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Abstract
Biological systems consist of multiple organizational levels all densely interacting with each

other to ensure function and flexibility of the system. Simultaneous analysis of cross-sec-

tional multi-omics data from large population studies is a powerful tool to comprehensively

characterize the underlying molecular mechanisms on a physiological scale. In this study,

we systematically analyzed the relationship between fasting serum metabolomics and

whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Cor-

relation-based analysis identified 1,109 significant associations between 522 transcripts

and 114 metabolites summarized in an integrated network, the ‘human blood metabolome-

transcriptome interface’ (BMTI). Bidirectional causality analysis using Mendelian randomi-

zation did not yield any statistically significant causal associations between transcripts and

metabolites. A knowledge-based interpretation and integration with a genome-scale human

metabolic reconstruction revealed systematic signatures of signaling, transport and meta-

bolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid

metabolism. Moreover, the construction of a network based on functional categories illus-

trated the cross-talk between the biological layers at a pathway level. Using a transcription
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factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a

regulatory level. Finally, we demonstrated how the constructed networks can be used to

gain novel insights into molecular mechanisms associated to intermediate clinical traits.

Overall, our results demonstrate the utility of a multi-omics integrative approach to under-

stand the molecular mechanisms underlying both normal physiology and disease.

Author Summary

Biological systems operate on multiple, intertwined organizational layers that can nowa-
days be accesses by high-throughput measurement methods, the so-called ‘omics’ technol-
ogies. A major aim in the field of systems biology is to understand the flow of biological
information between the different layers at a systems level in both health and disease. To
unravel the complex mechanisms underlying those molecular processes and to understand
how the different functional levels interact with each other, an integrated analysis of multi-
ple layers, i.e. a ‘multi-omics‘ approach is required. In our present study, we investigate the
relationship between circulating metabolites in serum and whole-blood gene expression
measured in the blood of individuals from a population-based cohort. To this end, we con-
structed a correlation network that displays which transcript and metabolite show the
same trend of up- and down-regulation. We derived a functional characterization of the
network by developing a novel computational analysis. The analysis revealed systematic
signatures of signaling, transport and metabolic processes on both a regulatory and a path-
way level. Moreover, integrating the network with associations to clinical markers such as
HDL-cholesterol, LDL-cholesterol and TG identified coordinately activated pathways or
modules which might help to assess the molecular machinery behind such an intermediate
phenotype.

Introduction
Blood is a connective tissue, which not only ensures nutrient and oxygen supply of all organs
of the human body, but also the communication between them. Among the variety of key tasks
performed by blood are immunological functions through white blood cells. Due to its diverse
functionality, blood is heterogeneous and complex in its composition. Besides cellular constitu-
ents, which can be roughly divided into red and white blood cells, blood mainly consists of
plasma. Plasma represents the aqueous phase containing proteins, peptides, signaling mole-
cules and steroid hormones, but also other metabolites (e.g. carbohydrates, amino acids and
lipids) which are consumed and released by the organs. This unique composition of blood,
agglomerating both metabolic and transcriptional variation carrying molecular signatures of
system-wide processes, together with its minimally invasive accessibility, makes blood a widely
used system for integrative biomedical research [1,2].

With the development of high-throughput omics technologies for different levels of molecu-
lar organization, a systematic analysis of biological mechanisms underlying the functionality
(or dysfunctionality) of a system became possible. In the case of transcriptomics data, an estab-
lished framework to systematically investigate the constituents of involved biological processes
and their interactions are network-based approaches, where pairwise associations between
molecular entities (nodes) are modeled as network edges. Such studies commonly identify con-
text-specific functional modules [3], but also global co-expression networks [4] from different
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organisms [5] and cell types [6]. When particularly focusing on the blood system, several stud-
ies investigated the co-regulation of transcripts either from single white blood cell types or
whole blood samples. For example, regulatory networks [7,8] or global gene co-expression net-
works [9–11] were constructed from B- and T-cells to investigate pathways and mechanisms
involved in the immune response. Further examples using whole blood data include the identi-
fication of disease related gene networks [12,13] or molecular signatures of distinct human vac-
cines captured in blood transcriptional modules [14].

Similarly, for metabolomics data a variety of studies extensively analyzed interactions
between metabolites in various tissues, conditions and species [15–17]. Regarding blood mea-
surements, we and others recently systematically characterized molecular interactions in the
blood metabolome [18–21]. Utilizing Gaussian graphical models and serum metabolomics
data from more than 1000 participants of a population cohort we were able to show that corre-
lations between circulating blood metabolites resemble known metabolic pathways [22]. Fur-
thermore, we have shown that these data-derived metabolic networks can be useful in a variety
of applications, e.g. for the functional annotation of unknown metabolites [23] or to identify
sex-specific serum metabolome differences [24].

The integration of multiple omicsmeasurements (e.g. gene expression levels and metabolite
concentrations) is an area of active research with many successful applications investigating
the interplay between multiple organizational layers of a biological system [25–28]. However,
only few studies with large sample sizes focused on a combined analysis in human blood. One
recent example is the work of Inouye et al, who analyzed whole blood transcriptomics data in
combination with blood lipid measurements and metabolites from a Finnish population cohort
[29]. In their study, the authors associated a module of highly co-expressed genes with 134
blood metabolic markers in the context of heart disorders and identified a link between the
immune system and circulating metabolites. The study by Inouye et al was among the first to
provide clear evidence for this immune system link in blood, suggesting that gene expression in
white blood cells is responsive to changing blood metabolite levels. Thus, it can be concluded
that even if not cell-specific, the signals derived from whole blood data still reflect organism-
wide processes. This is also in line with previous studies conducted on whole blood transcrip-
tomics or metabolomics data separately [1,30,31].

The aim of the present study was to make use of the joint power of metabolomic and tran-
scriptomic profiling to comprehensively characterize the complex interplay between serum
metabolomics and whole-blood transcriptomics data. While serum metabolomics represent a
footprint of whole-body processes, blood transcriptomics data will mainly reflect immune
system processes through white blood cells. To this end, we analyzed metabolomics and tran-
scriptomics measurements of 712 individuals from the German population study KORA
(“Kooperative Gesundheitsforschung in der Region Augsburg”), comprising 440 metabolites
and 16,780 genes after filtering. We constructed a global correlation network to elucidate the
complex interplay and regulation between these omics layers (Fig 1A). The correlation analysis
takes advantage of the naturally occurring variation from individual to individual, which we
assume to carry a systematic footprint of the coregulation of metabolites and mRNAs. Such an
integrative approach was recently termed “systems genetics”, providing a global view on the
information flow between the various biological scales [32]. We deliberately left out an analysis
of metabolite-metabolite and transcript-transcript correlations, which were rigorously investi-
gated in the above-mentioned earlier studies. Instead, we specifically sought to assess the inter-
connection and information flow between the two omics layers.

The manuscript is organized as follows: In the first part, we systematically characterize the
blood metabolome-transcriptome interface (BMTI) using different strategies. First, we manually
investigated the strongest associations and provide evidence from literature wherever possible.

Metabolome-Transcriptome Interface
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Fig 1. Data integration and network analysis workflow for the bloodmetabolome-transcriptome interface (BMTI). A:We analyzed fasting serum
metabolomics and whole blood transcriptomics data from 712 samples of the KORA F4 cohort. After preprocessing and filtering, a cross-correlation matrix
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Moreover, using a Mendelian randomization (MR) approach, we examined potential causal
relationships between metabolites and transcripts. Second, using the most recent genome-wide
human metabolic network Recon 2 [33], we systematically analyzed correlations between
metabolites and transcripts at a pathway level (Fig 1B). Third, we developed a novel network
clustering approach based on functional annotations, leading to a pathway interaction network
(PIN) that allows for fast functional interpretation of the BMTI and furthermore provides
insights into the cross-talk among distinct molecular pathways (Fig 1C). In the second part of
this manuscript, we demonstrate how the identified networks can be used as a resource to fur-
ther investigate the link between metabolism and gene regulation by two different applications.
First, we investigated whether a common regulatory signature is observable from transcripts
connected to the same metabolite or to metabolites that are part of the same metabolic path-
ways. For this purpose, we analyzed promoter regions of the genes for overrepresented tran-
scription factor binding sites (Fig 1D). Second, we integrated the metabolome-transcriptome
and the pathway interaction network with associations to high density lipoprotein cholesterol
(HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG), which are well-
known risk factors for cardiovascular disease [34]. To this end, we mapped the results of linear
regressions between these clinical lipid parameters with metabolites and mRNAs onto the net-
works (Fig 1E). Finally, we demonstrate the potential of our systems genetics approach to gen-
erate novel hypothesis by combining results from all separate analysis steps and establish an
association between the branched-chain amino acid pathway and the levels of plasma TG and
HDL-C.

All network results are available to the scientific community as interactive versions in
graphml and Cytoscape format (S1 Dataset).

Results

The human blood metabolome-transcriptome interface
For this study, we focused on a subset from the KORA F4 cohort with simultaneously available
metabolomics and transcriptomics data. After quality control and filtering, the data set com-
prised of 712 human blood samples (354 males, 358 females) with gene expression data of
16,780 uniquely mapping gene probes and metabolite concentrations of 440 metabolites (Fig
1A, see Materials and Methods for details). 186 of these 440 metabolites were not chemically
identified, which is marked by a metabolite name starting with “X-”throughout this manu-
script. Both gene expressions and metabolite concentrations were log transformed and adjusted
for age and sex effects. Pairwise Spearman’s rank correlations between the measured mRNAs
and metabolites were then calculated. We used this correlation method to account for possible
non-linear associations and to ensure robustness against outliers. Note that for this particular
dataset, Spearman and Pearson correlations produced almost identical results (S1 Fig). S1
Table provides a full list of identified significant associations between blood metabolites and
transcripts.

between 440 distinct metabolites and 16,780 unique, gene-mapped probes was calculated. The correlation matrix was transformed into a bipartite network
by applying a statistical significance threshold. B: Scientific literature was screened for biological evidence for the strongest metabolite-mRNA associations.
All correlating metabolite-mRNA pairs contained in the humanmetabolic model Recon2 were systematically evaluated with respect to their distance in the
metabolic pathway network.C: Aggregated z-scores for each functional annotation were calculated. A pathway interaction network (PIN) was then
constructed via cross-correlation of scores between pairs of functional annotations. D: For each metabolite contained in the BMTI, we investigated the
promoter regions of associated transcripts for shared regulatory signatures. Similarly, shared regulatory signatures within and between metabolic pathways
were examined. As a final step, we identified specific regulatory motifs in the BMTI. E: Both BMTI and the PIN were integrated with the results from an
association analysis to the three intermediate physiological traits (HDL-C, LDL-C and TG).

doi:10.1371/journal.pgen.1005274.g001
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Metabolite-mRNA Spearman correlation coefficients were symmetrically distributed
around zero (mean:−4.5 × 10−4 ± 0.0433, Fig 2A) with a maximum absolute correlation value
of ρ = 0.56. Moreover, the distribution of inter-omics correlations showed a rather narrow
shape, indicating generally lower correlations when compared to the intra-omics correlations
(mRNA-mRNA, metabolite-metabolite). The metabolite-metabolite distribution was strongly
skewed for positive correlation values, which is in accordance with our previous findings on a
different metabolomics panel [22]. In contrast, the mRNA-mRNA distribution displayed a
broad and symmetric distribution of correlation values (Fig 2A).

We then generated a weighted bipartite network of metabolites and transcripts by con-
structing an edge between a pair of metabolite and transcript if the respective correlation was
significant with a false discovery rate (FDR) of 0.01. This corresponded to an absolute

Fig 2. The bloodmetabolome-transcriptome interface. A: Distributions of correlation coefficients for metabolite-mRNA, mRNA-mRNA and metabolite-
metabolite associations. B: Number of nodes and edges as a function of the absolute correlation coefficient. Red dotted line represents the correlation cutoff
used in this study (0.01 FDR). C: Percentages of blood cell type specific markers contained in the BMTI. D: Visualization of the blood metabolome-
transcriptome interface. The correlation network consists of 114 metabolites and 522 transcripts connected by 1109 edges. Edge widths represent
correlation strengths.

doi:10.1371/journal.pgen.1005274.g002
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correlation cutoff of ~0.181 and a p-value threshold at 1.07 × 10−6. Obviously, the number of
edges in a correlation network heavily depends on the chosen threshold. It has been shown in
previous studies that a biologically reasonable threshold can be found by investigating network
density as a function of the correlation cutoff value [35]. According to that study, a cutoff value
slightly above the minimal density combined with a decreasing number of nodes and edges
leads to biologically meaningful results. As indicated in Fig 2B, a clear decline in the number of
included nodes and edges can be observed for increasing correlation threshold levels beginning
between correlation values of 0.15 and 0.25. Minimal network density was reached for a
correlation threshold value between 0.13 and 0.18 (S2 Fig). Notably, applying the above-
mentioned conventional statistical significance threshold to our data set precisely coincides
with the network density-based threshold described by [35].

The resulting network, subsequently called the blood metabolome-transcriptome interface
(BMTI), consisted of 636 nodes (114 metabolites, 522 transcripts) and 1109 edges, correspond-
ing to a total network connectivity of ~0.015% (Fig 2B and 2D). Out of the total number of
edges, 63% (699) were positive correlations and 37% (410) were negative correlations. The
metabolite showing the highest degree was mannose, with significant correlations to 98 differ-
ent transcripts. In contrast, the mRNA with the highest connectivity was SLC25A20 with 37
metabolites attached (S1 Table).

We used data from the DILGOM study, which included NMRmetabolomics as well as tran-
scriptomics data for 518 individuals, for independent replication of our correlations. In total,
17 metabolites (11 amino acids, 3 lipids, 2 carbohydrates and 1 belonging to the energy metab-
olism) overlapped between the KORA F4 dataset and the DILGOM study, which allowed us to
investigate the replication of 211 edges (~19% of the BMTI). 61 out of the 211 edges (~29%)
reached a nominal significance (p-value< 0.05) in the DILGOM study of which 38 (~18%)
remained significant after multiple testing correction (FDR< 0.05, see S2 Table).

To investigate the possible origins of the metabolite-transcript correlations, we compared all
genes represented in the BMTI with 1) two a priori defined blood cell type-specific marker
gene lists, and 2) a database of more general tissue gene expression signatures (see Materials
and Methods). For the first part, we used a list of genes derived from Palmer et al. [36] com-
prising 907 specifically expressed genes for 5 different blood cell types (leukocytes only) and a
second list derived from the HaemAtlas as generated by Watkins et al. [37] comprising 1,716
genes characterizing 9 different blood cell types. For the second part, we used the HECS data-
base from Shoemaker et al. [38] containing information for more than 6,000 genes and 84 tis-
sues. Both comparisons in 1) showed that most of the BMTI genes (85% and 67%, respectively)
were not specifically attributable to any blood cell type (see Fig 2C and S3 Table). The remain-
ing genes could be assigned to the respective measured cell types, with granulocytes making up
the largest blood cell faction in both cases (8% and 20%, respectively) and only minor signals
for the other blood cell types. A similar result was observed when comparing the BMTI genes
to the HECS database. 52% of the BMTI genes showed no tissue specificity, while 12 out of the
15 strongest tissue signatures where either blood cells or blood related tissues (S3 Table).

Strong network edges in the BMTI represent known pathway
mechanisms
As a first step to characterizing the BMTI, we performed a manual literature lookup for the
strongest absolute correlations in the network (Fig 1B). In the following, we provide a detailed
discussion of the 25 strongest edges (Table 1). Notably, most of the top 25 identified associa-
tions reflect biochemically reasonable interactions like transport processes of lipids, but also
regulatory signatures between signaling metabolites and transcription factors.

Metabolome-Transcriptome Interface
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The strongest association in the dataset was observed between cortisol andDNA-Damage-
Inducible Transcript 4 (DDIT4, ρ = 0.55, p-value = 7.70 × 10−59), which are known to play a role in
stress response [39]. Cortisol is a glucocorticoid whose release is mainly induced by exogenous
stress. Via binding to the glucocorticoid nuclear receptor (GR, official gene symbolNR3C1), it
regulates various cellular processes like carbohydrate metabolism and the immune system by direct
activation of target genes [40]. Remarkably,DDIT4was identified as a GR target gene in mouse
hepatocytes [41], rat hippocampus [42] and also in human peripheral blood lymphocytes [43]
delivering a potential explanation of an indirect association for the observed correlation. Another
GR target gene associated to cortisol is Suppressor Of Cytokine Signaling 1 (SOCS1, ρ = 0.36, p-
value = 2.19 × 10−23), a major constituent of the cytokine signaling pathway and inflammatory
response [44]. We observed further top 25 correlations involving cortisol for Kruppel-Like Factor
9 (KLF9) andDual Specificity Phosphatase 1 (DUSP1) (ρ = 0.34, p-value = 5.20 × 10−21; ρ = 0.34,
p-value = 7.58 × 10−21, respectively). KLF9 is a ubiquitously expressed transcription factor involved
in the regulation of diverse biological processes like cell development and differentiation in
adipogenesis [45].DUSP1 is an enzyme involved in the response to environmental stress [46].
Interestingly, for both transcripts, a cortisol-dependent regulation was already observed in
epidermal cells [47] and peripheral blood mononuclear cells [48].

Another metabolite showing several strong associations to blood transcripts was 1-monoo-
lein, which belongs to the class of monoacylgylcerols. This particular class of metabolites are

Table 1. Top 25 network edges.

Metabolite mRNA Spearman's ρ p-value

cortisol DDIT4 0.56 7.71E-59

1-oleoylglycerol (1-monoolein) | Glycerol(18:1(n-9)/0:0/0:0) HDC -0.41 2.01E-29

oleate181n9 | oleate (18:1n9) SLC25A20 0.40 2.30E-29

palmitate (16:0) | fatty acid 16:0 SLC25A20 0.40 3.96E-29

1-oleoylglycerol (1-monoolein) | Glycerol(18:1(n-9)/0:0/0:0) SLC45A3 -0.40 3.59E-28

dihomolinoleate202n6 | dihomo-linoleate (20:2n6) SLC25A20 0.38 8.63E-26

linoleate (18:2n6) | fatty acid 18:2(n-6) SLC25A20 0.37 1.55E-24

stearate (18:0) | fatty acid 18:0 SLC25A20 0.37 2.02E-24

eicosenoate (20:1n9 or 11) | fatty acid 20:1(n-9/n-11) SLC25A20 0.37 2.67E-24

10-nonadecenoate (19:1n9) | fatty acid 19:1(n-9) SLC25A20 0.36 9.07E-24

cortisol SOCS1 0.36 2.19E-23

3-hydroxybutyrate (BHBA) SLC25A20 0.35 1.77E-22

5,8-tetradecadienoate SLC25A20 0.35 3.85E-22

palmitoleate (16:1n7) | fatty acid 16:1(n-7) SLC25A20 0.35 4.60E-22

10-heptadecenoate (17:1n7) | fatty acid 17:1(n-7) SLC25A20 0.35 7.87E-22

1-oleoylglycerol (1-monoolein) | Glycerol(18:1(n-9)/0:0/0:0) GATA2 -0.35 2.63E-21

cortisol KLF9 0.34 5.21E-21

linolenate [alpha or gamma; (18:3n3 or 6)] | fatty acid 18:3(n-3/n-6) SLC25A20 0.34 5.13E-21

cortisol DUSP1 0.34 7.59E-21

margarate (17:0) | fatty acid 17:0 SLC25A20 0.34 3.50E-20

myristate (14:0) | fatty acid 14:0 SLC25A20 0.32 8.05E-19

1-oleoylglycerol (1-monoolein) | Glycerol(18:1(n-9)/0:0/0:0) C1ORF186 -0.32 4.72E-18

5-dodecenoate (12:1n7) | fatty acid 12:0(n-7) SLC25A20 0.32 3.74E-18

isoleucine ABCG1 -0.32 3.39E-18

We observed particularly strong effects for lipid metabolism, especially around the mitochondrial transporter SLC25A20. Pipe symbols (|) separate

alternative metabolite names.

doi:10.1371/journal.pgen.1005274.t001
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bioactive compounds recently identified to be involved in various signaling processes of the
immune system [49,50]. The source of 1-monolein in humans is not fully understood. Experi-
ments in rodents suggest that dietary 1,3-diacylglycerols are preferentially digested to 1-mono-
acylglycerols and free fatty acid in the small intestine, making dietary 1,3-diacylglycerols
containing an oleoyl moiety at position sn-1 or sn-3 a plausible source of 1-monoolein [51]. In
our analysis, 1-monoolein showed a strong negative correlation to four transcripts – GATA
Binding Protein 2 (GATA2),Histidine Decarboxylase (HDC), Solute Carrier Family 45,Member
3 (SLC45A3) and Chromosome 1 Open Reading Frame 186 (C1ORF186) (ρ between -0.41 and
-0.32, p-values between 2.01 × 10−29 and 4.72 × 10−18).HDC is a cytosolic enzyme that
catalyzes the conversion of histidine to histamine and thus represents an important immune
system trigger molecule [52]. In addition, GATA2, a key regulator of gene expression in
hematopoietic cells [53], C1ORF186 and SLC45A3, two membrane-bound proteins, were all
identified to play a role in the immune response [13].

Carnitine-acylcarnitine translocase (SLC25A20) occurred in 15 of the 25 top ranked correla-
tions. This gene encodes an enzyme which transports acylcarnitines, i.e. the transport variant
of fatty acids, into the mitochondria for subsequent ß-oxidation. Interestingly, the majority of
SLC25A20-associated metabolites among our top 25 correlations belonged to the class of long
chain fatty acids (11 long chain fatty acids, 2 essential fatty acids, 1 medium chain fatty acid, 1
ketone body), which is in accordance with its function as a lipid transporter. Of note, among
the metabolites associated with SLC25A20 beyond the top 25 correlations were also 5 acylcarni-
tines, although at lower correlation values.

We observed a significant, negative correlation between isoleucine and ATP-Binding Cas-
sette Sub-Family G Member 1 (ABCG1, ρ = −0.32, p-value = 3.39 × 10−18). It has been shown
previously that circulating levels of branched-chain amino acids (BCAAs) affect a variety of
metabolic processes such as glucose and lipid metabolism [54]. ABCG1 is a major player of
lipid metabolism, controlling the transfer of cholesterol from peripheral macrophages to
exogenous HDL [55]. Interestingly, an association between circulating BCAA levels and
plasma HDL-C levels was also observed in a recent population study [56] and in a previous
paper on the same population cohort used in the present study [57].

Causal analysis of BMTI edges
To assess whether metabolite-transcript links in BMTI contain causal effects, we performed a
Mendelian randomization analysis [58]. For each metabolite-mRNA edge, we tested both the
causal directions metabolite!mRNA and mRNA!metabolite given that adequate instrumen-
tal variables were available. As instruments we used SNP lists from previously published
GWAS studies. After filtering for strong instrumental variables, we were left with 15 SNPs
identified by a metabolomics GWAS study [23] associated to 16 metabolites in the BMTI.
Moreover, for 157 mRNAs in the network, we selected 192 SNPs from [59]. In total, we tested
the causal relationship of 440 BMTI edges (~40%) of which 60 could be tested bi-directional.
In the BMTI, 42 metabolite-mRNA pairs (19 mRNA!metabolite; 23 metabolite!mRNA)
showed a nominally significant (p-value< 0.05) causal effect. At an FDR of 0.05, none of the
tested pairs remained significant (S4 Table).

Model-based evaluation reveals systematic signatures of metabolic
reactions
In order to further reveal the underlying mechanisms determining the observed associations,
we systematically analyzed whether correlating pairs of metabolites and transcripts (i.e.
enzymes) correspond to the structure of the underlying metabolic network. Specifically, we
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investigated if strong metabolite-transcript edges of the BMTI tend to be in close proximity
within biochemical pathways. All pairwise associations between metabolites and transcripts
were mapped to their corresponding network nodes in the Human Recon 2 metabolic network
reconstruction [33]. As a measure for metabolic network proximity, the length of the shortest
path connecting each metabolite-enzyme pair was determined (Fig 3A). This measure is based
on the common assumption that the shortest connection between two network entities corre-
sponds to the biologically reasonable one [22,60]. To avoid potential biologically meaningless
shortcuts, we removed co-factors and currency metabolites prior to the analysis (see Methods
section for details and S5 Table for a list of removed metabolites).

Fig 3. Model-based evaluation of metabolite-mRNA correlations. A: Schematic representation of the mitochondrial carnitine-shuttle with an explanation
of network distance calculation. Note that co-factors are only illustrated for completeness, but are not considered for the calculation of the shortest path
between two compounds. Dashed circles indicate unmeasured metabolites. B: Spearman correlation coefficient plotted against the number of pathway steps
in human Recon 2. Significant correlations, i.e. those present in the BMTI are displayed as red crosses, whereas all non-significant correlations are plotted as
a distribution. NM: no mapping. A distance of infinity (Inf) was assigned if there was no connection in Recon 2. C: Enrichment of significant correlations as
determined by Fisher’s exact test. Black bars indicate log10 p-values assessing whether we observe more significant correlations for that particular distance
than expected by chance. White bars represent the same test, only for a cumulative distance (i.e. “up to a distance of x”). D: Functional annotations of
significantly associated transcripts at distances 0 and 1. At both distances, mainly transcripts belonging to the transport, energy, lipid and amino acid
subsystems were observable.

doi:10.1371/journal.pgen.1005274.g003
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We could map 121 metabolites and 1,467 enzymes out of the 254 metabolites with known
identity and 16,780 transcripts onto the metabolic network, respectively. While most pairwise
correlation coefficients were closely distributed around zero for all investigated network dis-
tances, a distinct pattern was observable for statistically significant correlations. The majority
of significantly correlating pairs accumulated at short distances and was dominated by positive
correlations (Fig 3B). To determine the significance of this observation, one-tailed Fisher’s
exact tests were performed by either considering each distance individually or by aggregating
all pairs up to a particular distance. The latter aggregation analysis combines all transcript-
metabolite pairs which are reachable up to a certain number of steps (biochemical reactions) in
the metabolic network. For both cases, we observed a substantial overrepresentation of signifi-
cantly correlating pairs at short distances (Fig 3C). The strongest signals are observed for pairs
that take part either directly in the same reaction (d = 0) or for those which are just one reac-
tion apart (d = 1). For the cumulative distances we also observed significant enrichment up to a
distance of d = 2 reactions. Proportions of significant and non-significant pairs per distance are
given in S3 Fig and a detailed view on an exemplary path of length 2 is depicted in S4 Fig

To further characterize the underlying biochemical pathways, we calculated frequencies of
functional annotations from Recon 2 among the significant associations for pathway distances
0 to 2 (Fig 3D and S5 Fig). At a distance of 0, we identified mainly transport reactions (67%)
accompanied by reactions belonging to lipid metabolism (bile acid synthesis 11%, fatty acid
oxidation 11%) and carbohydrate metabolism (pyruvate metabolism 11%). The transport reac-
tions can be further subdivided into extracellular transport (45%), or mitochondrial transport
(11%) and peroxisomal transport (11%). Similar signals can be found at distances of 1 and 2,
where we additionally identified reactions belonging to energy metabolism (oxidative phos-
phorylation 27%) and amino acid metabolism (histidine metabolism 11%, glutamate metabo-
lism 4%).

Taken together, the BMTI captured a systematic signal of metabolite-enzyme associations
to be in close proximity when mapped onto a global metabolic network. Moreover, the stron-
gest signals found for pathway distances of 0, 1 or 2 reflect distinct metabolic reactions mainly
belonging to lipid, energy and amino acid metabolism, and transport mechanisms.

Functional annotation-based aggregation of the BMTI reveals cross-talk
between pathways
Up to this point, our analysis was a reaction-centered approach limited to single edges only,
thereby neglecting the global network structure and cross-talk between pathways captured in
the BMTI. To derive a comprehensive functional description of the biological modules
included in the BMTI, we developed a novel approach based on functional annotations which
provides an integrated view on cellular processes. Briefly, the approach consists of three steps:
First, we used pathway annotations to define groups of functionally related metabolites and
transcripts. For metabolites, we used metabolic pathway annotations provided with the meta-
bolomics dataset, and for transcripts we downloaded the Gene Ontology (GO) slim annota-
tions. Second, an aggregated z-score (aggZ-score) was calculated for each functional category.
Third, we calculated correlations between aggZ-scores of all functional categories. A schematic
overview of this multi-step approach is provided in S6 Fig and described in more detail in the
Material and Methods. A full list of the resulting categorical correlations can be found in S6
Table.

We again constructed a network (the pathway interaction network, PIN) by drawing edges
between significantly correlated categories. Interestingly, even when applying a stringent Bon-
ferroni-corrected threshold (α = 0.01, p-value� 2.2 × 10−6) this resulted in an overly dense
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connected network of 166 nodes and 1220 edges. To generate a visually interpretable version of
this network, an ad-hoc stringent threshold of p-value� 1.0 × 10−11 was applied to draw the
network. This resulted in a PIN consisting of 113 nodes (93 GO terms, 20 metabolic pathways)
connected by 244 edges (196 positive correlations, 48 negative; Fig 4A). Remarkably, we
observed a high conformity between linked metabolic pathways and gene annotations. For
example, the metabolic pathway “carnitine metabolism” was connected to the biological
processes “lipid metabolic process” and “transmembrane transport”. Moreover, it was linked to
the cellular component “mitochondrion”, indicating transport processes of fatty acids into the
mitochondrion for subsequent ß-oxidation. Further biologically reasonable pairs were “Valine,
Leucine and Isoleucine metabolism” and “Glutamate metabolism” attached to “cellular
nitrogen compound metabolic process”. As a last example, “Steroid/Sterol” was connected to
“response to stress” and “signal transducer activity”, pointing to an interaction between
hormones and regulation of gene expression. In the following, we examine two selected
category-category relationships in detail, including the individual metabolites and gene
transcripts that gave rise to the association.

Scenario one: Fatty acid metabolism. The first scenario contained the metabolic pathway
“long chain fatty acid” and the gene ontology annotation “lipid metabolic process” (Fig 4B).

Fig 4. Pathway interaction network (PIN). A: Bipartite correlation network, where each node represents either a metabolic pathway or a gene set
summarized in a GO term, while edges between them represent the correlation of the respective aggZ-scores. B+C: Expanded view on exemplary pathway
interactions. Note that zoomed parts correspond to subnetworks from Fig 2D that are explained by one single link of the PIN. Edge widths represent
correlation strengths.

doi:10.1371/journal.pgen.1005274.g004
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The subnetwork that induced this association consisted of 22 individual constituents (7
mRNAs, 15 metabolites) connected by 38 edges. Notably, this subnetwork coincides well with
the above-mentioned fatty acid carnitine-shuttle, i.e. the transport of long chain fatty acids into
the mitochondrion for subsequent degradation. Within this subnetwork, 8 long chain fatty
acids were jointly associated to CPT1A and SLC25A20, while 7 additional fatty acids were asso-
ciated to SLC25A20 alone. Moreover, acyl-CoA dehydrogenase very long-chain (ACADVL) and
Perilipin 2 (PLIN2), both involved in ß-oxidation and long chain fatty acid transport, were
associated to 5 and 7 out of the 15 long chain fatty acids, respectively. Three further transcripts,
Tumor Necrosis Factor Receptor Superfamily,Member 21 (TNFRSF21), Aldo-Keto Reductase
Family 1,Member C3 (AKR1C3) and 1-Acylglycerol-3-Phosphate O-Acyltransferase 4
(AGPAT4) were correlated with 5,8-tetradecadienoate, a side product of oleate ß-oxidation.
While AKR1C3 and AGPAT4 are enzymes mainly related to arachidonic acid metabolism and
phospholipid metabolism, potentially indicating a branching point to other pathways of the
lipid metabolism, TNFRSF21 is involved in T-cell activation and immune regulation [61].

Scenario two: Monoacylglycerols and immune-related transcripts. Since whole blood
transcriptomics measurements should mainly reflect the immune system, we have chosen the
association between the metabolic class of “monoacylglycerols” and the GO-term “immune
system process” as a second scenario (Fig 4C). The corresponding subnetwork contained 11
nodes (3 metabolites, 8 transcripts) and 14 edges (2 positive, 12 negative). The monoacylglycer-
ols included 1-oleoylglycerol, 1-linoleoylglycerol and 1-palmitoylglycerol, which only differ in
the attached fatty acid residues. It has been shown that monoacylglycerols are not merely inter-
mediate lipid substances, but may also act as signaling molecules. For example, 2-arachidonoyl-
glycerol is a known ligand of cannabinoid receptors, which are involved in the regulation of
several biological processes including inhibition of pro-inflammatory and other immune sys-
tem related processes [62,63]. Among the genes summarized by the term “immune system pro-
cess”, GATA2, Endothelial PAS Domain Protein 1 (EPAS1) and Notch1 are key regulators of
hematopoiesis and as such are involved in the differentiation process of immune cells
[53,64,65]. Moreover, EPAS1 and thioredoxin (TXN) are associated to the response to oxidative
stress [64], whereasMembrane-Spanning 4-Domains, Subfamily A,Member 2 (MS4A2) and
Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) are involved in allergic responses
mediated via the IgE receptor [66]. The two remaining genes, SEC61G and PRSS8, are involved
in the immune processes of antigen presentation and inflammation [67].

Regulatory signatures captured by the integrated network
The BMTI contains a prominent “flower-like” network topology, i.e. many transcripts associ-
ated to a single metabolite. We therefore asked whether these coordinated changes around a
metabolite and also the network topology can be explained by common transcriptional regula-
tory processes through transcription factors (TFs, Fig 1D). For the following analysis, we only
considered metabolites linked to at least 3 transcripts. We analyzed the promoter regions of all
connected genes for an enrichment of known transcription factor binding sites (TFBS) derived
from the Jaspar database [68]. This resulted in significantly enriched transcription factor bind-
ing motifs for 46 single metabolites, 24 subpathways and 7 superpathways. The Methods sec-
tion provides a detailed explanation of the process. A summary of all enriched TFBS can be
found in S7 Table.

In total, out of the 205 binding motif matrices used in the analysis, 189 reached a significant
enrichment in at least one of the metabolite-derived gene sets, indicating a generally prevalent
common regulation. Across all lists of enriched TFBS identified from our network, the motifs
that occurred most frequently were Sterol Regulatory Element Binding Transcription Factor 2
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(SREBF2), Peroxisome Proliferator-Activated Receptor Gamma (PPARG; Jaspar motifs PPARG
and PPARG::RXRA) and Nuclear Factor, Interleukin 3 Regulated (NFIL3). SREBF2 is a major
regulator of cholesterol metabolism [69] while PPARG is known to be activated by fatty acid
ligands, thereby regulating fatty acid ß-oxidation and other processes [70]. NFIL3 is a regulator
specifically found in activated T cells, natural killer (NK) cells, and mast cells, involved in the
regulation of the immune response and the circadian rhythm [71].

Branched-chain amino acids were among the metabolites most strongly connected to
SREBF2 targets. Specifically, the transcripts correlating with isoleucine and valine show high
enrichment of SREBF2 binding sites (p-value = 5.83 × 10−8 and p-value = 2.36 × 10−10,
respectively; S7 Table). Moreover, considering all 172 genes associated to at least one
metabolite from the entire branched-chain amino acid pathway (“Valine, leucine and
isoleucine metabolism”) yielded significantly enriched binding sites for SREBF1 and SREBF2
(p-values 6.78 × 10−10 and 9.11 × 10−10, respectively; S7 Table). Both SREBs are important
regulators in lipid homeostasis, including cholesterol and fatty acid biosynthesis, further
indicating a regulatory cross-link between HDL-C, TG and BCAA metabolism.

The highly interlinked network topologies of both the blood metabolome-transcriptome
interface and the pathway interaction network suggest a strong coregulation between the differ-
ent metabolites, processes, and pathways. As a second step of coregulation analysis, we inferred
the number of pairwise shared significant TFBS to determine the extent of coregulation
between single metabolites and metabolic pathways (S8 Table). At the single metabolite level,
we found a maximum number of 27 shared TFs between histidine and X-03094 (S7 Fig). More-
over, this highly connected unknown metabolite shared 14 TFs with another unknown metab-
olite (X-12442) and with a peptide (HWESASXX). For the metabolic subpathways, we
observed an overlap between “histidine metabolism” and the group of “long chain fatty acids”
and between “glycolysis, gluconeogenesis, and pyruvate metabolism” and the group of “fibrino-
gen cleavage peptides” (11 shared TFs each; Fig 5A). On the level of superpathways, the highest

Fig 5. Transcription factor binding site analysis. A:Heatmap of shared significantly overrepresented TFBS betweenmetabolic subpathways. Upper right
triangle matrix was left out. Darker colors indicate a higher number of shared TF binding sites. B+C: Identified network motifs of TFs and their respective
target genes associated to the same metabolite. Green arrows indicate regulation. Black lines indicate positive correlation; red dotted lines indicate negative
correlation.

doi:10.1371/journal.pgen.1005274.g005

Metabolome-Transcriptome Interface

PLOS Genetics | DOI:10.1371/journal.pgen.1005274 June 18, 2015 14 / 32



number of shared TFBS was 4, identified between “carbohydrate” and “peptide metabolism”

(S8 Fig). Overall, we found that TF binding sites are shared to a large extent, indicating a com-
plex coregulation not only within but also between different processes and pathways.

To gain further insight into this coregulation, we determined transcription factors which
also occur as transcripts in the BMTI. 165 out of the 189 transcription factors with available
binding motif were contained in the filtered data set. Only 12 of these transcription factors dis-
played a significant correlation to any metabolite and are thus included in the BMTI. This
observation is not completely unexpected given that TFs are regulated to a large extend at a
post-transcriptional level [72]. Interestingly, for two out of these 12 TFs, we also observe
enriched binding sites in the promoter region of the other genes connected to the same metab-
olite, i.e. a “triad” network motif consisting of a metabolite, a transcription factor and its target
genes (Fig 1D, S7 Table).

The first transcription factor is B-cell CLL/Lymphoma 6 (BCL6), a transcriptional repressor
involved in the STAT-dependent interleukin 4 response of B-cells [73]. BCL6 is negatively cor-
related with methionine and tyrosine in our network (Fig 5B). The TFBS enrichment analysis
using all 15 genes connected to methionine within the BMTI resulted in a significant overrep-
resentation of the BCL6 binding motif (p-value = 5.71 × 10−09, 82% of the 15 promoter
sequences contained at least one occurrence of the motif), while no significant enrichment was
observable for the genes connected to tyrosine. The second motif was identified around
Nuclear Receptor Subfamily 4, Group A,Member 2 (NR4A2), which was associated to 7
metabolites in our network. The 22 neighboring genes of one of those metabolites, kynurenine,
showed significantly enriched binding sites for this transcription factor (p-value = 3.79 × 10−09,
73% of the 22 promoter sequences contained at least one occurrence of the motif; see Fig 5C
and S7 Table).

Integration of clinical phenotypes identifies active modules
As a final analysis step, we sought to use the BMTI and the PIN to infer novel insights into the
molecular mechanisms and pathways underlying complex traits. To this end, we associated the
nodes of both networks with intermediate clinical phenotypes (Fig 1E, Table 2). As already
stated earlier, we chose the levels of HDL-C and LDL-C, as well as concentrations of blood tri-
glycerides (TG), known risk factors for a variety of diseases. We performed multiple linear
regression analyses with HDL-C, LDL-C and TG blood parameters as response variables and
all 440 metabolites and 16,780 transcripts as explanatory variables. All models were corrected
for sex and age. Statistical significance was defined by a Bonferroni adjusted p-value cutoff at

Table 2. Characteristics of the KORA F4 study population.

Variable

N (Male/Female) 712 (354/358)

Mean (sd)

Age (years) 68.82 (4.31)

BMI (kg/m2) 28.87 (4.56)

HDL cholesterol (mg/dl) 55.80 (13.95)

LDL cholesterol (mg/dl) 140.60 (35.97)

Triacylglycerides (mg/dl) 132.64 (75.70)

N, number of individuals; BMI, body mass index; HDL, high density lipoprotein; LDL, low density

lipoprotein; sd, standard deviation.

doi:10.1371/journal.pgen.1005274.t002
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2.9 × 10−6 (α = 0.05). We then projected the −log10 transformed p-values from this regression
as colors onto the corresponding nodes in the two networks. Similarly, the analysis was
performed using aggZ-scores of pathways / GO terms as explanatory variables and mapped to
the PIN (Fig 6 and S1 Dataset). Note that we presented similar approaches in the past for
metabolomics-only networks [24,74].

In total, regression analyses yielded 233 (54 metabolites, 179 mRNAs), 28 (28 metabolites, 0
mRNAs) and 1,124 (49 metabolites, 1,075 mRNAs) statistically significant associations for
HDL-C, LDL-C and TG, respectively. Of those associations, 64%, 28% and 25%, were con-
tained in the BMTI, respectively (see S9 Table for a complete list of associations). We only
observed few LDL-C metabolite associations, which can be mainly summarized in the “Glycer-
olipid metabolism” and “Carnitine metabolism”, while none were observable for the transcripts
(Fig 6E and 6F, S9 Table). We will therefore focus on network associations for HDL-C and TG
in the following.

Examination of the networks for HDL-C and TG revealed localized regions of similar asso-
ciations, which reflect potentially co-regulated modules (Fig 6A and 6C). Interestingly, when
compared to each other, there appeared to be an antagonistic pattern of associations for
HDL-C and TG, which is in accordance with an overall negative correlation of the two traits (ρ

Fig 6. Intermediate clinical phenotype associations. Linear regression results of TG, HDL and LDL for each metabolite and transcript (A, C, E), or
pathway and GO term (B, D, F)were projected onto the respective networks. Blue colors indicate negative associations, while red colors represent positive
associations to the respective phenotype. Color strength of the nodes encodes the-log10 p-value of the respective association. β denotes the regression
coefficient and its sign represents the direction of the associations (positive or negative correlation).

doi:10.1371/journal.pgen.1005274.g006
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= −0.53). This opposing pattern also holds for the categorical networks (Fig 6A–6D and S10
Table). To confirm this observation statistically, we utilized an approach to compare the differ-
ent networks suggested by Floegel et al. [74]. Basically, we calculated the Spearman correlation
of the association measures between the different clinical traits. This resulted in a strong nega-
tive correlation between the BMTI-HDL-C and the BMTI-TG network (ρ = −0.84) which was
even more pronounced between the PIN-HDL-C and PIN-TG networks (ρ = −0.94, S9 and
S10 Figs). A similar pattern of opposing associations between HDL-C and TG phenotypic traits
was already described in previous studies, which suggested a pleiotropic, heritable relation
between the two lipid and lipoprotein measures, potentially regulated by a common, comple-
mentary mechanism [13,75].

In the following, we will discuss exemplary pathway mechanisms identified in the pheno-
type networks. ABCG1 and ABCA1, known constituents of the reverse cholesterol transport
necessary for the proper formation of plasma HDL-C [55], were positively correlated with
HDL-C (p-value = 4.37 × 10−12 and p-value = 2.92 × 10−8, respectively). At the pathway level,
processes like “generation of precursor metabolites and energy” or “catabolic process” are
negatively associated with HDL-C, while “nucleic acid binding transcription factor activity”
and “signal transducer activity” are positively associated (Fig 6D). An inverse pattern can be
seen for TG, where positive associations predominate and processes like “generation of
precursor metabolites and energy” or “catabolic process” are strongly positively associated (Fig
6A and 6B).

Given the known association between HDL/TGs and branched-chain amino acids [57,76],
we investigated the phenotypic networks to further examine this metabolic class. First, we
examined the edge between isoleucine and ABCG1 within the BMTI-HDL-C network. As
already mentioned, ABCG1 was strongly positively associated to HDL-C levels, while we found
that isoleucine was significantly negatively associated to the concentration of HDL-C (β =
−4.30, p-value = 5.80 × 10−19). Moreover, gamma-glutamyl variants of BCAAs belonging to
“gamma-glutamyl metabolism” (β = −4.84, p-value = 3.15 × 10−14) and “Valine, leucine and
isoleucine metabolism” (β = −4.66, p-value = 9.17 × 10−11) displayed profound negative
associations to HDL-C (Fig 6D and S10 Table), further validating a connection between
HDL-C and BCAAmetabolism. For triglycerides, we observed an inverse relationship with
BCAAs and BCAA-related pathways (Fig 6B, S9 and S10 Tables).

Discussion
We constructed a global network model across two levels of biological information by integrat-
ing cross-sectional omics data from a large-scale population cohort. The dataset was based on
circulating metabolites from plasma and transcriptional variation derived from whole blood.
This analysis exploited the naturally-occurring variation caused by genetic variation, environ-
mental and behavioral influences from a natural population over multiple layers of organiza-
tion. Such an approach was recently referred to as ‘systems genetics’, enabling the systematic
exploration of information flow between the different biological scales [32].

As mentioned in the introduction, blood is a heterogeneous tissue containing a series of dis-
tinct cell-types. In this study, we utilized whole blood transcriptomics data from unsorted cells,
leading to a complex mixture of transcriptional signals in the transcriptome dataset [36]. Simi-
larly, the levels of circulating metabolites are strongly influenced by metabolically active organs
[31], but also by metabolites from blood cells and those taken up from the environment. The
comparison to known cell-type specific markers further suggested that a substantial amount of
the signals are derived from specific blood cells. However, the analysis also showed that the
majority of the BMTI contained transcripts are not assigned to any cell-type. Thus, we assume
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that the metabolite-mRNA associations captured in the BMTI mainly reflect cell-type unspe-
cific processes involved in the fundamental maintenance of cellular function, besides some pro-
cesses specifically related to immune functions.

Independent replication of the BMTI edges was investigated using data from the DILGOM
study. Out of 211 possible associations, we were able to replicate 29% at a nominal significance
and 18% after multiple testing correction (FDR<0.05). This relatively low number of replicated
associations might have various reasons. For example, 1) The DILGOM study used an NMR-
based metabolomics platform in contrast to the mass spectrometry-based methodology used in
KORA. 2) The smaller sample size of the DILGOM study might limit the power to detect exist-
ing associations between metabolites and transcripts. 3) Differences in laboratory procedures
and protocols or the population structure can affect replication across cohorts. Future high-
powered studies with more similar measurement platforms can further address the stability of
metabolite-transcript correlations across studies.

A comprehensive analysis of the strongest associations between transcripts and metabolites
clearly revealed biologically reasonable relationships, such as signaling and transport mecha-
nisms. Many identified associations, e.g. between cortisol and DDIT4 or between SLC25A20
and multiple long chain fatty acids, were in consent with known signaling or metabolic path-
ways. Others support and extend results from previous studies. As one example, nearly all tran-
scripts included in the lipid-leukocyte (LL) module identified by Inouye et al [29] were among
the top scoring association pairs. For instance, we were able to confirm associations between
CP3A, FCER1A, GATA2, HDC,MS4A2, and SLC45A3, core genes of the LL module, and leu-
cine, isoleucine, and several lipids (see S1 Table). In addition, we found associations which, to
the best of our knowledge, have not been described before. These include associations between
1-monoolein and GATA2, a key regulator of hematopoiesis, or SLC45A3, a known diagnostic
marker for prostate cancer [77]. The identified associations extend the current knowledge
about the connection between system-wide metabolism and immunity-related pathways.

Causal inference of the metabolite-mRNA associations using Mendelian randomization
yielded no statistically significant results. There are various possible reasons for this negative
outcome. First, there might be no causal effect in either direction between the investigated tran-
scripts and metabolites. Besides that, the lack of significant findings could also be caused by the
limitations of Mendelian randomization. For instance, MR is known to require large numbers
of samples to detect true causal relationships, and the power in our study (n = 712) might have
been too low [58]. We therefore decided to leave a more detailed discussion and analysis of
causal effects to future, high-powered studies.

Comparison of the blood metabolome-transcriptome interface with the most recent human
genome-scale metabolic reconstruction [33] allowed to assess whether transcript-metabolite
correlations also recapitulate known biochemical reactions at a systematic level. We were able
to show that strong associations between enzymes (represented by their respective transcripts)
and metabolites are significantly accumulated at shorter pathway distances (Fig 3B and 3C),
which is consistent with previous studies [60,78,79]. Further functional characterization identi-
fied transport, energy, lipid and amino acid subsystems to be predominately present at short
pathway distances (Fig 3D and S5 Fig). This observation may reflect metabolic proximity
through the uptake of metabolic nutrients by metabolically active blood cells. For instance, in
our analysis we found signatures for all three major sources for energy production: lipids, pro-
teins (in terms of amino acids) and carbohydrates indicating an active use of fuel molecules for
energy generation by the blood cells.

Our model-based analysis has several limitations. Obviously, any such analysis is heavily
dependent on the quality of the underlying metabolic reconstructions, which are still far from
being complete [80]. This incompleteness, together with a prevalent inconsistent nomenclature
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of metabolites allowed us to map only 121 out of 254 measured metabolites onto the metabolic
network model. Another limitation is the incomplete coverage of the metabolome, which is
owed to the capabilities of currently available technologies. In this study we used measurements
of 440 metabolites, which corresponds to just ~10% of the estimated human serum metabo-
lome [81]. Nevertheless, we believe that despite incomplete pathway mappings, our observa-
tions further indicate that combined metabolomics and transcriptomics data from human
blood reflect reaction signatures of system-wide biological processes.

To further functionally characterize the blood metabolome-transcriptome interface at a
global level, we developed a network approach based on functional annotations. To this end,
we aggregated z-score transformed measurements of metabolites and transcripts into their cor-
responding metabolic pathways and gene ontology categories, respectively. This approach
allowed us to calculate correlation values between different functional categories, rather than
between single metabolites and transcripts only. From these associations, we generated a path-
way interaction network (PIN) of associated metabolic pathways and Gene Ontology terms,
substantially reducing the complexity of the original network and thus facilitating functional
interpretations. Detailed inspection of the PIN revealed that correlating nodes resembled not
only signatures of well-known biological processes, like the carnitine shuttle, but also suggested
novel interactions such as a crosstalk between monoacylglycerols and immune system pro-
cesses. Taken together, the pathway interaction network enabled us to verify and elevate obser-
vations from the single reaction level (see model-based analysis) onto a pathway level.
Moreover, we are now able to explore associations between biological processes/pathways
across different biological scales including those that are not necessarily covered by metabo-
lism, such as signaling or transcriptional processes.

Given the high interconnectivity of the BMTI and the PIN, we asked whether these associa-
tions contain information about regulatory interactions across the different metabolite classes
and pathways. Enrichment analysis of transcription factor binding sites in the promoter
regions of the genes contained in our network identified regulatory signatures for transcripts
associated to the same metabolite, which are additionally largely shared between metabolites
belonging to different metabolic pathways (Fig 5, S7 and S8 Figs). There is a series of possible
explanations for this observation. On the one hand, our findings could indicate that single
metabolites/transcripts are fulfilling multiple roles, thus sharing several biochemical pathways.
On the other hand, it might reflect regulatory interactions operationally linking different meta-
bolic pathways. In depth investigation of 12 transcription factors included in the BMTI addi-
tionally revealed two “triad” network motifs between transcription factors BCL6 and NR4A2,
their target genes and the metabolites methionine and kynurenine, respectively. Remarkably,
in a study conducted on mice fed a methionine and choline deficient diet, a significant reduc-
tion in the expression of BCL6 was observed [82]. It is widely known that metabolites can act
as intermediates in cellular signaling, thereby also regulating gene expression, and together
with our findings we suggest that characteristics of metabolic regulation are captured in the
BMTI. However, from a correlation network, the detection of an association between a metabo-
lite and a transcript does not necessarily imply a regulatory relationship nor can a conclusion
be drawn about the directionality of the relationship. Yet, a combined analysis might offer the
opportunity to identify novel molecular mechanisms behind cellular regulation that need to be
validated further by experimental evidence.

Besides transcriptional regulation mediated by TFs, a substantial fraction of transcripts are
expected to be regulated by epigenetic processes [83]. Comparing 1,350 reported methylation-
metabolite associations from a recent epigenome-wide association study [31] with our results
surprisingly revealed only a single overlapping hit: X-03094 and the MAN2A2 transcript corre-
lated in our study and also displayed a comparable methylation-metabolite association in the
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EWAS study. This sparse overlap could be explained by a phenomenon termed “phenotypic
buffering” [32], where effects in one organizational layer (e.g. epigenetics) are not detectable
anymore on the next layer (e.g. transcriptomics). A detailed explanation of this observation is
beyond the scope of the present paper and needs further investigation.

Further following the scheme of a systems genetics approach, we integrated the two identi-
fied networks with intermediate clinical trait data. To this end, we investigated the relation-
ships between changing levels of HDL-C, LDL-C and TG and all measured metabolites and
transcripts, metabolic pathways and GO terms (Fig 6). A similar study already described an
association between a gene-module derived from whole blood transcriptomics data and circu-
lating lipid parameters including apolipoprotein B (APOB), HDL-C and triglycerides (TG)
from a Finnish population cohort [29]. Our systematic analysis identified a large number of
metabolites, transcripts, metabolic pathways, and functional GO categories that are all associ-
ated with the levels of circulating lipids. These findings further strengthen the assumption of a
close link between system-wide metabolism, reflected by circulating metabolites and clinical
lipid markers, and intracellular gene regulatory processes of blood cells. In addition, an oppo-
site pattern between HDL-C and TG associations (Fig 6A–6F) was observed from the pheno-
type networks which supports a previously suggested antagonistic regulation of both clinical
traits [75,84]. However, the precise molecular mechanism behind this regulation is not entirely
known, and our results might provide a basis for future studies to gain novel insights into the
regulatory mechanisms of intermediate physiological phenotypes.

Combining results from all analysis steps allows for novel hypothesis generation. For exam-
ple, for the well-known interactions between HDL-C, TG and BCAAs [57,76], we discovered a
potential regulatory pattern on different biological scales. In our first analysis step, we identi-
fied a strong negative association between the branched-chain amino acid isoleucine and
ABCG1, a major constituent of lipid homeostasis and cholesterol metabolism [55,85]. Second,
at a more global level, the phenotype networks revealed an inverse association between HDL-C
and TG, and also between HDL-C, TG and BCAAs (BCAAs are positively associated to TG,
negatively to HDL-C, see S9 Table). Third, in the TFBS enrichment analysis we were able to
identify a clear regulatory signature of SREBPs in the vicinity of BCAAs, which are known to
regulate cholesterol metabolism, indicating a potential coregulation between BCAAs and cho-
lesterol metabolism at the transcriptional level. Interestingly, a combined study using cultured
hepatocytes in a branched-chain amino acid-rich medium and obese mice showed that BCAAs
directly induce the expression of SREBP1C which leads to hypertriglyceridemia, further sup-
porting the suggested regulatory cross-link between HDL-C, TG and BCAAs [76]. This link is
of particular interest since all three molecular traits have been associated to various diseases
such as coronary artery disease, obesity and diabetes type II [86–88] and our observations
might contribute to further decipher their underlying mechanisms.

In summary, our study highlights the potential of a systems genetics approach for under-
standing interactions across multiple biological scales – in this case circulating metabolites and
blood cellular gene expression—and how those insights can be used to generate novel hypothe-
sis on mechanisms underlying common diseases.

Materials and Methods

Population cohort and data acquisition
The Cooperative Health Research in the Region of Augsburg (KORA) study is a series of inde-
pendent population-based epidemiological surveys and follow-up studies of participants living
in the region of Augsburg, southern Germany [89,90]. In this paper, cross-sectional data from
712 participants of the KORA F4 population cohort was used for whom metabolite
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concentration, gene expression data and genotyping information were available. This subpopu-
lation contains combined fasting serum metabolomics and whole blood transcriptomics mea-
surements of 354 males and 358 females aged 62–77 years (mean 68.82 ± 4.31). All participants
are residents of German nationality identified through the registration office and written
informed consent was obtained from each participant. The study was approved by the local
ethics committee (Bayerische Landesärztekammer). Detailed descriptions of blood sample
acquisition and experimental procedures for the metabolomics and transcriptomics data, and
clinical trait measurements can be found in [59,91–93]. Briefly, metabolic profiling was per-
formed by Metabolon, Inc. using ultrahigh-performance liquid-phase chromatography and
gas-chromatography separation, coupled with tandem mass spectrometry. In total, 517 serum
metabolites were measured, thereof 293 with known chemical identity and 224 unidentified
metabolites (“unknowns”). All identified metabolites were assigned to one out of eight super-
pathways and one out of 61 subpathways by Metabolon, Inc., representing two different levels
in the metabolic pathway classification hierarchy (see S5 Table for a full list of annotations).
Gene expression profiling was performed using total RNA extracts from whole blood samples
on Illumina Human HT-12 v3 Expression BeadChips. Genotyping was carried out using the
Affymetrix GeneChip array 6.0. A detailed description of the experimental procedures and pre-
processing of the genetic data can be found in [92].

Replication of the significant metabolite- mRNA associations identified in the KORA data-
set was carried out with the Finish DILGOM cohort dataset which included whole blood NMR
metabolomics data as well as transcriptomics data for 518 individuals. A detailed description of
the sample acquisition as well as data preparation can be found in [13,29].

Data preprocessing and quality control
To ensure data quality, metabolites with more than 50% missing values were excluded, leaving
440 metabolites (254 knowns and 186 unknowns) for further analysis. The remaining metabo-
lite concentrations were log-transformed, since testing for normality indicated that for most
cases the log-transformed concentrations were closer to a normal distribution than the
untransformed values [23]. For gene expression arrays, quality control and imputation of miss-
ing values of the raw intensities was performed as described in [94]. Briefly, the initial prepro-
cessing of the raw intensity data was done with GenomeStudio V2010.1. Raw probe level data
was then imported to R and further preprocessed by log transformation and quantile normali-
zation using the ‘lumi’ package [95] from the Bioconductor open source software (http://www.
bioconductor.org). To account for technical variation, gene expression intensities data were
adjusted for RNA amplification batch, RNA integrity number and sample storage time. Only
probes with the annotation flag QC_COMMENT “good” as provided in the updated Illumina
Human HT-12 v3 BeadChip annotation file were considered for analysis [94]. In addition,
probes mapping to gonosomal chromosomes were removed. Out of 48,803 probes on the Illu-
mina Human HT-12 v3 array, 24,818 passed these filtering criteria.

Correlation network generation
The metabolite-transcript interface was constructed based on Spearman’s correlation coeffi-
cients between the concentrations of all possible metabolite-transcript pairs (24,818x440)
across the individuals of the study cohort. Correlation calculation was performed separately for
each variable pair, only considering samples without missing values for the metabolites. Statis-
tical significance of correlations was determined at an FDR of 0.01 [96], corresponding to an
absolute correlation value of 0.1816 and an adjusted significance level of 1.07 × 10−06. To get a
unique network node per gene, redundant probes matching the same gene were removed. One
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representative probe per gene was chosen based on the maximum correlation strength to any
metabolite, leaving 16,781 unique probes for subsequent analysis. It has to be noted that the
applied significance level was still calculated on the whole dataset (including multiple matching
probes per gene) to properly account for multiple testing. Network density was calculated as
described in [35]. More precisely, for a stepwise increasing correlation threshold, the ratio
between the total number of observed edges and all possible edges was calculated. Significant
correlations between metabolites and transcripts were visualized as a bipartite graph using yEd
graph editor (yWorks GmbH, Tuebingen; http://www.yworks.com).

Tissue/cell-type specificity
BMTI genes were mapped to three published lists of tissue- and cell-specificity based on gene
expression microarrays from purified cells or tissues. The first two marker gene lists were taken
from Palmer et al. [36], who defined markers for B-cells, CD4+ T-cells and CD8+ T-cells, lym-
phocytes and granulocytes, and from the HaemAtlas as generated by Watkins et al. [37], who
reported markers for CD19+ B-cells, CD4+ T-cells and CD8+ T-cells, CD14+ monocytes,
CD56+ NK cells, CD66b+ granulocytes, erythroblasts and megakaryocytes. The third marker
list was downloaded from the CTen website: http://www.influenza-x.org/~jshoemaker/cten/
db_info.php and comprised markers for 84 different human tissues/cell types [38]. The three
lists together with the analysis results are provided in S3 Table.

Mendelian randomization
Estimation of causal effects within the BMTI was performed using a Mendelian randomization
(MR) approach [58]. A total of 224 candidate SNPs reported as lead association signals at
genome-wide significance in two recent GWAS studies for 16 metabolites and 186 mRNAs
(BMTI contained) were preselected as instrumental variables[23,59]. To ensure the validity of
the instrumental variables, only candidate SNPs that showed a significant association with a
trait (metabolite or gene expression level) at an FDR of 0.05 in our data were considered for
further analysis (32 SNPs were removed). Associations between SNPs and traits were assessed
using linear regressions with age and sex as covariates. To further avoid potential confounding,
all candidate SNPs were checked for pairwise linkage disequilibrium using the SNiPA tool [97].
None of the remaining 192 SNPs were in LD. Based on the metabolite-mRNA edges in the
BMTI, 550 SNP-metabolite(Met)-mRNA and SNP-mRNA-Met sets were defined, covering
44% of all edges contained in the BMTI. Causal relationships SNP!Met!mRNA and
SNP!mRNA!Met were estimated, i.e. whether changes in the metabolite level cause changes
in the transcript level and vice versa. Causal effects of both models were calculated using the
Wald ratio method [98]:

b̂Met!mRNA ¼ b̂SNP!mRNA

b̂SNP!Met

and b̂mRNA!Met ¼
b̂SNP!Met

b̂SNP!mRNA

;

where b̂Met!mRNA and b̂mRNA!Met are the causal effects, and b̂SNP!mRNA and b̂SNP!Met are regression
coefficients of the respective mRNA or metabolite levels on SNPs, under a simple linear model
with age and sex as adjustment variables. 95% Confidence intervals and p-values of the causal
effects were calculated by sample bootstrapping with 10,000 repetitions. Q-values were calcu-
lated to control the false discovery rate (FDR). Summary information for the utilized SNPs
together with detailed results of the MR approach can be found in S4 Table.
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Metabolic pathway model and distance calculation
Metabolic reactions were extracted from the consensus metabolic reconstruction “Recon 2”, v.
02 available at http://humanmetabolism.org as of October 2013 [33]. Compartmental informa-
tion was removed by merging shared nodes and reactions between different compartments. To
avoid potential biologically meaningless shortcuts between network nodes, co-factors and cur-
rency metabolites were excluded from the metabolic network prior to the distance calculation
(see S5 Table for a full list of removed metabolites). Measured metabolites and transcripts were
mapped onto the corresponding network nodes based on KEGG IDs or HMDB identifier for
metabolites, and Entrez Gene IDs for transcripts. Distances between all mapped pairs of
metabolites and transcripts were defined as the shortest path in the network, i.e. the minimal
number of reaction steps between them. For instance, a distance of zero between a transcript
and metabolite indicates that the metabolite is a direct reactant of the reaction catalyzed by the
particular enzyme encoded by the transcript. A distance of one indicates that the enzyme-
encoding transcript catalyzes a directly connected reaction, which takes a product of the partic-
ular metabolite as input, and so on. A distance of infinity (Inf) was assigned if the respective
metabolite and transcript were disconnected in the pathway network. Moreover, a “not
mapped” (NM) distance was assigned if either the metabolite or the transcript could not be
mapped to Recon 2. Note that the network was treated as undirected, i.e. all reaction directions
were ignored.

Annotations, aggregated z-scores and construction of pathway
interaction network
Functional annotations were retrieved from two different sources. For transcripts, the generic
GO Slim catalogue was downloaded from Gene Ontology (GO, http://www.geneontology.org/
GO.slims.shtml). Generic GO Slim is a broad and non-redundant subset of all Gene Ontology
terms consisting of 148 unique terms covering all three GO domains (cellular component,
molecular function and biological process; [99]). The three root terms cellular component,
molecular function and biological process and terms with no annotations for any of the 16,781
transcripts were removed, resulting in 140 terms for further analysis. For metabolites, the sub-
pathway annotations were used (see above). Metabolic pathways (MP) with less than two
metabolites were excluded from the analysis, leaving 48 metabolic pathways.

To aggregate the components belonging to a specific annotation term and to derive a score
for each of these functional categories, the average of the associated z-score normalized gene
expression profiles or metabolite concentrations was calculated according to

aggZCj ¼
1

jCj
X

i2CZi;j

where C corresponds to a metabolic pathway or GO term, i enumerates all members in this set,
and Zi,j is the z-score of the gene/metabolite with index i in sample j. Spearman’s rank cross-
correlation between the aggZ-Scores of all possible GO-MP combinations was then calculated
(note that Pearson correlation yielded similar results, see S11 Fig). Since it is known that many
biological processes include distinct branches often fulfilling complementary tasks controlled
by mutual regulation, a consideration of all pathway members simultaneously could obscure
the calculation of the aggZ-Score. A similar problem might occur due to the generic property
of the GO-terms or metabolite classes used here, often including functionally rather distinct
molecules. To account for this, only those members of the two categories were considered for
z-score calculations which share at least one mutual edge within the reconstructed network for
the respective GO-MP combination (see S6 Fig for more details). Finally, significant
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associations between the functional annotation pairs were visualized as a bipartite pathway
interaction network (PIN).

Phenotype analysis
Linear regression analysis was performed with age and sex as covariates:

y ¼ b0 þ b1 � x þ b2 � ageþ b3 � sexþ �

where y is the concentration of HDL, LDL or TG over all individuals, β0 is the intercept, β1–3
are regression coefficients, x is a vector of expression/concentration values of a particular gene/
metabolite and � is a normally distributed error term. In the same way, the association of anno-
tations (GO and MP) was tested with all three phenotypic traits using the aggZ-Score for the
particular annotation of x. Note that for this analysis, aggZ-Scores were calculated only on
those members of a particular annotation that are also contained in the BMTI. Each network
node was then color-coded with the −log10(p-value) × sign(β1), where the p-value and β1 were
derived from the linear regression with the respective metabolite, gene or annotation category.
To assess statistical significance of the determined associations, a Bonferroni-corrected thresh-
old of 0.05/(16,780 × 440)� 2.9 × 10−6 was applied.

Promoter analysis
To investigate regulatory signatures in the BMTI, an enrichment analysis of transcription fac-
tor binding sites was performed. Sets of input sequences were created from the neighbors of
each metabolite with a degree� 3 (at least 3 connected genes). Analogously, the pathway inter-
action network was used to construct sequence sets based on the neighborhood of a metabolic
pathway node. For each set of input sequences, a separate search for overrepresented TFBS was
performed with the sequences of all remaining genes as background model. Promoter regions
(-2,000 bp to +200 bp relative to the TSS) and TSS positions of all genes were extracted from
the UCSC database using the R package BSgenome.Hsapiens.UCSC.hg19 version 1.3.1. Posi-
tion-specific weight matrices of the transcription factor binding motifs were taken from the
vertebrate collection of the Jaspar database version 5.0 alpha [68]. Enrichment analysis was
performed with the TFM-Explorer command line tool [100]. The p-value threshold to deter-
mine significance of the motifs in all input sets was set to 1.0 × 10−7 which lies in the
recommended optimal range given the numbers of input sequences we used in this study
(mean number of input sequences: 62) [101]. The authors showed that for a fixed false positive
rate of 10%, the optimal p-value threshold was 1.0 × 10−7 for a dataset of 100 input sequences.

Supporting Information
S1 Dataset. The BMTI and PIN networks in two interactive formats. The .cys file can be
viewed with http://www.cytoscape.org/; the .graphml file can be viewed with http://www.
yworks.com/en/products/yfiles/yed/
(ZIP)

S1 Fig. Scatterplot of Spearman and Pearson correlations for all metabolite-mRNA pairs in
the dataset. Note that due to the high number of pairs (440x16780), only every 200th

correlation of the ordered list of correlation coefficients is plotted. We observe a high
agreement between the two measures, with a correlation (of correlations) of r = 0.92.
(PDF)

S2 Fig. Network density. The fraction of edges above cutoff against all possible edges, plotted
as a function of the absolute correlation coefficient. Red dotted line represents the correlation
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cutoff used in this study (0.01 FDR).
(PDF)

S3 Fig. Fractions of metabolite-transcript pairs with a given pathway distance. The first col-
umn (‘all finite’) contains mapped pairs with non-infinite distances. The second column (‘all
mapped’) contains all pairs of metabolites and transcripts that could be mapped to the pathway
network. The third column (‘all distances’) shows all pairs, indicating that the larger fraction of
pairs cannot be mapped to the pathway network. The first row (‘significant’) only contains sig-
nificantly correlating pairs of metabolites and transcripts, whereas the second row (‘all’) shows
all pairs. The increase in fraction size from ‘all’ to ‘significant’ is assessed by a Fisher’s exact test
and shown in Fig 3C in the main manuscript.
(PDF)

S4 Fig. Scatter plots for an exemplary path of length 2. Note that this path corresponds to
the one depicted in Fig 3A. The path describes the ACSL-catalyzed activation of stearate (18:0),
followed by mitochondrial transport via the carnitine shuttle. The transport process is a two-
step reaction including the attachment of carnitine by Carnitine Palmitoyltransferase 1A
(CPT1A) at the outer mitochondrial membrane and subsequent internalization by carnitine-
acylcarnitine translocase (SLC25A20). Upper triangle matrix indicates Spearman correlation
coefficients. For direct substrate/product–enzyme pairs of this path we observe weak, insignifi-
cant associations ranging from ρ = 0.0016 to ρ = 0.13. In contrast, the strongest correlation was
observed between stearate (18:0) and SLC25A20 (ρ = 0.36, p-value = 2.02 × 10−24), which are
two reaction steps apart.
(PDF)

S5 Fig. Functional annotation of transcripts at a distance of 2. Similar to shorter distances,
the strongest associations between metabolites and transcripts at a distance of two mainly
resemble paths describing transport processes (28%) or those belonging to energy metabolism
(oxidative phosphorylation 25%), amino acid metabolism (methionine and cysteine metabo-
lism 11%, histidine metabolism 4%, glutamate metabolism 4%) and lipid metabolism (fatty
acid oxidation 14%) besides others.
(PDF)

S6 Fig. Pathway interaction analysis. The left-hand side of the flowchart shows an exemplary
set of interactions between 4 transcripts and 4 metabolites, with annotations to two gene ontol-
ogy terms and two metabolic pathways. For each GO-pathway pair we then determine the tran-
scripts and metabolites which generate the connection between those two (middle panel). For
example, GO1 and MP1 are connected through 3 transcripts and 2 metabolites, whereas GO1
and MP2 do not share any connection. Aggregated z-scores are then calculated for each pair
based on the shared transcripts and metabolites to generate the pathway interaction network
(left-hand side).
(PDF)

S7 Fig. Matrix showing the overlap of enriched transcription-factor binding sites for all
metabolites that are included in the BMTI and have at least one enriched site. On this fine
grained level of single metabolites, several signatures of a shared regulation are observable, e.g.
between amino acids and various other metabolites. Note that the color-scale is capped at 15,
the maximum number of shared binding sites was 27 between histidine and X-03094.
(PDF)

S8 Fig. Matrix showing the overlap of enriched transcription-factor binding sites for all
super-pathways.On this coarse level, only few but highly significant shared regulatory
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signatures are observable. Note that the color-scale is capped at 15, the maximum number of
shared binding sites was 4 between carbohydrate and peptide metabolism. The category “unas-
signed” includes all unknown metabolites.
(PDF)

S9 Fig. Correlation of phenotype associations. Comparison of beta values from linear regres-
sion analysis. Each dot represents either a transcript or a metabolite in the BMTI. We observe a
strong anti-correlation between HDL and TG associations, modest positive correlation
between TG and LDL and a very weak anti-correlation for HDL and LDL.
(PDF)

S10 Fig. Correlation of phenotype associations at pathway level. Comparison of beta values
from linear regression analysis. Each dot represents either a GO term or a metabolic pathway
in the PIN. Even more profound than for single transcripts and metabolites (S9 Fig), there is a
strong anti-correlation between HDL and TG associations. The correlations for HDL and LDL
as well as LDL and TG associations are comparable to the results from S9 Fig.
(PDF)

S11 Fig. Comparison of Spearman and Pearson correlations of pathway scores. Similar to
the results of transcripts and metabolites (S1 Fig), we observe high concordance of Spearman
and Pearson correlation coefficients for the pathway scores (r = 0.99).
(PDF)

S1 Table. All statistically significant associations between metabolites and transcripts.
(XLSX)

S2 Table. Replication using data from the DILGOM study.
(XLSX)

S3 Table. Cell type specific origins of BMTI transcripts.
(XLSX)

S4 Table. Mendelian randomization results.
(XLSX)

S5 Table. List of cofactors removed from Recon 2 and all measured metabolites together
with available pathway annotations.
(XLSX)

S6 Table. All pairwise metabolic pathway – GO term associations.
(XLSX)

S7 Table. Enrichment of TFBS in promoter regions per single metabolite / metabolic path-
way.
(XLSX)

S8 Table. Shared enriched TFBS between metabolites, subpathways and superpathways.
(XLSX)

S9 Table. Table containing the associations between HDL-C, LDL-C, TG and all metabo-
lites/ transcripts.
(XLSX)

S10 Table. Associations between HDL-C, LDL-C, TG and all metabolic pathways/ GO
terms.
(XLSX)
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