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Abstract

We present the hybrid anti-symmetrized coupled channels method for the calculation of fully
differential photo-electron spectra of multi-electron atoms and small molecules interacting with
strong laser fields. The method unites quantum chemical few-body electronic structure with strong-
field dynamics by solving the time dependent Schrodinger equation in a fully anti-symmetrized basis
composed of multi-electron states from quantum chemistry and a one-electron numerical basis.
Photoelectron spectra are obtained via the time dependent surface flux (tSURFF) method.
Performance and accuracy of the approach are demonstrated for spectra from the helium and
beryllium atoms and the hydrogen molecule in linearly polarized laser fields at wavelengths from 21 to
400 nm. Atlong wavelengths, helium and the hydrogen molecule at equilibrium inter-nuclear
distance can be approximated as single channel systems whereas beryllium needs a multi-channel
description.

1. Introduction

Understanding laser-atom/molecule interaction has become an important research pursuit with the
introduction of many versatile light probes over the past decade. Experimental techniques like re-collision
imaging [1] and attosecond streaking [2] are being pursued to study time resolved electron dynamics. One of the
factors that always creates a certain amount of vagueness in interpreting these strong field ionization
experiments is the possible presence of multi-electron effects. An accurate interpretation of the experiments
needs solutions of the multi-electron time dependent Schrédinger equation (TDSE). As perturbation theory is
not valid in the strong field regime, one resorts to direct numerical solutions of the TDSE.

While simple single electron models or low dimensional models have been partially successful in explaining
laser matter interactions, there have been several cases reported where a more elaborate description of electronic
structure becomes important. Some of the examples include inter-channel coupling leading to an enhancement
in high harmonic generation (HHG) from xenon [3], modification of angle resolved ionization yield of CO, [4]
and photoionization cross-sections in SF4 [5], enhancement in HHG due to participation of doubly excited
states in beryllium [6], influence of nuclear motion [7], presence of conical intersections [8] and so on. All these
instances need a more involved description of the electronic structure.

With one and two electron systems, a full dimensional numerical treatment is possible in linearly polarized
laser fields. For systems with more than 6 degrees of freedom a full dimensional calculation is infeasible. There
have been several efforts in the past decade to overcome this barrier of dimensionality for few electron systems by
choosing only a part of the Hilbert space that is seemingly important for the dynamics. Some of the approaches
that are being employed are time dependent configuration interaction methods [9], different variants of multi-
configuration methods [10-17], the time-dependent R-matrix method [18], and coupled channel methods [4].

One of the observables that is typically measured in strong laser-atom/molecule interaction experiments are
photoelectron spectra. While the methods listed above [4, 9—18] have tried to include multi-electron effects in
photoionization studies, calculation of photoelectron spectra from multi-electron systems, especially at long
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wavelengths has remained out of computational reach. The particular difficultly arises from the fact that, in
order to compute photoelectron spectra the asymptotic part of the wavefunction is required. This needs large
simulation box volumes and access to exact single continuum states to project the wavefunction onto at the end
of time propagation. Having large simulation boxes and computing single continuum states of a multi-electron
system are expensive tasks, making these kind of computations costly or outright impossible.

In this respect, a recently developed method called the time dependent surface flux (tSURFF) method
[19, 20] has turned out to be an attractive solution. In the tSURFF approach, the wavefunction outside a certain
simulation box is absorbed, and the electron flux through the box surface is used to obtain photoelectron
spectra. This way photoelectron spectra can be computed with minimal box sizes.

We deal with the difficulties of the few body problem and computation of photoelectron spectra by
combining quantum chemical structure with tSURFF for single electron systems through a coupled channels
approach. The ansatz is similar in spirit to the one presented in [4]. However, unlike in [4], we deal with anti-
symmetrization exactly. We discretize our multi-electron wavefunctions with the neutral ground state of the
system and with anti-symmetrized products of the system’s single ionic states and a numerical one-electron
basis. This ansatz is suitable to study single ionization problems. The ionic and neutral states are computed by
the COLUMBUS code [21] giving us the flexibility to treat the ionic states at various levels of quantum
chemistry. While the fully flexible active electron basis describes the ionizing electron, the ionic basis describes
the core polarization and the exact anti-symmetrization ensures indistinguishability of the electrons. The
inclusion of the field-free neutral helps us to get the right ionization potential and start with the correct initial
state correlation without much effort. We call our method hybrid fully anti-symmetrized coupled channels
method and use the acronym haCC to refer to it in this work. Using tSURFF with haCC, we compute
photoelectron spectra with minimal box sizes.

We intend to communicate in this article the mathematical formulation of our method, and demonstrate its
usefulness by computing photoelectron spectra of He, H, and Be in linearly polarized 21-400 nm wavelength
laser fields and compare them with fully numerical two electron results. We discuss the advantages and
limitations of such an approach through suitable examples.

2. Mathematical formulation

In this section, we describe our mathematical setup to solve the N-electron TDSE in the presence of an external
laser field. We solve

0

“w— gy 1
o (D

i
with fixed nuclei approximation and with dipole approximation which implies neglecting the spatial

dependence of the laser field. Atomic units m, = % = e* = 1are used unless specified otherwise. The non-
relativistic N-electron field-free Hamiltonian can be written as:

H=Y _lviz_z% +2% (2)
7 2 P |r’_al"

bl
i<j |~ rj|

where Z,, is the nuclear charge and d, are the nuclear coordinates of the pth nucleus. The interaction with the
external laser field in length gauge is given by:

Dy=-YE@) -7 3)
J
and in velocity gauge by
Dy = YiA(t) - V. (4)
j

We describe our multi-electron discretization in detail in 2.1, present the time propagation equations in 2.2
and the matrix elements in 2.3. As the basis is non-orthogonal, an overlap matrix appears in the computation,
whose efficient inversion by low rank updates will be presented in 2.4. Treating anti-symmetrization exactly and
including neutrals introduces a technical difficulty in the form of linear dependencies in our basis. This is
handled by performing a generalized inverse of the overlap matrix which will be presented in 2.5. We work in
mixed gauge for the reasons detailed in [22] and briefed in 2.6. Finally, we present tSURFF for our coupled
channels setup in section 2.7.
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2.1. Multi-electron discretization

We discretize our N-electron wavefunction by channel wave functions chosen as anti-symmetrized products of
ionic states with a numerical one-electron basis. To this we add the wave function of the neutral ground state,
resulting in the expansion

¥ (1) & D IT)Cr (1) +16)Co (1), (5)
1

where
|Z) = A[l)ID]. (6)

Here, A indicates anti-symmetrization, |7) are functions from a numerical one-electron basis, | I) and |G) are
(N-1) and N particle functions respectively and C7 (), Cg () are the time dependent coefficients.

For the single electron basis | i) we use a finite element representation on the radial coordinate times spherical
harmonics on the angular coordinates

i (7)) = 0 |[Yim (7)). (7)

On each finite element we use high order scaled Legendre polynomials as basis functions. The typical orders we
use are 10—14. The details of the finite element approach used here can be found in [23, 24]. A brief description is
given in appendix for the convenience of the reader. We refer to this basis as the active electron basis.

We choose |I) to be the eigenstates of the single ionic Hamiltonian obtained from the multi-reference
configuration interaction singles doubles (MR-CISD) level of quantum chemistry. | G) is chosen as the ground
state of the system, also obtained from the MR-CISD level of quantum chemistry. These quantum chemistry
wavefunctions are constructed with an atom centered primitive Gaussian basis as the starting point. While |G) is
the lowest eigenvector of the N particle Hamiltonian as obtained from COLUMBUS, it is not the ground state of
the Hamiltonian in our basis: by treating one of the electrons with the active electron basis that is superior to the
Gaussian basis one further improves the ground state energy.

The wavefunctions |G) and |I) can be represented in a general form as sums of determinants:

|I> = Z dpvpz 0 Py A[¢P1¢Pz ¢P7x71:|> (8)
PPy Pry
19) = z dpl’pz’“’p” ‘A[¢PI¢P2"'¢P»«:|>, ©)
PPy by

where ¢, are the Hartree—Fock orbitals of the neutral system. The same set of Hartree—Fock orbitals are used to
construct both ionic and neutral CI functions. This allows us to use simple Slater—Condon rules to compute any
matrix elements between them.

The explicit inclusion of the neutral ground state is motivated by the fact that, while the ionization process
itself may be well described by one or a few ionic channels, the initial ground state may be more strongly
correlated. In order to avoid inclusion of many ionic states just to describe the initial state, we include the neutral
ground state explicitly, thereby reducing the number of basis functions needed. This idea can be easily extended
to include any specific correlated state that is of importance to a particular process.

2.2. Time propagation equations
Substituting the ansatz (5) into the TDSE (1) yields a set of coupled ordinary differential equations for the time
dependent coefficients:

dC dC A N
i[(QIQd—tQ+<§|1>d—:]=<QIHIQ>Cg+<§IH|I>Cz (10)

dC;

dc . A
i[<l|g)d—tg+<I|Z)?]=(I|H|Q)Cg+(I|H|I)CI. (11)

The time-derivative of the coefficient vector is multiplied by an overlap matrix composed of the blocks (G|G),
(GIT), (Z|G) and (I|T).

We time propagate the coefficients using an explicit fourth order Runge—Kutta method with adaptive step
size. In order to absorb the wavefunction at the box boundaries we use infinite range exterior complex scaling
(irECS) [23]. We typically choose simulation boxes larger than the spatial extent of the Hartree—Fock orbitals
and start absorption after the Hartree—Fock orbitals vanish. This implies that it suffices to complex scale only one
of the N coordinates.

The cost of time propagation scales with the number of ionic states (say 1;) as n and it is independent of the
exact number of electrons. This makes basis sets of the kind (5) attractive for treating many electron systems.

3
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2.3. Matrix elements

In order to solve the TDSE we need to evaluate various operators. Firstly, we introduce several generalized
reduced density matrices with the help of creation (a; ) and annihilation (a,) operators on the single particle
state ¢b,. A pth order generalized reduced density matrix between the (N-1) particle ionic functions is given by:

Pl i, =Tl al wal an ., |]). (12)

Similarly, we define generalized Dyson coefficients between the N-particle neutral wavefunctions and (N-1)
particle ionic wavefunctions as

ﬂkgb’_,_,kp,;l, <g|ak1 akp“h <A1, ). (13)

With the help of these objects, we can present the final form of the matrix elements. The overlap matrix blocks
have the form

(G16)=1
(GIT) =0 (i)
(T|Ty= Gy = (i|di)pd (bili)
= (ilj)oy — (il ) ol (dei), (14)

where nkg’ can be identified with the Dyson orbital coefficients with respect to the Hartree—Fock orbitals and p kIZJ
are the one particle reduced density matrices.
Any exchange-symmetric single particle operator can be written as

T=%1)+#Q2) + ... + £(N), (15)

where £ (1) is the single particle operator corresponding to the coordinate u. Matrix elements of T are

©IT16)=p& (b i |)

CIT1T)y =08 (@] 11y + n (] 1 | ) (B1]1)
@) T\Ty=GUYAI ) + G DAY = Gl E )l (i)
= (ilon)oid (il 117 = (il ) (Lali) (1] [ ) i (16)

where 77}5;1 are the three index generalized Dyson coefficients, equation (13), and pabc , are the two particle
reduced density matrices, equation (12).
Finally, the two particle operators

= D0 (ij) (17)

i<j

have the matrix elements

. 1 X
(Gl V(2)|Q> = paghgd<¢u¢h v

>

GIVIT) = nG (dudi]  |hai) + = abcde<¢ ol 7 |da.) (4.

i)

T v? gy = —pabcd<¢ | 7 ><z|1> + ol (i 7 |0d) = o (i 7 i)

Dire;t( term Standard e;ghange term
- /’cgcd <¢ai‘ v |¢c¢d><¢b‘j> - abcd <¢ ¢b‘ v |¢c]>< |¢d> abcdef<¢ ¢b‘ v |¢d¢ <i|¢f><¢c|j>’
4 g - (18)

Other exchange terms due to non-orthogonality

where n 9 = are the five index generalized Dyson coefficients, equation(13) and paIb]C def AT€ the three particle

abcde
reduced density matrices, equation (12). Although it appears from equation (18) that the necessity of pugc def?

ubc 4 1eads to large memory requirements, we must point out that the contractions pabc def (B |71 b ) and
abc 10 @B, 17| ) can be made while computing pabc def and I’[abc 4 itself, thereby storing only simple matrices
and vectors.

In order to compute the two-electron integrals, we first project the Hartree—Fock orbitals onto a single
center expansion:
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xlkmi

where gy are radial quadrature points, Iy, my refer to the angular momentum functions and use these expansions
with the multi-pole expansion:

|r1—fz —ZzLH = LM(eI, &) Yin (02 b,) (20)
with 7. = min(n, ) and . = max(n, r,).The limits for the multi-pole expansion are determined by the
angular momenta in the one-electron numerical basis and the single center expansion for the molecular orbitals
@, No other truncation schemes are employed. These two particle operators pose a challenge for efficient
computation. While the direct term is relatively easy to handle, the exchange terms consume a major portion of
the Hamiltonian setup time.

2.4. Inverse of the overlap matrix

The overlap matrix (14) is not a standard finite element overlap matrix, which would be banded and would allow
for efficient application of the inverse. Rather, non-orthogonality between the active electron basis and the
Hartree—Fock orbitals leads to extra cross terms that destroy the banded structure in general and complicate the
computation of the inverse. However, the inverse of the overlap can still be computed efficiently using low rank
updates. We use here the Woodbury formula [25], according to which the inverse of a modified matrix of the
form (S; — UAUT) can be computed as:

§7'=(So - UAUTY™
=S; = S U (U U - ATy UTS (21)
As an example, with 2 ionic states and 1 neutral the overlap matrix (14) can be cast in the form:

11 12 gl
so 0 0 u 00 P P n

S=10 s of =0 u off p* p* #Z|U (22)
0 0 1 001 ol ¢ T
0
A y %,_/\[n I [n%] )

So v
A

which is suitable for the Woodbury formula (21). Here, (s9);; = (ilj) and uj = (i|¢;). Let n, denote the
number of active electron basis functions |i) and 1, be the number of Hartree—Fock orbitals ¢, that is much
smaller that #,. The overlap matrix s, has dimensions n, X n, butis narrowly banded, and the dimensions of
matrix uare 1, X fyy.

Let n;be the number of ionic states. Then the overlap Sand Sy are (n;n, + 1) X (n;n, + 1) matrices, where
the inverse of S, can be easily applied. The matrix Uis (11, + 1) X (nynpe + 1)andAis
(nrnyr + 1) X (nnpe + 1). Thislow rank structure of the correction terms can be utilized to compute the
inverse efficiently by using the Woodbury formula.

2.5.Handling linear dependencies
Anti-symmetrization and non-orthogonality of the active electron basis with respect to the Hartree—Fock
orbitals may render our basis linearly dependent. If the {|7) }-basis is near-complete w.r.t. the HF-orbital basis

(9uli) 150"y (ilen) ~ ows (23)

itis possible to find coefficients c; ; such that
Dt A[lI)] ~ 0. (24)

il

An obvious case where this happens is when one and the same HF orbital ¢, appearsinall the ionic

determinants. For alinear combination ZI_ ¢i1]i) ® ¢, anti-symmetrization renders equation (24) near zero.
As aresult, the overlap matrix becomes non-invertible. A possible solution would be to orthogonalize the active
electron basis with respect to the Hartree—Fock orbitals. But this is not an easily implementable solution with a
Clionic basis. For each determinant, the set of Hartree—Fock orbitals with respect to which the active electron
basis must be orthogonal is different.

As an alternative solution we use a generalization of the Woodbury formula (21) to compute the inverse of a
matrix only on the subspace of the non-zero eigenvectors of the matrix. Let Z denote the ny X 1, matrix of
eigenvectors with near-zero eigenvalues z, < €, p = 1, ..., n, of the generalized eigenvalue problem

5
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SZ = SoZd,, (25)

with d, denoting the diagonal matrix of the eigenvalues z, and Z satisfying the orthonormality relation
718yZ = 1.1n general, there will be comparatively few such eigenvectors n, < 1, and these can be easily
determined by an iterative solver. We can remove these singular vectors from our calculation by the projector

Q=1-2Z%S,. (26)

The projector property Q* = Q can be easily verified. As the projector refers to the generalized eigenvalue
problem with Sy # 1, Qis notan orthogonal projector, thatis Q" # Q. We define a pseudo-inverse S ~ofSon
the subspace of generalized eigenvectors with non-zero eigenvalues with the property

§7'sQ=Q. (27)
One can verify directly that the generalized Woodbury formula

§'= QSo_l[l - U(U'Qs; U~ Ay U'Qsy 1] (28)

satisfies the definition (27). The matrix (UTQS; ' U — A) is invertible on all vectors appearing in U'Q to its right,
as exactly the singular vectors are removed by the projector Q. Apart from the necessity to determine Z during
setup, the correction does not significantly increase the operations count for the inverse overlap.

2.6. Choice of gauge

In [22], we had shown that when an electron is treated with a restricted basis, for example, in terms of a few
bound states, the length gauge is a more natural gauge. Compared to pure velocity gauge, the coupled channel
computations converge quickly in mixed gauge with length gauge spanning the region of the ionic states and
velocity gauge thereafter for asymptotics. In this current work, we use continuous gauge switching, detailed in
[22], for its easy implementation. Starting from the length-gauge, we solve the TDSE after applying the gauge
transformation

1 forr < 1,

- J 29
exp | iA (1) - Zr}(rj —15) | forr>r, (29)

j=1

Here, r, is the gauge radius that separates the length gauge and velocity gauge regions.

2.7. Computation of photoelectron spectra
The computation of photoelectron spectra is expensive for two reasons. (1) The asymptotic part of the
wavefunction is needed to extract photoelectron spectra, which means large simulation boxes to preserve the
asymptotic part and to avoid any numerical reflections that may corrupt the wavefunction. (2) Single
continuum states are needed into which the wavefunction must be decomposed, in order to obtain
photoelectron spectra. These two problems are circumvented in a recently developed method tSURFF [19, 20]:
one computes the spectra by a time integration of electron flux through a surface defined by a radius R, called the
tSURFF radius. The Coulomb potential is smoothly turned off before R, which implies that the scattering
solutions thereafter are the well known Volkov solutions. R.becomes a convergence parameter, and by varying
this radius, one can compute spectra to a given accuracy. This method has been explained in detail in previous
works for single ionization in [19] and for double ionization in [20]. A proposal for extension of this method for
single ionization of multi-electron systems has been outlined in [20]. We describe here the application of the
method with our coupled channels setup.

Let y, be the scattering solutions which take the form of Volkov solutions beyond R.and ¥ (T') be the
wavefunction at some large time T. According to tSURFF for single electron systems, photoelectron spectra can
be computed as 6y = |by |* with by defined as:

be= (3. (T)| ©(R)|¥ (1))
T - -
=i/0 dt(}(k(t)‘[—%A+iA(t)~ v, @(RC)]PP(t)). (30)

Here @ (R, ) is a Heaviside function that is unity for r > R and 0 elsewhere.

This formulation can be easily extended to the N electron problem in a coupled channels setup. In the
present setup, we mostly take a set of ionic bound states for the ionic basis. These states have a finite extent. We
may choose R, such that the electrons described by the ionic basis vanish by R. which means all the exchange
terms in the Hamiltonian vanish after R.. The remaining direct potential can be smoothly turned off just as the
Coulomb potential. This implies that the wavefunction beyond R, evolves by the Hamiltonian:

6
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H(r>RC)=Hion®i+ii0n®[_%A+ﬁ(t)' ﬁ:l (31)
that allows for a complete set of solutions of the form:

§C,k(ﬁ> EEES) ?;n t) = A[Kc(;ia cees ;;1—1) t) ®){k(;;l> t)]: (32)

where Hj,,, is the single ionic Hamiltonian and . (¢) are time dependent ionic channel functions solving the
TDSE

ok, (t .
IKC—() = Hionk, (1) (33)
ot
within the ansatz in terms of field-free ionic states
ke (1)) = YD de (). (34)

I

With the help of the £ ;, channel resolved photoelectron spectra can be computed as

- - - - 2
Ger = [(Eck (B os By Y| O(RII¥ (B, s By T))| (35)
and the asymptotic decomposition of ¥in terms of &, ; is obtained as

<§c,k(;i> cees ;;1) T)| @(Rc)|yj(;i) cees ;;n T)>

=i [ a( Ak o T ) @ 1 (F t:”[-lA LA T @(R)]IY’ R D)
- 0 c( oo In—1D ) ){k(nr ) 5 n m Yn c (1)-~~> n )

[T - 1 .7 > -
=i [ de(n i t)l[—;An +iA() -V @(RC)]m(rm H),

(36)
where we introduced the time-dependent Dyson orbitals
Ce (T 1) 1= (ke (T woos Tamty D (B ooy T 1)) (37)

The commutator of the derivatives with the Heaviside function @ gives §-like terms involving values and
derivatives of Wat the surface | 7| = R.. As we choose R, such that the Hartree—Fock orbitals vanish by then, we
do not need to consider the exchange terms in computing ¢,. Along with time propagating the N electron
problem, one needs to also time propagate the ionic problem (33).

A detailed discussion of performance and intrinsic limitations of the tSURFF method is contained in
[19,20]. We here summarize the main points of this discussion. The strength of tSURFF lies (a) in a dramatic
reduction of the required numerical box sizes to compute accurate spectra and (b) in the fact that no scattering
states are needed for spectral analysis. As the asymptotic scattering information is generated during time-
propagation rather than by solving an independent stationary problem, propagation times must be long enough
for all relevant processes to terminate and for all electrons to pass through the surface. This favors the application
of the method for fast processes. For slow processes like emission at near zero electron energy or the decay of
long-lived resonances purely stationary methods or methods that combine solutions of the TDSE during pulse
with a stationary analysis after the end of the pulse may become advantageous. Also, if small boxes are used, the
capability for representing very extended objects like Rydberg states is limited by the box size. We will illustrate
these points below when discussing photo-emission from the helium atom at short wave length.

2.8. Spin symmetry

As we solve the non-relativistic TDSE, the total spin of the system is conserved during the time evolution. We can
therefore remove the spin degree of freedom through suitable linear combinations of the anti-symmetrized
products in the basis (5) to enforce a particular spin symmetry. This reduces the size of our basis. We consider
only singlet spin symmetric systems in this work. As an example, we show how singlet spin symmetry can be

enforced. Let 1 and | indicate the spin states i; associated with a spatial function. Choosing linear

combinations of the kind:
ALY ] = A 1H1h ]
J2

enforces singlet symmetry. This can be extended to creating linear combinations that enforce an arbitrary spin
symmetry.

A[DID] =

(38)
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3. Two-electron benchmark calculations

We use two-electron full dimensional calculations (full-2e) as benchmark for our haCC computations. We solve
the two-electron TDSE using an independent particle basis of the form:

V(R B )= D chkontm(Dfi, (1)fi, () Yim (01 ¢)) Yiom (02 ¢5), (39)

k[kzlllzm

where ¢k, k,1,1,m (t) are the time dependent coefficients, fk1 (n), sz (r,) are functions from a finite element
discretization of the same type as for our active electron basis and Y},,, are spherical harmonics. We use the same
type of single center expansion for all the benchmark computations. A complete description of this method will
be presented elsewhere [24]. Solving the TDSE with the expansion (39) needs much larger computational
resources compared to the haCC approach.

The purpose of the two-electron calculations is to demonstrate to which extent these fully correlated
calculations are reproduced by the haCC approach. For that we use the same tSURFF propagation times and
identical box sizes when comparing the two types of calculations. Full convergence of the two-electron
calculation in propagation time and box size is not discussed in the present paper.

4. Single photoelectron spectra

In this section, we present photoelectron spectra from helium and beryllium atoms and from the hydrogen
molecule with linearly polarized laser fields computed with the above described coupled channels formalism.
We also present the single photon ionization cross-sections for the beryllium atom and the wavelength
dependence of the ionization yield for the hydrogen molecule to compare with other existing calculations. We
use cos’ envelope pulses for all the calculations and the exact pulse shape is given as

AL () = Ay cosz(%) sin(% + ﬂ) (40)
B (1) = -2 (1)
dr

where T'is the single cycle duration, Ay = EoT/(2x) for a peak field strength E, cis the number of laser cycles
and fis the carrier envelope phase. We compare our results for helium and the hydrogen molecule with full-2e
calculations [24] and for beryllium with effective two electron model calculations.

The convergence of the full-2e benchmark calculations and the haCC calculations were done systematically
and independently. All the spectra presented here were computed with simulation box sizes on the scale of
R, ~ 30-50 a.u. The radial finite element basis consisted of high order polynomials with typical orders 10-14
and the total number of radial basis functions was such that there were 2—3 functions per atomic unit. The
angular momenta requirement strongly depends on the wavelength. The longer wavelengths needed larger
number of angular momenta for convergence. For the examples considered below, the angular momenta range
from Ly, = 5at21 nmto Ly, = 30 at400 nm. All the calculations presented are converged with respect to the
single electron basis parameters like the order and the box size, well below the differences caused by inclusion of
ionic states. Hence, we only present various observables as a function of the number of ionic states.

The storage requirements with the algorithms that we use are dictated by the two particle reduced density
matrices. For the largest problem considered here, with 11 ionic states (;) and about 50 molecular orbitals (),

ny(ny+ 1) nhzf (nhf + 1)2
the number of doubles that had to be stored is given by the formula: 5 , which yields a

storage requirement of 1.7 GB. This is not a large requirement in the context of the currently available
computational resources. In order to avoid replication, these objects were stored in shared memory. The
computation times vary widely depending on the wavelength and the number of ionic states in the basis. They
scale with the square of the number of ionic states. For the cases presented here, the required times range from
0.25-30 h on an eight core machine. These times also have a strong dependence on the exact time propagators
used and a discussion on the suitable time propagators is out of the scope of this work.

4.1.Helium

Helium is the largest atom that can be numerically treated in full dimensionality. With linearly polarized laser
fields, the symmetry of the system can be used to reduce the problem to five-dimensions. The energies of the
helium ionic states are —2/n? for principal quantum number 7. The first two ionic states are separated by 1.5 a.u.
in energy, which is large, for example, compared to a photon energy of 0.456 a.u. at 100 nm. This has been a
motivation to treat helium as an effective single electron system with XUV and longer wavelengths in some
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Figure 1. Photoelectron spectra from helium with three-cycle, 21 nm laser pulse with a peak intensity of 10'> W cm™2. Left figure:
ground state channel (1s) , Right figure: a first excited state channel (2p,). The upper panels show spectra obtained with a full-2e and
haCC calculations with different number of ionic states included as indicated in the legend. Here, 1 is the principal quantum number.
The lower panels show relative errors of haCC calculations with respect to full-2e calculations. The inset shows the 2s2p resonance
(see main text).

earlier works, for example in [26]. We examine below the validity of treating helium as an effective single
electron system, by comparing haCC calculations with full dimensional calculations at different wavelengths.

Figure 1 shows photoelectron spectra from helium witha21 nm (w = 2.174 a.u.), three cycle laser pulse with
apeak intensity of 10'> W cm™2. The one and two photon ionization peaks of 1s and 2p, channel spectra are
shown. The relative errors of haCC calculations are computed with respect to the full dimensional calculation.
The single photon peak of the 1s channel is computed to a few percent accuracy, except for a feature around 1.3
a.u., with a single ionic state. The resonant feature can be identified with the 2s2p doubly excited state [27],
which is reproduced to few percent accuracy with the addition of 2nd shell ionic states. While the position of the
resonance is reproduced accurately in the calculations presented here, the propagation time was well below the
life-time of this resonance which is reflected in the width of the feature that is well above the natural line width.

The two photon peak of the 1s channel and the 2p, channel spectra (figure 1) need more than a single ionic
state and they could be computed only up to 15% accuracy even after inclusion of 9 ionic states (n < 3).

Abroadband (few cycle) XUV pulse tends to excite the initial state into a band of final states which may
include many correlated intermediate states. Here, the intrinsic limitations of any coupled channels approach
that is based on ionic bound states only are exposed. Firstly, a correlated intermediate state with abound
character needs large number of ionic states to be correctly represented. Secondly, the ionic bound states based
on Gaussian basis sets do not have the exact asymptotic behavior. This can lead to an inaccuracy in length gauge
dipole matrix elements. Finally, the absence of ionic continuum states in our approach is another possible source
of inaccuracy. Due to these limitations, we do not expect the shake-up channel spectra to be more accurate
than 10-15%.

For obtaining long-lived resonance structures by a time-dependent method one must, as a general feature of
such methods, propagate for times at least on the scale of the life time of the resonance. The only alternative is to
independently solve the stationary resonant scattering problem and decompose the time-dependent solution
after the end of the pulse into the corresponding scattering continuum. Solving the scattering problem, however,
is a computationally very demanding task by itself. For obtaining the resonances with tSURFF, one can simply
propagate until the resonance has decayed completely and all flux has passed through the surface where the flux
is collected. At this point it should be remarked that the relevant information about resonances may be generated
more efficiently by stationary methods like time-independent complex scaling [27, 28]. As the comparison in
figure 1 is with the two-electron code where long propagation times become rather costly, we compare the
spectraat time T'= 60 laser cycles, where the resonances have not emerged yet.

With haCC, due to its very compact representation, we can easily propagated much longer to obtain the
resonances to any desired accuracy. Figure 2 shows how the n < 3 resonances emerge with increasing
propagation times in the 1s and 2p, channels. For example, at the 2s2p decay width of I = 1.37 X 107>, one
expects 76.5% of the Auger electrons to have passed through the surface | 7| = 45 at time T'= 400, which
increases to 95.2% at T'= 800. The ratio of 1.24 between these numbers closely matches the increase of mass in
the 2s2p peak by 1.23 in figure 2. The positions of the resonances are accurate on the level of 10> a.u. in energy
[27], showing that the correlated states are well represented by the method. Here we had chosen a box size of 45
a.u. which is sufficient to represent doubly excited states from 2s2p to 2s6p states. Hence, only these states are
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Figure 2. Photoelectron spectra (in selected energy range) from helium for the case n < 3 in figure 1 with different total time
propagation. T'is the time propagation in the units of laser cycles. Left panel: 1sionic channel, right panel: 2p, ionic channel. T=601s
from figure 1.
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Figure 3. Total photoelectron spectra from helium with Left figure: three-cycle, 200 nm laser pulse with a peak intensity of
10'* W cm™2, Right figure: three-cycle, 400 nm laser pulse with a peak intensity of 3 X 10" W cm™2. The upper panels show spectra
obtained with a full-2e and haCC calculations with different number of ionic states included as indicated in the legend. Here, n is the
principal quantum number. The lower panels show relative errors of haCC calculations with respect to full-2e calculation.

seen in the spectra. One can obtain the higher excited states by increasing the box size, at the penalty of a larger
discretization and somewhat longer propagation times, see discussion in section 2.7. Similar as long lived
resonances, threshold behavior of the spectrum near energy zero only emerges with propagation time, figure 2.
Further distortions near threshold are due to the effective truncation of the Coulomb tail in the absorbing
region. In the present example, these effects produce an artefact at energies $0.02 a.u. in the right panel of

figure 2. Accuracies at the lowest energies can be pushed by increasing both, simulation box size and propagation
times.

Figure 3 shows total photoelectron spectra from helium at 200 and 400 nm wavelengths. The exact laser
parameters are indicated in the figure captions. At 200 nm (@ = 0.228 a.u.), the ionization threshold is four
photons. A single ionic state calculation produces spectra that are 10% accurate with respect to a full
dimensional calculation. Addition of second and third shell ionic states improves the accuracy of the spectra to
few percent level in the important regions of the spectrum. At 400 nm (@ = 0.114 a.u.), the ionization threshold
is eight photons. Also here, a single ionic state computation produces spectra that are 10% accurate with respect
to a full dimensional calculation. Addition of more ionic states, does not improve the accuracy further. This is
possibly due to the missing continuum of the second electron that is needed to fully describe the polarization of
the ionic core.

Atlonger wavelengths, we find that single ionic state computations are sufficient to produce spectra accurate
on the level of 10%. This is consistent with the knowledge that at longer wavelengths, it is the ionization
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Table 1. Energies of the used single ionic states of beryllium relative
to the ground state ion. The COLUMBUS [21] ionic states are com-
puted at MR-CISD level with aug-cc-pvtz basis.

Tonic state NIST database (eV) Columbus energies (eV)
1s%2s 0.0 0.0
1s2p 3.9586 3.9767
1s%3s 10.9393 10.9851
1823p 11.9638 12.1407
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Figure 4. Photoelectron spectra from the beryllium atom. Left figure: ground state channel spectra with three-cycle, 21 nm laser pulse
with a peak intensity of 10'> W ¢cm~2. Right figure: total spectra with three-cycle, 200 nm laser pulse with a peak intensity of

10'* W cm™2. The upper panels show spectra obtained with effective-2e and haCC calculations with different number of ionic states
included as indicated in the legend. The lower panels show relative errors of haCC calculations with respect to the effective-2e
calculations.

thresholds that play a more important role in determining the ionization yields compared to the exact electronic
structure. Our findings show that helium at long wavelengths can be approximated as a single channel system.

4.2. Beryllium

Beryllium is a four electron system that is often treated as a two electron system due to the strong binding of its
inner two electrons. The third ionization potential of beryllium is 153.8961 eV [29]. With photon energies below
this third ionization potential, it can be safely treated as an effective two electron system. This allows us to have a
benchmark for our spectra by adapting the simple Coulomb potential to an effective potential in our two
electron code. We use the effective potential given in [6] for our benchmark calculations. We refer to these as
‘effective-2e’ calculations.

Table 1 lists the energies of the first 8 ionic states of beryllium relative to the ground ionic state. As the ionic
excitation energies are much smaller than in Helium one would expect inter-channel couplings to play a
greater role.

Figure 4 shows photoelectron spectra from beryllium with 21 and 200 nm wavelength laser pulses. The exact
parameters are indicated in the figure caption. The relative errors of spectra from the haCC calculations are
computed with respect to the effective-2e calculations.

At21 nm, the one and two photon ionization peaks of ground state channel spectra are shown. Here, the
single photon ionization process itself needs more than the ground ionic state to produce accurate
photoelectron spectra. Adding more ionic states improves the accuracy to a few percent level. We find that the
close energetic spacing of beryllium ionic states leads to a greater possibility of inter-channel coupling, which
requires more than the ground ionic state to be well represented.

Also, at 200 nm we need more than the ground ionic state to compute realistic spectra. With 1s?2s, 1s*2p
ionic states included, the spectra produced have 20% accuracy with respect to the benchmark calculation. With
the addition of 1s*3s and 15?3 states, a structure similar to the one predicted by the benchmark calculation
develops around 10 V. This structure may be identified with the lowest resonance 1s*2p3s at 10.71 eV [6]. The
coupled channels calculations with the number of ionic states considered here, however do not reproduce the
structure on the second peak exactly. This points to a feature of a coupled channels basis that the correct
representation of a strongly correlated state that has bound character requires a large number of ionic states. As
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Figure 5. Single photoionization cross-sections for beryllium in the photon range of 20-60 eV. Presented are results from haCC
calculations with 4, 5, 8 ionic states. The figure shows a comparison with earlier calculations using TD-RASCI method [11], R-matrix
method [31] and with experimental results from [32].

an alternative strategy, one can explicitly include the correlated state of importance into the basis, if it can be pre-
computed, on the same footing as the correlated ground state.

It has been shown through examples in section 4.1 that helium can be modeled as single channel system at
longer wavelengths. Lithium, the smallest alkali metal, also has been successfully modeled as a single electron
system in an effective potential, for example in [30]. We find that beryllium needs at least two ionic states, 1522s
and 1s22p, for a realistic modeling. It serves as a first simple example where single electron models break down
and multiple channels need to be considered.

In figure 5, we present the single photon ionization cross-sections as a function of photon energy from our
haCC method and compare them with the cross-sections calculated with TD-RASCI method [11] and R-matrix
method [31] and with experimental results from [32]. The cross-sections in our time dependent approach are
computed using the equation (51) given in [18] with which the N photon ionization cross-section, 6™ in units
cm?N/sN~! can be computed as:

N
3.5 x 10'°
o) = (Sﬂa)N[il ) oNFagN M, (42)

where Iis the intensity in W cm™2, w is the laser frequency in a.u., a is the fine structure constant and ag, t, are
atomic units of length and time respectively. I"is the total ionization rate which is computed in a time dependent
approach by monitoring the rate at which the norm of the wavefunction in a certain inner region drops. As we
are computing the rate, the exact size of the inner region does not play a role. The norm drop reaches a steady
state irrespective of the inner region size. We used for our computations presented here a 40-cycle continuous
wave laser pulse with a three cycle cos? ramp up and ramp down and with an intensity of 10'> W cm™. We
checked convergence with respect to the pulse duration and the inner region size, and the computations are
converged well below the differences seen by addition of ionic states in the basis.

All the theoretical methods agree with each other qualitatively, though there are differences on the level of
5-10% quantitatively. The experimental results from [32] have error bars on the level $10% (0.1 Mb) which are
not shown here. All the theoretical results lie in this range except at low energies. In the higher photon energy
range, 30—-60 eV, the haCC results and the R-matrix results are in good agreement compared to the TD-RASCI.
In the haCC calculations, including more than 4 ionic states does not change the cross-sections. In the photon
energy range 20-30 eV, the haCC computations with 5 and 8 ionic states are in good agreement with TD-RASCI
results compared to the R-matrix results. In this energy range, the cross-sections from haCC calculations show a
dependence on the number of ionic states included. This modulation may be attributed to the presence of auto-
ionizing states in this region. Table 3 in [6] presents a list of resonances that appear in beryllium electronic
structure. The first ionization potential is 9.3 eV. With photon energies around 20 eV, the resulting
photoelectron reaches continuum region where a number of resonances are present. As correlated resonances
need many ionic states to be well represented in a coupled channels basis, this may explain the dependence of the
cross-section on the number of ionic states in 20-30 eV photon range.

4.3. Hydrogen molecule
The hydrogen molecule in linearly polarized laser fields parallel to the molecular axis, with fixed nuclei has the
same symmetry as helium in linearly polarized laser fields. The off-centered nuclear potential, however,

12



10P Publishing

New J. Phys. 17 (2015) 063002 V P Majety et al
102 T 103
— full-2e — n
103l ° 104 full-2e 1
— haCC: I=1 — haCC: I=2
¥ — haCC: I=2 10° — haCC: I=4
10
— haCC:1=4 10% — haCC: I=6 |
1051 —+ \\haCC: 1=6 107 — haCC: I=11 |
S \haCC: I=11 5
° 10°  10°
-9
107 10
10
10° 101
-9 L -12
5 Ao . 5190° Y
@ == @
L0 < 107
ki ©
& 10? s & 102 s
0 1 2 0 1 2 3 4 5
E (a.u.) E(a.u.)

Figure 6. Photoelectron spectra from H, with a three-cycle 21 nm laser pulse with a peak intensity of 10> W cm™2. Left figure: ground
state channel (1o,) Right figure: first excited state channel (16,). The upper panels show spectra obtained with full-2e and haCC
calculations with different number of ionic states (I) included (as indicated in the legend). The lower panels show relative errors of
haCC calculations with respect to the full-2e calculation. With I = 4, 6, there are visible artefacts on the two photon peaks around 3 a.u.
which are explained in the text.

increases the angular momenta requirement when treated with a single center expansion. While the number of
basis functions can be reduced through a choice of a more natural coordinate system like prolate spheroidal
coordinates for diatomics [33], the challenge of computing two electron integrals remains. In the case of
hydrogen molecule at equilibrium internuclear distance (R, = 1.4 a.u.), a calculation with single center
expansion easily converges, as the proton charges do not significantly distort the spherical symmetry of the
electron cloud. As a benchmark for spectra, we use results from a full dimensional calculation, that expands the
wavefunction in a single center basis.

Figure 6 shows photoelectron spectra from H, at 21 nm wavelength. The exact laser parameters are given in
the figure caption. The ground state (16;) and first excited state (16,) channel spectra are shown. We find that, at
this wavelength, a single ionic state is not sufficient to produce accurate photoelectron spectra. With the addition
of more ionic states, there is a systematic improvement in the accuracy of the calculations. With 11 lowest 6 and
mionic states included, we obtain an accuracy of about 10% for the 16, channel. The single photon ionization to
the shake-up channel 10, is also computed to a few percent accuracy with 11 ionic states. We find that the single
ionization continuum of H, is more complex than helium and it needs more than a single ionic state.

With 4 and 6 ionic states, we find artefacts on the two photon peaks. This is a result of a part of the
COLUMBUS neutral ground state | G) appearing in the eigenvalue spectrum of the Hamiltonian as a spurious
doubly excited state |s). Let I1: be the projector onto the subspace spanned by the coupled-channels basis
A [|i)|I). Then parts of the correlation contained in |G) cannot be presented in that basis such that a non-zero
correlated state

Is) = (1 =1c)|G) #0 (43)

appears at elevated energies. This spurious correlated state moves to higher energy with addition of ionic states.
A straight forward solution to this problem is to compute this state and project it out from the basis. But this
would require locating the spurious state in the eigenvalue spectrum, which is very demanding for large
Hamiltonians. Fortunately, by their dependence on the number of ionic states, artefacts of this kind are easily
detected and can be moved out of the region of interest by using sufficiently many ionic states. Such artefacts are
anatural consequence of any ansatz of the kind (5) and need to be monitored.

Figure 7 shows total photoelectron spectra at 200 and 400 nm wavelengths. At 200 nm, spectra are accurate
up to 10% with 2 ionic states. Addition of more ionic states helps reproduce additional resonant features in the
spectrum. Also at 400 nm, 2 ionic states are sufficient to compute spectra that are accurate on 10% level, except
for the resonant features. Inclusion of up to 6 ionic states reproduces the feature around 0.62 a.u. in the 400 nm
spectrum, which may be attributed to second or third 'X,;" doubly excited state [34]. We find that with H, at
longer wavelengths, ground ionic state is sufficient to compute realistic spectra and only for resonant features a
large number ionic states is required.

Figure 8 shows total ionization yield as a function of photon energy in the range 0.17-0.5 a.u. Results from
haCC are compared with data available from other theoretical methods—time-dependent CI method from [35]
and FNA-TDSE (fixed nuclei approximation) method from [7]. In addition, several points from our tSURFF-
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Figure 7. Total photoelectron spectra from H, with—left figure: three-cycle 200 nm laser pulse with a peak intensity of 10'* W cm™2.
Right figure: three-cycle 400 nm laser pulse with a peak intensity of 10'* W cm™2. The upper panels show spectra obtained with full-2e
and haCC calculations with different number of ionic states (I) included as indicated in the legend. The lower panels show relative
errors of haCC calculations with respect to the full-2e calculation.
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Figure 8. Ionization yield from H, at equilibrium internuclear distance (Ro = 1.4 a.u.) as a function of photon energy. Laser
parameters: 10'2 W cm™? peak intensity, cos? envelope pulses and 10 fs pulse duration (In equation (40) 2¢T= 10 fs). A comparison
of haCC calculations with 2 ionic states with CI results from [35] and FNA-TDSE results from [7] and full-2e results. The dashed
vertical lines separate different multi-photon ionization regimes.

based full-2e method are included. The haCC calculations shown were performed using two ionic states,
convergence was verified by performing four-state calculations at selected points. The vertical lines in the figure
separate different multi-photon ionization regimes. The haCC, CI and full-2e are in fair agreement, while FNA-
TDSE reproduces the threshold behavior, but severely, by up to an order of magnitude, deviates from the other
calculations. The most conspicuous discrepancies between haCC and Cl appear in the range 0.3 ~ 0.4 a.u.
where CI exceeds haCC by about 20%. The discrepancies may be a result of the intrinsic limitations or the
convergence of either calculation. For example, there are minor discrepancies in the ionization potential: the
accurate value at H, equilibrium inter-nuclear distance (Ry = 1.4 a.u.) is 0.6045 a.u.(table 1 in [36]),the
ionization potential in [35] is 0.590 36 a.u., whereas in our calculations we obtain 0.6034 a.u. Also note that the
results in [35] were shifted by 0.0092 a.u. in energy to match the resonance at 0.46 a.u. Although these
differences are miniscule for energies they may indicate for somewhat larger deviations in the wave functions
and the values of ionization potentials give a measure for the accuracy of the computations. Our full-2e
computations that, in principle, could help to resolve the discrepancy are expensive and have not been pushed to
an accuracy level which would allow to decide between the two results. However, we believe that the present level
of agreement between haCC and Cl is quite satisfactory and supports the validity of both approaches.
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5. Conclusions

The hybrid anti-symmetrized coupled channels method introduced here opens the route to the reliable ab initio
calculation of fully differential single photo-emission spectra from atoms and small molecules for a broad range
of photon energies. It unites advanced techniques for the solution of the TDSE for one- and two-electron
systems in strong fields with state of the art quantum chemistry methods for the accurate description of
electronic structure and field-induced bound state dynamics. For the specific implementation we have relied on
a finite element description of the strong field dynamics and Gaussian-based CI package of COLUMBUS.

Key ingredients for the successful implementation are good performance of tSURFF for the computation of
spectra from comparatively small spatial domains on the one hand and access to the well established technology
of quantum chemistry on the other hand. We could obtain the quantum chemical structure in the form of the
complete expansion into determinants from COLUMBUS. In future implementations, it may be sufficient to
output from a given package the generalized one, two, and three-electron density matrices together with
generalized Dyson orbitals, both defined in the present paper. It turned out to be instrumental for accurate
results that haCC allows for the inclusion of neutral states in a natural fashion and at very low
computational cost.

Several new techniques were introduced and implemented for the establishment of the method. Most
notably, the mixed gauge approach [22] turned out to be crucial for being able to take advantage of the field-free
electronic structure in presence of a strong field without abandoning the superior numerical properties of a
velocity-gauge like calculation. The finite element method used for single-electron strong-field dynamics is
convenient, but certainly not the only possible choice. Similar results should be achievable with higher order
B-spline methods or any other discretization suitable for solutions of the single electron strong field Schrédinger
equation. Low-rank updates are used in several places for the efficient computation of the inverses of the large
overlap matrix and to control the linear dependency problems arising from anti-symmetrizing the essentially
complete finite elements basis against the Hartree—Fock orbitals.

We have made an effort to explore the potential range of applicability of the method by performing
computations in a wide range of parameters on a few representative systems, where results can be checked
against essentially complete methods. Spectra for the He atom were independently obtained from fully
correlated two-electron calculations. We could demonstrate that haCC gives spectra on the accuracy level 10%
with very low effort. An interesting observation is that in the long wavelength regime indeed a single ionization
channel produces correct results, justifying ex post wide spread model approaches of the strong field community.
As anote of caution, we recall that this is only possible as the fully correlated initial state is routinely included in
the haCC scheme. At short wavelength, the ionic excited state dynamics plays a larger role and reliable results
require inclusion of up to 9 ionic channels. With this we could correctly resolve also the peak due to He’s doubly
excited state.

The second atomic system, Be, was chosen to expose the role of electronic dynamics in the ionic states. While
the 1s core electrons are energetically well-separated and no effect of their dynamics was discernable in a
comparison with a frozen core model, the narrow spaced ionic states preclude single channel models.
Depending on the observable and on desired accuracies, a minimum of two ionic channels had to be used.

For the comparison of H, photoionization and photoelectron spectra, we could refer to literature and
supplemented the data with full two-electron calculations. At400 nm, H, can be treated as a single channel
system. At intermediate wavelengths, we find the need for at least two ionic channels, and we could obtain a fair
agreement with comparison data. Here one has to take into consideration that all alternative methods operate
near the limits of their applicability.

With this set of results we demonstrated the correctness of the method and its essential features. In our
calculations, also the fundamental limitations of the approach were exposed. Clearly, the field-induced
dynamics of the ionic part must be describable by a few states with bound character. haCC shares this limitation
with any expansion that is limited to a few ionic states. Note that the problem is partly mitigated by the possibility
to include fully correlated ground as well as singly- and doubly-excited states with bound-state character that are
known to appear in the dynamics.

The method in its present implementation can be applied to many electron atoms [37] and small molecules
such as N, and CO,, which will be reported in a forthcoming publication.The ionic states in these molecules are
closely spaced as in beryllium and hence they would also need several ionic states in the basis for convergence.
We have no reliable heuristics to a priori estimate the number of states needed for a given accuracy. From the
present experience, we expect that at long wavelengths, for example at 800 nm, inclusion of ionic states in the
range of 5-6 eV below the first ionization threshold may be sufficient for convergence. This translates to about
5-6 ionic states in the basis for these systems which is a feasible problem.

At the moment, the computation of the two-electron integrals poses a mild technical limitation for such
calculations, and an improvement of the presently rather straight-forward algorithm is needed for going to
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larger systems.Treating molecular systems with lower symmetry leads to a further fill in of the Hamiltonian
matrix due to the large number of allowed transitions. Such calculations appear quite feasible as well, however at
comparatively higher resource consumption than the few hours on a eight-core machine needed for the majority
of the results presented here. Another limitation arises when the molecule becomes too large for computing even
strong field single-electron dynamics over its complete extension. At present, tSURFF allows us to limit
computation boxes to the scale of ~40 a.u. Also, for the single electron part, we use at present single-center
expansions, which perform notoriously poorly if scattering centers are distributed over more than a few atomic
units. This limitation may well be overcome by a more versatile single-electron discretization, though at
significant implementation effort.

Other potential extensions are to double-emission. The tSURFF method was formulated for this situation.
Combining such already sizable calculations with a dication described by quantum chemistry in the same spirit
as here may be feasible. The formula presented can be readily extended to include that case. However, the scaling
is poor such that one may only hope for the simple one- or two-channel situation to be feasible in practice. A cut-
down version of such an approach can be used to include non-bound dynamics by describing a second electron’s
dynamics in a more flexible basis, however, without admitting its emission.

These lines of development will be pursued in forthcoming work.
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Appendix. Finite element basis

Let {r, 7, ..., 1,} be points that define n intervals on the radial axis. In a finite element approach, the basis
functions fl." (r) are chosen such that
?é 0 lfr € [rn—b rn];
n
; (r){ (A1)
fi =0 otherwise.

The individual basis functions can be chosen from any complete set, for example, in our case we use scaled
Legendre polynomials of typical orders 10-14. Here, we write the finite element index and the function index
separately to emphasize that we have two convergence parameters: the order and the number of finite elements.
The calculations converge quickly with increasing order compared to with increasing number of elements [38].
The basis functions should also be tailored to satisfy the continuity conditions. This may be accomplished
through a transformation on each interval such that the functions satisfy the following conditions:

fo(ro)=1; fi(rn) =0
fi(ro)=0; f'(n) =1
i:ﬁO,l (r-1) =05 fi:éo,l () =0, (A.2)

Even though we are solving a second order differential equation, it is sufficient to impose just the continuity
condition to solve the differential equation. It can be shown through a simple computation, for example as
shown in [38], that the matrix elements corresponding to the Laplacian operator can be computed even if the
functions are not two times differentiable at the finite element boundaries. This is because the §-like terms
arising due the second derivative are integrated over with continuous functions. The matrices corresponding to
various operators in a finite element basis have a banded structure, that can be used to perform various linear
algebra operations efficiently.

In a three-dimensional situation with spherical symmetry, these radial finite element functions can be
multiplied by a complete set of angular basis functions such as the spherical harmonics to construct a three
dimensional basis of the form f" (r) Y;,, (6, ¢).
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