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Abstract

We consider the electroweak chiral Lagrangian, including a light scalar boson, in the limit of small 
ξ = v2/f 2. Here v is the electroweak scale and f is the corresponding scale of the new strong dynamics. 
We show how the conventional SILH Lagrangian, defined as the effective theory of a strongly-interacting 
light Higgs (SILH) to first order in ξ , can be obtained as a limiting case of the complete electroweak chiral 
Lagrangian. The approach presented here ensures the completeness of the operator basis at the considered 
order, it clarifies the systematics of the effective Lagrangian, guarantees a consistent and unambiguous 
power counting, and it shows how the generalization of the effective field theory to higher orders in ξ
has to be performed. We point out that terms of order ξ2, which are usually not included in the SILH 
Lagrangian, are parametrically larger than terms of order ξ/16π2 that are retained, as long as ξ � 1/16π2. 
Conceptual issues such as custodial symmetry and its breaking are also discussed. For illustration, the 
minimal composite Higgs model based on the coset SO(5)/SO(4) is considered at next-to-leading order in 
the chiral expansion. It is shown how the effective Lagrangian for this model is contained as a special case 
in the electroweak chiral Lagrangian based on SU(2)L ⊗ SU(2)R/SU(2)V .
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

After the discovery of the Higgs-like boson at the LHC [1–5] the understanding of its pre-
cise role in electroweak symmetry breaking has become the prime topic in particle physics. 
A general approach, independent of any specific high-energy model, is provided by the effective 
field-theory (EFT) method. The motivation for using EFT is reinforced by the absence (so far) 
of evidence for new particles below the TeV energy scale. To be fully general and to account for 
the possibility of Higgs compositeness, the electroweak chiral Lagrangian [6] including a light 
Higgs [7–10] should be employed.

A widely used effective description of a light (pseudo-Goldstone) composite Higgs particle 
is the Lagrangian of the strongly-interacting light Higgs (SILH) [11,12]. By definition, this low-
energy Lagrangian is constructed under the additional assumption that the electroweak scale v
is parametrically smaller than the corresponding scale of the strong dynamics f , and the La-
grangian is restricted to terms of at most first order in ξ = v2/f 2. For clarity we will therefore 
define the term SILH Lagrangian as the effective theory of a light composite Higgs particle 
through linear order in ξ . Without this restriction, we will use the expression electroweak chiral 
Lagrangian instead.

As will be explained in detail below, the usual derivation of the SILH Lagrangian appears 
unsatisfactory. An important point is that the power-counting rules postulated in [11] are based 
on naive dimensional analysis (NDA) [13,14], which are not valid in general [8] in their usual 
formulation. As a consequence, the counting rules of [11] are not fully consistent and lead to 
ambiguities in the estimate of the Lagrangian coefficients. A systematic derivation of the SILH 
Lagrangian can be given starting from the electroweak chiral Lagrangian with a light Higgs. This 
derivation is the main subject of this paper. In addition to providing a complete SILH-type La-
grangian, we elaborate on further conceptual issues of relevance to phenomenology. Although we 
agree with many results incorporated in the traditional SILH Lagrangian, we find some notable 
differences, which we discuss.

Some of the differences between the traditional formulation and the present approach may 
be seen as reflecting two different perspectives on effective field theory, which we might refer 
to as the ‘top-down’ and the ‘bottom-up’ point of view [15]. On the one hand, in the top-down 
applications, effective field theory can be used to construct a low-energy approximation of a 
given theory, or a certain class of theories, at high energies. A typical example is the derivation 
of low-energy effective Lagrangians for the weak interactions of the Standard Model (SM), or 
one of its extensions. In this case the high-energy theory is known and the EFT is used as a sys-
tematic tool to simplify the theory in the energy regime of interest. On the other hand, following 
the bottom-up approach, a low-energy EFT can be constructed from the relevant light degrees of 
freedom, based on the appropriate symmetries and a consistent power counting, without spec-
ifying any details of the high-energy completion. An example is the chiral perturbation theory 
of pions, where the theory at high energies, QCD, is known in principle, but the nonperturba-
tive hadronic dynamics makes it intractable in practice. Another example is the renormalizable 
Standard Model itself, which can be extended by operators of higher dimension to account in full 
generality for the unknown physics in the UV. Even though a top-down construction may capture 
most of the essential features in the low-energy Lagrangian, it is clear that only the bottom-up 
framework will guarantee a fully general EFT.

We emphasize that our starting point, the electroweak chiral Lagrangian, is formulated as a 
bottom-up EFT in this sense, whereas the traditional SILH Lagrangian might be rather considered 
as following a top-down approach with a class of composite Higgs models in mind. In this work 
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we will show how the SILH Lagrangian can be consistently derived from a model-independent 
bottom-up perspective.

The remainder of this paper is organized as follows. In Section 2 we revisit the original SILH 
Lagrangian as given in [11] and discuss a number of issues related to its power counting. Sec-
tion 3 outlines the systematics of the electroweak chiral Lagrangian in the limit of small ξ and 
clarifies the connection between a dimensional expansion (in powers of ξ ) and the chiral ex-
pansion (in the number of loops). In Section 4 we derive the SILH Lagrangian, identified as the 
O(ξ) expansion of the electroweak chiral Lagrangian. Comments on custodial symmetry and 
its breaking through spurions are given in Section 5. As a concrete illustration, in Section 6 we 
discuss the basis of bosonic NLO operators for the SO(5)/SO(4) model. Conclusions are given 
in Section 7 while technical details are collected in Appendix A.

2. Comments on the SILH Lagrangian

The construction of the electroweak chiral Lagrangian as an EFT requires a power-counting 
prescription in order to be well defined. As discussed in [8], the electroweak chiral Lagrangian 
mixes weakly-coupled and strongly-coupled interactions, which in isolation have a very different 
power counting. The strategy followed in [8–10] was to define a power counting such that NLO 
counterterms account for all the (superficial) divergences coming from the one-loop diagrams 
built from the leading-order Lagrangian.1 Such a power counting is thus based on the infrared 
structure of the theory and in this sense it is the most general one. In particular, it allows us to 
identify the natural size of the coefficients associated with each order in the EFT expansion.

Let us briefly summarize the basic assumptions and properties of this framework.

• The Goldstone bosons of electroweak symmetry breaking and the light Higgs are treated, 
in general, as part of a new strong dynamics, to which they are coupled with a strength of 
O(4π). The scale of the new dynamics is given by the Goldstone-boson decay constant f .

• The transverse gauge bosons and the fermions of the Standard Model are weakly coupled 
among themselves and to the strong sector, that is with couplings of O(1).

• The general effective theory for the light fields mentioned above (the fields of the SM) is 
an electroweak chiral Lagrangian. This theory is nonrenormalizable and is valid below a 
cut-off2 � = 4πf . The terms in the Lagrangian are organized as a loop expansion, which is 
equivalent to a counting of terms according to their chiral dimension [8,17,18]. The assign-
ment of chiral dimensions to fields and couplings is 0 for Higgs, Goldstone and gauge fields, 
1/2 for fermions, and 1 for derivatives and weak couplings (gauge or Yukawa).

• In full generality, the electroweak scale v and the scale f can be taken to be of the same 
order, ξ ≡ v2/f 2 = O(1). An expansion in ξ can be performed for ξ � 1. In this case a 
counting by canonical dimension is recovered. The new dynamics decouples in the limit 
ξ → 0.

1 Contrary to the chiral Lagrangian in the strong sector, the loop expansion for the electroweak chiral Lagrangian 
cannot be cast as a derivative expansion. Quite generally, a derivative expansion is valid only when the field content of 
the theory is restricted to Goldstone fields, but fails when other fields are present. The Yukawa interactions, for instance, 
clearly cannot be accounted for in terms of a pure derivative expansion.

2 If new states with mass of order f � v are present, the chiral Lagrangian with SM fields will only be valid up to this 
scale f . The value 4πf for the cut-off � of the strong dynamics should be viewed as an order-of-magnitude estimate. 
Details of the strong dynamics and additional pseudo-Goldstones at scale f may lead to an actual cut-off �U < 4πf , as 
has been discussed for Little-Higgs theories in [16].
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Knowledge or partial knowledge of non-infrared physics, i.e., extra symmetries or additional 
particle content around or beyond the cutoff � = 4πf , refine the power-counting estimate and al-
low for additional information on the size of the operator coefficients. However, one should keep 
in mind that incorporating UV information goes beyond the EFT power counting and introduces 
some degree of model dependence.

The traditional SILH Lagrangian [11] is constructed by assuming a set of (infrared) power-
counting rules based on NDA [13,14] supplemented with information on the UV completion. 
Specifically, the UV completion is assumed to contain a heavy vector with mV � 4πf = �, im-
plemented as a gauge field of some hidden local symmetry (HLS) [19,20]. The NDA rules for 
operator building in [11] are only defined relative to the leading-order (SM) Lagrangian, rather 
than in an absolute sense, and read: (i) extra powers of the Higgs doublet H receive a suppression 
by 1/f ; (ii) SM gauge fields and derivatives receive a 1/mV suppression.

With these assumptions, the NLO Lagrangian is written as [11]:

LSILH = cH

2f 2
∂μ(H †H)∂μ(H †H) − c6λ

f 2
(H †H)3 +

(
cyyf

f 2
H †Hf̄ LHfR + h.c.

)

+ cT

2f 2
(H †

←→
DμH)(H † ←→

DμH)

+ ig
cW

2m2
V

(H †
←→
Da

μH)(DνWμν)
a + ig′ cB

2m2
V

(H † ←→
DμH)(∂νBμν)

+ ig
cHW

(4πf )2
DμH †WμνD

νH + ig′ cHB

(4πf )2
DμH †DνHBμν

+ g′ 2 cγ

(4πf )2

g2

g2
V

H †HBμνB
μν + g2

s

cg

(4πf )2

y2
t

g2
V

H †HGa
μνG

μνa

− g2 c2W

2(gV mV )2
DμWμνaDρWa

ρν − g′ 2 c2B

2(gV mV )2
∂μBμν∂ρBρν

− g2
s

c2G

2(gV mV )2
DμGμνADρGA

ρν

+ g3 c3W

(4πmV )2
〈WμνWνρWρ

μ 〉 + g3
s

c3G

(4πmV )2
〈GμνGνρGρ

μ〉 (1)

where 〈. . .〉 denotes the trace.
The first two lines collect the operators that are sensitive to the breaking scale f , whereas 

the remaining lines gather operators generated either by tree-level resonance exchange or at one 
loop.

If one is aiming at a general description of strongly-coupled EWSB scenarios, the previous 
setting is unsatisfactory for a number of reasons. The first one is the absence of fermionic op-
erators, which were recently included in [12]. In this paper we will focus instead on issues that 
mostly affect the foundations and systematics of the SILH construction.

The need for a more systematic power counting can be seen from the fact that the NDA rules 
given in [11] lead to ambiguities. As a simple example, consider the NLO operator H †HBμνB

μν . 
This operator could be built by either (i) applying the first rule to the gauge kinetic term; (ii) ap-
plying the second rule to the Higgs potential; or (iii) applying the second rule to the Higgs kinetic 
term. The size of the corresponding coefficient would be, respectively, O(1/f 2), O(f 2/m4

V )

and O(1/m2
V ). The right counting is the latter, which follows without ambiguities from the rules 

given in [8,10]. Another example is given by the operator (H †
←→
DμH)2, which corresponds to 



606 G. Buchalla et al. / Nuclear Physics B 894 (2015) 602–620
the T parameter. It can be built with rule (i) applied to the Higgs kinetic term or with rule (ii) 
applied to the Higgs quartic interaction. The size of the coefficients would then be of O(1/f 2)

or O(1/m2
V ), respectively. In this case, additional dynamical assumptions are needed to decide 

between the different possibilities. A more detailed discussion of this operator is given at the end 
of Section 4.

If Eq. (1) is to describe a consistent EFT, then the scales � = 4πf ≈ mV ≈ gV f may all be 
identified for the purpose of power counting: numerical differences in the size of the coefficients 
are expressed in any case through differences in the O(1) parameters ci . This follows from 
rather general principles: unless mV ∼O(�), the naturalness of the EFT would be upset. This is 
actually one of the conditions to have a natural and predictive strongly-coupled EFT (like chiral 
perturbation theory).

Based on the previous point, it is apparent that the distinction between tree-level (1/m2
V ) vs.

loop-suppressed operators (1/16π2f 2) turns out to be of little numerical relevance. However, 
such a classification is also parametrically misleading: which operators can be generated at tree 
level and which at one loop mostly depends on the UV completion one adopts. This point has 
already been discussed in detail in [21].

The pattern displayed in (1) is specific for an UV scenario with vector mesons implemented 
à la HLS [19,20]. However, there is no compelling reason why such a pattern should be ex-
pected. The best counterexample is provided by QCD itself at low energies (see [21] for similar 
considerations). Within the chiral expansion, the NLO operators that involve gauge fields can be 
written as [22]

L(4)
χ = LL

9 〈Fμν
L DμUDνU

†〉 + LR
9 〈Fμν

R DμU†DνU〉
+ L10〈Fμν

L UFRμνU
†〉 + HL

1 〈Fμν
L FLμν〉 + HR

1 〈Fμν
R FRμν〉 (2)

where FL,R
μν are generic (non-Abelian) external sources. Since QCD has a global SU(2)L ⊗

SU(2)R symmetry broken down to SU(2)V , LL
9 = LR

9 ≡ L9 and HL
1 = HR

1 ≡ H1. However, 
for comparison purposes, it is useful to formally distinguish the left- and right-handed parts. By 
inspection one can then see that OHW , OHB and Oγ are in correspondence with OL

9 , OR
9 and 

OR
1 , respectively. OW and OB , in turn, can be rewritten as linear combinations of the previous 

operators and, additionally, H †HWa
μνW

μνa and H †WμνHBμν , which correspond to OL
1 and 

O10.3 Schematically,

OHW,HB ∼OL,R
9 ; Oγ ∼OR

1 ; OW,B →O10,OL
1 (3)

In QCD, all the previous operators are experimentally of the same order ∼ f 2
π /�2, they all can 

be generated by tree-level resonance exchange, and they all are O(Nc), with no combinations of 
them being suppressed, i.e., O(1) [23]. Therefore, QCD does not follow the UV pattern assumed 
in [11].

A point of phenomenological relevance is the spurion suppression associated with
H †HBμνB

μν and H †HGA
μνG

μνA, (g/gV )2 and (yt/gV )2, respectively. This issue is closely 
related to shift symmetry and its breaking, and will be discussed in more detail in Section 6. The 
main conclusion is that such a suppression is not present in general.

To summarize, the operators collected in (1) have a simple counting in terms of the breaking 
scale f and the cutoff scale 4πf and fall into four main classes:

3 The Oi are defined as the operators multiplying the coefficients ci in (1) and Li , Hi in (2), respectively.
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• The first line is suppressed only by 1/f 2, which in the electroweak chiral Lagrangian corre-
sponds to LO operators.

• The second line (T -parameter) is superficially of order 1/f 2. If custodial symmetry is 
weakly broken, as it is usually assumed, the actual coefficient comes with an extra sup-
pression by 1/16π2.

• The last line, as it stands, would correspond to NNLO operators, since effectively they are 
two-loop suppressed, O(1/(16π2f )2).

• The remaining operators carry a 1/(4πf )2 suppression. In the electroweak chiral Lagrangian 
they appear as NLO operators, and as such they are generated by LO loop diagrams as well 
as tree-level resonance exchange, in analogy with what happens in QCD. The additional 
(g/gV )2 and (yt/gV )2 factor suppression in H †HBμνB

μν and H †HGμνG
μν is not present 

in a model-independent way.

In the following sections we will substantiate these statements by deriving the SILH La-
grangian as a limiting case of the more general electroweak chiral Lagrangian.

3. The electroweak chiral Lagrangian at small ξ

We will next outline the systematics of the effective theory for standard-model particles with 
strong dynamics in the Higgs sector. The basic assumptions for the fields and their couplings 
have been summarized at the beginning of Section 2.

The framework is very general and can be applied to different scenarios. When the appro-
priate limits are taken, it covers technicolor-like theories, composite-Higgs models, or models 
with weakly-coupled UV completions. To be specific, we will focus on theories with a pseudo-
Goldstone Higgs. In this case we can typically distinguish three relevant energy scales: The 
electroweak scale v, the scale f of the symmetry breaking that leads to the Goldstone bosons, and 
the scale � = 4πf , where the low-energy description of this dynamics is cut off. The three scales 
imply two possible expansion parameters, ξ = v2/f 2 and the loop factor 1/(16π2) = f 2/�2.

The resulting picture is sketched in Fig. 1, where we plot the powers of ξ on the vertical axis 
and the loop order on the horizontal. The dots indicate, schematically, (classes of) operators in 
the effective Lagrangian or, alternatively, terms in a physical amplitude.

Without expanding in ξ , the effective theory takes the form of a loop expansion as in the usual 
chiral Lagrangians [24]. This amounts to proceeding from left to right in Fig. 1, order by order 
in the loop expansion, resumming at each order all terms along the vertical axis.

Alternatively, the expansion may be organized in powers of ξ , proceeding from bottom to 
top of Fig. 1 and including, in principle, at each power of ξ terms of arbitrary order in the loop 
expansion. This scheme corresponds to the conventional expansion of the effective theory in 
terms of the canonical dimension d of operators, where the power of ξ is given by (d − 4)/2. 
Since the dimensional expansion requires only a hierarchy between v and the new-physics scale 
f , ξ � 1, it is not restricted to the pseudo-Goldstone Higgs scenarios we are focusing on here.

We emphasize that these observations clarify the relation between an effective theory or-
ganized by canonical dimension and the electroweak chiral Lagrangian organized as a loop 
expansion: The former is constructed row by row, the latter column by column from the terms in 
Fig. 1.

We now return specifically to the pseudo-Goldstone Higgs scenario with a hierarchy between 
v and f . The Higgs sector is assumed to be governed by strong dynamics. Its effective description 
at scale f is then organized in terms of a loop expansion. The electroweak effective Lagrangian 
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Fig. 1. Systematics of the effective theory with strong dynamics in the Higgs sector. The dots indicate operators in the 
effective Lagrangian (or terms in a physical amplitude). In general, they may be organized both in powers of ξ = v2/f 2

(vertical axis) and according to their order L in the loop expansion (horizontal axis). The latter is equivalent to the chiral 
dimension 2L + 2.

at scale v is further obtained by integrating out the physics at f , which amounts to a dimensional 
expansion in powers of ξ . Therefore, if ξ is small enough for this expansion to be meaningful,4

the effective theory at v can be considered as a double expansion in the number of loops and in 
powers of ξ . Put differently, the expansion is governed simultaneously by chiral and canonical 
dimensions. Nominally taking ξ and f 2/�2 to be of the same order, the effective theory for a 
pseudo-Goldstone Higgs sector then becomes an expansion organized as indicated by the dashed 
lines in Fig. 1.

We note that the conventional SILH Lagrangian [11,12] has been defined as a dimensional 
expansion up to first order in ξ , with a further scaling of the coefficients of dimension-6 operators 
either as 1/f 2 or 1/�2. As discussed in Section 2, the latter scaling essentially reproduces the 
weighting implied by the loop expansion. However, at second order in the double expansion only 
terms of order ξ/16π2 are retained. The terms of order ξ2 are not included in SILH, which is not 
justified as long as ξ is at least of order 1/16π2. In fact, one typically has ξ � 1/16π2, in which 
case ξ2 is actually more important than ξ/16π2. This holds in spite of the fact that ξ2 terms 
correspond to operators of canonical dimension 8. Such a behaviour may seem unexpected from 
the point of view of an effective theory organized primarily in terms of canonical dimensions. 
It can be understood, however, as a natural consequence of the power counting based on chiral 
dimensions underlying the EFT of a strongly-coupled sector.

We remark that the terms of order ξ2 might be included in the conventional SILH Lagrangian 
by adding the appropriate operators of dimension 8 (and leading chiral dimension). Alterna-
tively, we may simply choose to work throughout with the electroweak chiral Lagrangian, which 
automatically includes a resummation to all orders in ξ .

4 If v is not much smaller than f , the ξ -expansion cannot be performed. The resulting EFT is a chiral Lagrangian at 
scale f . In this case, if new particles with mass of order f should exist, they would have to be included as additional 
fields in the EFT. This is of course possible, but it would go beyond our initial assumption of a standard-model particle 
content.
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Finally, we emphasize again the very general nature of the complete electroweak chiral La-
grangian with a light Higgs as presented in [10]. There the Higgs boson is simply described as 
an electroweak singlet, coupled to the nonlinearly realized electroweak Goldstone bosons and 
the remaining SM fields. While this covers scenarios where the Higgs is a pseudo-Goldstone 
boson from an extended symmetry, it is not restricted to them. The Higgs particle might e.g. be a 
dilaton, or just an ad-hoc singlet, even though this appears unattractive theoretically. In any case, 
the chiral Lagrangian framework will allow for experimental tests with the minimum amount of 
theoretical bias.

4. SILH from the electroweak chiral Lagrangian

While EFTs of weakly-coupled dynamics are dimensional expansions in powers of 1/�, EFTs 
of strongly-coupled dynamics are intrinsically loop expansions. As a result, they are expansions 
in f 2/�2 = 1/(16π2), which is a reflection of the nondecoupling nature of the interactions. Sce-
narios that incorporate the vacuum misalignment mechanism [25,26] allow us to describe the 
transition from the nondecoupling to the decoupling regime through the parameter ξ = v2/f 2, 
such that at small ξ one recovers a linear (dimensional) expansion. This means that the elec-
troweak effective Lagrangian, which is generally defined as

LχEW = L(ξ)
LO +L(ξ)

NLO +O
(

f 4

�4

)
(4)

with L(ξ)
NLO =O(f 2/�2), should satisfy

lim
ξ→0

LχEW = L(0) + ξL(1) +O(ξ2) ≡ LSM + ξ L̄SILH +O(ξ2) (5)

It follows that LSM = L(ξ=0)
LO , while LSILH ≡ ξ L̄SILH , with

L̄SILH =
[

d

dξ
(L(ξ)

LO +L(ξ)
NLO)

]
ξ→0

(6)

This nontrivial overlap between LO and NLO operators of the linear and nonlinear bases has 
already been discussed in [10]. Dimension-six operators coming from LLO are suppressed by 
1/f 2, whereas dimension-six operators stemming from LNLO have a 1/�2 suppression. The 
contribution of LLO to every order in the ξ -expansion can be easily understood by noticing 
that powers of H †H = (v + h)2/2 increase canonical dimensions but leave chiral dimensions 
unaffected.

The generic dipole ψ̄σμνX
μνψ and triple-field-strength XμνX

νλX
μ
λ operators are not re-

quired as counterterms of the chiral Lagrangian at NLO. Concerning their importance in the EFT 
we remark that the counting of chiral dimensions is less straightforward than the counting of 
canonical dimensions since the number of weak couplings (carrying a chiral dimension of 1) is 
not always obvious from the field content of a given operator. We will next discuss some con-
sequences of this in more detail, considering first the chiral Lagrangian at scale f , where the 
physics that has been integrated out resides at scale �.

The triple-gauge operators X3 have three derivatives. The gauge fields are weakly coupled to 
the heavy sector, which implies the presence of (at least) three gauge couplings. This is true irre-
spective of whether the heavy sector itself is governed by weakly or strongly coupled dynamics. 
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It follows that g3X3 has chiral dimension 6 and therefore enters only at NNLO, that is with a 
double suppression ∼ 1/(16π2�2). We remark that this argument generalizes the corresponding 
result of [27], obtained for the case of a weakly-coupled UV completion. An explicit example for 
the 1/(16π2�2) scaling of the coefficient of X3 in the context of a strongly-coupled heavy sec-
tor is given by the model discussed in [28]. We emphasize that here the scaling of the coefficient 
does not automatically follow from the canonical dimension of the operator, which only implies a 
factor of 1/�2. On the other hand, the presence of the additional loop factor 1/(16π2) is consis-
tently accounted for through the counting of chiral dimensions. The situation may change when 
new states at the scale f � v are integrated out to yield the EFT at the scale v. In this case, 
coefficients of order ξ/16π2 could arise for the X3 operators. Similar comments apply to the 
dipole operators mψψ̄LσμνψR gXμν .

In addition, some of the four Fermi operators are not needed as one-loop counterterms. How-
ever, they can be generated via tree-level exchange of a heavy resonance and are therefore kept 
at NLO.

Practically, as explained in [10], the list of operators up to linear order in ξ is obtained by 
taking the full list of dimension-six operators in the linear basis [29,30] and performing the polar 
decomposition of the doublet

φ = v + h√
2

U

(
0
1

)
(7)

where U = exp(2iϕaT a/v) denotes the Goldstone-boson matrix.
The resulting operators are matched onto the leading and next-to-leading operators of the 

chiral Lagrangian. An important subtlety is worth mentioning, which affects the whole matching 
procedure. Since the linear basis is normally expressed in the unbroken phase, while the chiral 
Lagrangian is written in the broken phase, in the former case there are NLO contributions that 
renormalize the LO parameters. The modified operators can be brought back to their canonical 
form by subsequent redefinitions of the fields and couplings. Here we will omit details of such 
redefinitions and present the final results.

To leading order in chiral dimensions, and to first order in ξ , the SM effective Lagrangian can 
be written in nonlinear notation as [10]

L2 = −1

2
〈GμνG

μν〉 − 1

2
〈WμνW

μν〉 − 1

4
BμνB

μν + q̄i/Dq + l̄i/Dl + ūi/Du + d̄i/Dd + ēi/De

+ v2

4
〈LμLμ〉 (1 + FU(h)) + 1

2
∂μh∂μh − V (h)

− v

[
q̄

(
Yu +

3∑
n=1

Y (n)
u

(
h

v

)n
)

UP+r + q̄

(
Yd +

3∑
n=1

Y
(n)
d

(
h

v

)n
)

UP−r

+ l̄

(
Ye +

3∑
n=1

Y (n)
e

(
h

v

)n
)

UP−η + h.c.

]
(8)

with Lμ = iUDμU†, P± = 1/2 ± T3, and

FU = (2 − a2)
h + (1 − 2a2)

(
h

)2

− 4
a2

(
h

)3

− 1
a2

(
h

)4

(9)

v v 3 v 3 v
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V = m2
h

2
h2 + m2

hv
2

2

[(
1 + 4

3
a1 − 3

2
a2

)(
h

v

)3

+
(

1

4
+ 2a1 − 25

12
a2

)(
h

v

)4

+ (a1 − a2)

(
h

v

)5

+ a1 − a2

6

(
h

v

)6
]

(10)

Y
(1)
f =

(
1 − a2

2

)
Yf + 2Ȳf , Y

(2)
f = 3Y

(3)
f = −a2

2
Yf + 3Ȳf , f = u,d, e (11)

For generality, we have included generic flavor matrices Ȳf arising at NLO. In scenarios with 
minimal flavor violation [31], Ȳf ∝ Yf .

Here a1, a2 and the flavor matrices Ȳd , . . . correspond to the coefficients of the dimension-6 
operators (φ†φ)3, ∂(φ†φ)∂(φ†φ) and q̄φdφ†φ, . . . , respectively. These coefficients are all of 
order ξ . When they are put to zero, L2 reduces to the renormalizable SM.

At chiral dimension 4 (NLO) and to order ξ one finds the Lagrangian

L4 = −β1v
2〈LμτL〉2

(
1 + h

v

)4

− cXh1

4
BμνB

μν

[
1 −

(
1 + h

v

)2
]

− cXh2

2
〈WμνW

μν〉
[

1 −
(

1 + h

v

)2
]

− cXh3

2
〈GμνG

μν〉
[

1 −
(

1 + h

v

)2
]

+ cXU1gg′〈WμντL〉Bμν

(
1 + h

v

)2

+ cψV 7(l̄γ
μl)〈LμτL〉

(
1 + h

v

)2

+ cψV 1(q̄γ μq)〈LμτL〉
(

1 + h

v

)2

+ cψV 10(ēγ
μe)〈LμτL〉

(
1 + h

v

)2

+ cψV 4(ūγ μu)〈LμτL〉
(

1 + h

v

)2

+ cψV 5(d̄γ μd)〈LμτL〉
(

1 + h

v

)2

+ cψV 6(ūγ μd)〈P21U
†LμU〉

(
1 + h

v

)2

+ h.c.

+ cψV qOq

(
1 + h

v

)2

+ cψV lOl

(
1 + h

v

)2

+Lψ4 +Lψ2X +LX3 (12)

where Lψ4 refers to all baryon-number conserving four-fermion operators, Lψ2X to the dipole 
operators ψ̄σμνX

μνψ , and LX3 to the triple-gauge operators XμνX
νλX

μ
λ . They can be found 

in [29]. All coefficients ci and β1 scale as O(ξ/16π2). We used the shorthand notation

Oq = 2(q̄τLγ μq)〈LμτL〉 + (q̄UP12U
†γ μq)〈P21U

†LμU〉
+ (q̄UP21U

†γ μq)〈P12U
†LμU〉

Ol = 2(l̄τLγ μl)〈LμτL〉 + (l̄UP12U
†γ μl)〈P21U

†LμU〉
+ (l̄UP21U

†γ μl)〈P12U
†LμU〉 (13)

where τL = UT3U
†, P12 = T1 + iT2, P21 = P

†
12.

We note that the result of Eq. (12) relies on the assumption that custodial symmetry and CP are 
only broken by weak perturbations. Their breaking is thus generated by the gauge and Yukawa 
couplings. Spurions must then come with an associated weak coupling, which carries chiral 
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dimension. It then follows that the T parameter is loop-suppressed and CP violating operators 
can only show up at NNLO.

In this sense, Eq. (12) is by construction the most general next-to-leading-order correction to 
the chiral electroweak Lagrangian close to the decoupling limit, to first order in ξ . It is therefore a 
well-defined approach to a systematic derivation of the SILH Lagrangian for generic light Higgs 
scenarios. Notice that picking the leading dependence in ξ from the chiral electroweak opera-
tors brings in a series of correlations between the different coefficients, all of them arising from 
the doublet structure of the Higgs field that emerges in the decoupling limit. As already noted, 
Eq. (12) is written in the broken phase and therefore the impact of NLO effects in the LO param-
eters has been taken care of, which results in some operators not being proportional to (v + h)2. 
Apart from this notational aspect, a comparison with the original SILH Lagrangian [11] and its 
recent extension [12] shows that: (i) since the construction of the operators is a purely infrared 
issue, all model-dependence of the original formulation is inessential and can be removed. As a 
result, the structure of the Lagrangian gets simplified and the role of the relevant scales in the 
problem becomes more transparent; (ii) custodial symmetry breaking through the T -parameter 
comes with an overall coefficient 1/�2, in agreement with the discussion in [11]; (iii) in general 
there is no extra suppression of the BμνB

μνH †H and GμνG
μνH †H operators (see the further 

discussion in Section 6).
We emphasize that the effective Lagrangian contains also terms of higher order in ξ . By 

definition, those go beyond the SILH approximation. However, some of them, related to the 
Higgs sector, come without loop suppression and would typically be more important than ξ/16π2

terms, as long as ξ � 1/16π2. In practice, to work them out explicitly, dimension-8 operators 
would have to be considered. We note that working with the full electroweak chiral Lagrangian 
automatically includes all orders in ξ .

In the following section we will give a more detailed account of how custodial symmetry 
breaking is implemented in the EFT. This can be done without relying on the UV dynamics and 
will therefore lead to a number of model-independent conclusions.

5. Custodial symmetry and its breaking

In this section we consider general properties of custodial symmetry and its violation in the 
electroweak effective Lagrangian. The concept of custodial symmetry is well known. We review 
it here to provide the proper context for our subsequent general discussion of its violation by 
spurions in effective field theory.

We assume that the electroweak sector exhibits the spontaneous breaking of a global symme-
try according to the pattern

SU(2)L ⊗ SU(2)R → SU(2)V (14)

The associated Goldstone fields ϕa , a = 1, 2, 3, parametrize the coset of the symmetry break-
ing in (14), expressed through the SU(2) matrix field U = exp(2iϕaT a/v), where T a are the 
generators of SU(2). Under SU(2)L ⊗ SU(2)R the field U transforms as U → gLUg

†
R , with 

gL,R ∈ SU(2)L,R . The vacuum U = 1 breaks this symmetry but remains invariant under SU(2)V , 
defined by SU(2) transformations that obey gL = gR ≡ gV . The residual, global invariance un-
der SU(2)V is commonly referred to as the custodial symmetry [32]. It is useful to distinguish 
two somewhat different meanings of this term. In the narrow sense, custodial symmetry refers 
only to the spontaneously broken dynamics itself, that is to the scalar sector (Higgs fields) or 
the corresponding new strong interactions. In the general sense, custodial symmetry refers to 
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all interactions, strong (scalar) dynamics and weak perturbations (e.g. from gauge or Yukawa 
couplings).

When (part of) the symmetry SU(2)L ⊗ SU(2)R is gauged, some of the gauge fields be-
come massive via the Higgs mechanism. It is instructive to consider the following possibili-
ties of gauging a subgroup of SU(2)L ⊗ SU(2)R and the resulting spectrum of gauge bosons: 
a) SU(2)L (3 massive, degenerate gauge bosons); b) SU(2)V (3 massless gauge bosons); 
c) SU(2)L ⊗ SU(2)R (3 massive, degenerate and 3 massless gauge bosons); d) SU(2)L ⊗ U(1)Y
(Standard Model, 1 massless, 3 massive gauge bosons with MW �= MZ). By the assumption 
of (14), all cases have a custodial symmetry in the narrow sense. In the general sense of the term, 
custodial symmetry is violated in the Standard Model (MW �= MZ), while cases a), b) and c) 
remain custodially symmetric, despite the weak gauging.

The distinction between custodial symmetry in the general or the narrow sense is of course 
a matter of definition. However, it clarifies apparently different uses of the term in the existing 
literature. For instance, among the electroweak oblique corrections, the T parameter, but not the 
S parameter, is referred to as a measure of custodial symmetry breaking in [33]. On the other 
hand, also the S parameter is viewed as a violation of custodial symmetry in [34]. The apparent 
inconsistency is resolved when the former usage of custodial symmetry is understood in the 
narrow sense, the latter in the general sense of this term.

In the following, unless stated otherwise, we will adopt the meaning of custodial symmetry in 
the general sense as defined above. Hence, both MW �= MZ and the S parameter violate custodial 
symmetry, at leading and next-to-leading order, respectively.

In general, the pattern of explicit breaking of custodial symmetry can be described by spuri-
ons ω. We will prove that, in the context of (14), the only spurion of custodial symmetry breaking 
in the effective Lagrangian is given by T 3

R , the third generator of SU(2)R . As an illustration of 
this general theorem we point out how it is realized in the electroweak chiral Lagrangian at lead-
ing and next-to-leading order, and also in the usual Standard Model with a linearly realized Higgs 
sector through operators of dimension 6.

For the case at hand, the spurions are a priori general 2 ×2 matrices5 with formal transforma-
tion properties under SU(2)L ⊗ SU(2)R , such that invariants under this symmetry can be built, 
in general involving also U and further fields. The transformation properties reflect the physical 
origin of a given spurion. Keeping ω fixed at its true (constant) value breaks the global symmetry 
in the appropriate way.

Any spurion must, in general, have one of the three possible transformation rules under the 
global group:

ω → gLωg
†
R (15)

ω → gLωg
†
L (16)

ω → gRωg
†
R (17)

An invariant ω → ω is trivial and does not lead to custodial symmetry breaking. The hermitian 
conjugate version of (15) is understood.

A general 2 × 2 matrix ω can be written as a linear combination of the unit matrix 1 and T a , 
with complex coefficients. An essential restriction arises when part of the global symmetry is 

5 This is because all terms in the Lagrangian are built from fermion bilinears, U and h fields, gauge field strengths and 
covariant derivatives, all of which come with an even number of SU(2)L,R indices. Invariants can thus only be formed 
by contracting with matrices rather than with SU(2) doublets as spurions.
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gauged, since only spurions consistent with gauge invariance are allowed. In the case of elec-
troweak theory, the entire SU(2)L and the weak hypercharge subgroup U(1)Y of SU(2)R are 
gauged. A spurion transforming as (15) would break local SU(2)L and is therefore forbidden. 
Scenario (16) likewise breaks SU(2)L unless ω ∼ 1, which is the trivial case. Similarly, (17)
breaks U(1)Y unless ω ∼ 1 or ω ∼ T 3

R . This leaves T 3
R as the only nontrivial spurion and proves 

our assertion.
The allowed spurions are different when a different part of the global group is gauged. An 

example is the chiral perturbation theory of pions, where the spontaneous breaking of the global 
symmetry also follows (14), gauged under the electromagnetic U(1). The allowed spurions are 
then ω ∼ 1 and ω ∼ T 3, each transforming formally under (15), (16) or (17). This amounts to 
the quark mass term transforming as (15), and the electric charge operator transforming as (16)
or (17).

The fact that T 3
R is the only spurion of custodial breaking under the electroweak gauging 

of (14), can be illustrated with concrete examples. Consider first the usual (minimal) Standard 
Model. The SM Lagrangian can be viewed as the low-energy effective theory of any general 
UV completion that might exist. There are two sources of custodial symmetry breaking: weak 
hypercharge gauge interactions, and the difference in up- and down-fermion Yukawa couplings. 
Both are indeed governed by T 3

R . In order to see that this is not just an accidental feature of 
the lowest-order Lagrangian, one may inspect the full set of dimension-6 operators as classified 
in [29]. These can be written in terms of the Goldstone matrix U and the Higgs singlet h, rather 
than in terms of the Higgs doublet φ. This representation has been discussed e.g. in [9,10]. In 
this way it can be demonstrated explicitly that, again, the only spurion of custodial breaking that 
appears is T 3

R . The same observation holds for the electroweak chiral Lagrangian at leading and 
next-to-leading order described in [10]. Some of the operators in [9,10] are written in terms of the 
matrices P12 = T1 + iT2 and P21 = T1 − iT2. To make the reduction to the spurion T3 manifest 
one may use the identity

(P12)ij (P21)kl = −1

4
δij δkl + 1

2
δilδkj − (T3)ij (T3)kl + 1

2
(T3)ilδkj − 1

2
δil(T3)kj (18)

The discussion of this section demonstrates in particular that the presence of T 3
R as the only 

spurion of custodial-symmetry breaking in the general electroweak chiral Lagrangian is a fully 
general, model-independent property of the effective field theory formulation, in contrast to the 
claims in [12].

6. SO(5)/SO(4) model at NLO in the chiral expansion

We now would like to show how some of the features that we discussed arise in the context of a 
specific model, the minimal composite Higgs model of [35,36]. This model assumes spontaneous 
symmetry breaking of SO(5) down to SO(4) at a scale f , which generates four Goldstone bosons. 
They span the coset space and can be parametrized as [37] (see Appendix A for details)

�(hâ) =
( s

2
〈Uλ

†
â
〉

c

)
, λâ = (i �σ ,12), s = sin

|h|
f

, c = cos
|h|
f

(19)

Above we used the fact that SO(4) is isomorphic to SU(2)L ⊗ SU(2)R to express the SO(4)

vector hâ in terms of the SU(2)L ⊗ SU(2)R bifundamental field U and the hâ modulus |h|. The 
custodial-preserving SU(2)L ⊗ SU(2)R is further broken (explicitly) by the couplings to gauge 
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bosons and fermions. The spurion for this breaking is tR3 and is accompanied by powers of g′
and/or Yukawa couplings yf . For simplicity, in the following we will set fermions aside and 
focus on the CP-even bosonic sector.

The leading-order Lagrangian (chiral dimension χ = 2) takes the form

L = f 2

2
�T

μ�μ − V = 1

2
∂μ|h|∂μ|h| + f 2

4
〈LμLμ〉s2 − V (20)

where �μ ≡ Dμ�. The gauge kinetic terms are understood. The leading-order potential is

V = α �T n − 4β �T tR3 tR3 � = α c − β s2 (21)

where n = (0, 0, 0, 0, 1)T and tR3 are the SO(5)-breaking spurions that are consistent with SM 
gauge invariance. The vector n conserves custodial symmetry, the matrix tR3 violates it. Both are 
related through nnT = 1 − 4tR3 tR3 .

The coefficients have χ = 2 since they are loop-suppressed and they scale as α, β ∼ f 4. 
A realization of such a potential in a specific model has been discussed e.g. in [37].

We note that the two terms in (21) are given by the two independent expressions that can be 
built at leading order from the spurions of SO(5) breaking, n and tR3 . For β > 0 and |α| ≤ 2β , the 
potential in (21) exhibits spontaneous symmetry breaking, generating the vacuum expectation 
value 〈|h|〉 via

ξ = v2

f 2
= sin2 〈|h|〉

f
= 1 −

(
α

2β

)2

, v < 〈|h|〉 <
π

2
v (22)

where 〈|h|〉 ranges from the decoupling to the nondecoupling limit. The resulting mass of the 
physical scalar boson h ≡ |h| − 〈|h|〉 is

m2
h = 2βξ

f 2
= O(v2) (23)

To construct the operators at NLO (χ = 4), it is necessary to employ the general method of 
Callan, Coleman, Wess and Zumino [38,39]. For the case of the SO(5)/SO(4) coset this has 
been performed in great detail in [40] (see [41] for a recent discussion of this and other cosets). 
Here we restrict ourselves to quoting the main results, adding some comments and discussing the 
matching to the electroweak chiral Lagrangian at scale v.

One defines dμ and Eμ through [40]

−iU†DμU = dâ
μt â + Ea

μta ≡ dμ + Eμ (24)

Here U = exp(
√

2it âhâ/f ) and t â (ta) are the broken (unbroken) generators of SO(5) → SO(4). 
Dμ = ∂μ + iAμ is the covariant derivative with Aμ = Aâ

μt â + Aa
μta in the most general case. 

(Here the coupling has been absorbed in Aμ.) In practice, we will be mostly interested in gauging 
the standard-model group, in which case Aâ

μ = 0. The following building blocks are useful [40]:

∂μEν − ∂νEμ + i[Eμ,Eν] ≡ Eμν ≡ EL
μν + ER

μν (25)

fμν = U†FμνU ≡ f −
μν + f L

μν + f R
μν (26)

Here f −
μν ≡ f −,â

μν tâ , f L
μν ≡ f L,a

μν tLa , f R
μν ≡ f R,a

μν tRa , and similarly for EL,R
μν , where the six unbro-

ken generators ta are decomposed into the generators tL,R
a of SU(2)L,R . Fμν is the field strength 

of Aμ.
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The kinetic term in (20) can then be written as

L = f 2

2
�T

μ�μ ≡ f 2

4
〈dμdμ〉 (27)

The NLO operators can be constructed from the building blocks above. The CP even operators 
read [40]

O1 = 〈dμdμ〉2

O2 = 〈dμdν〉〈dμdν〉
O3 = 〈EL

μνE
L,μν〉 − 〈ER

μνE
R,μν〉

O+
4 = 〈(f L

μν + f R
μν)i[dμ, dν]〉

O+
5 = 〈(f −

μν)
2〉

O−
4 = 〈(f L

μν − f R
μν)i[dμ, dν]〉

O−
5 = 〈(f L

μν)
2 − (f R

μν)
2〉 (28)

We remark that the operator O3 in this list is redundant:

O3 = O−
5 − 2O−

4 (29)

This was also noted recently in [41]. The remaining operators can be expressed in terms of the 
2 × 2 Goldstone field U and the Higgs singlet |h| of the chiral Lagrangian based on the coset 
SU(2)L ⊗ SU(2)R/SU(2)V . We find

O1 =
(

2

f 2
∂μ|h|∂μ|h| + s2〈LμLμ〉

)2

O2 =
(

2

f 2
∂μ|h|∂ν |h| + s2〈LμLν〉

)2

O+
4 = −s2〈gDμWμνLν − g′∂μBμντLLν + g2

2
(Wμν)

2 + g′ 2

2
(BμνT3)

2 − g′gBμνW
μντL〉

O+
5 = s2〈g2(Wμν)

2 + g′ 2(BμνT3)
2 − 2g′gBμνW

μντL〉
O−

4 = i
c

2
(s2 + 2)〈gWμν[Lμ,Lν] − g′BμντL[Lμ,Lν]〉

+ 2c〈gDμWμνLν + g′∂μBμντLLν + g2

2
(Wμν)

2 − g′ 2

2
(BμνT3)

2〉
O−

5 = 2c〈g2(Wμν)
2 − g′ 2(BμνT3)

2〉 (30)

Here the gauging has been restricted to the standard-model group and the couplings have been 
factored out of the gauge fields. The terms with DμWμν and ∂μBμν in O±

4 are reducible upon 
using the equations of motion. Obviously, O+

4,5 → 0 in the limit |h| → 0. Note that in the same 
limit O−

4 also vanishes upon integrating by parts, while O−
5 just renormalizes the gauge kinetic 

terms.
The operators on the r.h.s. of (30) match the electroweak chiral Lagrangian in the basis of [10]

after eliminating redundant terms and expanding around the Higgs vacuum expectation value. 
Indeed, O1,2 correspond to ODi in [10] with i = 1, 2, 7, 8, 11, whereas O±

4,5 contain OXh1,2 and 
OXU1,7,8.
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The SO(5)/SO(4) example illustrates how its effective-theory formulation can be expressed in 
terms of the general chiral Lagrangian of [10]. Expanding the former to first order in ξ provides 
an explicit realization of the SILH Lagrangian derived in Section 4. It also exhibits the presence 
of T 3

R as the only spurion of custodial symmetry breaking, in agreement with the theorem of 
Section 5.

The representation of the operators in (30) makes it explicit that the Higgs couples to a pair 
of field-strength factors only in the combinations

〈g2(Wμν)
2 + g′ 2(BμνT3)

2 − 2g′gBμνW
μντL〉

〈g2(Wμν)
2 − g′ 2(BμνT3)

2〉 (31)

These do not contain the photon–photon component FμνF
μν and hence there is no h → γ γ

operator at this order. This has been emphasized in [11] and explained as the consequence of 
a residual shift symmetry that commutes with the electric charge Q, similar to the absence of 
(π0)2FμνF

μν at NLO in chiral perturbation theory [42,43]. This feature is valid for the nonlin-
ear (bosonic) Lagrangian defined at scale f and represented at NLO through the terms in (30). 
However, the electroweak effective Lagrangian is defined at the scale v. In the limit of small 
ξ = v2/f 2 the physics at scale f is then integrated out, which may induce the local operator 
hFμνF

μν with a coefficient of order ξ/16π2 as in (12), that is in general without extra suppres-
sion. The same holds for the coupling to gluons, hGμνG

μν . An example is provided by fermion 
representations in minimal composite Higgs models, which induce local h → γ γ and h → gg

operators with coefficients of size ξ/16π2 [44,45]. This is due to an explicit soft breaking of 
SO(5) in the fermionic sector at scale f .

7. Conclusions

Strongly-coupled scenarios are viable candidates to explain the mechanism of electroweak 
symmetry breaking. In their minimal version, one assumes a SU(2)L ⊗ SU(2)R → SU(2)V
breaking pattern at a scale v, with a light Higgs (presumably, but not necessarily, a pseudo-
Goldstone boson) and new physics starting around the TeV scale. Under these assumptions, the 
most efficient description of the physics at present-day colliders is provided by the electroweak 
chiral Lagrangian. In this paper we have explicitly shown that the so-called SILH Lagrangian 
can be recovered as a special limit of the latter. To the best of our knowledge, this viewpoint 
offers the first rigorous derivation of SILH and helps to clarify some of its aspects, especially 
those related with power counting and the breaking of custodial and shift symmetries.

Our main conclusions can be summarized in the following points:

• We emphasize that the small-ξ limit of the electroweak chiral Lagrangian relies on a double 
expansion in both, powers of ξ and the number of loops. Phenomenologically, terms of order 
ξ2 might be larger than the ξ/16π2 terms included in the conventional SILH Lagrangian. The 
electroweak chiral Lagrangian represents the resummation to all orders in ξ .

• The SILH Lagrangian can be understood as the electroweak chiral Lagrangian to first order 
in ξ = v2/f 2. This allows a systematic construction of the effective-theory operators with a 
well-defined power counting and without relying on particular UV completions. The result-
ing set of dimension-6 operators comes from both the LO and NLO chiral Lagrangian and 
they are suppressed, respectively, by 1/f 2 and 1/�2.
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• In scenarios where the Higgs is a pseudo-Goldstone boson, the h → γ γ and h → gg ampli-
tudes at scale v receive local contributions of order ξ/16π2. These can arise from integrating 
out new states at scale f , which may exist in realistic models.

• We prove that, given the SU(2)L ⊗SU(2)R → SU(2)V breaking pattern, custodial symmetry 
breaking is described by a single spurion, namely T 3

R . If custodial symmetry is assumed to 
be preserved by the strong sector, and only broken explicitly by the weak sector (gauge and 
Yukawa couplings), the T -parameter appears as a NLO effect (of chiral dimension 4) and 
comes with a suppression of 1/�2 � 1/f 2.

• As a concrete illustration of the previous points, we have considered the NLO operators of 
the CP-even bosonic sector of the SO(5)/SO(4) model and matched them to the electroweak 
chiral Lagrangian.

To summarize, the electroweak chiral Lagrangian, formulated with the vacuum misalignment 
parameter ξ , gives not only a description of strict nondecoupling scenarios (ξ ∼ 1), but it is also 
valid for softly nondecoupling constructions (ξ � 1), like the SILH Lagrangian. The electroweak 
chiral Lagrangian thus provides the well-defined starting point for the construction of generic 
EFT descriptions of electroweak physics with a strong sector. Importantly, in the small-ξ limit, 
the electroweak chiral Lagrangian implies a pattern for the coefficients of dimension-6 operators 
characteristic of a strongly-interacting Higgs sector, which can be tested against experiment.

Acknowledgements

We thank Michael Trott for interesting discussions on custodial symmetry and Gian Giudice, 
Christophe Grojean, Alex Pomarol and Riccardo Rattazzi for comments on a preliminary version 
of the manuscript. This work was performed in the context of the ERC Advanced Grant project 
‘FLAVOUR’ (267104) and was supported in part by the DFG cluster of excellence ‘Origin and 
Structure of the Universe’ and DFG grant BU 1391/2-1.

Appendix A. SO(5)/SO(4) Goldstone field

In this appendix we collect some technical details used in the discussion of Section 6.
When SO(5) is spontaneously broken to SO(4), the Goldstone multiplet can be parametrized 

by (see e.g. [37])

�(hâ) = U �0, �0 =
(

04
1

)
(A.1)

where

U = exp(
√

2it âhâ/f ) (A.2)

with hâ (â = 1, . . . , 4) a SO(4) vector and t â the broken generators that span the 4-parameter 
coset. Using the realization (i, j = 1, . . . , 5)

t âij = − i√
2

(
δâ
i δ5

j − δâ
j δ5

i

)
(A.3)

direct substitution of the generators above yields (s = sin |h|/f , c = cos |h|/f )

�(hâ) =
(

ĥâs

c

)
, ĥâ = hâ

, |h| = √
hâhâ (A.4)
|h|
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Since SO(4) is isomorphic to SU(2)L ⊗ SU(2)R , one can relate the SO(4) vector to a complex 
SU(2)L ⊗ SU(2)R bidoublet H and its polar decomposition into |h| and the SU(2) matrix U ,

H = (φ̃, φ) =
(

h4 + ih3 h2 + ih1
−(h2 − ih1) h4 − ih3

)
= hâλâ ≡ |h|U, λâ = (i �σ ,12) (A.5)

which implies

ĥâ = 1

2
〈Uλ

†
â
〉 (A.6)

The doublet φ corresponds to the SM Higgs. The present definitions ensure that φ transforms as 
a SU(2)L doublet with weak hypercharge Y = 1

2 , if the SO(4) generators are realized as

tL1 = i

2

(
0 −σ1
σ1 0

)
; tL2 = i

2

(
0 σ3

−σ3 0

)
; tL3 = i

2

( −iσ2 0
0 −iσ2

)

tR1 = i

2

(
0 iσ2

iσ2 0

)
; tR2 = i

2

(
0 1

−1 0

)
; tR3 = i

2

( −iσ2 0
0 iσ2

)
(A.7)

which satisfy

tL,R
a t

L,R
b = 1

4
δab + i

2
εabct

L,R
c ; [tLa , tRb ] = 0 (A.8)

The full set of SO(5) generators is then given by (A.3) and the obvious extension of (A.7) to 
5 × 5 matrices [37].

The operators of the SO(5)/SO(4) chiral Lagrangian can be constructed from the building 
blocks quoted in Section 6, taking into account their chiral dimension:

[dμ]c = 1, [EL,R
μν ]c = [f −,L,R

μν ]c = 2 (A.9)

The operators in terms of U can be expressed through |h| and U using (A.6),

U =
(

1 − (1 − c)ĥĥT sĥ

−sĥT c

)
(A.10)

and the relations

λâ
ij λ

â†
kl = 2δilδkj (A.11)

tL
a,âb̂

〈Uλ
†
b̂
〉 = 〈T aUλ

†
â
〉, tR

3,âb̂
〈Uλ

†
b̂
〉 = −〈UT3λ

†
â
〉 (A.12)

The resulting operators with chiral dimension 4 are collected in Section 6.
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