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Abstract
Weconsider a simpleMarkovian class of the stochasticWilson–Cowan typemodels of neuronal
network dynamics, which incorporates stochastic delay caused by the existence of a refractory period
of neurons. From the point of view of the dynamics of the individual elements, we are dealingwith a
network of non-Markovian stochastic two-state oscillators withmemory, which are coupled globally
in amean-field fashion. This interrelation of a higher-dimensionalMarkovian and lower-dimensional
non-Markovian dynamics is discussed in its relevance to the general problemof the network dynamics
of complex elements possessingmemory. The simplestmodel of this class is provided by a three-state
Markovian neuronwith one refractory state, which causesfiring delaywith an exponentially decaying
memorywithin the two-state reducedmodel. This basicmodel is used to study critical avalanche
dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the
excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise
(mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of
avalanche sizes with the critical exponent around−1.16.We show that this power law is robust upon a
variation of the refractory time over several orders ofmagnitude. However, the avalanche time
distribution is biexponential. It does not reflect any genuine power lawdependence.

1. Introduction

Network complexity pervades biology andmedicine [1], and the human organism can be considered as an
integrated complex network of different physiological systems [2] such as circulatory and respiratory systems,
visual system, digestive and endocrine systems, etc, which are coordinated by autonomic and central nervous
systems including the brain. The dynamics of the sleep-wake transitions during the sleep of humans and other
mammals [3–5] presents one important examples of such complex dynamics featured by randomly repeating
active periodswith scale-invariant power-law distributions of their size and duration, which reflects a self-
organized criticality or SOC [1, 4–7] in such complex network systems. In turn, functioning of the human brain
presents in essence a network activity of coupled and interrelated neurons surrounded by glia cells. The
immense complexity of this subjectmatter [8] does not exclude, but rather invites thinking in terms of simple
physicalmodeling approaches, see e.g. in [3, 5], since even very simple physicalmodels can display very complex
behavior. Themodels of critical dynamical phenomena such as SOC [1, 6, 7] are especially important in this
respect [4, 5]. Physicalmodeling can help to discriminate the physical and biological complexity from the
complexity ofmental processes, the ‘formwithin’ [8], which ismediated but not determined infine features by
the background physical processes. The recently discovered complexity of the critical brain dynamics [9–11] in
principle does not have anything in commonwith the complexity ofmental processes as it is already displayed by
organotypic networks of neurons formed by cortical slices on amulti-electrode array [9]. Such a physical
complexity is essentially the complexity of crudematter that got self-organized following physical laws. It thus
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belongs to statistical physics or systembiophysics. Physicalmodels such as SOC are especially important and
helpful here.

TheWilson andCowanmodel [12] presents one of thewell-establishedmodels of neuronal network
dynamics [13]. It incorporates individual elements in a simplest possible fashion as two-state stochastic
oscillators with one quiescent state and one excited state, and random transitions between these two states which
are influenced by themutual coupling among the network elements. Themodel has been introduced in the
deterministic limit of huge amounts of coupled elements in complete neglect of the intrinsicmesoscopic noise
and became immensely popular with the years [13], being used e.g. to describe neuronal oscillations in visual
cortexwithin amean-field approximation [1, 14]. Recently, the previously neglectedmesoscopic noise effects
were incorporated in thismodel for a finite-size network [15, 16]. Such a noise has been shown to be very
important, in particular, for the occurrence of the critical avalanche dynamics [15] absent in the deterministic
Wilson–Cowanmodel and also for the emergence of oscillatory noisy dynamics [16]. Atfirst glance, such a noisy
dynamics can look like a chaotic deterministic one. Deterministic chaos influenced by the noise can also be a
natural feature of a higher-dimensional dynamics, beyond the original two-dimensional (2D)Wilson–Cowan
meanfieldmodel. Indeed, deterministic chaos has been found in the brain dynamics some time ago [1, 17].
However, it cannot be describedwithin thememorylessWilson–Cowanmodel because theminimal dimension
for chaos is three [18].

Stochasticmesoscopic noise effects due to afinite number of elements infinite size systems attract
substantial attention over several decades, especially with respect to chemical reactions on themesoscale
[19, 20], being especially pertinent to the physico-chemical processes in living cells [21]. In particular, such
intrinsic noise can cause and optimize spontaneous spiking (coherence resonance [22, 23]) in the excitable
clusters of ionic channels in cellmembranes, which are globally coupled through the commonmembrane
potential, or the response of such systems to periodic external signals (stochastic resonance [24])within a
stochasticHodgkin–Huxleymodel [25]. Finite-size networks of globally coupled bistable stochastic oscillators
were also consideredwithout relation to theWilson–Cowanmodel [26, 27], including non-Markovianmemory
effects [23, 28–31].

In this paper, we consider a class of higher-dimensional generalizations of the stochasticWilson–Cowan
model aimed to incorporate non-Markovianmemory effects in the dynamics of individual neurons. Such effects
are caused by the existence of a refractory period or inactivated state fromwhich the neuron cannot be excited
immediately. First, we discuss a general class of suchmodels. Then, we apply the simplest two-state non-
Markovianmodel of this class, embedded as a three-stateMarkovianmodel with one inactivated state, to study a
critical avalanche dynamics in a balanced network of the excitatory and inhibitory neuronswithin amean-field
approximation.Here, we restrict ourselves to the simplest example of a fully connected networkwith all-to-all
coupling of its elements. In particular, we derive the power law exponents characterizing the critical self-
organized dynamics of the network from the precise numerical simulations donewith the dynamicMonte
Carlo, orGillespie algorithm.We also compare these results with similar results obtainedwithin approximate
stochastic Langevin dynamics, or, equivalently, within a diffusional approximation to the discrete state
dynamics.Here, we reveal a profound difference.

2. Themodel and theory

2.1. Stochasticmodels of single neurons
Let us depart from theMarkovianmodel of a neuron possessing one activated or excited state ‘a’, and a quiescent
state ‘q’, see figure 1(a). The excitation of the neuron occurs with the rate βf , where β is a rate constant and f is a
dimensionless transfer functionwhich depends on the states of the other neurons, andwill be discussed below.
Deactivation occurs with the rate α, which does not depend on states of other neurons. Let us assume for awhile
that f is not explicitely time dependent. From the point of view of the theory of continuous time randomwalks
(CTRWs) or renewal processes [32, 33], such a two state neuron can be completely characterized by the
residence time distributions (RTDs) in its two states, ψ t( )a , and ψ t( )q , correspondingly (assuming that no

correlations between the residence time intervals is present—the renewal or semi-Markovian assumption).
RTDs define completely the trajectory realizations of such a renewal process. In theMarkovian case, the RTDs
are strictly exponential, ψ α α= −t t( ) exp( )a , and ψ ν ν= −t t( ) exp( )q , wherewe denoted ν β= f . Then, such a

trajectory description corresponds to theMarkovian balance ormaster equations for the probabilities to
populate the states ‘a’ and ‘q’, u t( ) and q t( ), respectively. Due to the probability conservation, + =u t q t( ) ( ) 1,

α β= − + −u t u t f u t˙ ( ) ( ) [1 ( )]. (1)

Thememory effect due to delay of a new excitation event after the neuron comes into the quiescent state, or the
existence of some refractory period τd, can be capturedwithin the trajectory description by a non-exponential
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RTD ψ t( )q . This transforms the correspondingmaster equation into a generalizedmaster equation (GME)with

memory, where the term βfq t( ) is replaced by ∫ − ′ ′ ′K t t q t t( ) ( )d
t

t

0
, with amemory kernel K t( ). Here, t0 is the

starting time, =t 00 , if not a different one is explicitely stated.Hence, equation (1) is replaced by

∫α= − + − ′ − ′ ′u t u t K t t u t t˙ ( ) ( ) ( )[1 ( )]d . (2)
t

0

In theCTRW theory it is well-known how thememory kernel K t( ) and the RTD ψ t( )q are related [33, 34] (see
also appendix of [35]). Namely, their Laplace-transforms (denoted as ∫= −F s st F t t˜( ) exp( ) ( )d

t

0
, for any

function F t( )) are related as

ψ

ψ
=

−
K s

s s

s
˜ ( )

˜ ( )

1 ˜ ( )
. (3)

q

q

In neurosciences, a delayed exponential, or delayed Poissonianmodel is popular [36]. It is featured by the
absolute refractory period τd, i.e. ψ =t( ) 0q , for τ⩽ <t0 d , and the exponential distribution,
ψ ν ν τ= − −t t( ) exp[ ( )]q d , for τ⩾t d, see infigure 2. Thismodel corresponds to ψ τ ν ν= − +s s s˜ ( ) exp( ) ( )q d

and thememory kernel ν ν τ ν= + −K s s s s˜( ) [( )exp( ) ]d . The numerical inverse Laplace transformof this
memory kernel is depicted in the inset of figure 2(b). Notice that it does not correspond to thememory kernel

ν δ τ= −K t t( ) ( )r d , whichwould correspond to themaster equationwith the deterministic delay [37]

α β τ= − + − −( )u t u t f u t˙ ( ) ( ) 1 . (4)r d
⎡⎣ ⎤⎦

However, thismemory kernel is strongly peaked at τ=t d, and can thus be approximated, with
ν ν ντ= = +→ K slim ˜( ) (1 )r s d0 , which is the inversemean time of the delayed Poissonian distribution ψ t( )q . In
the correspondingMarkovian approximation, equation (1) is restoredwith a renormalized transfer function

βτ
=

+
f

f

f1
. (5)r

d

This is the simplest way to account for the delay effects. Obviously, any delay should suppress excitability within
this approximation, because <f fr . However, suppression of the excitability of the inhibitory neuronsmay
enhance the excitability of thewhole network consisting of both excitatory and inhibitory neurons.Hence,
possible effects are generally non-trivial even in this approximation.Moreover, equation (5)makes it
immediately clear that the delay effects are generally expected to be very substantial for βτ ⩾ 1d .

Figure 1. (a) Two-statemodel of a neuronwith one quiescent and one activated state: βf is the rate of excitation, which depends on
the states of the other neurons through the transfer function f;α is deactivation rate. (b) Three-statemodel with one intermediate
refractory state: deactivation occurs with rate α into the refractory state, fromwhich the neuron cannot be immediately excited.
Transition from the refractory state ‘i’ into the quiescent and excitable state ‘q’ occurs with rate γ, which also does not depend on the
states of the other neurons. (c) Extension of (b) by incorporating amulti-stage delay.
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2.1.1. The simplest non-Markovianmodel and itsMarkovian embedding
It is well-known that inmany cases non-MarkovianCTRWdynamics can be embedded as someMarkovian
dynamics in a higher-dimensional, possibly infinite dimensional space [38]. Given a non-trivial formof the
memory kernel for the delayed exponential distribution of the quiescent times, we can ask the question:What is
the simplest non-Markovianmodel and the correspondingMarkovian embedding to account for thememory
effects? From the point of view ofGME, it is κ= −K t rt( ) exp( ), i.e. an exponentially decayingmemory kernel.
The correspondingmemory kernel with κ νγ= , and ν γ= +r corresponds to ψ t( )q , which is the time
convolution of two exponential distributions, ψ ν ν= −t t( ) exp( )q

(0) , and ψ γ γ= −t t( ) exp( )i . It corresponds to

a compound state ‘ ∪= q iq ’ infigure 1(b). Indeed, the Laplace transformof the corresponding compound
distribution is just the product of the Laplace-transforms of two exponential distributions, i.e.,
ψ νγ ν γ= + +s s s˜ ( ) [( )( )]q . By equation (3) it corresponds precisely to the stated exponentialmemory kernel.

The corresponding ψ νγ ν γ ν γ= − − − −t t t( ) [exp( ) exp( )] ( )q has amaximumat themost probable time

interval ν γ ν γ= −t ln( ) ( )max , see figure 2(a), reflecting themost probable stochastic time delay. This simplest
non-Markovianmodel withmemory allows, however, for a very simpleMarkovian embedding by introduction
of an intermediate refractory state ‘i’ shown infigure 1(b), with the population probability x t( ) and the

exponential RTD given above. It has themean refractory time ∫τ τ ψ τ τ γ≔ 〈 〉 = =∞
( )d 1d i0

, and the relative

standard deviation, or the coefficient of variation, τ τ τ≔ 〈 〉 − 〈 〉 〈 〉 =C 1V
2 2 . Using the conservation law,

+ + =u q x 1, the correspondingmaster equations can bewritten either as

α ν
α γ

= − + − −
= −

u u u x

x u x

˙ (1 ),

˙ , (6)

or as

α ν= − +u u q a˙ , (7 )

γ ν γ= − + + −q q u b˙ ( ) (1 ). (7 )

From (7b) follows

∫γ= + − ′ ′γ ν γ ν− + − + − ′q t q u t t( ) e (0) e [1 ( )]d . (8)t
t

t t( )

0

( )( )

After substitution of this equation into (7a) one obtains indeed equation (2)with the discussed exponential
memory kernel provided that =q (0) 0. The latter condition is natural because every sojourn in the compound
quiescent state ‘q’ starts from the substate ‘i’ (resettingmemory of this neuron to zero), and +q t x t( ) ( ) is the
probability of the compound quiescent state within the two-state non-Markovian reduction of the three-state
Markovian problem.Here, one can also see the origin of a profound problemwith the description of thewhole
network dynamics of interacting non-Markovian renewal elements as a hyper-dimensional renewal process.
Obviously, the behavior of thewhole network cannot be considered as a renewal process, because after each and
every de-excitation event only one element is reset. Then it starts with zeromemory, while all others keep their
memory until they are reset. Hence, anyGillespie type simulation of thewhole network of interacting non-
Markovian elementsmust account for the ‘age’ of each network element separately.Markovian embedding

Figure 2. (a) Residence time distribution in the quiescent state, (b) and the correspondingmemory kernel for the delayed exponential
distribution and distributions corresponding to one, n = 1, and two, n = 2, inactivated states infigures 1(b), and (c), with n = 2,
correspondingly. Inset in part (b) shows also the cases n = 100, n = 1000, and → ∞n (delayed exponential). Time t is in the units of
τ γ= 1d , and ν = 0.5. Numerical results in the inset were obtained by numerical inversion of the corresponding Laplace-transform
using theGaver–Stehfestmethodwith arbitrary precision [39, 40] to arrive at convergent results.
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allows to circumvent this problem anddramatically accelerate simulationswithin themean-field approxima-
tion, see below.

The considered three-stateMarkovian cyclicmodel presents one of the fundamental kineticmodels in
biophysics. It provides, in particular, a paradigm for non-equilibrium steady state cycling. For example, the
cyclic kinetics of an enzyme E, which binds a substratemolecule S, converts it to a product P, and releases it
afterwards can be represented as a three-state cycle, → → →E ES EP E. Thismodel was used e.g. in [29] for an
excitable unit. Furthermore, three-state non-Markovianmodels can be usedwith a non-exponential
distribution ψ t( )i . For example, if to use the deterministically delayed ψ δ τ= −t t( ) ( )i d , and exponential ψ t( )q

within the three-state cyclicmodel, then one obtains the delayed exponential distributionwithin the two-state
reducedmodel, whichwas discussed above. In addition, ψ t( )a can also be non-exponential. For
ψ δ α= −t t( ) ( 1 )a in the excited state of the three-state non-Markovianmodel, one obtains themodel used
in [28, 29].

2.1.2.Markovian embedding withmany substates
One can also introducemany delayed substates as shown infigure 1(c).Within the three-state non-Markovian
model this can be considered as having one delayed state ‘i’ characterized by the special Erlangian distribution
[32], ψ γ γ γ= − −−t n n t n t n( ) ( ) exp( ) ( 1)!i

n 1 , with the Laplace-transform ψ γ= +s s n˜ ( ) 1 (1 ( ))i
n reflecting

the correspondingmultiple convolution. Such a non-Markovian three-statemodel has been considered in [30],
and a non-Markovian two-statemodel with the Erlangian distribution of the quiescent times has been studied in
[31]. The compound quiescent state corresponding to themodel in [30] is characterized by
ψ ν γ ν= + +s s n s˜ ( ) [(1 ( )) ( )]q

n . Themean delay time is the same τ γ= 1d for any n, and the coefficient of

variation becomes ever smaller with increasing n, =C n1V , i.e. the distribution of the refractory times
becomes evermore sharpened. The Laplace-transformedmemory kernel is

ν γ ν ν= + + −K s s s n s˜( ) [(1 ( )) ( ) ]n . Some corresponding ψ t( )q and K t( ) are shown infigure 2. Already for

n = 2, thememory kernel starts to show a peaked structure. Notice that in the limit → ∞n , the above delayed
exponential (or Poissonian)model immediately followswith τ γ= 1d . For any n, the inversemean time in the
quiescent state is given by βfr with fr in (5). Increasing n yields an ever better approximation for the delayed
Poissonianmodel. However, it can be considered as a usefulmodel in itself. The correspondingMarkovian
embeddingmaster equation reads (with q excluded by the probability conservation law):

∑α β

α γ
γ

= − + − −

= −
= − =

=

−

u u f u x

x u n x

x n x x j n

˙ 1 ,

˙ ,

˙ ( ), 2 ,.., , (9)

i

n

i

j j j

1

1 1

1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with, =x (0) 0j , for = …j n2, , , initially.With a different initial condition, the correspondingGMEobtained
upon projection of themulti-dimensional dynamics onto the subspace of u and q variables will contain a
dependence on this initial condition in the subspace of hiddenMarkovian variables. On the level of non-
Markovian dynamics this can be accounted for by a different choice of the RTD ψ t( )q

(0) for thefirst sojourn in

the quiescent state. It depends on how long this state has been populated before the dynamics started [32]. The
GME (2), (3) corresponds to the particular choice, ψ ψ=t t( ) ( )q q

(0) .

Wemention in passing also that it is straightforward to consider a power-law distributed delay, bothwithin a
semi-Markovianmodel andwithin an approximate finite-dimensionalMarkovian embedding. Also a stochastic
model for bursting neurons can be introduced immediately.We shall not, however, consider these possibilities
in the present work.

2.2. Network of neuronswithin themeanfield dynamics
FollowingWilson andCowan, we consider a network ofNe excitatory andNi inhibitory neurons, with the
probabilities of neurons to be in their excited states u t( )i and v t( )i , correspondingly. The neuron k can
influence the neuron l and possibly itself (k = l) by excitation, or inhibition with the coupling constants,

>w 0ee
lk , >w 0ie

lk for the excitatory neuron k, and − <w 0ei
lk , − <w 0ii

lk , for the inhibitory neuron k. The
absolute value of the coupling constant reflects the synaptic strength. Each excitatory neuron l thus obtains
an averaged input = ∑ − ∑ +s N w u N w v h(1 ) (1 )l e

l
k ee

lk
k i

l
p ei

lp
p e

l, and the inhibitory neuron p receives the

input = ∑ − ∑ +s N w u N w v h(1 ) (1 )p e
p

l ie
pl

l i
p

k ii
pk

k i
p, where Ne

l and Ni
l, etc is the number of inputs

which the lth neuron obtains from the excitatory and inhibitory neurons, correspondingly. The
constants he

l and hi
p serve to fix the spontaneous spiking rates, β f h( )l e

l , β f h( )p i
p , in the absence of coupling,

→w w0,ee
lk

ii
lk → w0, ei

lk → →w0, 0ie
lk . Coupling can either enhance, or suppress these rates.

Phenomenologically, this is accounted for by the transfer function f s( ), which we assume to be the same for
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all neurons. Some common biophysicallymotivated popular choices of the transfer function f s( ) are

θ=f s s s( ) tanh( ) ( ), (10)

where θ s( ) is theHeaviside step function, and

= + −f s s( ) 1 [1 exp( )]. (11)

Both are bounded as ⩽ ⩽f0 1. Evidently, this is a very richmodel even for the simplest two-statemodel of
neurons, in the absence ofmemory effects. The simplest further approximation to describe the collective
dynamics of neurons is to invoke themeanfield approximation [14]. It is equivalent to assuming that all the
coupling constants like wee

lk, etc, thresholds he
l, etc, and rates βl, αl , are equal within a subpopulation, =w wee

lk
ee,

=h he
l

e, β β=e
l

e, or β β=i
l

i, etc. Furthermore, one can introduce the occupation numbers of the excited

neurons in each population, = ∑ =u t N u t( ) (1 ) ( )e i
N

i1
e , and = ∑ =v t N v t( ) (1 ) ( )i i

N
i1

i , and consider the dynamics
of these variables. They present the fractions of neuronswhich are excited.

We restrict our treatment in the rest of this paper to the simplest two state non-Markovianmodel within the

three stateMarkovian embedding and introduce the occupation numbers of neurons, = ∑ =x t N x t( ) (1 ) ( )e i
N

i1
e ,

and = ∑ =y t N y t( ) (1 ) ( )i i
N

i1
i , in the corresponding delayed states. Then, in the deterministic limit → ∞N N,e i ,

one obtains a four-dimensional nonlinear dynamics

α β
α γ

α β

α γ

= − + − + − −
= −

= − + − + − −

= −

( )

( )

u u f w u w v h u x

x u x

v v f w u w v h v y

y v y

˙ (1 ),

˙ ,

˙ (1 ),

˙ . (12)

e e ee ei e

e e

i i ie ii i

i i

Notice that unlike the original 2Dmean-fieldWilson–Cowan dynamics in the deterministic limit, the
considered four-dimensional dynamics can in principle be chaotic, for some parameters (which remains an
open question). Dynamical chaosmight emerge alreadywhen only one sort of neurons, e.g. inhibitory neurons,
exhibits delayed dynamics, since theminimal dimension for nonlinear chaotic dynamics is three. Then, in the
macroscopic deterministic limit

α β

α β

α γ

= − + − + −

= − + − + − −

= −

( )
( )

u u f w u w v h u

v v f w u w v h v y

y v y

˙ (1 ),

˙ (1 ),

˙ . (13)

e e ee ei e

i i ie ii i

i i

However, we shall not investigate the possibility of a deterministic chaos emerging due to a delay within the
minimal extensions of theWilson–Cowanmodel in the present work, but rather focus on themesoscopic
intrinsic noise effects caused byfiniteNe andNi. Then, the occupational numbers are randomvariables (at any
fixed time t).

2.2.1. Langevin dynamics
For a very large number of neurons, one can account for themesoscopic noise effect within the Langevin
dynamics, or the diffusional approximation of the discrete state birth-and-death process describing the
evolution of the network. This procedure is standard, by analogywith the stochastic theory of chemical reactions
[20]. Sincewe have only direct ‘reactions’ like →q a, →a i, →i q, for two types of neurons, onemust
introduce six variables and six independent zero-meanwhite Gaussian noise sources ξ t( )i ,

ξ ξ δ δ〈 ′ 〉 = − ′t t t t( ) ( ) ( )i j ij . Stochastic dynamics is, however, effectively four-dimensional because of two

probability conservation laws, which allow to exclude two variables out of six:

α β

α ξ β ξ

α γ α ξ γ ξ

= − + − + − −

− + − + − −

= − + −

( )
( )

u u f w u w v h u x

N
u t

N
f w u w v h u x t

x u x
N

u t
N

x t

˙ (1 )

1
( )

1
(1 ) ( ),

˙
1

( )
1

( ),

e e ee ei e

e
e

e
e ee ei e
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In the limit → ∞N N,e i , the deterministic description in equation (12) is restored. The noise ismultiplicative
and the Langevin equationsmust be Ito-interpreted, as it is always the case if the Langevin dynamics results from
the standard diffusional approximation of a birth-and-death process, or chemicalmaster equation [20]. Notice
that such a Langevin stochastic description can become problematic, if any of the variables u v x y, , , becomes
temporally zero or one. Even if some of the noise terms do vanish at the boundaries, where the corresponding
rates vanish, the others do not, when a particular boundary is hit. Hence, the occupational numbers can in
principle become temporally negative, or larger than one. This unphysical feature is produced by the standard
diffusional approximation.However, this problem can befixed in the numerical simulations by introduction of
the corresponding reflecting boundaries and taking sufficiently small integration time steps, as done e.g. in
[25, 41] for stochasticHodgkin–Huxley equations.

2.3. Exact stochastic simulations
Within themean-field approximation ofMarkovian dynamics, it suffices to count the numbers of neurons in
the corresponding activated,N andM, and refractory,N1 andM1 states. Then, we are dealingwith a random
walk on a four-dimensional lattice N M N M( , , , )1 1 with the discrete variablesN, andN1 taking values in the
range from zero toNe, and the variablesM andM1 in the range from zero toNi, so that also ⩽ + ⩽N N N0 e1

and ⩽ + ⩽M M N0 i1 . From the site N M N M( , , , )1 1 six different transitions are possible. They are enlisted in
table 1with the corresponding transition rates. Themaster equation governing this birth-and-death process can
be readily written.However, it is bulky and not very insightful. For this reason, it is not presented here. The
corresponding stochastic process can be easily simulatedwith the dynamicalMonte Carlo orGillespie algorithm
[19], which is exact. Namely, on each step one draws two randomnumbers. Thefirst one, τ, is drawn from the

exponential distribution characterized by the total rate = ∑Σ =r ri i1
6 . It gives a random time interval at which the

network state is updated. Given a uniformly distributed randomvariable ζ1, ζ⩽ ⩽0 11 , τ ζ= Σr(1 )ln(1 )1 .
Then, one of the transitions in table 1 is chosen in accordance with its probability = Σp r ri i . For this, one

generates a uniformly distributed random variable ζ2 bounded as ζ⩽ ⩽0 12 . If ζ< < p0 2 1, then the first

transition is chosen. If ζ⩽ < +p p p1 2 1 2, then the second transition is chosen, etc, i.e. in accordance with the

length of the corresponding interval pi, ∑ == p 1i i1
6 .

Notice that an attempt to generalize this scheme towards a non-Markovian renewal walk on a four-
dimensional lattice to account for thememory in the inactivated state is logically inconsistent because in such a
case accomplishing each stepwouldmean reset, or renewal of allneurons, and not the only onewhich actually
makes transition.However, each non-Markovian element has its individualmemory. In a direct simulation of
the network of non-Markovian elements onemust therefore consider them individually, evenwithin themean-
field approximation. Then, one has to consider CTRWon a hyper-dimensional lattice of huge dimensionality,
whichwill dramatically slow down simulations imposing computational restrictions on themaximal size of the
network.Of course, beyond themeanfield approximation onemust also simulate each element separately.
Here, a direct semi-Markovian approach can be preferred. In this work, we restrict ourselves to themean-field
dynamics within theMarkovian embedding framework, which allows for exact simulations of very large
networkswithin a reasonable computational time.

Table 1.Transitions and rates.

i Transition Rate ri

1 → − +N M N M N M N M( , , , ) ( 1, , 1, )1 1 1 1 α=r N e1

2 → − +N M N M N M N M( , , , ) ( , 1, , 1)1 1 1 1 α=r M i2

3 → +N M N M N M N M( , , , ) ( 1, , , )1 1 1 1 β= − − − +r N N N f w N N w M N h( ) ( )e e ee e ei i e3 1

4 → +N M N M N M N M( , , , ) ( , 1, , )1 1 1 1 β= − − − +r N M M f w N N w M N h( ) ( )i i ie e ii i i4 1

5 → −N M N M N M N M( , , , ) ( , , 1, )1 1 1 1 γ=r Ne5 1

6 → −N M N M N M N M( , , , ) ( , , , 1)1 1 1 1 γ=r Mi6 1
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3. Results and discussion

3.1.Oscillatory dynamics of neuronal network
First, we test our stochastic simulations donewithXPPAUT [42] against nonlinear deterministic dynamics for a
very large network size with =N 10e

6 and =N 10i
6. For this, departing from the parameter set in [16] (the case

without delay) we use a set of parameters, where an oscillatory dynamics emerges: α = 0.1e , α = 0.2i , β = 1e ,

β = 2i , γ = 10e , γ = 10i , =w 32ee , =w 32ei , =w 28ie , =w 2ii , = −h 3.8e , = −h 9i , and the transfer function
in equation (11). Time is inmilliseconds and the rate constants are in inversemilliseconds. The difference is
barely detectable infigures 3(a), (b), wherewe present the results of stochastic simulations done bothwith the
exact Gillespie algorithm andwithin the approximate Langevin dynamics. However, stochastic effects become
immediately seen in figures 3(c), (d), wherewe reduced the number of neurons to =N 10e

3 and =N 10i
3.We

also compare infigures 3(a), (b), the results for the considered dynamics and its two-variableMarkovian
approximation given by the standardWilson–Cowanmodel inwhich, however, the transfer functions are
renormalized in accordancewith equation (5), where the parameter βτd is replaced by β γ = 0.1e e and
β γ = 0.2i i , correspondingly. The deviations are visible, but small. However, the differences become very
pronounced for small γ γ= = 0.1e i corresponding to themean refractory period τ γ= 1d e i, of 10 ms. Then, the

Markovian approximation fails completely, see infigure 4, especially in part (b), revealing that neither the form
of the oscillations, not their period are reproduced even approximately. Especially remarkable is that contrary to
intuition the increase of the refractory period of a single neuron does not increase the period of oscillations, as
theMarkovian approximation predicts, but rathermakes it smaller—the tendency is opposite! Therefore, non-
Markovianmemory effects generally domatter and one should take such effects seriously into account.With a
small further decrease of γ γ,e i to γ γ= ≈ 0.08873e i with τ ≈ 11.270d the oscillations are terminated by a
supercriticalHopf bifurcation (not shown). Interestingly, theMarkovian approximation also predicts such a
termination, but at a slightly larger critical value γ γ= ≈ 0.0987e i with critical τ ≈ 10.132d . Thismakes clear that
the phase transitions between the quiescent network and the network undergoing synchronized oscillations are
possible with respect to the length of the refractory period used as a control parameter.

Figure 3. (a) Limiting cycle in the u–v plane for deterministic dynamics and for stochastic dynamics, =u N Ne, =v M Ni, with
= =N N 10e i

6, (b) Time-dependence of the u variable for (a). (c) Limiting cycle in the −u v plane for deterministic dynamics and
for stochastic dynamics with = =N N 10e i

3, and (d) the corresponding time-dependence of the u variable. Langevin simulations are
donewith the stochastic Euler algorithmusing time step δ =t 0.05 in (a) and (b), and δ = −t 10 5 in (c) and (d).
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3.2. Noise-induced critical avalanche dynamics
In the remainder, we investigate the influence ofmemory effects on the avalanche dynamics. As it has been
shown in [15], in order to have avalanche dynamics the excitatory and inhibitory processes should be nearly
balanced, and the network should have a so-called feedforward structure. Then, one can achieve a sort of SOC
state [6, 7] sustained due to intrinsicmesoscopic fluctuations. Very different fromother SOCmodels, here
fluctuations play amajor role and in the deterministic limit avalanches disappear, i.e. they are ofmesoscopic
nature. The nullclines of 2Ddeterministic dynamics in the absence ofmemory effects, =u̇ 0 and =v̇ 0, should
cross at a very small angle in the −u v plane, so thatfluctuations can produce large amplitude outbursts of the u
and v variablesmoving synchronously but randomly, i.e. the subpopulations of excitatory and inhibitory
neurons are synchronized exhibiting stochastic dynamics at the same time [15]. In the same spirit, we choose

α α= = 1e i , β β= = 5e i , = = =w w w 30ee ie e , = = =w w w 29.9ei ii i , so that − ≪ +w w w we i e i, and overall

excitation slightly dominates over inhibition. Furthermore, we choose = =h h 0.001e i , and the transfer
function in equation (10), as in [15]. The rates γe, γi and the number of neuronswere varied. Large γ γ= = 10e i

Figure 4.Deterministic two-state dynamics withmemory and itsMarkovian approximation for γ γ= = 0.1e i . Other parameters are
the same as infigure 3. The deviation in (b) indicates that theMarkovian approximation fails completely.

Figure 5.Avalanches for = =N N 10e i
3 and (a) γ γ= = 10e i , (b) γ γ= = 1e i , (c) γ γ= = 0.1e i . In (d), (e), and (f), γ γ= = 10e i ,

however, the network size is increased to (d) = =N N 10e i
4 , (e) = =N N 10e i

5, and (f) = =N N 10e i
6. For thefixed = =N N 10e i

3,
themaximal L t( ) in (a) is 1513, i.e. about 76%ofmaximally possible.With the increase of refractory time it diminishes to 1322 (about
66%) in (b), and to 1169 (about 58.5%) in (c). For a fixed refractory time, butwith the increase of the network size themaximal
number of active neurons is 12791 ∼( 64%) in (d), 61923 ∼( 31%) in (e), and 223234 ∼( 11%) in (f).With the increase of network size,
the relative size of avalanches decreases. Notice also that theminimal number of active neurons is =L 3min in (e), and =L 112min in
(f). Thismust be taken into accountwhen one defines avalanches in large networks. Otherwise, one can come to incorrect conclusion
that the avalanches cease to exist, which ismanifestly refuted in (f) for a very large number of neuronswhich seems to be
macroscopically large, and nevertheless fluctuations are still very important, even though they do vanish in the strict limit

→ ∞N N,e i . Experimentally, one also defines the start and end of an avalanche by crossing a threshold of basal activity upwards, and
downwards, correspondingly. Simulations are donewith theGillespie algorithm.
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corresponds to a small refractory time of 0.1 ms, whereas γ γ= = 0.1e i corresponds to a profound delaywith
τ = 10d ms, so that the individual spiking rate of neurons cannot exceed 100Hz being limited by the refractory

period. Typical avalanche dynamics is shown infigure 5 for = +L t N t M t( ) ( ) ( )with = =N N 10e i
3, and (a)

γ γ= = 10e i , (b) γ γ= = 1e i , (c) γ γ= = 0.1e i . Furthermore, infigures 5(d)–(f), we show the influence of an
increasing number of neurons on the avalanche dynamics. The following tendencies are clear. First, the increase
of the refractory period reduces themaximal amount of neurons involved in spiking, from about 76% in
figure 5(a) to 58.5% infigure 5(c). Such a tendency is already expected from the renormalization of the transfer
function in theMarkovian approximation, cf equation (5). However, this tendency is in factmuchweaker since
βτ = 50d in the part (c), and the renormalization argumentationwould predict almost complete suppression of
avalanches for such a delay. Evenmore astonishing is that avalanches still did not vanish even for a very large

= =N N 10i e
6, see figure 5(f). This is very different from the oscillatory dynamics of a network of the same size,

cffigures 3(a) and (b), which is practically deterministic. Of course, with increasing network size, the relative
amplitude of avalanches becomes ever smaller, and there also emerges aminimal number of neurons excited, i.e.
the network activity never goes down to zero.However, this is also so in the real neuronal dynamics. Such a
dominance ofmesoscopic fluctuations in a systemofmillions of elements with a special (feedforward) structure
of coupling is really astonishing. This is a feature of some critical state, as we know from statistical physics.

To statistically characterize the avalanche size distribution and their durationwe proceed in accordancewith
the procedure outlined in [15]. It reflects, in part, also the experimental procedure [10].Namely, we first
discretize the time series with a time bin of the size Δ〈 〉t , which corresponds to the averaged interspike time
distance in a particular simulation. Then, an avalanche is defined by its start, when the spiking activity crosses
some threshold level Lthr, and its end, when the network activity drops to ( =L 0thr ) or below >L 0thr after
some time, which defines the avalanche duration. The size is defined as the sumof the number of neurons active
in each time bin during the avalanche. It is also defined experimentally in such away. In essence, the size S of an
avalanche is the integral of the network activity infigure 5 over the time during each avalanche period divided by
the time binwidth.Of course, as also in experiments the critical exponents discussed belowdepend both on the
time binwidth and on the basal level of neuronal activity Lthr. However, this dependence is weak for a truly
critical dynamics. By doing statistical analysis, we firstfind the survival probability F S( ), or, equivalently, the

Figure 6. Survival probabilities for the avalanche size (a), duration (b), and peak (c) distributions obtained from theGillespie
simulations in the case without delay, γ → ∞i , γ → ∞e . Circle symbols correspond to the numerical results and lines to the
corresponding fits with parameters displayed in the plot. The blue lines correspond to a power lawfit with the power law exponent
indicated in the plots. System size: = =N N 10e i

3. Other parameters: α α= = 1e i , β β= = 5e i , = = =w w w 30ee ie e ,
= = =w w w 29.9ei ii i , = =h h 0.001e i .
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cumulative probability − F S1 ( ) from the numerical data. Then, the distribution density follows as
= −p S F S S( ) d ( ) d .

Let us start from the case without any time delay, τ = 0d . The survival probability for the avalanche size
distribution F S( ) is shown infigure 6(a), for the time bin Δ〈 〉 =t 0.00643597 and =L 0thr . It shows three
characteristic features: (1) an initialWeibull distribution, = − −F S S S( ) exp( [( 1) ])a a

0
1 1 , with ≈a 0.711 and

≈S 6701 ; (2) an intermediate power law ∝F S S( ) a2, with ≈ −a 0.1652 , and (3) an exponential tail

= −F S p S S( ) exp( )1 1 with ≈p 0.2041 and = ×S 6.97 102
5. The size distribution p S( ) is, therefore, initially

approximately a power lawwith negative exponent − ≈ −a 1 0.291 , followed by a power lawwith negative
exponent = − ≈ −a a 1 1.1652 . The latter one extends over approximately two size decades and endswith an
exponential tail characterized by a cutoff size, S1. The corresponding survival probability F T( ) for the avalanche
durationsT is shown infigure 6(b). It can bewellfitted by a sumof two exponentials

= − + − −( ) ( ) ( )F T p T T p T T( ) exp 1 exp . (15)0 0 0 1

However, it also seems to display an intermediate power law over about one time decade, from1 to 10ms, with
the power exponent ≈ −b 0.5231 , and the cutoff time ≈T 10.931 ms.Hence, the probability distribution

= −p T F T T( ) d ( ) d also appears to reflect an intermediate power law ∝p T T( ) b with = − ≈ −b b 1 1.5231 .
Interestingly, the duration of avalanches in experiments with organotypic cortical neuronal systems has a similar
cutoff time of about 10–20 ms, with amaximal avalanche duration of about 40–80 ms, which is restricted by the
period of γ-oscillations [10]. The intermediate power law also extends over about one time decade in the
experiments. However, the experimental power law exponent is different, ≈ −b 2exp . It should bementioned in
this respect that the time bin in the experiments is also very different, Δ ∼t 1–4ms.One electrodemeasures in
experiments a contribution ofmany neurons. In fact, coarse graining over some unknown ΔL should be done.
The experimental size exponent a is also different, ≈ −a 1.5exp . It is not, however, the goal of this paper to
provide amodel fully consistent with the experimental observations, which are subject of ongoing researchwork
and some controversy in the literature [43]. In this respect, a bi-exponential dependence can be perceived as a
power law over one intermediate time decade, as ourfit also shows.

As an additional characteristics of the avalanches size, one can also consider themaximal number of neurons
activated at once during an avalanche, or the avalanche peakwith a distribution density

= −p S F S S( ) d ( ) dmax max . The corresponding survival probability, F S( )max , also exhibits a power law,

Figure 7. Survival probabilities for the avalanche size (a), duration (b), and peak (c) distributions for the network of size
= =N N 10e i

3 with a time delay, γ γ= = 10i e . Other parameters are the same as infigure 6. The cutoff size of avalanches S1 becomes
slightly smaller than infigure 6, and the characteristic power law exponents are also slightly changed.
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Figure 8.The time delay is increased furtherwith respect to the one infigure 7.Here, γ γ= = 1i e . The other parameters remain the

same. The cutoff size of avalanches, = ×S 6.33 101
5, is now visibly smaller than onewithout delay, = ×S 6.97 101

5 infigure 6. The
cutoff time =T 12.461 is increasedwith respect to =T 10.931 in figures 6 and 7, i.e. the avalanches last longer. The power law
exponents here deviate slightly in the opposite direction from the one in figure 7. They become closer to the case without delay in
figure 6. This indicates that the time delay does not affect significantly the power law exponents.

Figure 9. Influence of a further increase of the time delay by an order ofmagnitude, τ = 10d , on the distributions depicted infigures 7
and 8.Here, γ γ= = 0.1i e , and the other parameters are not changed. S1 drops further to = ×S 6.07 101

5, andT1 slightly increases to
=T 12.651 . The power law exponents exhibit, however,merely some fluctuationswithout any systematic trend infigures 6–9.
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∝ ′F S S( ) a
max

2, with ′ ≈ −a 0.1752 , infigure 6(c). Hence, ∝ ′p S S( ) a
max , with ′ = ′ − ≈ −a a 1 1.1752 , which only

slightly differs from ≈ −a 1.165meaning that the avalanche size is roughly proportional to its peak.However,
the cutoff of F S( )max is super-exponentially sharp, because themaximal number of neurons involved in an
avalanche at the same time is restricted by the total number of neurons in the network. Furthermore, Fmax

reveals a very large portion of avalanches whose peak does not exceed 10, which explains the initial stretched
exponential dependence infigure 6(a). Strictly speaking, this part of the size distribution (with =L 0thr ) reflects
a background or basal noise, where neurons practically do not interact with each other, and there are no
avalanches of spontaneously increased activity, which are characterized by a power law distribution.

Next, we like to clarify how robust these features are for networkswith a time delay. For this, we study the
influence of themean delay time by decreasing the rates γ γ=e i from10 through 1.0 to 0.1 infigures 7–9,
respectively. Themean delay time increases, accordingly, from0.1 through 1.0 to 10ms. Even though the
parameters of the distributions do change, these changes are not dramatical. In particular, the corresponding
critical size exponent a changes from−1.165 (no delay), to−1.152,−1.171 and−1.161, respectively.
Accordingly, the critical time exponent b changes from−1.523 (no delay) to−1.505,−1.558, and−1.511,
respectively. Such changes are not statistically significant, and one cannot detect any systematic tendency upon a
variation of τd. The point is that these exponents are also changed a bit, if we use e.g. Δ〈 〉t2 , or Δ〈 〉t3 for the time
bin (not shown). They also depend on the threshold Lthr. In this respect, if to change Lthr from0 to 10, the initial
stretched exponential part of the size distribution practically disappears. However, there appears an initial power
law instead, see infigure 10. Remarkably, the intermediate power law exponent remains rather robust. It is

Figure 10. Influence of the choice of the detection threshold Lthr on the distributions of avalanche sizes (a) and time durations (b).
Here, =L 10thr is used for the data analysis instead of =L 0thr infigure 7, for the same data. Noticeably, the initial stretched
exponential part of the size distribution infigure 7(a) disappears. Instead, there appears initially another power law dependence. The
intermediate power law exponent a2 is, however, pretty robust, = −a 0.1442 here versus = −a 0.1712 infigure 7. In contrast with
this, the intermediate power law exponent in the time distribution is changed dramatically from = −b 0.5581 infigure 7 to

= −b 0.2211 . This fact disproves the hypothesis of an intermediate power law in the time distribution. It is clearly bi-exponential,
equation (15).

Figure 11. Influence of the increased network size on the distributions of the avalanche sizes (a) and the time durations (b).Here,
= =N N 10i e

4 versus = =N N 10i e
3 infigure 9. The other parameters are the same. The power law regime in the size distribution

extends by an order ofmagnitude, with the cutoff size increased to = ×S 6.54 101
6, accordingly. The corresponding power law

exponent varies insignificantly. The time cutoffT1 increases in (b) to =T 16.021 from =T 12.651 in figure 9, i.e. the avalanches last
longer.
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changed from = −a 1.171 infigure 7(a) to = −a 1.144 infigure 10(a). This is a small variation.Notice,
however, that the results infigure 10(b) in fact reject the hypothesis that there is an intermediate power law in the
time distribution of avalanches. First, the power law region changes from larger to smaller times, and also (more
important!) the corresponding time exponent changes from = −b 0.5581 infigure 7(b) to = −b 0.2211 in
figure 10(b). Clearly, such a strong influence of the choice of Lthr on the ‘power law’ exponent bmakes it clear
that this is not a power law. In fact, the time distribution is clearly biexponential.

Though plausible until this point, it remains, however, strictly speaking, still not quite clear if a is indeed a
critical exponent. If true, the extension of the power law domain of thewhole size-distribution and the cutoff
size S1 should increase with the system size accordingly. Indeed, if we increase the system size tenfold keeping the
other parameters the same as infigure 9, the power law domain in the size distributions also increases by an
order of sizemagnitude, see infigure 11(a). The time cutoffT1 also increases infigure 11(b), i.e. the avalanches
become longer. Alsowith decreasing the system size tenfold the power law domain shrinks accordingly in size,
see figure 12(a), and the avalanches become essentially shorter, as indicated by the decreased cutoff timeT1 in
figure 12(b). Such scaling dependencies on the system size are typical in experiments. From this we can conclude
that the size exponent a is indeed a critical exponent. However, within the consideredmodel the avalanches do
gradually vanishwith an increase of the system size. Therefore, the adjective ‘critical’ should be used alsowith
respect to the exponent awith some reservations.We consider a rather atypical SOCmodel, even though the
exponent a is by chance close to that of the sandpilemodel [6, 7]. It should also be noticed that the initial
distributions of the sizes and times and the tail functional dependencies can be sensitive to both the system size

Figure 12. Influence of the decreased network size on the distributions of avalanche sizes (a) and time durations (b). Here,
= =N N 10i e

2 versus = =N N 10i e
3 infigure 9.Other parameters are the same. The power law regime in the size distribution shrinks

by an order ofmagnitude, with the cutoff form changed from the exponential in figure 9(a), to theGaussian here. The intermediate
power law exponent is not changed, however, strongly. The time cutoffT1 decreases in (b) to =T 4.791 from =T 12.651 infigure 9(b),
i.e. the avalanches become significantly shorter.

Figure 13. Survival probabilities derived from the Langevin dynamics simulations for the size (a) and time (b) distributions, with the
same parameters as infigure 10, obtainedwith =L 10thr , and = =N N 10e i

3. Notice visible changes as compare withfigure 10. First,
the initial power laws in the size distributions are significantly different. The size exponents of avalanches (intermediate power law)
are also different.Moreover, the critical cutoff size S1 is changed. Second, the time distributions are also very different, especially, with
respect to the corresponding power lawfits.Moreover, the time distribution can also be fitted by a bi-exponential (15) in part (b) here,
but with very different time constants, comparewith figure 10.
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and the choice of the threshold Lthr. For example, the size distribution exhibits aGaussian tail infigure 12(a), for
a small system size. The intermediate power law in the size distribution is, however, rather robust, with a being in
the range − −[ 1.207, 1.144]for the data presented, with the average 〈 〉 ≈ −a 1.164.

3.2.1. Langevin dynamics of avalanches
Within the Langevin approximation of the discrete state dynamics, the avalanches look very similar to the ones
depicted infigure 5.However, their statistics is very different.We performed the corresponding Langevin
simulations for the same parameters as infigures 7, 10with the time step taken to be the same
Δ〈 〉 =t 0.00618608 as the time bin used to produce the results infigures 7, 10.We also used =L 10thr to analyze
the data, as infigure 10. The results shown infigure 13 reveal similar intermediate power laws both in the size
and the time distributions yielding ≈ −a 1.026L , ≈ −b 1.058L . However, these results differ essentially from the
results obtainedwithin the exact dynamicMonte Carlo simulations, compare figure 13withfigure 10. This
indicates that theGauss–Langevin or diffusional approximation of the genuine discrete state dynamics can
deliver incorrect results for the fluctuation-induced avalanche dynamics. This factmakes any analytical theory
for the numerical results presented in this work especially challenging. It is almost hopeless to develop such a
theory for the discrete state avalanche dynamics within the studiedmodel.Multi-dimensional birth-and-death
processes are very difficult for any analytical treatment.Within the Langevin dynamics approximation, or the
equivalentmulti-dimensional Fokker–Planck equation description an analytical treatment ismore feasible.
However, such a theorywill not help to understand the critical features of the discrete state dynamics, as our
numerical results imply.

4. Summary and conclusions

In this paper, we studied a generalization of the stochasticWilson–Cowanmodel of neuronal network dynamics
aimed to incorporate a refractory period delay on the level of individual elements. Considered as stochastic
bistable elements suchmodel neurons exhibit non-Markovian dynamics withmemory, which can be
characterized by a non-exponential RTD in the resting state of the neuron (semi-Markovian description), or,
alternatively, by the relatedmemory kernel within a generalizedmaster equation description. Such a non-
Markovian description generally allows for aMarkovian embedding by enlarging the dynamical space upon
introduction of new state variables. The simplest two-state non-Markovianmodel with an exponentially
decayingmemory kernel can be embedded as a three state cyclicMarkovianmodel, where the refractory period
is exponentially distributed.Multi-stateMarkovian embedding also allows to treat a special Erlangian
distribution of the refractory periods, which can be sharply peaked at a characteristic delay time.Moreover,
models of bursting neurons and neuronswith a power law distributedmemory can, in principle, be considered
in this genericMarkovian embedding setup. The approach ofMarkovian embedding is especially suitable to
treat themean-field dynamics of the network, which presents aMarkovian renewal process in the enlarged space
of collective network variables. This is the simplest kind of network, where all the elements are virtually
connected in all-to-all fashion. In this respect, themeanfield dynamics of a network of non-Markovian renewal
elements does not represent a renewal process in the reduced space of non-Markovian collective variables. Then,
all the elementsmust be treated individually, keeping trace of their individualmemory. Themethodology of
Markovian embedding allows to circumvent this problem for themean-field dynamics.

In theWilson–Cowanmodel, two different sorts of interacting neurons are considered, excitatory and
inhibitory.We focused on the simplest non-Markovian generalization of thismodel, where the observed two-
state non-Markovian dynamics of a single neuron is embedded as a three state cyclicMarkovian process. The
corresponding nonlinearmean-field dynamics is four-dimensional. It has two dimensionsmore than in the
originalmodel.Moreover, it is stochastic and includesmesoscopic fluctuations due to afinite network size. For a
sufficiently large system size, stochastic dynamics can be describedwithin a Langevin equation approximation
following the so-called chemical Langevin equation approach, with the noise terms vanishing in the
deterministic limit of infinite size.We also exactly simulated the underlying dynamics as a continuous time
Markovian randomwalk on a four-dimensional lattice using thewell-knowndynamicalMonteCarlo (Gillespie)
algorithm. The results of both stochastic approaches agree well with the deterministic dynamics within an
oscillatory regime for a very large number of elements (severalmillions). Here, we showed that non-Markovian
effects can be very essential. In particular, even deterministic dynamics with an exponentially decayingmemory
in the space of observable variables can be very different from the dynamics obtainedwithin theMarkovian
approximation utilizing a delay-renormalized transfer function—the simplest approach to account for the delay
effects. However, already the simplest approach allows to describe a dynamical phase transition from the silent
network to coherent nonlinear oscillations of synchronized neurons upon a change of the delay period. This
important feature is absent in the originalWilson–Cowanmodel.
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Inmore detail, we investigated the avalanche dynamics in a critically balanced network, where the processes
of excitation and inhibition nearly compensate each other in the deterministic limit, where no avalanches are
possible within themodel considered.Mesoscopic noisefluctuationsmake, however, avalanches possible even
in large networks withmillions of neurons, where the deterministic description becomes completely inadequate,
very differently from the oscillatory dynamics in such large networks. This result goes beyond the results in [15],
where the avalanches cease to exist for already several tens of thousands of elements. Even though a large delay
should suppress avalanches by a transfer function renormalization if to thinkwithin theMarkovian
approximation, in reality the suppression ismuchweaker.Moreover, it turns out that the power law
characterizing the distribution of avalanche sizes is very robust with respect to variation of both the delay period,
and the system size, over several orders ofmagnitude, as well as the choice of the avalanche threshold. The latter
fact proves that this is a real power law originated due to critical dynamics. It is characterized by a power-law
exponent around ∼ −a 1.16 which is similar to the size exponent of the critical sandpile dynamics (though the
bothmodels are not really comparable). However, it is different from the critical exponent−1.62 found in [15],
though for different network parameters. The distribution of the avalanche durations is, however,
biexponential.We disproved that it presents a power lawwithin ourmodel, even though it can look like a power
law over one time decade, as in experiments. In this respect, experiments [9–11] seem to reveal a real power law
with the critical size exponent ∼ −a 1.5exp because its range extendswith the growing system size. However, the
experimental power law in the time duration does not show this important property. As amatter of fact, it
extends overmerely one time decade being restricted by the period of γ-oscillations. Any power law extending
over one time or spatial decade can befitted by a sumof just two exponentials, as we also show in this work for
the time distribution. A further research is, therefore, required to clarify the nature of the apparent power law
feature in the avalanche time distribution for the observed neuronal avalanches.

Also very important is that the Langevin or diffusional approximation does change the critical exponents of
the studied avalanche dynamics. Especially, the critical Langevin size exponent is different, ∼ −a 1.03L . This
feature should be kept inmindwhile doing diffusional approximations in othermodels of critical dynamics. It
may deliver incorrect results even for a large number of elements.

We believe that the results of this work havemethodological value and can be extended onto the dynamics of
other networks with delay. They can also serve as a basis for further investigations of the role of non-Markovian
memory effects in the dynamics ofWilson–Cowan type neuronal networks, including networks of bursting
neurons, and networkswith non-trivial topology, whichwe plan to investigate in the future.
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