ) 1̂ 1̂
1

2
i ( ) · (31)c ion ion

⎡
⎣⎢

⎤
⎦⎥> = ⊗ + ⊗ − △ + ⃗ ⃗

that allows for a complete set of solutions of the form:

r r t r r t r t( , , , ) ( , , , ) ( , ) , (32)c k n c n k n, 1 1 1
⎡⎣ ⎤⎦ξ κ χ⃗ … ⃗ = ⃗ … ⃗ ⊗ ⃗−

whereHion is the single ionicHamiltonian and t( )cκ are time dependent ionic channel functions solving the
TDSE

t

t
H ti

( ) ˆ ( ) (33)c
cion

κ
κ

∂
∂

=

within the ansatz in terms offield-free ionic states

t I d t( ) ( ). (34)c

I

cI∑κ =

With the help of the c k,ξ , channel resolved photoelectron spectra can be computed as

r r T R r r T( , , , ) ( ) ( , , , ) (35)c k c k n c n, , 1 1
2

σ ξ Θ Ψ= ⃗ … ⃗ ⃗ … ⃗

and the asymptotic decomposition ofΨ in terms of c k,ξ is obtained as
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wherewe introduced the time-dependentDyson orbitals

r t r r t r r t( , ) : ( , , , ) ( , , , ) . (37)c n c n n1 1 1ζ κ Ψ⃗ = ⃗ … ⃗ ⃗ … ⃗−

The commutator of the derivatives with theHeaviside functionΘ gives δ-like terms involving values and
derivatives ofΨ at the surface r Rc∣ ⃗ ∣ = . Aswe chooseRc such that theHartree–Fock orbitals vanish by then, we
do not need to consider the exchange terms in computing cζ . Alongwith time propagating theN electron
problem, one needs to also time propagate the ionic problem (33).

A detailed discussion of performance and intrinsic limitations of the tSURFFmethod is contained in
[19, 20].We here summarize themain points of this discussion. The strength of tSURFF lies (a) in a dramatic
reduction of the required numerical box sizes to compute accurate spectra and (b) in the fact that no scattering
states are needed for spectral analysis. As the asymptotic scattering information is generated during time-
propagation rather than by solving an independent stationary problem, propagation timesmust be long enough
for all relevant processes to terminate and for all electrons to pass through the surface. This favors the application
of themethod for fast processes. For slowprocesses like emission at near zero electron energy or the decay of
long-lived resonances purely stationarymethods ormethods that combine solutions of the TDSE during pulse
with a stationary analysis after the end of the pulsemay become advantageous. Also, if small boxes are used, the
capability for representing very extended objects like Rydberg states is limited by the box size.Wewill illustrate
these points belowwhen discussing photo-emission from the helium atomat short wave length.

2.8. Spin symmetry
Aswe solve the non-relativistic TDSE, the total spin of the system is conserved during the time evolution.We can
therefore remove the spin degree of freedom through suitable linear combinations of the anti-symmetrized
products in the basis (5) to enforce a particular spin symmetry. This reduces the size of our basis.We consider
only singlet spin symmetric systems in this work. As an example, we showhow singlet spin symmetry can be

enforced. Let ↑ and ↓ indicate the spin states 1

2
± associatedwith a spatial function. Choosing linear

combinations of the kind:

I i
I i I i

[ ]
2

(38)
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

≔
−↑ ↓ ↓ ↑

  

enforces singlet symmetry. This can be extended to creating linear combinations that enforce an arbitrary spin
symmetry.
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3. Two-electron benchmark calculations

Weuse two-electron full dimensional calculations (full-2e) as benchmark for our haCC computations.We solve
the two-electronTDSEusing an independent particle basis of the form:

( ) ( )r r t c t f r f r Y Y( , , ) ( ) ( ) ( ) , , , (39)
k k l l m

k k l l m k k l m l m1 2 1 2 1 1 2 2

1 2 1 2

1 2 1 2 1 2 1 2∑Ψ θ ϕ θ ϕ⃗ ⃗ = −

where c t( )k k l l m1 2 1 2
are the time dependent coefficients, f r f r( ), ( )k k1 21 2

are functions from afinite element

discretization of the same type as for our active electron basis andYlm are spherical harmonics.We use the same
type of single center expansion for all the benchmark computations. A complete description of thismethodwill
be presented elsewhere [24]. Solving the TDSEwith the expansion (39) needsmuch larger computational
resources compared to the haCC approach.

The purpose of the two-electron calculations is to demonstrate towhich extent these fully correlated
calculations are reproduced by the haCC approach. For that we use the same tSURFF propagation times and
identical box sizes when comparing the two types of calculations. Full convergence of the two-electron
calculation in propagation time and box size is not discussed in the present paper.

4. Single photoelectron spectra

In this section, we present photoelectron spectra fromhelium and beryllium atoms and from the hydrogen
molecule with linearly polarized laserfields computedwith the above described coupled channels formalism.
We also present the single photon ionization cross-sections for the beryllium atomand thewavelength
dependence of the ionization yield for the hydrogenmolecule to comparewith other existing calculations.We
use cos2 envelope pulses for all the calculations and the exact pulse shape is given as

A t A
t

cT

t

T
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2
sin

2
(40)z 0

2⎜ ⎟ ⎜ ⎟⎛
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⎠
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E t
A t

t
( )

d ( )

d
, (41)z

z= −

whereT is the single cycle duration, A E T (2 )0 0 π= for a peak field strength E0, c is the number of laser cycles
and β is the carrier envelope phase.We compare our results for helium and the hydrogenmolecule with full-2e
calculations [24] and for berylliumwith effective two electronmodel calculations.

The convergence of the full-2e benchmark calculations and the haCC calculations were done systematically
and independently. All the spectra presented herewere computedwith simulation box sizes on the scale of
R 30c ∼ −50 a.u. The radialfinite element basis consisted of high order polynomials with typical orders 10–14
and the total number of radial basis functionswas such that therewere 2–3 functions per atomic unit. The
angularmomenta requirement strongly depends on thewavelength. The longer wavelengths needed larger
number of angularmomenta for convergence. For the examples considered below, the angularmomenta range
from L 5max = at 21 nm to L 30max = at 400 nm.All the calculations presented are convergedwith respect to the
single electron basis parameters like the order and the box size, well below the differences caused by inclusion of
ionic states. Hence, we only present various observables as a function of the number of ionic states.

The storage requirements with the algorithms that we use are dictated by the two particle reduced density
matrices. For the largest problem considered here, with 11 ionic states (nI) and about 50molecular orbitals (nhf),

the number of doubles that had to be stored is given by the formula:
n n n n( 1)

2

( 1)

4
I I hf hf

2 2+ +
, which yields a

storage requirement of 1.7GB. This is not a large requirement in the context of the currently available
computational resources. In order to avoid replication, these objects were stored in sharedmemory. The
computation times varywidely depending on thewavelength and the number of ionic states in the basis. They
scale with the square of the number of ionic states. For the cases presented here, the required times range from
0.25–30 h on an eight coremachine. These times also have a strong dependence on the exact time propagators
used and a discussion on the suitable time propagators is out of the scope of this work.

4.1.Helium
Helium is the largest atom that can be numerically treated in full dimensionality.With linearly polarized laser
fields, the symmetry of the system can be used to reduce the problem tofive-dimensions. The energies of the
helium ionic states are n2 2− for principal quantumnumber n. Thefirst two ionic states are separated by 1.5 a.u.
in energy, which is large, for example, compared to a photon energy of 0.456 a.u. at 100 nm. This has been a
motivation to treat helium as an effective single electron systemwith XUV and longer wavelengths in some
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earlier works, for example in [26].We examine below the validity of treating helium as an effective single
electron system, by comparing haCC calculations with full dimensional calculations at different wavelengths.

Figure 1 shows photoelectron spectra fromheliumwith a 21 nm (ω = 2.174 a.u.), three cycle laser pulse with
a peak intensity of 10 W cm15 2− . The one and two photon ionization peaks of 1s and 2pz channel spectra are
shown. The relative errors of haCC calculations are computedwith respect to the full dimensional calculation.
The single photon peak of the 1s channel is computed to a few percent accuracy, except for a feature around 1.3
a.u., with a single ionic state. The resonant feature can be identifiedwith the 2s2p doubly excited state [27],
which is reproduced to few percent accuracywith the addition of 2nd shell ionic states.While the position of the
resonance is reproduced accurately in the calculations presented here, the propagation timewaswell below the
life-time of this resonance which is reflected in thewidth of the feature that is well above the natural line width.

The two photon peak of the 1s channel and the 2pz channel spectra (figure 1) needmore than a single ionic
state and they could be computed only up to 15%accuracy even after inclusion of 9 ionic states (n 3⩽ ).

A broadband (few cycle) XUVpulse tends to excite the initial state into a band offinal states whichmay
includemany correlated intermediate states. Here, the intrinsic limitations of any coupled channels approach
that is based on ionic bound states only are exposed. Firstly, a correlated intermediate state with a bound
character needs large number of ionic states to be correctly represented. Secondly, the ionic bound states based
onGaussian basis sets do not have the exact asymptotic behavior. This can lead to an inaccuracy in length gauge
dipolematrix elements. Finally, the absence of ionic continuum states in our approach is another possible source
of inaccuracy. Due to these limitations, we do not expect the shake-up channel spectra to bemore accurate
than 10–15%.

For obtaining long-lived resonance structures by a time-dependentmethod onemust, as a general feature of
suchmethods, propagate for times at least on the scale of the life time of the resonance. The only alternative is to
independently solve the stationary resonant scattering problem and decompose the time-dependent solution
after the end of the pulse into the corresponding scattering continuum. Solving the scattering problem, however,
is a computationally very demanding task by itself. For obtaining the resonances with tSURFF, one can simply
propagate until the resonance has decayed completely and allflux has passed through the surface where the flux
is collected. At this point it should be remarked that the relevant information about resonancesmay be generated
more efficiently by stationarymethods like time-independent complex scaling [27, 28]. As the comparison in
figure 1 is with the two-electron codewhere long propagation times become rather costly, we compare the
spectra at timeT=60 laser cycles, where the resonances have not emerged yet.

With haCC, due to its very compact representation, we can easily propagatedmuch longer to obtain the
resonances to any desired accuracy. Figure 2 shows how the n 3⩽ resonances emergewith increasing
propagation times in the 1s and 2pz channels. For example, at the 2s2p decaywidth of 1.37 10 3Γ = × − , one
expects 76.5% of the Auger electrons to have passed through the surface r 45∣ ⃗ ∣ = at timeT= 400,which
increases to 95.2% atT=800. The ratio of 1.24 between these numbers closelymatches the increase ofmass in
the 2s2p peak by 1.23 infigure 2. The positions of the resonances are accurate on the level of 10−3 a.u. in energy
[27], showing that the correlated states are well represented by themethod.Herewe had chosen a box size of 45
a.u. which is sufficient to represent doubly excited states from2s2p to 2s6p states. Hence, only these states are

Figure 1.Photoelectron spectra fromheliumwith three-cycle, 21 nm laser pulse with a peak intensity of 10 W cm15 2− . Left figure:
ground state channel (1s) , Right figure: a first excited state channel (2pz). The upper panels show spectra obtainedwith a full-2e and
haCC calculations with different number of ionic states included as indicated in the legend.Here, n is the principal quantumnumber.
The lower panels show relative errors of haCC calculations with respect to full-2e calculations. The inset shows the 2s2p resonance
(seemain text).
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seen in the spectra. One can obtain the higher excited states by increasing the box size, at the penalty of a larger
discretization and somewhat longer propagation times, see discussion in section 2.7. Similar as long lived
resonances, threshold behavior of the spectrumnear energy zero only emerges with propagation time, figure 2.
Further distortions near threshold are due to the effective truncation of theCoulomb tail in the absorbing
region. In the present example, these effects produce an artefact at energies 0.02≲ a.u. in the right panel of
figure 2. Accuracies at the lowest energies can be pushed by increasing both, simulation box size and propagation
times.

Figure 3 shows total photoelectron spectra fromhelium at 200 and 400 nmwavelengths. The exact laser
parameters are indicated in the figure captions. At 200 nm (ω = 0.228 a.u.), the ionization threshold is four
photons. A single ionic state calculation produces spectra that are 10% accurate with respect to a full
dimensional calculation. Addition of second and third shell ionic states improves the accuracy of the spectra to
few percent level in the important regions of the spectrum. At 400 nm (ω = 0.114 a.u.), the ionization threshold
is eight photons. Also here, a single ionic state computation produces spectra that are 10% accurate with respect
to a full dimensional calculation. Addition ofmore ionic states, does not improve the accuracy further. This is
possibly due to themissing continuumof the second electron that is needed to fully describe the polarization of
the ionic core.

At longer wavelengths, wefind that single ionic state computations are sufficient to produce spectra accurate
on the level of 10%. This is consistent with the knowledge that at longer wavelengths, it is the ionization

Figure 2.Photoelectron spectra (in selected energy range) fromhelium for the case n 3⩽ infigure 1with different total time
propagation.T is the time propagation in the units of laser cycles. Left panel: 1s ionic channel, right panel: 2pz ionic channel.T=60 is
from figure 1.

Figure 3.Total photoelectron spectra fromheliumwith Left figure: three-cycle, 200 nm laser pulse with a peak intensity of
10 W cm14 2− , Right figure: three-cycle, 400 nm laser pulse with a peak intensity of 3 10 W cm14 2× − . The upper panels show spectra
obtainedwith a full-2e and haCC calculationswith different number of ionic states included as indicated in the legend.Here, n is the
principal quantumnumber. The lower panels show relative errors of haCC calculationswith respect to full-2e calculation.
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thresholds that play amore important role in determining the ionization yields compared to the exact electronic
structure. Ourfindings show that helium at longwavelengths can be approximated as a single channel system.

4.2. Beryllium
Beryllium is a four electron system that is often treated as a two electron systemdue to the strong binding of its
inner two electrons. The third ionization potential of beryllium is 153.8961 eV [29].With photon energies below
this third ionization potential, it can be safely treated as an effective two electron system. This allows us to have a
benchmark for our spectra by adapting the simple Coulombpotential to an effective potential in our two
electron code.We use the effective potential given in [6] for our benchmark calculations.We refer to these as
‘effective-2e’ calculations.

Table 1 lists the energies of the first 8 ionic states of beryllium relative to the ground ionic state. As the ionic
excitation energies aremuch smaller than inHeliumonewould expect inter-channel couplings to play a
greater role.

Figure 4 shows photoelectron spectra fromberylliumwith 21 and 200 nmwavelength laser pulses. The exact
parameters are indicated in the figure caption. The relative errors of spectra from the haCC calculations are
computedwith respect to the effective-2e calculations.

At 21 nm, the one and twophoton ionization peaks of ground state channel spectra are shown.Here, the
single photon ionization process itself needsmore than the ground ionic state to produce accurate
photoelectron spectra. Addingmore ionic states improves the accuracy to a few percent level.Wefind that the
close energetic spacing of beryllium ionic states leads to a greater possibility of inter-channel coupling, which
requiresmore than the ground ionic state to bewell represented.

Also, at 200 nmweneedmore than the ground ionic state to compute realistic spectra.With1s 2s2 , 1s 2p2

ionic states included, the spectra produced have 20%accuracywith respect to the benchmark calculation.With
the addition of 1s 3s2 and1s 3p2 states, a structure similar to the one predicted by the benchmark calculation

develops around 10 eV. This structuremay be identifiedwith the lowest resonance 1s 2p3s2 at 10.71 eV [6]. The
coupled channels calculations with the number of ionic states considered here, however do not reproduce the
structure on the second peak exactly. This points to a feature of a coupled channels basis that the correct
representation of a strongly correlated state that has bound character requires a large number of ionic states. As

Table 1.Energies of the used single ionic states of beryllium relative
to the ground state ion. TheCOLUMBUS [21] ionic states are com-
puted atMR-CISD level with aug-cc-pvtz basis.

Ionic state NIST database (eV) Columbus energies (eV)

1s 2s2 0.0 0.0

1s 2p2 3.9586 3.9767

1s 3s2 10.9393 10.9851

1s 3p2 11.9638 12.1407

Figure 4.Photoelectron spectra from the beryllium atom. Left figure: ground state channel spectra with three-cycle, 21 nm laser pulse
with a peak intensity of 10 W cm15 2− . Right figure: total spectrawith three-cycle, 200 nm laser pulse with a peak intensity of
10 W cm14 2− . The upper panels show spectra obtainedwith effective-2e and haCC calculations with different number of ionic states
included as indicated in the legend. The lower panels show relative errors of haCC calculationswith respect to the effective-2e
calculations.
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an alternative strategy, one can explicitly include the correlated state of importance into the basis, if it can be pre-
computed, on the same footing as the correlated ground state.

It has been shown through examples in section 4.1 that helium can bemodeled as single channel system at
longer wavelengths. Lithium, the smallest alkalimetal, also has been successfullymodeled as a single electron
system in an effective potential, for example in [30].Wefind that berylliumneeds at least two ionic states,1s 2s2

and1s 2p2 , for a realisticmodeling. It serves as a first simple examplewhere single electronmodels break down
andmultiple channels need to be considered.

Infigure 5, we present the single photon ionization cross-sections as a function of photon energy fromour
haCCmethod and compare themwith the cross-sections calculatedwith TD-RASCImethod [11] andR-matrix
method [31] andwith experimental results from [32]. The cross-sections in our time dependent approach are
computed using the equation (51) given in [18]withwhich theN photon ionization cross-section, N( )σ in units
cm sN N2 1− can be computed as:

I
a t(8 )

3.5 10
, (42)N N

N

N N N( )
16

0
2

0
1

⎛
⎝⎜

⎞
⎠⎟σ πα ω Γ= × −

where I is the intensity in W cm 2− ,ω is the laser frequency in a.u., α is thefine structure constant and a0, t0 are
atomic units of length and time respectively.Γ is the total ionization ratewhich is computed in a time dependent
approach bymonitoring the rate at which the normof thewavefunction in a certain inner region drops. Aswe
are computing the rate, the exact size of the inner region does not play a role. The normdrop reaches a steady
state irrespective of the inner region size.We used for our computations presented here a 40-cycle continuous
wave laser pulse with a three cycle cos2 rampup and rampdown andwith an intensity of10 W cm12 2− .We
checked convergencewith respect to the pulse duration and the inner region size, and the computations are
convergedwell below the differences seen by addition of ionic states in the basis.

All the theoreticalmethods agree with each other qualitatively, though there are differences on the level of
5–10%quantitatively. The experimental results from [32] have error bars on the level≲10% (0.1Mb)which are
not shownhere. All the theoretical results lie in this range except at low energies. In the higher photon energy
range, 30–60 eV, the haCC results and theR-matrix results are in good agreement compared to the TD-RASCI.
In the haCC calculations, includingmore than 4 ionic states does not change the cross-sections. In the photon
energy range 20–30 eV, the haCC computationswith 5 and 8 ionic states are in good agreement with TD-RASCI
results compared to theR-matrix results. In this energy range, the cross-sections fromhaCC calculations show a
dependence on the number of ionic states included. Thismodulationmay be attributed to the presence of auto-
ionizing states in this region. Table 3 in [6] presents a list of resonances that appear in beryllium electronic
structure. Thefirst ionization potential is 9.3 eV.With photon energies around 20 eV, the resulting
photoelectron reaches continuum regionwhere a number of resonances are present. As correlated resonances
needmany ionic states to bewell represented in a coupled channels basis, thismay explain the dependence of the
cross-section on the number of ionic states in 20–30 eVphoton range.

4.3.Hydrogenmolecule
The hydrogenmolecule in linearly polarized laser fields parallel to themolecular axis, with fixed nuclei has the
same symmetry as helium in linearly polarized laser fields. The off-centered nuclear potential, however,

Figure 5. Single photoionization cross-sections for beryllium in the photon range of 20–60 eV. Presented are results fromhaCC
calculations with 4, 5, 8 ionic states. Thefigure shows a comparisonwith earlier calculations using TD-RASCImethod [11],R-matrix
method [31] andwith experimental results from [32].
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increases the angularmomenta requirementwhen treatedwith a single center expansion.While the number of
basis functions can be reduced through a choice of amore natural coordinate system like prolate spheroidal
coordinates for diatomics [33], the challenge of computing two electron integrals remains. In the case of
hydrogenmolecule at equilibrium internuclear distance (R0 = 1.4 a.u.), a calculationwith single center
expansion easily converges, as the proton charges do not significantly distort the spherical symmetry of the
electron cloud. As a benchmark for spectra, we use results from a full dimensional calculation, that expands the
wavefunction in a single center basis.

Figure 6 shows photoelectron spectra fromH2 at 21 nmwavelength. The exact laser parameters are given in
thefigure caption. The ground state (1 gσ ) andfirst excited state (1 uσ ) channel spectra are shown.Wefind that, at
this wavelength, a single ionic state is not sufficient to produce accurate photoelectron spectra.With the addition
ofmore ionic states, there is a systematic improvement in the accuracy of the calculations.With 11 lowest σ and
π ionic states included, we obtain an accuracy of about 10% for the 1 gσ channel. The single photon ionization to
the shake-up channel 1 uσ is also computed to a few percent accuracywith 11 ionic states.Wefind that the single
ionization continuumofH2 ismore complex than helium and it needsmore than a single ionic state.

With 4 and 6 ionic states, wefind artefacts on the two photon peaks. This is a result of a part of the
COLUMBUSneutral ground state ∣ 〉 appearing in the eigenvalue spectrumof theHamiltonian as a spurious
doubly excited state s∣ 〉. Let CΠ be the projector onto the subspace spanned by the coupled-channels basis

i I[∣ 〉∣ 〉 . Then parts of the correlation contained in ∣ 〉 cannot be presented in that basis such that a non-zero
correlated state

s ( 1 ) 0 (43)CΠ= − ≠
appears at elevated energies. This spurious correlated statemoves to higher energywith addition of ionic states.
A straight forward solution to this problem is to compute this state and project it out from the basis. But this
would require locating the spurious state in the eigenvalue spectrum,which is very demanding for large
Hamiltonians. Fortunately, by their dependence on the number of ionic states, artefacts of this kind are easily
detected and can bemoved out of the region of interest by using sufficientlymany ionic states. Such artefacts are
a natural consequence of any ansatz of the kind (5) and need to bemonitored.

Figure 7 shows total photoelectron spectra at 200 and 400 nmwavelengths. At 200 nm, spectra are accurate
up to 10%with 2 ionic states. Addition ofmore ionic states helps reproduce additional resonant features in the
spectrum. Also at 400 nm, 2 ionic states are sufficient to compute spectra that are accurate on 10% level, except
for the resonant features. Inclusion of up to 6 ionic states reproduces the feature around 0.62 a.u. in the 400 nm
spectrum,whichmay be attributed to second or third u

1Σ + doubly excited state [34].Wefind that withH2 at
longer wavelengths, ground ionic state is sufficient to compute realistic spectra and only for resonant features a
large number ionic states is required.

Figure 8 shows total ionization yield as a function of photon energy in the range 0.17–0.5 a.u. Results from
haCC are comparedwith data available fromother theoreticalmethods—time-dependent CImethod from [35]
and FNA-TDSE (fixed nuclei approximation)method from [7]. In addition, several points fromour tSURFF-

Figure 6.Photoelectron spectra fromH2with a three-cycle 21 nm laser pulse with a peak intensity of 10 W cm15 2− . Left figure: ground
state channel (1 gσ ) Right figure: first excited state channel (1 uσ ). The upper panels show spectra obtainedwith full-2e and haCC
calculations with different number of ionic states (I) included (as indicated in the legend). The lower panels show relative errors of
haCC calculations with respect to the full-2e calculation.With I=4, 6, there are visible artefacts on the two photon peaks around 3 a.u.
which are explained in the text.
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based full-2emethod are included. The haCC calculations shownwere performed using two ionic states,
convergence was verified by performing four-state calculations at selected points. The vertical lines in the figure
separate differentmulti-photon ionization regimes. The haCC,CI and full-2e are in fair agreement, while FNA-
TDSE reproduces the threshold behavior, but severely, by up to an order ofmagnitude, deviates from the other
calculations. Themost conspicuous discrepancies between haCC andCI appear in the range 0.3 0.4∼ a.u.
where CI exceeds haCCby about 20%. The discrepanciesmay be a result of the intrinsic limitations or the
convergence of either calculation. For example, there areminor discrepancies in the ionization potential: the
accurate value atH2 equilibrium inter-nuclear distance (R 1.40 = a.u.) is 0.6045 a.u.(table 1 in [36]),the
ionization potential in [35] is 0.590 36 a.u., whereas in our calculations we obtain 0.6034 a.u. Also note that the
results in [35]were shifted by 0.0092 a.u. in energy tomatch the resonance at 0.46 a.u. Although these
differences areminiscule for energies theymay indicate for somewhat larger deviations in thewave functions
and the values of ionization potentials give ameasure for the accuracy of the computations. Our full-2e
computations that, in principle, could help to resolve the discrepancy are expensive and have not been pushed to
an accuracy level whichwould allow to decide between the two results. However, we believe that the present level
of agreement between haCC andCI is quite satisfactory and supports the validity of both approaches.

Figure 7.Total photoelectron spectra fromH2with—left figure: three-cycle 200 nm laser pulse with a peak intensity of 10 W cm14 2− .
Right figure: three-cycle 400 nm laser pulse with a peak intensity of 10 W cm14 2− . The upper panels show spectra obtainedwith full-2e
and haCC calculations with different number of ionic states (I) included as indicated in the legend. The lower panels show relative
errors of haCC calculationswith respect to the full-2e calculation.

Figure 8. Ionization yield fromH2 at equilibrium internuclear distance (R 1.40 = a.u.) as a function of photon energy. Laser
parameters: 10 W cm12 2− peak intensity, cos2 envelope pulses and 10 fs pulse duration (In equation (40) cT2 = 10 fs). A comparison
of haCC calculations with 2 ionic states withCI results from [35] and FNA-TDSE results from [7] and full-2e results. The dashed
vertical lines separate differentmulti-photon ionization regimes.
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5. Conclusions

The hybrid anti-symmetrized coupled channelsmethod introduced here opens the route to the reliable ab initio
calculation of fully differential single photo-emission spectra from atoms and smallmolecules for a broad range
of photon energies. It unites advanced techniques for the solution of the TDSE for one- and two-electron
systems in strong fields with state of the art quantum chemistrymethods for the accurate description of
electronic structure and field-induced bound state dynamics. For the specific implementationwe have relied on
afinite element description of the strongfield dynamics andGaussian-basedCI package of COLUMBUS.

Key ingredients for the successful implementation are good performance of tSURFF for the computation of
spectra from comparatively small spatial domains on the one hand and access to thewell established technology
of quantum chemistry on the other hand.We could obtain the quantum chemical structure in the formof the
complete expansion into determinants fromCOLUMBUS. In future implementations, itmay be sufficient to
output from a given package the generalized one, two, and three-electron densitymatrices together with
generalizedDyson orbitals, both defined in the present paper. It turned out to be instrumental for accurate
results that haCC allows for the inclusion of neutral states in a natural fashion and at very low
computational cost.

Several new techniqueswere introduced and implemented for the establishment of themethod.Most
notably, themixed gauge approach [22] turned out to be crucial for being able to take advantage of the field-free
electronic structure in presence of a strong fieldwithout abandoning the superior numerical properties of a
velocity-gauge like calculation. Thefinite elementmethod used for single-electron strong-field dynamics is
convenient, but certainly not the only possible choice. Similar results should be achievable with higher order
B-splinemethods or any other discretization suitable for solutions of the single electron strong field Schrödinger
equation. Low-rank updates are used in several places for the efficient computation of the inverses of the large
overlapmatrix and to control the linear dependency problems arising from anti-symmetrizing the essentially
completefinite elements basis against theHartree–Fock orbitals.

We havemade an effort to explore the potential range of applicability of themethod by performing
computations in awide range of parameters on a few representative systems, where results can be checked
against essentially completemethods. Spectra for theHe atomwere independently obtained from fully
correlated two-electron calculations.We could demonstrate that haCC gives spectra on the accuracy level 10%
with very low effort. An interesting observation is that in the longwavelength regime indeed a single ionization
channel produces correct results, justifying ex postwide spreadmodel approaches of the strong field community.
As a note of caution, we recall that this is only possible as the fully correlated initial state is routinely included in
the haCC scheme. At short wavelength, the ionic excited state dynamics plays a larger role and reliable results
require inclusion of up to 9 ionic channels.With this we could correctly resolve also the peak due toHe’s doubly
excited state.

The second atomic system, Be, was chosen to expose the role of electronic dynamics in the ionic states.While
the 1s core electrons are energetically well-separated and no effect of their dynamics was discernable in a
comparisonwith a frozen coremodel, the narrow spaced ionic states preclude single channelmodels.
Depending on the observable and on desired accuracies, aminimumof two ionic channels had to be used.

For the comparison ofH2 photoionization and photoelectron spectra, we could refer to literature and
supplemented the data with full two-electron calculations. At 400 nm,H2 can be treated as a single channel
system. At intermediate wavelengths, wefind the need for at least two ionic channels, andwe could obtain a fair
agreementwith comparison data.Here one has to take into consideration that all alternativemethods operate
near the limits of their applicability.

With this set of results we demonstrated the correctness of themethod and its essential features. In our
calculations, also the fundamental limitations of the approachwere exposed. Clearly, the field-induced
dynamics of the ionic partmust be describable by a few states with bound character. haCC shares this limitation
with any expansion that is limited to a few ionic states. Note that the problem is partlymitigated by the possibility
to include fully correlated ground as well as singly- and doubly-excited states with bound-state character that are
known to appear in the dynamics.

Themethod in its present implementation can be applied tomany electron atoms [37] and smallmolecules
such asN2 andCO2, whichwill be reported in a forthcoming publication.The ionic states in thesemolecules are
closely spaced as in beryllium and hence theywould also need several ionic states in the basis for convergence.
We have no reliable heuristics to a priori estimate the number of states needed for a given accuracy. From the
present experience, we expect that at longwavelengths, for example at 800 nm, inclusion of ionic states in the
range of 5–6 eVbelow thefirst ionization thresholdmay be sufficient for convergence. This translates to about
5–6 ionic states in the basis for these systemswhich is a feasible problem.

At themoment, the computation of the two-electron integrals poses amild technical limitation for such
calculations, and an improvement of the presently rather straight-forward algorithm is needed for going to
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larger systems.Treatingmolecular systemswith lower symmetry leads to a furtherfill in of theHamiltonian
matrix due to the large number of allowed transitions. Such calculations appear quite feasible aswell, however at
comparatively higher resource consumption than the fewhours on a eight-coremachine needed for themajority
of the results presented here. Another limitation arises when themolecule becomes too large for computing even
strongfield single-electron dynamics over its complete extension. At present, tSURFF allows us to limit
computation boxes to the scale of 40∼ a.u. Also, for the single electron part, we use at present single-center
expansions, which performnotoriously poorly if scattering centers are distributed overmore than a few atomic
units. This limitationmaywell be overcome by amore versatile single-electron discretization, though at
significant implementation effort.

Other potential extensions are to double-emission. The tSURFFmethodwas formulated for this situation.
Combining such already sizable calculations with a dication described by quantum chemistry in the same spirit
as heremay be feasible. The formula presented can be readily extended to include that case. However, the scaling
is poor such that onemay only hope for the simple one- or two-channel situation to be feasible in practice. A cut-
down version of such an approach can be used to include non-bound dynamics by describing a second electron’s
dynamics in amoreflexible basis, however, without admitting its emission.

These lines of development will be pursued in forthcomingwork.
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Appendix. Finite element basis

Let r r r{ , , , }n0 1 … be points that define n intervals on the radial axis. In afinite element approach, the basis
functions f r( )i

n are chosen such that

f r
r r r

( )
0 if [ , ],

0 otherwise.
(A.1)i

n n n1⎧⎨⎩
≠ ∈
=

−

The individual basis functions can be chosen from any complete set, for example, in our case we use scaled
Legendre polynomials of typical orders 10–14.Here, wewrite thefinite element index and the function index
separately to emphasize thatwe have two convergence parameters: the order and the number offinite elements.
The calculations converge quickly with increasing order compared towith increasing number of elements [38].
The basis functions should also be tailored to satisfy the continuity conditions. Thismay be accomplished
through a transformation on each interval such that the functions satisfy the following conditions:

f r f r

f r f r

f r f r

( ) 1; ( ) 0

( ) 0; ( ) 1

( ) 0; ( ) 0, (A.2)
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= =

−

−

≠ − ≠

Even thoughwe are solving a second order differential equation, it is sufficient to impose just the continuity
condition to solve the differential equation. It can be shown through a simple computation, for example as
shown in [38], that thematrix elements corresponding to the Laplacian operator can be computed even if the
functions are not two times differentiable at the finite element boundaries. This is because the δ-like terms
arising due the second derivative are integrated overwith continuous functions. Thematrices corresponding to
various operators in afinite element basis have a banded structure, that can be used to perform various linear
algebra operations efficiently.

In a three-dimensional situationwith spherical symmetry, these radialfinite element functions can be
multiplied by a complete set of angular basis functions such as the spherical harmonics to construct a three
dimensional basis of the form f r Y( ) ( , )i

n
lm θ ϕ .
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