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Abstract

We establish a connection between the ultra-Planckian scattering amplitudes in field and string theory 
and unitarization by black hole formation in these scattering processes. Using as a guideline an explicit 
microscopic theory in which the black hole represents a bound-state of many soft gravitons at the quantum 
critical point, we were able to identify and compute a set of perturbative amplitudes relevant for black hole 
formation. These are the tree-level N -graviton scattering S-matrix elements in a kinematical regime (called 
classicalization limit) where the two incoming ultra-Planckian gravitons produce a large number N of soft 
gravitons. We compute these amplitudes by using the Kawai–Lewellen–Tye relations, as well as scattering 
equations and string theory techniques. We discover that this limit reveals the key features of the micro-
scopic corpuscular black hole N -portrait. In particular, the perturbative suppression factor of a N -graviton 
final state, derived from the amplitude, matches the non-perturbative black hole entropy when N reaches the 
quantum criticality value, whereas final states with different value of N are either suppressed or excluded 
by non-perturbative corpuscular physics. Thus we identify the microscopic reason behind the black hole 
dominance over other final states including non-black hole classical object. In the parameterization of the 
classicalization limit the scattering equations can be solved exactly allowing us to obtain closed expressions 
for the high-energy limit of the open and closed superstring tree-level scattering amplitudes for a generic 
number N of external legs. We demonstrate matching and complementarity between the string theory and 
field theory in different large-s and large-N regimes.
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1. Introduction and summary

The formulation of a microscopic picture of black hole production in high-energy particle 
scattering is crucial for understanding the nature of quantum gravity at ultra-Planckian energies. 
In particular, this issue is central to the idea that gravity is UV-complete in a non-Wilsonian sense 
[1], based on the concept of classicalization [2].

The standard (Wilsonian) approach to UV-completion implies that interactions at higher and 
higher energies are regulated by integrating-in-weakly-coupled degrees of freedom of shorter and 
shorter wavelengths. When applied to gravity, the Wilsonian picture would imply that at energies 
exceeding the Planck mass, 

√
s � MP , the UV-completion must be achieved by new quantum 

degrees of freedom of wavelength much shorter than the Planck length, R ∼ 1√
s

� LP . In the 
classicalization approach, instead of introducing new hard quanta, the UV-completion is accom-
plished by means of collective states composed of a large number N ∼ s/M2

P of soft gravitons 
of wavelength R ∼ √

NLP [3] that, in the mean-field approximation, recover the semi-classical 
behavior of macroscopic black holes [4]. To put it shortly, classicalization replaces the hard 
quanta by a multiplicity of soft ones, which in mean-field (large N ) approximation acquire some 
properties of classical objects.

In the conventional semi-classical approach, the current understanding of black hole produc-
tion is rather unsettling. On one hand, it is widely accepted that scattering of very highly energetic 
particles results into a black hole formation. This acceptance is based on the following argument: 
according to classical gravity any source of center of mass energy 

√
s when localized within its 

gravitational (Schwarzschild) radius R = √
sL2

P must form a black hole. This argument is in-
sensitive to the precise nature of the source and in particular should be applicable to elementary 
particle sources. Thus, it is reasonable to expect that, for example, a two-particle scattering with 
center of mass energy of the order of the solar mass for an impact parameter less than 3 km, 
should result into the formation of a solar mass black hole.

On the other hand, we have to admit that this way of thinking challenges the view about 
black holes as classical macroscopic objects, since production of usual macroscopic objects in 
two-particle collisions is expected to be exponentially-suppressed. For example, in the above 
thought experiment of two-particle collision at solar mass energy it is exponentially-unlikely for 
a sun-like object to be produced in the final state instead of a black hole.

What makes black holes so different from ordinary classical objects from the point of view of 
their microscopic structure?

Of course, one can certainly say that what makes black holes very special is their Bekenstein–
Hawking entropy. However, without a microscopic explanation of entropy creation in two-
particle collision, this invocation of the entropy is only making the puzzle more complicated. 
Indeed, it is totally mysterious how an initial two-particle state with zero entropy gains such an 
enormous entropy in the process of the collision.

The above questions are impossible to answer without having a microscopic theory of the 
black hole and the corresponding microscopic mechanism of black hole formation in particle 
scattering processes. This is why the above questions have not been settled although the study 
of black hole formation in particle collisions at ultra-Planckian energies has been pioneered long 

http://creativecommons.org/licenses/by/4.0/
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ago [5–7] and since then has even been taken as far as predicting production of micro black 
holes at LHC [8]. The reason is the lack of a quantum corpuscular picture of black holes which 
subsequently makes it impossible to figure out how the quantum gravity amplitude translates into 
the formation of a black hole final state.

The present paper is an attempt to establish the missing link between quantum gravity ampli-
tudes and a corpuscular picture of black holes. In particular we will provide the link between the 
corpuscular black hole portrait [4] on the one hand and the classicalization idea for gravitational 
scattering amplitudes.1 By employing the corpuscular black hole picture together with the ex-
pressions of graviton scattering amplitudes both in field and string theory we shall uncover some 
key elements underlying the microscopic origin of black hole formation.

More concretely:

• Guided by non-perturbative input from the corpuscular black hole N -portrait, we identify 
the black hole formation regime as the regime of multi-particle creation, in form of 2 → N

graviton scattering amplitudes, with number of soft gravitons in the final state being given 
by the number of black hole constituents, as suggested by classicalization.

• Next, by using powerful field and string-theoretic techniques, in particular scattering equa-
tions [9] and Kawai–Lewellen–Tye (KLT) relations [10], we estimate the perturbative part 
of these N -graviton amplitudes.

• Finally, using the microscopic corpuscular picture of black holes as N -graviton self-bound 
states at a quantum critical point, we provide the missing non-perturbative information that 
enables us to translate the N -graviton production processes into the black hole formation, 
both in field and string theory scatterings.

• We provide a cross-check of perturbative N -graviton amplitudes by applying them to the 
production of non-black hole type classical configurations described by multi-particle co-
herent states for which semi-classical estimates must also be valid. We then match the two 
results and observe that the exponential suppression expected in the semi-classical theory 
is indeed reproduced by the perturbative 2 → N gravity amplitudes. Thus, this matching 
besides of providing an independent information about the multi-graviton amplitudes, also 
confirms that the microscopic origin of the black hole dominance, relative to other possible 
multi-particle final states of the same energy, lies in the quantum criticality of the black hole 
constituents, which is absent for other classical objects.

• One of the outcomes of our analysis is to show the very different large-N behavior of multi-
particle amplitudes in gravity in comparison with non-derivatively coupled scalar theories.

The above framework supplies a correct physical picture that among other things explains 
why the black hole production is the dominant process while the production of other macroscopic 
multi-particle states is exponentially-suppressed. The perturbative kinematics that we shall iden-
tify has just the right suppression to be compensated by the degeneracy of states at the quantum 
critical point. In other words, in this multi-particle production kinematics, the amplitude itself 
anticipates what would be the right value for the entropy.

We also observe a nice interplay between the field and string theory amplitudes. In particular, 
we observe that the string and field theory amplitudes agree whenever the size of the produced 

1 There is another attempt for a synthesis [11] by sewing together two 2 → N graviton amplitudes into a ladder loop 
diagram and coherently summing over different N in an eikonal region.
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black hole is larger than the string length, or equivalently, when the Reggeization of the amplitude 
does not take place.

Before moving into the technical part of the paper, to be covered in the following sections, we 
shall summarize the basic results and their physical meaning. In order to do it we shall briefly 
review the non-perturbative input coming from the corpuscular black hole portrait, which being a 
microscopic quantum theory, provides a crucial missing link between the perturbative N -graviton 
production amplitudes and the unitarization of the theory by black hole formation.

1.1. Non-perturbative input from a microscopic portrait

In order to make the connection explicit let us summarize some non-perturbative input coming 
from the black hole corpuscular quantum portrait [4,12] (for other aspects of this proposal see 
[13] and some similarities with this proposal can be found in [14]). This portrait is based on the 
idea that the black hole is a composite entity. Its corpuscular constituents are gravitons with the 
characteristic de Broglie wavelength given by the classical size of the black hole, R. That is, the 
internal (and near-horizon) physics of black holes is fully determined by the quantum interaction 
of gravitons of wavelength R. We shall be interested in the regimes in which the black hole is 
much heavier than the Planck mass MBH � MP , or equivalently, R � LP .

The two crucial properties are:

• For macroscopic black holes, the quantum gravitational coupling α among the individual 
corpuscles,

α ≡ L2
P

R2
(1.1)

is extremely weak.
• The number N of constituents of wavelength R is:

N = M2
BH/M2

P . (1.2)

Thus, quantum-mechanically a black hole represents a self-bound state of soft gravitons, 
with a very special interplay between the quantum coupling and the number of constituents, 
αN = 1. Or equivalently, the black hole is a state in which the wavelengths of gravitons satisfy, 
R = √

NLP . This property implies that the physics of black holes is similar to that of a graviton 
Bose–Einstein condensate at a quantum critical point [12]. This critical point separates the fol-
lowing two phases. For αN � 1, the system is in the phase in which collective graviton–graviton 
attraction is not enough to form a self-bound-state and the graviton Bose-gas is essentially free. 
For αN = 1 the bound-state is formed.

At this critical point, order N collective Bogoliubov modes become gapless leading to an 
exponential degeneracy of states, of order ecN , where c is some positive constant. This exponen-
tial degeneracy of states is quickly lifted when we deform the system and move away from the 
critical point αN 	= 1. While for the generic attractive Bose-gas, moving away from the critical 
point is possible in both directions, (αN < 1 or αN > 1), for gravitons this is not the case. The 
gravitons cannot form a sensible state with αN � 1.2 Thus, the viability and the nature of the 
deformed state depends in which direction we move from the critical point.

2 In more than one space dimensions the attractive Bose-gas in the over-critical phase undergoes a quantum collapse. 
However, for gravity this is impossible since gravitons of a given energy cannot form a configuration smaller than a black 
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Fig. 1. Bose–Einstein levels and black hole formation.

For αN < 1, the system of N gravitons is essentially free. The Bogoliubov frequencies are 
positive and Bogoliubov levels are separated by a large energy gap (∼ 1/R) from the lowest 
level obtained in the free-graviton approximation. Due to this, the non-perturbative collective 
quantum effects can be ignored and the system can be well-approximated by an asymptotic 
N -particle eigenstate of the S-matrix, with no additional non-perturbative information required. 
Hence, non-perturbative physics gives no additional essential input for states with αN � 1, and 
the perturbative approximation can be trusted. In particular, the perturbative amplitudes can be 
directly applied to the formation of final states with αN � 1.

However, for the states with αN > 1 the situation is very different. The Bogoliubov frequen-
cies of the N -graviton state in this regime are complex, with the Liapunov exponent being much 
larger than the inverse size of the system. This indicates that such state cannot be treated as 
a viable asymptotic state of the S-matrix, even approximately. This is remarkable, since trans-
lated into the language of N -graviton perturbative amplitudes, this regime would include the 
region that violates perturbative unitarity. Thus, non-perturbative N -graviton physics provides 
a selection rule that cuts-out from the Hilbert space those would-be N -particle final states that 
perturbatively violate unitarity. Non-perturbative corpuscular physics is telling us that such states 
are not part of the physical Hilbert space.

The situation is schematically depicted in Fig. 1. The critical point αN = 1 corresponds to 
the point of black hole formation. At this point the levels become nearly gapless (up to 1/N

resolution), and there is a maximal degeneracy of states. For estimating the production rate of 
N -graviton state at the critical point, the perturbative amplitudes must be supplemented by a 
non-perturbative factor ∼ eN counting the degeneracy of states, which at the same time repre-
sents the black hole entropy factor. The region to the left corresponds to a nearly-free graviton 
gas. These states are close to asymptotic S-matrix states of N free gravitons and their creation in 
two graviton collision can be estimated via perturbative matrix elements, with non-perturbative 
corrections being small. The region to the right is excluded by non-perturbative physics.

The above outline summarizes the non-perturbative information that provides the missing link 
between the perturbative amplitude and unitarization by classicalization via black hole formation.

hole. As result the graviton bound-state is “stuck” at the critical point slowly loosing the constituent gravitons due to 
the quantum depletion, reducing N , but maintaining quantum criticality for each N . This is how the corpuscular picture 
accounts for the Hawking radiation. For the purpose of the present paper, we shall ignore the further evolution of black 
holes after their formation in the scattering process.
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1.2. N -graviton amplitudes and black hole formation

Based on the previous discussion the following picture emerges. In order to estimate the 
production rate of a N -graviton state we need to supplement the perturbative scattering am-
plitude, that views a given N -particle state as an asymptotic state of free gravitons, by the 
non-perturbative information about the viability and quantum degeneracy of this state. This in-
formation either will further enhance the rate or will diminish it depending where the given state 
is in the αN plot.

The perturbative amplitudes relevant for describing the production of a black hole of mass 
MBH = √

s are the perturbative amplitudes at center of mass energy 
√

s in which N gravitons of 
momenta p ∼ (

√
sL2

P )−1 are created in the final state. As we shall see, the transition probability 
of this process obtained from the corresponding S-matrix element scales as

|〈2|S|N〉|2pert ∼ αN N ! =
(

L2
P s

N2

)N

N ! . (1.3)

In order to understand the physical picture, we must superimpose the non-perturbative informa-
tion that we have distillated from the many-body analysis of the N -graviton state. Namely, the 
region s/M2

P N � 1 is excluded as physically not viable due to the presence of complex Bo-
goliubov frequencies and very large Liapunov exponent. It is convenient to rewrite the matrix 
element in terms of the effective (’t Hooft-like) collective coupling,

λ ≡ αN = s/M2
P N , (1.4)

which parameterizes the strength of the collective gravitational interaction of the N -graviton 
system. In this notation the matrix element becomes

|〈2|Ŝ|N〉|2pert ∼
(

λ

N

)N

N ! . (1.5)

This form makes the physics point very transparent. As we just explained above, the region 
λ � 1 is excluded by non-perturbative physics, because in this region the graviton gas is over-
critical. This includes the region in which perturbative amplitudes would violate unitarity, but 
multi-particle physics prevents us from going there.

The point λ = 1 is a critical point. It is allowed both perturbatively as well as non-
perturbatively, but the non-perturbative information is very important. Notice, that for λ = 1, 
this amplitude has just the right scaling for being compensated by the black hole entropy factor. 
In the microscopic picture such a factor is indeed appearing due to the exponential degener-
acy of states at the critical point λ = 1. For values of λ � 1, the system is sub-critical. This 
means that not only graviton–graviton interaction is weak, α � 1, but also that the collective 
non-perturbative effects are negligible. Thus, the gravitons are essentially free. The perturbative 
suppression of the amplitude cannot be compensated by the multiplicity of states, because for 
λ � 1 the degeneracy of Bogoliubov levels is lifted and there is no longer an enhancement of 
the number of states. Therefore, using Stirling’s formula and the large N limit, the production 
rate of such multi-particle configurations, unlike black holes, is exponentially suppressed:

|〈2|Ŝ|N〉|2pert ∼ e−NλN . (1.6)

As already mentioned, the exponential suppression factor can be compensated by the black hole 
entropy.
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Hence, in this picture, the microscopic explanation of the black hole dominance over other 
possible multi-particle final states, is that the latter systems are far away from quantum critical-
ity and one must pay an exponential suppression price for their production. In particular, this 
explains, why at a given ultra-Planckian center of mass energy 

√
s, the production rate of a non-

black hole classical configuration is exponentially-suppressed relative to the production rate of 
a same-energy black hole. The reason is that a non-black hole classical configuration of a given 
mass represents a coherent state of constituents that are softer and have larger occupation num-
ber than the constituents of the same mass black hole. As a result such states always are at the 
subcritical value of the collective coupling, λ � 1, and no enhancement is available. We shall 
discuss this point in more details towards the end of the paper, by estimating a production prob-
ability of a particular classical configuration both via the quantum 2 → N process as well as 
semi-classically and comparing it to the black hole production rate.

1.3. Various regimes

It is instructive to summarize the various regimes of multi-particle production amplitudes, by 
superimposing the perturbative and non-pertubative inputs. In doing so we shall use both field 
theory as well as string theory data, namely, s, LP , Ls and N .

Let us consider first the perturbative input. Here we can distinguish two regimes.

• The stringy regime is achieved for

sL2
s

N2
> 1 . (1.7)

This is the regime for which the amplitudes effectively Reggeize.
• The field theoretic regime is achieved for,

sL2
s

N2
< 1 . (1.8)

In this case, we can use both scattering equations and the KLT prescription and the ampli-
tudes computed within field and string theory agree.

On the above perturbative information we need to superimpose the non-perturbative input 
coming from the black hole’s corpuscular portrait. This gives the following three regimes

• The regime of black hole formation at the critical point λ = 1,

sL2
P

N
= 1 . (1.9)

In this regime the perturbative amplitudes must be supplemented by the information about 
the exponential multiplicity of the final states.

• Sub-critical regime λ < 1,

sL2
P

N
< 1 . (1.10)

In this regime the Bogoliubov degeneracy is lifted and the perturbative amplitudes are better 
and better applicable as we move towards λ → 0.
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Fig. 2. Graviton physics and interplay between field and string theory as variation of λ.

• Over-critical regime λ > 1,

sL2
P

N
> 1 . (1.11)

In this regime, the N -graviton states have very high Liapunov exponents and imaginary 
Bogoliubov frequencies and therefore are not legitimate final states.

The overlap of the perturbative and non-perturbative information is summarized in the plots in
Figs. 2 and 3, where various perturbative and non-perturbative regimes are plotted on the λ axis. 
In order to allow the variation of λ, we vary N while keeping s, LP and gs fixed. In this way, we 
scan all possible multi-graviton final states of the desired kinematical regime for the fixed center 
of mass energy.

The first plot in Fig. 2 describes various regions on the λ-axis from purely field-theoretic 
perspective of non-perturbative N -graviton physics. The second plot, describes the interplay 
between the string-theoretic and field-theoretic domains from purely perturbative perspective. 
Notice, that after translating (1.7) in terms of the string coupling, the transitional point between 
the string and field-theory regimes is marked by λ = Ng2

s . This makes a nice physical sense. 
Specifically, the stringy regime becomes important when the gravitational coupling between the 
constituents becomes weaker than the string coupling. The same plot indicates the obvious point, 
that for any fixed value of gs , and for sufficiently large N the field theory regime becomes a good 
approximation.

Fig. 3 described the result of superimposing the above two perturbative and non-perturbative 
plots for two different cases, Ng2

s > 1 and Ng2
s < 1 respectively. In the first case, there is a 

region, 1 < λ < Ng2
s , in which on one hand unitarity is perturbatively violated in field theory 

and on the other hand perturbative string theory corrections are not effective for restoring it. 
In this domain unitarity is restored by non-perturbative collective N -graviton physics described 
above, which excludes this region as unphysical.

In the second plot in Fig. 3, the choice of parameters is such that perturbative string theory 
and field theory amplitudes crossover without violating unitarity for any λ. Of course, for fixed 
gs and LP , if we allow N to grow, the situation of the first plot is sooner or later achieved. In 
other words, for sufficiently high s, there is always a window of λ for which some perturbatively-
allowed would-be final states violate unitarity. The unitarity in this window is only restored by 
classicalization, which excludes it from the Hilbert space due to non-perturbative corpuscular 
physics of the N -graviton system.
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Fig. 3. Perturbative and non-perturbative regimes as variation of λ.

1.4. Outline

This work is organized as follows. In the next section we will specify some of the technical 
steps concerning the computation of the gravitational scattering amplitudes for a large number 
of gravitons in the final state in a specific high energy regime called classicalization regime. To-
gether with other high energy limits the classicalization regime will be defined in Section 3. In 
Section 4 we will present the calculation of the gravitational scattering amplitude exhibiting the 
details to determine the on-shell scattering amplitude and derive in this way for a large number 
of N an explicit expression for the transition probability of two particles into N − 2. In Section 5
an analogous computation is presented for the case of N -point open and closed string scattering 
amplitudes in the high energy limit of classicalization. In particular, we show how the relevant 
combinatorial factor can be derived by using the methods of scattering equations yielding the 
correct result for the field theory factor appearing in the previous section. In the remaining sec-
tions we will provide the interpretation of the results for the scattering amplitudes in the light 
of the corpuscular picture of black holes together with the idea of classicalization. More con-
cretely, in Section 6 we extend the discussion of Subsections 1.2 and 1.3 by explaining in which 
way the full gravitational scattering amplitude is built as an overlap between the perturbative 
N -graviton amplitude, calculated in Sections 4 and 5, and the non-perturbative projection be-
tween the N -graviton state and the black hole state, which is provided by the entropy factor eN . 
This discussion about the perturbative insights into non-perturbative physics is continued in Sec-
tion 7, where we also compare the gravitational case with the scalar φ4 theory. Finally, Section 8
contains the outlook of the paper, including also a speculation about the planar limit of gauge the-
ories with a large number of colors Nc and the limit of a large number N of gravitons, considered 
in this paper.

2. Recap of technical steps

As discussed above, the basic idea of this paper is to describe some key aspects of classical-
ization and black hole formation in the light of high-energy scattering amplitudes with a large 
number N of soft, elementary quanta in the final state. As already indicated, the phenomenon 
of classicalization implies a particular high-energy limit of the corresponding N -particle scat-
tering amplitudes. Specifically we shall analyze the tree-level scattering in the kinematics of 
2 → (N − 2) particles, with N being arbitrarily large and with the high center of mass energy 
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Fig. 4. Tree level scattering of 2 into N − 2 particles. The blob can be thought of as the sum over all Feynman diagrams 
at tree level.

√
s uniformly distributed over the N − 2 particles in the final state (Fig. 4). We will call this 

particular kinematical limit the “classicalization” or eikonal Regge limit.
Since it is quite involved to compute the large N field theory amplitudes via standard Feynman 

diagrams we will employ novel methods in amplitude technology called on-shell methods which 
were developed over the recent years. See [15] and references therein for an overview of the 
vast progress. In addition, we make profit of deriving tree-level amplitudes by the scattering 
equations [9]. Concretely, we shall perform the following computations with the following main 
new results:

• Field theory gravity amplitudes in the classicalization regime: We first compute the 2 →
(N − 2) graviton amplitudes for arbitrary N in the eikonal Regge high-energy kinemat-
ics. In order to derive these amplitudes we use a version of the KLT relations for so-called 
maximally helicity violating (MHV) graviton amplitudes. These are amplitudes with two 
negative-helicity gravitons and the rest positive. The scattering equations allow us to fix the 
combinatorial factors of these amplitudes. From these amplitudes we extract key information 
about the underlying unitarization mechanism, based on the dominance of this kinematics, as 
well as on the perturbative suppression factors. These perturbative results provide a strong 
support both to the physics picture of unitarization by black hole formation as well as to 
the microscopic picture of black holes as bound states of gravitons (Fig. 5). This picture is 
completed once we superimpose these perturbative results with non-perturbative information 
derived from the many body physics of graviton condensates.

• Secondly we shall compute the high-energy open/closed string tree level scattering ampli-
tudes for arbitrary (large) number of external legs. Furthermore, we will compare the string 
amplitudes with field theory amplitudes and discuss the classicalization regime in both cases. 
In particular, for fixed 

√
s, the two agree for sufficiently large N . However, depending on the 

value of the string coupling, intermediate domains of N are possible when either perturbative 
stringy effects as Reggeization or non-perturbative field theory black hole regimes dominate 
and exclude certain regions. One generic observation is that the regions that are not unitary 
in perturbative treatment are cut-out by non-perturbative corpuscular black hole physics. On 
the basis of the concrete form of the string amplitudes we shall make some remarks about 
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Fig. 5. Production of a black hole and decay into N − 2 soft quanta each with momenta ∼
√

s
N−2 . The circle with the 

wiggly double lines depicts the Bose–Einstein condensate nature of the black hole.

some hidden color kinematics duality that at the threshold of black hole formation appears 
to be reminiscent of the well known gauge–gravity duality.

3. High-energy kinematical regimes

In this section we first review the various high-energy limits and their relevance. Generically, 
for N particle scattering amplitudes there are 1

2N(N − 3) kinematic invariants

sij ≡ si,j = (ki + kj )
2 = 2 kikj . (3.1)

However, the number of independent invariants depends on the number of space–time dimen-
sions D under consideration. The number of independent Mandelstam variables will be reduced 
due to Gram determinant relations [16]. Depending on the number of dimensions D and parti-
cles N , the number of these constraints is given by

#constraints = 1

2
(N − D)(N − D − 1) (3.2)

reducing the number of independent invariants to

#{sindep
ij } = N(D − 1) − D(D + 1)

2
. (3.3)

In the sequel, however, we shall not be concerned with this issue and our results are independent 
of this number.

3.1. High-energy limits

For the high-energy limits of the four-point amplitude there are two regions of interest, which 
in this subsection we will review shortly. The kinematic invariants (3.1) for N = 4 are given by

s = (k1 + k2)
2 , t = (k1 + k3)

2 , u = (k1 + k4)
2 , (3.4)

with s + t + u = 0. In the four-point scattering case we have the following relations
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s = −E2 ,

t = E2 sin2 θ

2
,

u = E2 cos2 θ

2
, (3.5)

with E the center-of-mass energy and θ being the angle between the external momenta k1 and 
k3 (center-of-mass scattering angle).

3.1.1. Regge limit
The Regge limit (also known as small fixed angle regime) is defined as

s � |t | � � with
∣∣∣ s
t

∣∣∣→ ∞, (3.6)

where � is some scale (usually that of QCD). In this regime scattering amplitudes of Yang–Mills 
and gravity field theory amplitudes exhibit a power-like behavior ∼ sα(t) with the exponent usu-
ally called the Regge slope. In the usual treatment, this slope is larger than unity meaning that the 
amplitude is not unitary at high energies. In order the unitarize the high-energy behavior of the 
amplitudes in e.g. Yang–Mills it was found that one has to take into account so-called multi-
pomeron exchanges which are basically resumed all-loop information of certain ladder-type 
diagrams. In what follows we shall not touch this unitarization problem appearing in multi-Regge 
kinematics.

3.1.2. Hard scattering limit
The hard scattering limit (fixed finite angle regime) is the high-energy domain (ultra-high-

energy limit) where all kinematic invariants become large while their ratios remain fixed. In the 
four-point scattering case this limit is defined by:

s, t → ∞ with
∣∣∣ s
t

∣∣∣∼ ∣∣∣ s
u

∣∣∣∼ ∣∣∣u
t

∣∣∣= fixed . (3.7)

3.2. High-energy limit of four-point field-theory amplitudes

For the scattering p1 + p2 → p3 + p4 of particles of different mass the differential cross 
section in the CM frame is given by a sum over all spins or helicities of scattering subamplitudes 
A(1, 2, 3, 4)

dσ

d�

∣∣∣∣
CM

= 1

64π2E2

| p3|
| p1|

∑
helicities

|A(1,2,3,4)|2 , (3.8)

with E the CM energy. For e+e− → μ+μ− the sum over the matrix elements becomes (pij =
2pipj )∑

helicities

|A(1e,2e,3μ,4μ)|2

= 2e4

(p1 + p2)2

[
p13 p24 + p14 p23 + 2m2

μ p12 + 2m2
e p34 + 8 m2

em
2
μ

]
, (3.9)

with the electron me and muon mass mμ. In the ultra-high-energy limit me, mμ = 0, with | p1| =
| p3| = 1E the cross section (3.8) becomes [17]
2
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dσ

d�

∣∣∣∣
CM

= e4

32π2E2

t2 + u2

s2
= e4

64π2E2
(1 + cos2 θ) (3.10)

in terms of the quantities (3.5). On the other hand, Rutherford scattering e−p+ → e−p+ is 
obtained by using the corresponding t -channel matrix element∑

helicities

|A(1e,3p,2e,4p)|2

= 2e4

(p1 − p3)2

[
p14 p23 + p12 p34 − 2m2

p p13 + 2m2
e p24 + 8 m2

em
2
p

]
, (3.11)

with the proton mass mp . Using (3.11) and evaluating the corresponding differential cross section 
for elastic scattering (with E ∼ mp) gives the famous Rutherford scattering formula3

dσ

d�

∣∣∣∣
CM

= e4

4π2

m2
e

t2
(3.12)

in the non-relativistic limit (Born approximation) m2
e + p2 ∼ m2

e with | p1| = | p3| = p. On the 
other hand, in the ultra-high-energy limit m2

e + p2 ∼ p2, i.e. me ∼ 0 and mp → ∞ in terms of 
the quantities (3.5) we have:

dσ

d�

∣∣∣∣
CM

= e4

64π2

u

t2
. (3.13)

Obviously, in (3.12) and (3.13) the propagator term 1/t2 dominates the high-energy behavior of 
the cross sections.

3.3. Eikonal constraints and high-energy limits

A special region of the space of kinematic invariants (3.1) describes the so-called eikonal
constraints. In this limit two external momenta say k1 and kN are singled out and kinematic 
invariants (3.1) involving neither one of these two momenta nor two non-adjacent momenta are 
chosen to vanish. More precisely, the constraints on 1

2 (N − 3)(N − 4) kinematic invariants (3.1)
is

sij = 0 , i = 2, . . . ,N − 3, i + 2 ≤ j ≤ N − 1 , (3.14)

while the remaining 2(N − 3) invariants

s1j 	= 0 , j = 2, . . . ,N , sl,N 	= 0 , l = 2, . . . ,N − 1

si,i+1 	= 0 , i = 2, . . . ,N − 2 (3.15)

are left free. E.g. we have:

N = 5 : s24 = 0 ,

N = 6 : s24 = 0, s25 = 0 , s35 = 0 ,

N = 7 : s24 = 0, s25 = 0 , s26 = 0, s35 = 0, s36 = 0, s46 = 0 ,
...

(3.16)

3 Alternatively, in the non-relativistic limit the elastic cross section dσ
d�

∣∣∣
CM

= 1
64π2m2

p
|A|2 can be approximated by 

the t -channel matrix element A = (−2emp) 1 (2eme) also yielding (3.12) [18].
t
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As we shall see in Section 5 in this eikonal limit the gauge and gravitational superstring 
amplitudes assume a form which is suited to study properties known from field-theory amplitudes 
in the large complex momentum limit [19]. The latter gives a relation between BCFW relations 
and the pomeron vertex in string theory [20], cf. also [21,22]. BCFW shifts in string amplitudes 
have also been studied in [23].

3.3.1. Eikonal hard scattering limit
For (3.14) in the hard scattering limit we consider the limit s → ∞ for the non-vanishing 

invariants4 (3.15):

s1j ∼ −s , j = 2, . . . ,N − 1 , sl,N ∼ −s , l = 2, . . . ,N − 1 ,

si,i+1 ∼ s , i = 2, . . . ,N − 2 , s1N ∼ s . (3.17)

3.3.2. Eikonal Regge limit
For (3.14) the non-vanishing invariants (3.15) can be parameterized as follows

sij = (ki + kj )
2 ∼

{
s , i, j ∈ {1,N} ,

−ε s , i ∈ {1,N} , j /∈ {1,N} ,

ε2 s , i, j /∈ {1,N} ,

(3.18)

with some s and ε. The (adjacent) eikonal Regge limit is obtained for small ε and s → ∞. This 
limit corresponds to a regime, where one subset of momenta (the adjacent momenta k1 and kN ) 
is much greater than a given scale ε, while the other subset (all remaining momenta ki, i 	= 1, N ) 
is negligible compared to this scale, i.e. ki ∼ εs1/2 and k1, kN ∼ s1/2.

3.4. Classicalization high-energy limit

This is the limit in which we want to analyze the classicalization behavior of the scattering 
amplitudes. This behavior should manifest itself by preferring amplitudes with a greater number 
of external legs (and vice versa suppressing amplitudes with smaller number of external legs). 
Take particles 1 and N to be incoming with center of mass energy s := s1N = (k1 + kN)2 so that 
their momenta will be proportional to 

√
s/2. Accordingly, we define the other N − 2 particles to 

be outgoing with momenta proportional to −√
s/(N − 2). This kinematical choice will lead to a 

particular scaling of momentum invariants given by

sij = (ki + kj )
2 ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s , i, j ∈ {1,N} ,

− s

N − 2
, i ∈ {1,N} , j /∈ {1,N} ,

s

(N − 2)2
, i, j /∈ {1,N} .

(3.19)

Note that (3.18) and (3.19) are closely related by identifying

ε = 1

N − 2
. (3.20)

4 We can always find finite parameters to meet these conditions, e.g. for N = 5 we may choose s12 = s45 = − 1
2 s, s23 =

s34 = 3 s and s51 = s23 + s34 = 3s.
2
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Fig. 6. Kinematical configuration of the N -point amplitude.

The kinematical configurations (3.18) and (3.19) of the N -point amplitude are depicted in Fig. 6.

4. Field theory perspective

4.1. Large N field theory amplitudes in the high-energy classicalization limit

In this section the high-energy behavior of field theory scattering amplitudes of pure Yang–
Mills theory and pure gravity will be investigated. It will be examined whether one can find hints 
for classicalization in the high-energy behavior of these amplitudes.

The starting point for the field theory computations in gravity are the Kawai–Lewellen–Tye 
(KLT) relations. These relations express an N -point graviton scattering amplitude at tree level 
MFT(1, . . . , N) in terms of sums of products of Yang–Mills N -point tree amplitudes AYM . This 
was first proven in string theory by exploiting the monodromy properties of the closed string 
world-sheet [10] and later cast into compact form in [24,25]. Along these lines the N -graviton 
scattering field theory tree amplitude becomes

MFT(1, . . . ,N) = (−1)N−3 κN−2
∑

σ,γ∈SN−3

AYM(1, σ (2, . . . ,N − 2),N − 1,N)

× S[γ (2, . . . ,N − 2)|σ(2, . . . ,N − 2)]N−1

× AYM(1,N − 1, γ (2, . . . ,N − 2),N) , (4.1)

where the sum runs over the permutations of the N − 3 elements of the sets γ and σ . Above 
κ is the gravitational coupling constant with κ2 = 16πGN . The function S[. . . | . . .] is called 
momentum kernel or KLT kernel and is defined via the Mandelstam variables (3.1) as

S[i1, . . . , ik|j1, . . . , jk]P =
k∏

t=1

(
sit ,P +

k∑
q>t

θ(it , iq) sit ,iq

)
. (4.2)

Here, P is a lightlike reference momentum. The function θ is defined such that

θ(ia, ib) =
{

0, if ia sequentially comes before ib in {j1, . . . , jk}
1, otherwise.

(4.3)

Note that while the gravity amplitude above is only manifestly SN−3 invariant, in fact it can be 
shown to be completely permutation symmetric.
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4.1.1. Hard scattering limit
In the hard scattering limit, which was defined in Eq. (3.7) for four points, the behavior of 

field theory amplitudes is well known. Define s = (k1 + kN)2 to be the center of mass energy. By 
counting mass dimensions one finds that an N -point Yang–Mills amplitude behaves as

AYM ∼ s
4−N

2 , (4.4)

i.e. it displays a power-fall off such that the amplitude decreases as the energy increases. In this 
way unitarity at tree level will not be violated. In contrast, an N -point gravity amplitude displays 
the following behavior

MFT ∼ κN−2 s. (4.5)

In other words, the N -graviton amplitude grows monotonically as s increases. Alternatively, the 
high-energy behavior of the graviton amplitude can also be seen from the KLT formula (4.1)
taking into account that each of the entries of the momentum kernel behave as

S[σ(2, . . . ,N − 2)|γ (2, . . . ,N − 2)]P ∼ sN−3 (4.6)

in the hard scattering limit.

4.1.2. Classicalization of high-energy limit
Next, let us analyze whether we can find indications of classicalization in the high-energy 

limit of graviton scattering amplitudes utilizing (4.1). The classicalization of high-energy limit 
was already defined in Eq. (3.19).

Consider first Yang–Mills amplitudes in the high-energy limit as they are a building block of 
gravity amplitudes and so will be needed later. For simplicity, let us restrict ourselves to the case 
of MHV amplitudes, i.e. amplitudes with two particles of negative helicity and the other ones 
with positive helicity. In this case, the Yang–Mills amplitudes take a particularly simple form in 
four dimensions. In standard spinor helicity notation, it is given by [26]

AYM(1+, . . . , i−, . . . , j−, . . . ,N+) = 〈i j〉4

〈1 2〉〈2 3〉 · · · 〈N − 1 N〉〈N 1〉 . (4.7)

The spinor helicity brackets are basically square roots of Mandelstam invariants and their precise 
relation is given by [27]

〈ij〉 =√|sij |eiφij (4.8)

with

cos(φij ) = k1
i k

+
j − k1

j k
+
i√

|sij |k+
i k+

j

, sin(φij ) = k2
i k

+
j − k2

j k
+
i√

|sij |k+
i k+

j

, and k± = k0 ± k3. (4.9)

In the classicalization kinematics region one can straight-forwardly find the scaling of the Yang–
Mills amplitude by applying (4.8) and (3.19) to (4.7). Notice that one has to distinguish three 
cases: either both incoming particles have negative (positive) helicity or one particle might be 
positive and the other negative. One finds for these three cases (suppressing the absolute value)

AYM(i−, j−) ∼ s
4−N

2 f (φ) ×
⎧⎨
⎩

(N − 2)N−2 , i, j ∈ {1,N} ,

(N − 2)N−4 , i ∈ {1,N} , j /∈ {1,N} ,
N−6

(4.10)

(N − 2) , i, j /∈ {1,N} ,
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with f (φ) shorthand for the phase-factors. In general f (φ) will be a very complicated function. 
The difference in scaling above can be easily understood: it originates in the numerator of the 
MHV expression (4.7). The high-energy scaling of 〈i j〉4 depends on which particles are chosen 
to have negative helicity. The denominator, on the other hand, just encodes the pole structure of 
the amplitude which is independent of helicities. In other words, the denominator scales in the 
same way in all three cases. Note that the phase factors (4.9) do not scale with N − 2 since the 
scaling cancels.

Let us now turn to gravity amplitudes. To use the KLT relation (4.1) we need to know how the 
momentum kernel scales in this regime: its entries roughly scale as

S[γ (2, . . . ,N − 2), σ (2, . . . ,N − 2)]N−1 ∼
(

s

(N − 2)2

)N−3

(4.11)

as all particle labels involved in the momentum kernel belong to outgoing particles. Combing 
this with the scaling of the Yang–Mills amplitudes (4.10) via (4.1), leads to the following scaling 
for the gravity MHV amplitude

MFT(i−, j−) ∼ κN−2 C̃(N) s ×
⎧⎨
⎩

(N − 2)2 , i, j ∈ {1,N} ,

(N − 2)−2 , i ∈ {1,N} , j /∈ {1,N} ,

(N − 2)−6 , i, j /∈ {1,N} ,

(4.12)

where the function C̃(N) is a complicated double sum over the phase factors arising when one 
rewrites the spinor brackets in terms of Mandelstam invariants and sums over the different per-
mutations in the KLT sum. Unfortunately, it is very involved to evaluate this sum by using the 
techniques under consideration. However, fortunately as we shall see in Subsection 5.3.3, the 
factor can be computed in a straightforward way by making profit of the scattering equations [9]. 
It will be shown that (see Eq. (5.81))

C̃(N) = (N − 1)! (4.13)

Hence, in the classicalization regime the scaling of the gravity field theory amplitude at tree level 
should be given by

MFT(i−, j−) ∼ κN−2 (N − 1)! s ×
⎧⎨
⎩

(N − 2)2 , i, j ∈ {1,N} ,

(N − 2)−2 , i ∈ {1,N} , j /∈ {1,N} ,

(N − 2)−6 , i, j /∈ {1,N} .

(4.14)

Note that we could have chosen any two particles to be incoming in the analysis above. The only 
difference would be in the scaling of the momentum kernel: it would scale more complicated 
as a function of N since the kinematic invariants would not all scale homogeneously like s

N−2 . 
Naively, the behavior of the gravity amplitude would then also be more complicated as a con-
sequence. However, due to Bose symmetry the overall result is independent of the choice of 
incoming momenta and the seemingly more complex scaling will cancel in the sum over terms 
in (4.1) giving back Eq. (4.14).

The next step is to go from the on-shell scattering amplitude above to the physical (dimen-
sionless) transition probability of two particles scattering into N − 2, i.e. to |〈2|S|N − 2〉|2
(cf. Eq. (1.1)). In order to do so, one has to multiply MFT by the values of the outgoing and 
incoming momenta and take into account that the final states are identical. This amounts to di-
viding out by a factor of (N − 2)!. Doing so one arrives at (indices suppressed)
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|〈2|S|N − 2〉|2 = 1

(N − 2)!

(
N−1∏
i=2

pi p1pN MFT

)2

. (4.15)

Finally, by identifying κ with LP , taking N � 1, and remembering that pout ∼
√

s
N

and pin ∼ √
s

one arrives at Eq. (1.1)

|〈2|S|N〉|2 ∼
(

L2
P s

N2

)N

N !. (4.16)

Note that for large N we do not need to make the distinction between the three different cases 
anymore as they all scale the same. Moreover, the result (4.16) holds for both MHV and NMHV 
scattering since in Subsection 5.3.3 for the derivation of the factor (4.13) no specific helicity 
configuration is assumed.

As already advertised in the introduction this physical amplitude starts to unitarize for N given 
by s = NM2

P . Moreover, the amplitude at this kinematical unitarity threshold is suppressed by 
e−N anticipating at this perturbative level exactly the suppression factor that can be compensated 
by the entropy of a black hole with mass M = √

s = √
NMP .

5. String theory perspective

The high-energy behavior (i.e. energies much larger than the string scale Ms) of perturbative 
string amplitudes is rather different than that of field-theory amplitudes. While the high-energy 
behavior in field-theory (3.12) furnishes a power fall-off behavior (in the kinematic invariant t ) 
string theory exhibits an exponential fall-off. This opens the possibility to investigate the unitarity 
properties of the field theory amplitudes at high (or even trans-Planckian) energies within the 
framework of perturbative string amplitudes. The latter take into account effects from higher 
spin and black hole states, which may play a crucial role in the unitarization of the amplitude. 
In fact, higher spin states are vital for the consistency of weakly coupled gravity theories in the 
tree-level approximation with higher derivative corrections at intermediate energies (energies, at 
which the theory is still weakly coupled, but sensitive to higher derivative corrections) [28].

In string theory besides the string scale Ms , which is related to the string length Ls and string 
tension α′ as

α′ ∼ L2
s = M−2

s (5.1)

there is a string loop expansion parameter gs ∼ e (or closed string coupling constant gclosed =
gs = κ4/α

′ 1/2) controlling higher genus string effects with the dilaton field . The latter deter-
mines the YM coupling gYM ∼ e/2, which enters as the open string coupling gopen = gYM . The 
relation between the Planck and string mass is given by MP = g−1

s Ms , i.e.

LP = gs Ls , (5.2)

which in turn implies:

gclosed = g2
open . (5.3)

Hence, a small string loop expansion parameter gs corresponds to:

g−2
s ∼ M2

P

M2
= L2

s

2
� 1 . (5.4)
s LP
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On the other hand, energies for which tree amplitudes are large correspond to sL2
P � 1. Hence, 

the legitimate kinematical regime to study high-energy string tree-level scattering is:

α′s � L2
s

L2
P

� 1 . (5.5)

The string theory scattering at fixed angles and large energy is determined by a classical solu-
tion, i.e. the high-energy scattering in string theory becomes semi-classical: the two-dimensional 
string world-sheet stretches at long distance and the classical solution minimizes its area. The 
world-sheet string integrals are dominated by saddle points.

The high-energy fixed-angle behavior of open string tree-level scattering was first investigated 
by Veneziano [29]. The high-energy behavior of four-point string scattering was then thoroughly 
analyzed by Gross, Mende and Manes [7], see also [6] for some complementary work. In this 
section for tree-level and a specific kinematical region (specified in Section 3) we shall gener-
alize these results to an arbitrary number of external string states. Further interesting aspects of 
high-energy behavior in string theory have been discussed in [30].

Beyond the Born approximation (cf. e.g. Eq. (3.12)) for smaller impact parameter (larger t ) 
the eikonal scattering regime is reached where ladder diagrams (and crossed ladder diagrams) in 
the s-channel become important5 [31]. In field theory the latter can be derived from or matched 
to available perturbative higher-loop supergravity computations [32]. On the other hand, in string 
theory it has already been argued in [7] that the higher genus high-energy behavior can also be 
approximated by one saddle point showing the universal exponential behavior (5.14). Hence, 
we believe, that our tree-level high-energy results may at least qualitatively also describe effects 
from higher genus string world-sheet topologies.

5.1. High-energy limit of four-point open and closed superstring amplitude

The color ordered open superstring four-point tree subamplitude reads

A(1,2,3,4) = g2
YM AYM(1,2,3,4) F4 , (5.6)

with the SYM subamplitude AYM(1, 2, 3, 4) and the string form factor:

F4 = �(1 + α′s) �(1 + α′u)

�(1 + α′s + α′u)
. (5.7)

The kinematic invariants are given in (3.4). In the hard scattering limit, i.e. for α′ → ∞ the form 
factor (5.7) behaves as

F4 ∼ (2πα′)1/2
∣∣∣ su

t

∣∣∣1/2
exp
{
α′ (s ln |s| + t ln t + u lnu)

}
, (5.8)

to be contrasted with the corresponding field-theory expression (3.12) in the Born approximation. 
Eventually, with the fixed-angle parameterization (3.5) Eq. (5.8) can be cast into:

F4 ∼ (2π)1/2 E

Mstring
cot

θ

2
exp

{
E2

M2
string

(
sin2 θ

2
ln sin2 θ

2
+ cos2 θ

2
ln cos2 θ

2

)}
. (5.9)

5 Some interesting connections between ladder diagrams and the picture of graviton Bose–Einstein condensates have 
recently been presented in [11].
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The expression (5.8) follows by applying the Laplace method. The latter approximates the inte-
gral for a function f with a unique global maximum x0 inside the integration region as:

b∫
a

g(x) exp
{
α′f (x)

}
dx ∼

√
2π

α′|f ′′(x0)|
[
g(x0) +O(α′ −1)

]
exp
{
α′f (x0)

}
. (5.10)

Then, the result (5.8) follows from rewriting (5.7) as

F4 = α′s
1∫

0

dx xα′s−1 (1 − x)u = α′s
1∫

0

dx x−1 exp
{
α′s lnx + α′u ln(1 − x)

}
(5.11)

and applying Laplace’s method (5.10) to approximate the latter. The stationary point x0 = − s
t

(with s < 0) of the integrand of (5.11) follows from solving the equation:

s

x
− u

1 − x
= 0 . (5.12)

With this information and the formula (5.10) we arrive at (5.8).
Furthermore, the closed-string four-point amplitude describing four graviton scattering is 

given by

M(1,2,3,4) = κ2 |AYM(1,2,3,4)|2 (α′s)2
∫
C

d2z |z|α′s/2−2 |1 − z|α′u/2 (5.13)

with the SYM subamplitude AYM(1, 2, 3, 4) and gravitational coupling constant κ . Performing a 
saddle point approximation in the complex plane (w.r.t. polar coordinates) yields:

M(1,2,3,4) ∼ κ2 |AYM(1,2,3,4)|2

× 4πα′
∣∣∣ su

t

∣∣∣ exp

{
α′

2
(s ln |s| + t ln t + u lnu)

}
. (5.14)

It is interesting to note, that Eq. (5.14) essentially is the square of the open string case (5.8) sub-
ject to a rescaling of the string tension α′ as α′ → α′/4. Hence, qualitatively there is no difference 
between the high-energy behavior of the open and closed superstring tree-level amplitude. This 
fact becomes feasible by the single-valued projection [33,34], cf. the next subsection.

5.2. High-energy limit of N -point gauge and graviton amplitude

In this subsection for specific kinematical regions we shall derive the high-energy behavior
of both open and closed superstring scattering amplitudes for an arbitrary number N of external 
string states.

A first glance at the high-energy behavior of the N -point open superstring amplitude can be 
gained by considering the Selberg integral [35]

Sn(α,β, γ ) =
⎛
⎝ n∏

i=1

1∫
0

dti

⎞
⎠ n∏

l=1

tα−1
l (1 − tl)

β−1
∏

1≤i<j≤n

|ti − tj |2γ

= n!
n−1∏ �(α + lγ ) �(β + lγ ) �(γ + lγ )

�(α + β + (n + l − 1)γ ) �(γ )
, (5.15)
l=0
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with complex parameters α, β, γ such that �α, �β > 0 and �γ > −Min{ 1
n
, �α

n−1 , �β
n−1 }. The 

Selberg integral (5.15) may be thought as the straightforward multi-dimensional generalization 
of (5.11) to be suited to describe the N -point case. In fact, for n = N −3 and the parameterization

α = α′ s1i , β = α′ si,N−1, i = 2, . . . ,N − 2 ,

2γ = α′ sij , 2 ≤ i < j ≤ N − 2 (5.16)

Eq. (5.15) describes a generic world-sheet disk integral involving N open strings. The integral 
(5.15) sums up n! iterated real integrals with identical contributions. The latter corresponds to 
(N − 3)! (independent) color ordered subamplitudes. With Stirling’s formula [36]

�(z) = (2π)1/2 exp

{(
z − 1

2

)
ln z − z

}

×
(

1 + 1

12z
+ 1

288z2
− . . .

)
, for z → ∞ in | arg(z)| < π (5.17)

we may easily determine the α′ → ∞ limit of (5.15). E.g. for N = 5, i.e. n = 2 we find the 
behavior:

S2 ∼ (2π) 2
1
2 +2γ

(
(α + β + γ )(α + β + 2γ )

αβ(α + γ )(β + γ )

)1/2

× exp

{
α lnα + β lnβ + γ lnγ + (α + γ ) ln(α + γ ) + (β + γ ) ln(β + γ )

(α + β + γ ) ln(α + β + γ ) + (α + β + 2γ ) ln(α + β + 2γ )

}
+O(α′ −1) . (5.18)

5.2.1. High-energy limit of N -point gauge amplitude
The open superstring N -gluon tree-level amplitude AN describing the scattering of N gluons 

decomposes into a sum

AN =
∑

�∈SN/Z2

Tr(T a�(1) . . . T a�(N) ) A(�(1), . . . ,�(N)) (5.19)

over color ordered subamplitudes A(�(1), . . . , �(N)) supplemented by a group trace in the 
adjoint representation. The sum runs over all permutations SN of labels i = 1, . . . , N modulo 
cyclic permutations Z2, which preserve the group trace. The (N − 3)! independent open N -point 
superstring subamplitudes can be cast into the compact form [37]

A(1,π(2, . . . ,N − 2),N − 1,N) = gN−2
YM

∑
σ∈SN−3

Fπσ AYM(σ ) , π ∈ SN−3 , (5.20)

with the (N − 3)! (independent) SYM subamplitudes AYM(σ ) := AYM(1, σ(2, . . . , N − 2),

N − 1, N), σ ∈ SN−3 and the (N − 3)! × (N − 3)! matrix F , whose entries Fπσ can be ex-
pressed as [38]

Fπσ = (−α′)N−3
∑

ρ∈SN−3

Zπ(ρ) S[ρ|σ ] , (5.21)

with the world-sheet disk integrals specified in Eq. (5.59) and some variant of the KLT kernel 
(4.2)
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S[ρ|σ ] := S[ρ(2, . . . ,N − 2) |σ(2, . . . ,N − 2) ] =
N−2∏
j=2

(
s1,jρ +

j−1∑
k=2

θ(jρ, kρ) sjρ,kρ

)
,

(5.22)

with jρ = ρ(j) and θ(jρ, kρ) = 1 if the ordering of the legs jρ, kρ is the same in both orderings 
ρ(2, . . . , N − 2) and σ(2, . . . , N − 2), and zero otherwise. The matrix entries Fπσ given in 
Eq. (5.21) represent generalized Euler integrals integrating to multiple hypergeometric functions 
[37]:

Fπσ = (−α′)N−3
∫

D(π)

⎛
⎝N−2∏

j=2

dzj

⎞
⎠ (∏

i<l

|zil |α′sil

) {
N−2∏
k=2

k−1∑
m=1

smk

zmk

}
. (5.23)

Above, the permutations σ ∈ SN−3 act on all indices {2, . . . , N −2} within the curly bracket. Due 
to conformal invariance on the world-sheet we have fixed three of the N world-sheet positions as

z1 = 0 , zN−1 = 1 , zN = ∞ , (5.24)

and the remaining N − 3 positions zi are integrated along the boundary of the disk subject to 
the ordering D(π) = {zj ∈ R | z1 < zπ(2) < . . . < zπ(N−2) < zN−1 < zN }. Furthermore, we have 
zij ≡ zi,j = zi − zj . Integration by parts admits to simplify the integrand in (5.23). As a result 
the length of the sum over m becomes shorter for k > �N/2�

Fπσ = (−α′)N−3
∫

D(π)

⎛
⎝N−2∏

j=2

dzj

⎞
⎠ (∏

i<l

|zil |sil
)

×
⎧⎨
⎩
⎛
⎝�N/2�∏

k=2

k−1∑
m=1

smk

zmk

⎞
⎠
⎛
⎝ N−2∏

k=�N/2�+1

N−1∑
n=k+1

skn

zkn

⎞
⎠
⎫⎬
⎭ , (5.25)

with �x� the integer part of x.
In the sequel, in (5.20), without loss of generality let us concentrate on the canonical color 

ordering π = 1 describing the string subamplitude A(1, . . . , N) and work out the latter in the 
eikonal limit (3.14) and (3.15). By applying partial integrations w.r.t. to the world-sheet coordi-
nates it can be evidenced, that for the case σ 	= id all functions F1σ have one of the invariants 
(3.14) as prefactor. Note, that in a gluon subamplitude with canonical color ordering π = 1 the 
constraints (3.14) do not cause any singularities as the latter would correspond to unphysical 
poles. So we can safely take the limit (3.14), i.e. F1σ = 0, σ 	= 1 and only FN := F11 is non-
vanishing in the eikonal limit. As a consequence in the eikonal limit the full open superstring 
subamplitude (5.20) reduces to one term

A(1, . . . ,N) = gN−2
YM FN AYM(1, . . . ,N) , (5.26)

with the string form factor FN given by:

FN = (−α′)N−3
∫ ⎛

⎝N−2∏
j=2

dzj

⎞
⎠ (∏

i<l

|zil |α′sil

)
s12

z12

(
N−4∏
l=1

sN−l−1,N−l

zN−l−1,N−l

)
. (5.27)
zi<zi+1
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In the eikonal limit the kinematical factor AYM(1, . . . , N) of the superstring amplitude (5.26)
is identical in form to that of the corresponding field theory amplitude. Hence, in the four-
dimensional MHV case6 in Eq. (5.26) the SYM amplitude factor is given by the Parke–Taylor 
amplitude (4.7).

For the choice of vertex operator positions (5.24) and the parameterization

zl =
N−l−1∏

i=1

xi , l = 2, . . . ,N − 2 (5.30)

the string form factor (5.27) becomes:

FN = α′s12

⎛
⎝N−3∏

i=1

1∫
0

dxi

⎞
⎠ x

−1+α′s12
N−3 (1 − xN−3)

α′s23

×
N−4∏
l=1

x

−α′sN−l−1,N−l+α′ N−l−1∑
j=2

s1j +sj,j+1

l (1 − xl)
−1+α′sN−1−l,N−l α′sN−l−1,N−l .

(5.31)

As a result of taking the eikonal limit, the N − 3 world-sheet integrations become independent 
Euler integrals, which integrate to Beta functions

FN = �
(
1 + α′s12

)
�(1 + α′s23)

� (1 + α′s12 + α′s23)

N−4∏
l=1

�(1 + α′xl) �(1 + α′yl)

�(1 + α′xl + α′yl)
, (5.32)

with

6 According to [39] the rational function in the world-sheet positions has a simple representation in terms of tree 
diagrams. In the MHV case (with gluon 1 and N of negative helicity) the N -point open superstring subamplitude (5.20)
can be expressed as [39,40]

A(1, . . . ,N) = gN−2
YM

〈1N〉4

〈1, (N − 1)〉〈(N − 1),N〉〈N1〉

×
∫

zi<zi+1

⎛
⎝N−2∏

j=2

dzj

⎞
⎠
⎛
⎝∏

i<l

|zil |α′sil

⎞
⎠

×
∑

σ∈SN−2

1

z12

N−2∏
k=2

〈N |N − 1 + . . . + (k + 1)|k]
〈kN〉

α′
zk(k+1)

, (5.28)

where the permutations σ act on the set {2, . . . , N − 2}. In the above form (5.28) one easily observes the effect of taking 
the eikonal limit (3.14). Any of the (N − 3) brackets 〈N |(N − 1) + . . . + (k + 1)|k] would vanish for σ 	= 1. Hence the 
eikonal limit of (5.29) gives

A(1, . . . ,N) = gN−2
YM

〈1N〉4

〈1, (N − 1)〉〈(N − 1),N〉〈N1〉

×
∫

zi<zi+1

⎛
⎝N−2∏

j=2

dzj

⎞
⎠
⎛
⎝∏

i<l

|zil |sil
⎞
⎠ 1

z12

N−2∏
k=2

〈N |(k + 1)|k]
〈kN〉

α′
zk(k+1)

, (5.29)

which can be shown to agree with (5.26) in the MHV case.
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xl = sN−1−l,N−l = (kN−1−l + kN−l)
2 ,

yl =
N−l−1∑

j=2

s1j +
N−l−2∑

j=2

sj,j+1 =
{

(kN−l + . . . + kN)2 , l < �N
2 � ,

(k1 + k2 + . . . + kN−1−l )
2 , l ≥ �N

2 � ,
(5.33)

for l = 1, . . . , N − 4. E.g. we have

N = 5 : x1 = s34 , y1 = s45
N = 6 : x1 = s45 , x2 = s34 , y1 = s56 , y2 = s123 ,

...

(5.34)

with sij l = α′(ki + kj + kl)
2. Note, that the first factor of (5.32) simply represents the four-point 

result (5.7). In [41] for even N a similar expression than (5.32) has been considered in describing 
a very restricted and constrained subset of the full kinematics of the SYM factor of (5.26).

Let us now compute the hard scattering high-energy limit α′ → ∞ of the result (5.32). In the 
sequel we apply the asymptotic formula [36]

�(az + b) ∼ (2π)1/2 exp

{(
az + b − 1

2

)
ln(az) − az

}
, | arg(z)| < π, a > 0 , (5.35)

to find the following approximation:

�(1 + α′x) �(1 + α′y)

�(1 + α′x + α′y)
∼ (2πα′)1/2

(
xy

x + y

)1/2

× exp
{
α′ [ x lnx + y lny − (x + y) ln(x + y)

]}
. (5.36)

With (5.36) we now can extract the high-energy limit of the function (5.32)

FN ∼ (2πα′)
N−3

2

(
s12 s23

s2N

)1/2

exp
{
α′(s12 ln s12 + s23 ln s23 + s2N ln s2N)

}

×
N−4∏
l=1

(
xl yl

zl

)1/2

exp
{
α′(xl lnxl + yl lnyl + zl ln zl)

}
, (5.37)

with:

zl = −xl − yl = −
N−l−1∑

j=2

s1j + sj,j+1 =
N−l−1∑

j=2

sjN +
N−l−2∑

j=2

sj,j+1

=
{

(k1 + kN−l + . . . + kN−1)
2 , l < �N

2 � ,

(k2 + . . . + kN−1−l + kN)2 , l ≥ �N
2 � ,

(5.38)

for l = 1, . . . , N − 4. Note, that in deriving (5.37) we have not used the scattering equations [9]. 
We have extracted the limit α′ → ∞ directly from the explicit expression (5.32). As a conse-
quence the final result (5.26) is given by a single term.

There are two different situations to be discussed. The latter correspond to the two regimes 
(1.7) and (1.8), respectively.

Case (i)
√

s
N

> Ms

For finite N this case is met for small string mass Ms → 0 (i.e. α′ → ∞) or large momenta 
s → ∞. Then (5.37) can be used to approximate the string form factor (5.32). With (3.20) (i.e. fi-
nite ε) for this region all invariants of the eikonal parameterization (3.18) are of the same order 
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and can be approximated by (3.17). For the parameterization (3.17), i.e. |sij | ∼ s we roughly 
have

xl ∼ s , yl ∼ −s ,

zl ∼ −s , l = 1, . . . ,N − 4 , (5.39)

and the high-energy behavior s → ∞ of the N -gluon form factor (5.37) behaves as:

FN ∼ (α′s)
1
2 (N−3) e−(N−3) α′s ln(α′s) . (5.40)

Together with the YM behavior AYM ∼ s− 1
2 (N−4) (given in (4.4)) we obtain the following 

high-energy behavior s → ∞ of the open superstring N -point amplitude (5.26) in the eikonal
constraints (3.14) and (3.15):

AN ∼ gN−2
YM α′ 1

2 (N−3) s1/2 e−(N−3) α′s ln(α′s) . (5.41)

Case (ii)
√

s
N

< Ms

Finally, for small ε → 0 (corresponding to N → ∞) the eikonal parameterization (3.18) de-
scribes the eikonal Regge regime. In this regime some of the quantities (5.33) vanish

xl ∼ 0 , (5.42)

and the string form factor (5.32) becomes trivial:

FN = 1 . (5.43)

Hence, in the eikonal Regge regime, the open superstring amplitude (5.26) becomes identical in 
form to the field-theory amplitude:

A(1, . . . ,N) = gN−2
YM AYM(1, . . . ,N) . (5.44)

This fact has been conjectured for the MHV case in [21]. For the latter we recover the SYM 
result (4.10):

AN ∼ gN−2
YM

(
s

(N − 2)2

) 1
2 (4−N)

f (φ) ×
⎧⎨
⎩

(N − 2)2 , i, j ∈ {1,N} ,

1 , i ∈ {1,N} , j /∈ {1,N} ,

(N − 2)−2 , i, j /∈ {1,N} .

(5.45)

The eikonal Regge regime corresponds to a limit in which the positions z1, zN of string vertex 
operators V (z1), V (zN) are close to each other and generate a pomeron vertex operator [20].

Note, that the two results (5.41) and (5.45) represent two different high-energy limits: while 
in (5.41) for finite N the large s (or large α′) limit is taken, in (5.45) for infinite N (ε = 0) the 
large s limit is considered.

5.2.2. High-energy limit of N -point graviton amplitude
Let us now move on to the closed string N -point amplitude describing the scattering of N

gravitons. A useful way of expressing the latter has recently been presented in the works [33,34]
in the form:

M(1, . . . ,N) = (−1)N−3 κN−2 At
YM S0 sv(A) . (5.46)

Above A is a (N − 3)!-dimensional vector encompassing the independent open string subam-
plitudes (5.20). Similarly, AYM denotes an (N − 3)!-dimensional vector of independent SYM 
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subamplitudes. The map sv denotes the single-valued map, which roughly speaking projects an 
open string amplitude such that it describes a closed string amplitude, cf. Ref. [34] for more 
details. Furthermore, S0 is a (N − 3)! × (N − 3)! matrix given by S0 = SK , with S being 
the momentum kernel (4.2) and K accounting for the basis change of SYM subamplitudes 
AYM(1, ρ(2, . . . , N − 2), N, N − 1) = K σ

ρ AYM(1, σ(2, . . . , N − 2), N − 1, N).
One important observation is the fact, that in the eikonal limit (3.14) only the first element

σN := (SK)11 (5.47)

of the matrix product SK is non-vanishing. E.g. we have:

σ4 = su

t
, N = 4 ,

σ5 = s12 s23 s34 s45

(s12 + s23) (s34 + s45)
, N = 5 ,

σ6 = s12 s23 s34 s45 s56 s123

(s12 + s23) (s45 + s56) (s34 + s123)
, N = 6 .

... (5.48)

The general expression for σN can be given as

σN =
(

s12 s23

s12 + s23

) N−4∏
l=1

(
xl yl

xl + yl

)
= (−1)N−3

(
s12 s23

s2N

) N−4∏
l=1

(
xl yl

zl

)
, (5.49)

with xl, yl given in (5.33) and zl displayed in (5.38). The function σN is a rational function in 
kinematic invariants of degree N − 3, i.e. σN ∼ sN−3. Hence, in the eikonal limit the N -graviton 
amplitude (5.46) becomes

M(1, . . . ,N) = κN−2 |AYM(1, . . . ,N)|2 MN , (5.50)

with the form factor

MN = (−1)N−3 σN sv(FN) , (5.51)

and the function FN given in (5.32). To extract the high-energy limit α′ → ∞ of the latter we 
use [34]

sv

(
�(1 + x) �(1 + y)

�(1 + x + y)

)
= − �(x) �(y) �(−x − y)

�(−x) �(−y) �(x + y)
, (5.52)

and

�(α′x) �(α′y) �(−α′x − α′y)

�(−α′x) �(−α′y) �(α′x + α′y)
∼ exp

{
α′ [ 2x lnx + 2y lny − 2(x + y) ln(x + y)

]}
,

x, y → ∞ (5.53)

to arrive at

MN ∼ (4πα′)N−3
(

s12 s23

s2N

)
exp

{
α′

2
( s12 ln s12 + s23 ln s23 + s2N ln s2N )

}

×
N−4∏ (

xl yl

zl

)
exp

{
α′

2
( xl lnxl + yl lnyl + zl ln zl )

}
, (5.54)
l=1
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with xl, yl introduced in (5.33) and zl defined in (5.38).
Again, there are two different cases to be discussed. The latter corresponds to the two regimes 

(1.7) and (1.8), respectively.

Case (i)
√

s
N

> Ms

For finite N this case is met for small string mass Ms → 0 (i.e. α′ → ∞) or large momenta 
s → ∞. Then, (5.54) can be used to approximate the string form factor (5.51). With (3.20)
(i.e. finite ε) for this region all invariants of the eikonal parameterization (3.18) are of the same 
order and can be approximated by (3.17). For the parameterization (3.17), i.e. |sij | ∼ s and (5.39)
the high-energy behavior s → ∞ of the N -graviton form factor (5.54) behaves as:

MN ∼ (α′s)N−3 e− α′
2 (N−3) s ln(α′s) . (5.55)

Together with the YM behavior AYM ∼ s− 1
2 (N−4) (given in (4.4)) we obtain the following high-

energy behavior s → ∞ of the closed superstring N -point amplitude (5.26) in the eikonal
constraints (3.14) and (3.15):

MN ∼ κN−2 α′ N−3 s e− α′
2 (N−3) s ln(α′s) . (5.56)

It is interesting to note, that (5.55) essentially is the square of the open string case (5.40) subject 
to a rescaling of the string tension α′ as α′ → α′/4. This fact becomes feasible by the single-
valued projection [34]. The limit discussed above corresponds to the stringy region (1.7). It is 
important to note that for large s (or small string scale Ms ) the high-energy limit of the N -point 
graviton string amplitude is exponentially suppressed in contrast to the corresponding field the-
ory amplitude.

Case (ii)
√

s
N

< Ms

Finally, in the eikonal Regge regime ε → 0 (corresponding to N → ∞) some of the quan-

tities (5.33) vanish (5.42). In this limit the factor (5.49) scales as σN ∼
(

s

(N−2)2

)N−3
. As a 

consequence the whole string form factor (5.51) becomes

MN =
(

s

(N − 2)2

)N−3

, (5.57)

and the gravitational string amplitude (5.50) becomes identical to the corresponding field-theory 
amplitude (4.1):

M(1, . . . ,N) =MFT(1, . . . ,N) . (5.58)

Note, that this limit corresponds to the region (1.8). Hence, in the eikonal Regge regime the 
closed superstring amplitude becomes the field-theory graviton amplitude. For the MHV case 
this fact has also been conjectured in [21]. In the MHV case we recover the explicit field-theory 
expression (4.14).

5.3. Scattering equations and classicalization high-energy limit

In this subsection we shall show that, in a parameterization of the classicalization limit, the 
scattering equations [9] can be solved exactly allowing us to obtain a closed expression for 
the high-energy limit of the open and closed superstring tree-level scattering amplitudes for a 
generic number N of external legs. In addition, we obtain compact expressions for the field-
theory N -gluon and N -graviton amplitudes in the classicalization limit.
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5.3.1. Saddle point approximation and scattering equations
The generic expression for an open string N -point form factor is given by the real iterated 

disk integral (cf. Eq. (5.21))

Zπ(ρ) := Zπ(1, ρ(2, . . . ,N − 2),N,N − 1):

= V −1
CKG

∫
D(π)

(
N∏

l=1

dzl

)

×

N∏
i<j

|zij |α′sij

z1ρ(2)zρ(2),ρ(3) . . . zρ(N−3),ρ(N−2)zρ(N−2),NzN,N−1zN−1,1
(5.59)

specified by some ordering of N points as D(π) = {zj ∈ R | z1 < zπ(2) < . . . < zπ(N−2) <

zN−1 < zN } (cf. comment below Eq. (5.24)) and the permutations ρ, π ∈ SN−3. Furthermore, the 

Koba–Nielsen factor 
N∏

i<j

|zi − zj |α′sij with the kinematic invariants (3.1) enters in the integrand. 

In (5.59) the factor VCKG accounts for the volume of the conformal Killing group of the disk 
after choosing the conformal gauge. It will be canceled by fixing three vertex positions zi, zj , zk , 

i.e. VCKG = dzidzj dzk

zij zjkzki
. The factor zij zjkzki can be identified as the standard reparameterization

ghost correlator.
For fixed-angle scattering, the high-energy limit α′ → ∞ of the disk integral (5.59) can be 

determined by performing a saddle-point approximation [42]. Rewriting the Koba–Nielsen factor 
of the integrand of (5.59) as

N∏
i<j

|zij |α′sij = exp

⎧⎨
⎩α′

2

∑
i 	=j

sij ln |zij |
⎫⎬
⎭

yields the saddle point equations

N∑
j 	=i

sij

zi − zj

= 0 , i = 1, . . . ,N , (5.60)

whose (N − 3)! solutions determine the locations

{z(l)
1 , . . . , z

(l)
N } ∈ C , l = 1, . . . , (N − 3)! (5.61)

of the saddle points. Note, that the stationary points (5.61) do not have to lie7 within the real 
integration region D(π), but may also be complex. By Cauchy’s theorem the saddle point ap-
proximation then implies the continuous deformation of the integral along D(π) (without leaving 
the domain of analyticity of the integrand) to a new (admissible) contour Cπ (saddle contour) 
having the same endpoints as D(π) and passing through the stationary points (5.61) in the direc-

tion of the steepest descent of � 

(∑
i 	=j

sij ln |zij |
)

[42]. Then, the maximum of the integrand is 

assumed at the isolated points and the full contribution to the asymptotic expansion of the origi-
nal integral (5.59) is obtained by adding the amounts (of the integrals over small arcs containing 

7 Their actual positions depend on the choice of kinematic invariants (3.1).
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these points) from all relevant saddle points (5.61). Eventually, the saddle points (5.61) enter the 
disk integral (5.59) as

Zπ(ρ) =
(

2π

α′

)N−3
2

V −1
CKG

∫
Cπ

(
N∏

l=1

dzl

)
(det ′)1/2

N∏′

a=1

δ

⎛
⎝ N∑

b 	=a

sab

za − zb

⎞
⎠

×

N∏
i<j

|zi − zj |α′sij

z1ρ(2)zρ(2),ρ(3) . . . zρ(N−3),ρ(N−2)zρ(N−2),NzN,N−1zN−1,1
+O(α′ −1) ,

(5.62)

with the Jacobian:

ab = 1

2

∂2

∂za∂zb

∑
i 	=j

sij ln |zij | =

⎧⎪⎨
⎪⎩

sab

z2
ab

a 	= b ,

− ∑
c 	=a

sac

z2
ac

a = b .
(5.63)

Of the latter a specific minor ||ijk
pqr , arising after deleting three rows p, q, r and three columns 

i, j, k of the matrix , enters the determinant det ′ as:

det ′ = ||ijk
pqr

(zij zjkzki) (zpqzqrzpr )
. (5.64)

Furthermore, in (5.62) there is the product of delta-functions

N∏′

a=1

δ

⎛
⎝ N∑

b 	=a

sab

za − zb

⎞
⎠= zij zjkzki

∏
a 	=i,j,k

δ

⎛
⎝ N∑

b 	=a

sab

za − zb

⎞
⎠ , (5.65)

which is independent on the choice i, j, k and hence permutation invariant. Eventually, (5.62)
can be written as

Zπ(ρ) =
(

2π

α′

)N−3
2

(N−3)!∑
l=1

[det ′(z(l))]−1/2

×

N∏
i<j

|z(l)
i − z

(l)
j |α′sij

z
(l)
1ρ(2)z

(l)
ρ(2),ρ(3) . . . z

(l)
ρ(N−3),ρ(N−2)z

(l)
ρ(N−2),Nz

(l)
N,N−1z

(l)
N−1,1

+O(α′ −1). (5.66)

The world-sheet string integral (5.62) is dominated by the contributions of saddle points (5.61)
yielding the sum (5.66). Although the latter may be complex their total contributions to the sum 
(5.66) must sum up to a real value.

In [7] the open string saddle points are obtained from saddle points of the closed string scatter-
ing by some reflection principle. On the other hand, by the single-valued projection [33,34] the 
high-energy limit of closed world-sheet sphere integrals can be obtained from the analog limit of 
open string integrals (5.66).

The set of equations (5.60) also appears in the context of describing Yang–Mills theory by 
twistor string theory [43] or recently as so-called scattering equations relating the space of kine-
matic invariants (3.1) and locations of N punctures on the complex sphere [9]. Hence, as already 
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pointed out in [43,9] there seems to be a striking relation between Yang–Mills theory and string 
theory at high energies communicated by the equations (5.60).

Clearly, for N = 4 Eq. (5.60) boils down to (5.12). In the general case there are N − 3 (inde-
pendent) non-linear equations (5.60) to be solved and their solutions (5.61) are difficult to find. 
Yet for N = 5 explicit expressions for (5.66) can still be evaluated in general and for N = 6 the 
explicit solution can be written in D = 4 in terms of spinor helicity variables [44].

In the high-energy limit in (5.21) each integral Zπ(ρ) gives rise to a sum (5.66) over (N − 3)!
saddle points (5.61). A similar sum over the (N − 3)! solutions (5.61) of the scattering equations 
(5.60) can be used to specify the SYM factors AYM(σ ) in (5.20) as [9]

AYM(1, . . . ,N) =
∫ ( N∏

l=1
dσl

)
Vol SL(2,C)

N∏
a=1

′δ

⎛
⎝ N∑

b 	=a

sab

σab

⎞
⎠ EN({k, ξ, σ })

σ12 . . . σN1
, (5.67)

with N inhomogeneous coordinates σl ∈ CP1 (σab = σa − σb) and EN({k, ξ, σ }) given by some 
Pfaffian encoding the external gluon kinematics with momenta ki and gluon polarizations ξj . As 
consequence the high-energy limit of the open superstring amplitude (5.20) becomes a double 
sum over solutions (5.61) of the scattering equations (5.60)

A(1, . . . ,N) = gN−2
YM

(
2πα′)N−3

2

×
(N−3)!∑
a,b=1

(
N∏

i<j

|z(a)
ij |α′sij

)

det′ (z(a))1/2

EN({k, ξ, σ (b)})
det′ (σ (b))

det′�({z(a)}, {σ (b)})

+O(α′ −1), (5.68)

with the generalized Hodges’ determinant det′ � encoding the KLT kernel (5.22) and specified 
in [45,46]. Eventually, by applying the KLT orthogonality property [45,9]

det ′(σ (a))−1/2 det ′(σ (b))−1/2 det′�({σ (a)}, {σ (b)}) = δab (5.69)

of two solutions a, b of the scattering equation (5.60), one can cast the high-energy limit of (5.20)
into a single sum over (N − 3)! solutions (5.61):

A(1, . . . ,N) = gN−2
YM

(
2πα′)N−3

2

(N−3)!∑
a=1

(
N∏

i<j

|z(a)
ij |α′sij

)

det′ (z(a))1/2
EN({k, ξ, z(a)}) +O(α′ −1) .

(5.70)

In D = 4 the sum (5.70) decomposes into k R-charge sectors describing Nk−2MHV am-
plitudes (with k negative-helicity states) labeled by k = 2, . . . , N − 2, with each sector having (

N−3
k−2

)
solutions and 

N−2∑
k=2

(
N−3
k−2

)
= (N − 3)! [47]. The latter describes the RSVW residua in 

super-twistor space [48,43].
Next, for the high-energy limit of the closed superstring N -graviton amplitude we start from 

the expression [9]
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M(1, . . . ,N) = κN−2 V −1
CKG

⎛
⎜⎝ N∏

j=1

∫
zj ∈C

d2zj

⎞
⎟⎠
⎛
⎝ N∏

i<j

|zij | α′
2 sij

⎞
⎠

×
(N−3)!∑
a,b=1

EN({k, ξ, σ (a)}) EN({k, ξ̃ , σ̃ (b)})
det′ (σ (a))det′ (σ̃ (b))

× det′�({z}, {σ (a)}) det′�({z}, {σ̃ (b)}). (5.71)

Note, that the saddle-point method described above, relies on Cauchy’s theorem for the integra-
tion of analytic functions to deform the path of integration D(π) in the complex plane onto a path 
of steepest descent. The integration over a domain in the multi-dimensional complex plane re-
quires some sort of multi-dimensional generalization of the Laplace method (5.10) [49]. For the 
one-dimensional complex plane (N = 4 case) in Eq. (5.14) we have accomplished this by using 
polar coordinates. The saddle points are given by the same equations (5.60) with solutions (5.61). 
After using the KLT orthogonality (5.69) we have [9]:

M(1, . . . ,N) = κN−2 (4πα′)N−3
(N−3)!∑
a=1

(
N∏

i<j

|z(a)
ij | α′

2 sij

)

det′ (z(a))1/2 det′ (z(a))1/2
EN({k, ξ, z(a)})2

+O(α′ −1) . (5.72)

In the previous subsection we have discussed the eikonal constraints (3.14). For the latter the 
scattering equations (5.60) separate. More precisely, for the region z1 < . . . < zN , after gauge fix-
ing three positions as (5.24) and introducing the parameterization (5.30) the scattering equations 
(5.60) boil down to the N − 3 equations

s12

xN−3
− s23

1 − xN−3
= 0 ,

−sN−l−1,N−l +
N−l−1∑

j=2
s1j + sj,j+1

xl

− sN−l−1,N−l

1 − xl

= 0 , l = 2, . . . ,N − 2 , (5.73)

each depending on only one of the remaining N − 3 positions. As a consequence in the limit 
(3.14) the high-energy behavior α′ → ∞ of the string form factor (5.59) is given by a single 
term in agreement with the results in the previous subsection.

5.3.2. Solutions of scattering equations in the classicalization high-energy limit
Interestingly, for special subspaces of kinematics (3.1), the scattering equations (5.60) become 

Stieltjes sums for zeros of special functions [50] and can be solved analytically. In this subsection 
we shall see, that a parameterization of the classicalization high-energy limit (3.19) allows for 
solutions (5.61) of the scattering equations (5.60) given by the zeros of a Jacobi polynomial.

In units of s

(N−2)2 the classicalization high-energy limit (3.19) can qualitatively be described 
by the following parameterization

s1,N = 1

2
(N − 3) (N − a− b) ,

sN−1,N = −1
(N − 3) (2 − b) , s1,N−1 = −1

(N − 3) (2 − a) ,

2 2
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s1,i = −1

2
(N − 2 − b) , si,N = −1

2
(N − 2 − a) ,

sN−1,i = 1

2
(4 − a− b) , sij = 1 , i, j ∈ {2, . . . ,N − 2} , (5.74)

with finite a, b (e.g. −1 < a, b < 0). With the identification

a= α + N − 1 , b= β + N − 1 (5.75)

the parameterization (5.74) can then be adjusted to:

s1,N = 1

2
(3 − N) (α + β + N − 2) ,

sN−1,N = 1

2
(N − 3) (N − 3 + β) , s1,N−1 = 1

2
(N − 3) (N − 3 + α) ,

s1,i = 1

2
(1 + β) , si,N = 1

2
(1 + α) ,

sN−1,i = 1

2
(6 − 2N − α − β) , sij = 1 , i, j ∈ {2, . . . ,N − 2} . (5.76)

For this special two parameter family of kinematics (5.76) (described by α, β) the scattering 
equations (5.60) allow for solutions (5.61), which can be related to the N − 3 zeros xa, a =
1, . . . , N − 3 of the Jacobi polynomial P (α,β)

N−3 (x) [51]. Actually, this solution is degenerate by 

(N − 3)!, i.e. each solution z(l)
i = xπl(i−1), i = 2, . . . , N − 2 is specified by a permutation πl ∈

SN−3, l = 1, . . . , (N − 3)! of the N − 3 zeros xa . For this solution the SYM amplitude (5.67)
and the graviton amplitude have been worked out in compact form8 [51]

AYM(1, . . . ,N) =
(N−3)!∑

l=1

1

σ
(l)
12 . . . σ

(l)
N1

EN({k, ξ, σ (l)})
det ′(σ (l))

= 24− N
2 (N − 3)!!

�
(

N−1+α
2

)
�
(

1 + β
2

)
�
(

N−1+α+β
2

)
�
(

1+α
2

)
�
(

N−2+β
2

)
�
(

2N−5+α+β
2

) HN(α,β) ,

(5.77a)

MFT(1, . . . ,N) = κN−2
(N−3)!∑

l=1

EN({k, ξ, σ (l)})2

det ′(σ (l))

= −κN−2 28−N [(N − 3)!!]2
�
(

N−1+α
2

)
�
(

1 + β
2

)
�
(

N−1+α+β
2

)
�
(

1+α
2

)
�
(

N−2+β
2

)
�
(

2N−5+α+β
2

)

×
�
(
1 + α

2

)
�
(

N−1+β
2

)
�
(

2N−4+α+β
2

)
�
(

1+β
2

)
�
(

N−2+α
2

)
�
(

N−2+α+β
2

) HN(α,β)2 , (5.77b)

respectively. Above, HN is the helicity dependent part depending on the external kinematics of 
momenta ki and polarizations ξj to be specified below.

8 Note, that we have corrected the gauge amplitude by a factor of 1
(N−3)! , which is missing on the r.h.s. of Eq. (11) in 

[51].



G. Dvali et al. / Nuclear Physics B 893 (2015) 187–235 219
For α, β > −1 the n-th order Jacobi polynomial P (α,β)
n (x) has n distinct (real) roots in the 

interval (−1, 1). The conditions α, β > −1 are to be imposed for the orthogonality of the Jacobi 
polynomials [52]. However, we may relax these constraints. Therefore, in (5.77a) and (5.77b) we 
may consider α and β as two distinct arbitrary real parameters:

α,β ∈ R . (5.78)

In this case P (α,β)
n (x) denote generalized Jacobi polynomials [52]. Note, that the zeros of the 

latter, and therefore the solutions of (5.61), may be complex and the comments below Eq. (5.61)
apply. We have verified, that the results [51] can be derived for generic parameters α, β ∈ R
as long as no singularity occurs. So the amplitudes (5.77a) and (5.77b) are valid for generic 
parameters α and β (5.78). Hence, we may simply rewrite (5.77a) and (5.77b) in terms of the 
parametrization (5.74)

AYM(1, . . . ,N) = 24− N
2

(
s

(N − 2)2

) 4−N
2

(N − 3)!!

×
�
(
a
2

)
�
(

3
2 + b−N

2

)
�
(

1−N+a+b
2

)
�
(
1 + a−N

2

)
�
(
b−1

2

)
�
(
a+b−3

2

) HN(a,b) , (5.79a)

MFT(1, . . . ,N) = −κN−2 28−N s

(N − 2)2
[(N − 3)!!]2

×
�
(
a
2

)
�
(

3
2 + b−N

2

)
�
(

1−N+a+b
2

)
�
(
1 + a−N

2

)
�
(
b−1

2

)
�
(
a+b−3

2

)

×
�
(

3
2 + a−N

2

)
�
(
b
2

)
�
(
a+b−2

2

)
�
(

1 + b−N
2

)
�
(
a−1

2

)
�
(
a+b−N

2

) HN(a,b)2 , (5.79b)

respectively. Above, we have reinstated the s-dependence by inspecting (4.10) and (4.14). This 
s-behavior may also be easily extracted from considering the behavior of the determinants 
entering in (5.79a) and (5.79b). For the (N − 3) × (N − 3) reduced matrix (5.63) we have 

det ′ ∼
(

s

(N−2)2

)N−3
, while the determinant of the relevant (N − 2) × (N − 2) submatrix of �

scales as E2
N = det ′� ∼

(
s

(N−2)2

)N−2
. Furthermore, we have the kinematical factor [51]

HN(a,b) = c
N
2 −3

2

a+ b− 4

(
2 (N − 3) (N − 4) c1cN−1cN

(2 − N + a) (2 − N + b)
− c2cN−1 ξ1,N

)

+ c
N
2 −2

2

(
c1 ξN−1,N

2 − N + b
+ cN ξ1,N−1

2 − N + a

)
, (5.80)

with ξa,b ≡ ξab = ξaξb, c1 = ξ1,i , cN−1 = ξi,N−1, cN = ξi,N and c2 := ξi,j , i, j ∈ {2, . . . ,
N − 2}. This choice of polarization vectors (with arbitrary parameters c1, c2, cN−1 and cN ) guar-
antees the on-shell condition ξaka = 0, a = 1, . . . , N and momentum conservation.
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5.3.3. Fixing combinatorics from scattering equations
From (5.79b) let us now extract the large N behavior (classicalization limit) of the graviton 

amplitude for some −1 < a, b < 0. First, the kinematical factor HN behaves as cN/2, with some 
finite constant c. The ratio of Gamma-functions (depending on N ) can be approximated by (5.35)
as:

�
(

3
2 + a−N

2

)
�
(

3
2 + b−N

2

)
�
(

1−N+a+b
2

)
�
(
1 + a−N

2

)
�
(

1 + b−N
2

)
�
(
a+b−N

2

) ∼ −
(

N

2

)3/2

.

Hence, in total with [(N − 3)!!]2 ∼
√

2
π

(N−2)!√
(N−2)

we have

MFT(1, . . . ,N) ∼ κN−2 28−N cN s

(N − 2)2

(
N

2

)3/2

[(N − 3)!!]2

∼ κN−2 s

(N − 2)2
(N − 1)! , (5.81)

in lines with the behavior (4.14) for the field theory graviton amplitudes. It is interesting to 
note, that for s ∼ N the number on the r.h.s. of (5.81) approximately coincides with the dimen-
sion (N − 3)! of the period matrix of the moduli space M0,N of curves of genus zero with 
N labeled points, which in turn is the set of Riemann spheres with N marked points mod-
ulo isomorphisms of Riemann surfaces sending marked points to marked points, i.e. M0,N �
{(z1, . . . , zN) ∈ P1(C) | zi 	= zj }/PSL(2, C).

5.3.4. High-energy classicalization limit of string amplitudes from scattering equations
Stieltjes has already discovered a relation between the zeros of classical polynomials and 

the electrostatic equilibrium interpretation of the saddle point approximation, which is closely 
connected with the calculation of the discriminant of these polynomials. In fact, in a moment 
we shall see that in the classicalization parameterization (5.76) the discriminant of generalized 
Jacobi polynomials is related to the Koba–Nielsen factor. Here, we shall compute the high-energy 
open superstring N -gluon amplitude (5.70) and the high-energy closed superstring N -graviton 
amplitude (5.72) in the classicalization parameterization (5.76). Therefore, we shall evaluate 
(5.70) and (5.72) at the solutions of the scattering equations (5.60), which are described by the 
N − 3 zeros xa, a = 1, . . . , N − 3, of the generalized Jacobi polynomial P (α,β)

N−3 (x).
To proceed we first need to work out some properties of the zeros xa of generalized Jacobi 

polynomials. With

l = 1

(N − 3)!
∂N−3

∂xN−3
P

(α,β)

N−3 (x) = 23−N

(N − 3)!
�(2N − 5 + α + β)

�(N − 2 + α + β)
, (5.82)

being the coefficient of the highest term xN−3 of the Jacobi polynomial P (α,β)

N−3 (x) the discrimi-
nant of the latter is given by [52]:

�N−3 := l2N−8
∏

1≤a<b≤N−3

(xa − xb)
2

= 2−(N−3)(N−4)

N−3∏
ν=1

νν−2N+8 (α + ν)ν−1 (β + ν)ν−1

× (α + β + N − 3 + ν)N−3−ν . (5.83)
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Furthermore, we derive the following identities:

N−3∏
a=1

(1 − xa) = (N − 3)! P
(α,β)

N−3 (1)

P
(α,β)

N−3

(N−3)
(x)

= 2N−3 �(N − 2 + α)

�(1 + α)

�(N − 2 + α + β)

�(2N − 5 + α + β)

= 2N−3
N−3∏
ν=1

(α + ν) (α + β + N − 3 + ν)−1 ,

N−3∏
a=1

(1 + xa) = (−1)N+1 (N − 3)! P
(α,β)

N−3 (−1)

P
(α,β)

N−3

(N−3)
(x)

= 2N−3 �(N − 2 + β)

�(1 + β)

�(N − 2 + α + β)

�(2N − 5 + α + β)

= 2N−3
N−3∏
ν=1

(β + ν) (α + β + N − 3 + ν)−1 . (5.84)

With these preliminaries for the kinematic invariants (5.76), the Koba–Nielsen factor of (5.70)
can be worked out for any solution (5.61). The latter is specified by some permutation πl ∈
SN−3, l = 1, . . . , (N − 3)! acting on the N − 3 zeros xa of the generalized Jacobi polynomials 
P

(α,β)

N−3 (x) as {z(l)
i = xπl(i−1) | i = 2, . . . , N −2}. Together with the three SL(2, C) fixed positions 

z
(l)
1 = −1, z(l)

N−1 = ∞ and z(l)
N = 1 we obtain

∏
i<j

|z(l)
ij |α′sij = 2α′s1N

N−2∏
a=2

|z(l)
1 − z(l)

a |α′s1a |z(l)
N − z(l)

a |α′saN
∏

2≤a<b≤N−2

|z(l)
a − z

(l)
b |α′sab

= 2α′s1N

N−3∏
a=1

|1 + xa|α′s1m |1 − xa|α′smN
∏

1≤a<b≤N−3

|xa − xb|α′smn ,

=
N−3∏
ν=1

(
νν (α + ν)α+ν (β + ν)β+ν

(α + β + N − 3 + ν)α+β+N−3+ν

)α′/2

, (5.85)

with any m, n ∈ {2, . . . , N − 2}. Note, that the above expression is independent on the permu-
tation πl under consideration, i.e. for the parameterization (5.76) each solution (5.61) of the 
scattering equation yields the same Koba–Nielsen factor. In addition, in the sum (5.70), the quo-

tient EN({k,ξ,z(a))

det′ (z(a))1/2 is independent on the particular solution a. As a consequence we can rewrite 
this sum as

(N−3)!∑
a=1

(
N∏

i<j

|z(a)
ij |α′sij

)

det′ (z(a))1/2
EN({k, ξ, z(a)})

= (N − 3)!
(
||1,N−1,N

1,N−1,N

)1/2
(

N−3∏
a=1

(1 + xa)

)⎛⎝∏
i<j

|z(l)
ij |α′sij

⎞
⎠

×
(N−3)!∑ 1

σ
(a)

. . . σ
(a)

EN({k, ξ, σ (a)})
det ′(σ (a))

, (5.86)

a=1 12 N1
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,

with l denoting any solution. In (5.86) the last factor yields the SYM amplitude (5.77a). On the 
other hand, based on the results in [51] we have:

||1,N−1,N
1,N−1,N = [(N − 3)!]2 l3

P
(α,β)

N−3 (1) P
(α,β)

N−3 (−1)
= (−1)N+1 29−3N (N − 3)!

× �(1 + α)

�(N − 2 + α)

�(1 + β)

�(N − 2 + β)

(
�(2N − 5 + α + β)

�(N − 2 + α + β)

)3

. (5.87)

With (5.84) this gives:

(
||1,N−1,N

1,N−1,N

)1/2
(

N−3∏
a=1

(1 + xa)

)

=
√

(−1)N+1 23−N(N − 3)!
×
{

�(1 + α)

�(N − 2 + α)

�(N − 2 + β)

�(1 + β)

�(2N − 5 + α + β)

�(N − 2 + α + β)

}1/2

.

After putting all expressions together we arrive at the final result of (5.70)

A(1, . . . ,N) = gN−2
YM

(
2πα′)N−3

2 (N − 3)!
N−3∏
ν=1

(
−ν (β + ν)(α + β + N − 3 + ν)

2 (α + ν)

)1/2

×
N−3∏
ν=1

(
νν (α + ν)α+ν (β + ν)β+ν

(α + β + N − 3 + ν)α+β+N−3+ν

)α′/2

AYM(1, . . . ,N) +O(α′ −1)

(5.88)

with the field-theory gluon amplitude given in (5.77a). Note, that with the parameterization (5.76)
for N = 4 the result (5.88) boils down to (5.6) with (5.8). Furthermore, the analytic structure of 
the result (5.88) is very reminiscent of the functional dependence appearing in (5.18).

Next, let us compute the closed superstring N -graviton amplitude in the high-energy classi-
calization parameterization (5.74). We start from the expression (5.72). For our solutions (5.61)
the determinants det′ (z(a)) and det′ (z(a)) are real quantities (5.87). The same is true for the 
Shapiro–Virasoro factor. As a consequence the latter can be expressed as a square root of the 
Koba–Nielsen factor (5.85) and the sum in (5.72) can be written as

(N−3)!∑
a=1

(
N∏

i<j

|z(a)
ij | α′

2 sij

)

det′ (z(a))1/2 det′ (z(a))1/2
EN({k, ξ, z(a)})2

=
⎛
⎝ N∏

i<j

|z(l)
ij | α′

2 sij

⎞
⎠ (N−3)!∑

a=1

EN({k, ξ, z(a)})2

det′ (z(a))
,

with l denoting any solution and the last factor being the field-theory graviton amplitude (5.77b). 
Eventually after putting all expressions together we obtain

M(1, . . . ,N) = (4πα′)N−3
N−3∏
ν=1

(
νν (α + ν)α+ν (β + ν)β+ν

(α + β + N − 3 + ν)α+β+N−3+ν

)α′/4

×MFT(1, . . . ,N) +O(α′ −1) , (5.89)
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with the field-theory graviton amplitude given in (5.77b). Again, with the parametrization (5.76)
for N = 4 the result (5.89) yields (5.14).

The high-energy limits (5.88) and (5.89) correspond to the Case (i) discussed in the previous 
subsection, i.e. Ms → 0 (and α′ → ∞) for finite N and large momenta s → ∞. If the parame-
terization (5.76) is taken in units of s, i.e. |sij | ∼ s we can easily reinstate the s-dependence in 
(5.88) and (5.89) and find agreement with the results (5.41) and (5.56), respectively.

6. Black hole dominance

6.1. Black hole dominance and a cross-check by semi-classical estimates

An useful cross-check of large-N scaling of amplitudes is provided by applying them to the 
production of generic classical states composed of much softer gravitons than a black hole of 
the same mass. It is obvious that such states are in a very weak λ domain and thus the semi-
classical estimates are expected to be applicable. We shall then match the perturbative quantum 
and non-perturbative semi-classical estimates.

Such a matching serves us for a double purpose. First, it enables us to obtain an independent 
input about the scaling of large-N amplitude. It also shows how the suppression of production of 
non-black hole classical configurations can be understood from N -particle perturbative ampli-
tudes. This understanding gives a valuable information, as it uncovers the corpuscular quantum 
nature behind the exponential suppression of the production of classical configurations, described 
by soft coherent states, in high energy two-particle collision processes.

As an example, let us estimate the production rate of a classical gravitational wave in 
the above-discussed graviton–graviton scattering. For simplicity, we shall take the wave to be 
monochromatic, of characteristic wavelength L and the amplitude Acl . For such a monochro-
matic wave, the classical energy per wavelength-cubed is E = A2

clL. In order to be both in a 
weak gravity regime as well as in the domain of semi-classical approximation, we shall demand 
that the Schwarzschild radius corresponding to this energy is much shorter than the wavelength, 
R = EGN � L. Or equivalently,

A2
clGN � 1 . (6.1)

The leading behavior of the transition probability to such a classical wave can be reliably esti-
mated in the semi-classical approximation, and is given by,

P2→Wave = e
− A2

cl
L2

h̄ × (coupling-dependent factor) , (6.2)

where the quantity in the exponent is the Euclidean action, SE = A2
clL

2.
In order to make contact between the perturbative matrix element (1.3) and the semi-classical 

one (6.2), we have to translate the monochromatic wave in the quantum language. In this lan-
guage, the wave is a coherent state |N〉coh of gravitons of momenta p = h̄/L and the average 

occupation number N = A2
clL

2

h̄
,

|N〉coh ≡ e− N
2
∑
n

N
n
2√
n! |n〉 , (6.3)

where |n〉 are n-graviton Fock states of momenta p = h̄/L. Notice, that the condition (6.1) is 
simply λ � 1, signaling that we are in a weak-coupling regime in which gravitons can be treated 
as free and thus the perturbative amplitudes must be fully applicable.
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By choosing L and Acl appropriately, we can make the parameter N of the coherent state 
arbitrarily-large for an arbitrary choice of E. In this way, we can create an arbitrarily-classical
wave of arbitrarily low or high energy. In particular, E can be chosen to be ultra-Planckian or 
well below the Planck scale, without affecting the validity of the classical approximation for the 
final monochromatic wave. This fact suggests that for the estimate of the transition probability 
we should be able to reliably use both semi-classical as well as perturbative quantum amplitudes, 
and the two must match to the leading order.

The rest of the analysis is straightforward. We need to estimate the perturbative S-matrix 
element |〈2|S|N〉coh|2pert using (1.3) and match it with (6.2). Notice, that since the Fock states 
that enter in the coherent state (6.3) correspond to different occupation numbers of the same 
fixed momentum (or wavelength) gravitons, for each choice of this wavelength only one Fock 
state from this sum matches the center of mass energy of the initial 2-graviton states. This is 
the state |n〉 with n = N = √

s/p. Correspondingly, only the transition to this particular state is 
possible. That is, 〈2|S|n〉 = δn,N 〈2|S|N〉, where 〈2|S|N〉 is given by (1.3). We thus obtain,

|〈2|S|N〉coh|2 = |e− N
2
∑
n

N
n
2√
n! 〈2|S|n〉|2 = e−NλN . (6.4)

Matching this expression with (6.2) reproduces the exponential suppression of the classical state.
The factor λN reveals an extra suppression, due to weak coupling. This is expected, since the 

transition must be absent in a free theory. This extra suppression is absent for the case of black 
hole production, since λ = 1, which is one of the reasons of black hole dominance. The other, as 
explained, is the enhancement by an eN factor due to multiplicity of states at the quantum-critical 
point.

6.2. Possible subtleties of the perturbative description

We would like to stress the possible subtleties of the perturbative framework we are work-
ing in and its validity for black hole physics. A priori, it is not obvious that signatures of black 
hole formation in two-particle scattering can be captured by perturbative amplitudes. In particu-
lar, by tree-level amplitudes that are suppressed by the powers of some weak coupling, such as
the gravitational or string coupling. It could happen that no single class of Feynman diagrams 
describing such weak coupling expansion can be pin-pointed as a source of black hole forma-
tion in two-particle scattering. The answer instead could require either a full re-summation of 
infinite number of diagrams, or even inclusion of contributions of yet unknown non-perturbative 
processes.

So what makes us think that black hole formation can be captured perturbatively?
First, an encouragement comes from the fact that our results allow to create a link between 

the production of black holes and other classical objects, composed out of softer gravitons than 
a would-be black hole at a given 

√
s. In other words, we identify a kinematical regime in which 

the questions of reliability of black hole production description is linked, with the reliability 
of the description of production of other classical objects, whose quantum composition can be 
identified beyond any reasonable doubt.

However, we are going beyond this link by postulating that there exists a part of the infor-
mation that can be extracted from a class of perturbative diagrams within a properly identified 
kinematical regime. These are the 2 → N transition processes.

What we are suggesting is that in the process of black hole formation, which in general is 
expected to be a highly non-perturbative phenomenon, there exists a well-defined division be-
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tween the contribution that can be interpreted in the language of perturbative diagrams and the 
fully non-perturbative one. What is important is that the knowledge of the latter contribution is 
crucial for identifying the former one. In other words, without having the non-perturbative in-
put that black holes represent a N -graviton bound-state it would be impossible to look for the 
perturbative counterpart of the process in the form of 2 → N scattering.

Thus, we are postulating that it is meaningful to represent, schematically, the black hole for-
mation probability as the sum over probabilities,∑

j

|〈2|S|N〉pert|2 |〈N |BH〉j |2 , (6.5)

with each member of the sum representing a product of perturbative and non-perturbative matrix 
elements. Here the sum over j runs over non-perturbative black hole states |BH〉j , with their 
multiplicity scaling as eN . Of course, one can say that such a scaling is expected from the black 
hole entropy counting, and one does not need any microscopic theory for postulating it. This is 
certainly true, but solely knowledge of the multiplicity of unknown hypothetical micro-states is 
useless for understanding the mechanism of black hole production.

The new ingredient is contained in the identification of the projection 〈N |BH〉j of these states 
on a N -graviton state. It is this identification what enables to conclude that black hole formation 
process includes a perturbative part in the form of the perturbative amplitude of N -graviton 
production. Of course, drawing such a connection is impossible without a microscopic theory 
and this is where the black hole corpuscular portrait enters in our analysis. Since in this picture 
black hole represents an N soft graviton bound-state at the critical point, it naturally suggest a 
significant projection on an out-state of N free gravitons of wavelengths equal to the ones of the 
black hole constituents.

The subtle point here is not in accepting such an overlap between the N -graviton state and a 
black hole state, but rather in the perturbative part of the probability, which assumes that we can 
reliably estimate the N -graviton production in perturbation theory. Viability of the latter assump-
tion has nothing to do with a particular microscopic theory of a black hole and, as shown above, is 
generic for perturbative computation of the production rate of arbitrary N -particle states in two-
particle collision, including the ones not even remotely related to black holes. This separation of 
the issues is crucial for understanding the framework we are working in.

In order to explain why this latter assumption is so subtle, let us consider the two-particle 
scattering at ultra-Planckian center of mass energy from a fully non-perturbative corpuscular 
point of view. In fact, we can very quickly realize that the initial state can be represented as a 
genuine two-particle state only at infinite separation. At finite separation, L, the center of mass 
energy sources a Newtonian gravitational field φ(x), which in the corpuscular language itself 
represents a coherent state of longitudinal gravitons in which the gravitons of wavelength L
have average occupation number N = EL2

P [3,4,53,54]. Schematically, we can write this in the 
following form,

|Newton〉 =
∑

nk=0,...,nk=∞

∏
k

e− Nk
2

N
nk
2

k√
nk! |nk=0, . . . , nk=∞〉 , (6.6)

where |nk=0, . . . , nk=∞〉 are the Fock states with definite occupation numbers of longitudinal 
gravitons of wavenumber k and the summation is taken over all possible distributions of nk-s. 
The function Nk represents the data that determine the average occupation number of gravitons 
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of wavenumber k in the given coherent state. The function N|k| is exponentially decaying for 
|k| � 1/L. The dominant contribution to gravitational self-energy,

Egrav = h̄

L2
P

∫
d3 x ∇φ ∇φ ∼ h̄

L

s

M2
P

(6.7)

is coming from the modes of momenta k ∼ 1/L, with their number being, N = s

M2
P

. Notice that 

this number coincides with the number of black hole constituent gravitons. The only difference 
is that the gravitons that are present in the initial state have extremely long wavelengths and 
their collective coupling λ is negligible. Correspondingly, neither they contribute significantly 
to the energy, nor are they capable of forming a bound-state. Nevertheless, the message is that 
an ultra-Planckian initial state for any finite value of L is secretly a multi-particle state that on 
top of the two source particles contains N additional gravitons. As the system evolves in time, 
decreasing the separation between the initial two source particles, L, the multi-particle nature of 
the initial state becomes more and more apparent. The peak of the dominant graviton distribu-
tion in the coherent state evolves towards the higher momenta. The non-perturbative N -particle 
physics becomes fully important for h̄/L of order 

√
s

N
. At this stage λ becomes order one signal-

ing that the constituent gravitons are driven into the quantum critical point at which they form 
the bound-state and Bogoliubov modes become gapless.

What we are suggesting in our current analysis is that the above fully non-perturbative evo-
lution can be substituted by a perturbative creation of N -graviton state and its projection on a 
black hole state using the non-perturbative input from the microscopic theory.

The fact that we are able to cross-check the result by normalizing the amplitude to the creation 
of a generic N -particle state, indicates that the failure of the above program would imply a 
problem in the description of the production of the N -graviton state in perturbation theory, rather 
than in the projection of such state into a black hole quantum state. It is interesting that at the 
level of the studied kinematic regimes the perturbative treatment comes up with the adequate 
physical results.

7. Lessons from gravitational multi-particle amplitudes

7.1. Peculiarities of multi-particle amplitudes in gravity

One of the outcomes of our analysis is to reveal a special property of multi-particle grav-
itational amplitudes in contrast to similar amplitudes in non-derivatively interacting bosonic 
theories, such as for example, in a self-interacting scalar theory αφ φ4, with a non-derivative 
coupling αφ .

It has been known for some time [55] that multi-scalar production amplitudes in such theories 
exhibit (at least at the threshold of producing N on-shell massive scalars of mass mφ out of 
some initial few-particle state, the simplest being a single virtual boson of energy 

√
s = Nmφ) a 

factorial growth,

A1→N ∼ α
N/2
φ N ! , (7.1)

and a corresponding growth of the cross-section,

σ1→N ∼ 1 |A1→N |2 ∼ αN
φ N ! , (7.2)
N !
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where we have omitted the phase-space and other irrelevant factors. In non-derivatively coupled 
theory the tree-level coupling αφ is momentum-independent and the factorial growth violates 
unitarity at sufficiently large N . Perturbation theory breaks down for N � α−1

φ . The physical 
implications of this phenomenon is not fully understood. It may signal inapplicability of the 
perturbative treatment or even an inconsistency of the theory. Since, this question is not the focus 
of our paper we shall not discuss it further, but rather confront the growth of the scalar amplitude 
with the analogous factorial behavior in gravity and stress the important differences.

Notice that Eq. (7.1) is very similar to (1.3) with the difference that α of gravity is replaced by 
the scalar self-coupling αφ . However, the momentum dependence of the gravitational coupling, 
α = L2

ps/N2, makes a dramatic difference. In particular, for large N it overpowers the factorial 
growth of diagrams. The resulting amplitude in gravity is exponentially-suppressed as opposed 
to the factorially-exploding counterpart in non-derivative φ4 theory.

Notice, that the perturbative tree-level amplitudes in gravity and in non-derivative scalar 
theory have problems in the opposite domains of N , with the dramatic difference that in the 
problematic domain gravity amplitudes are cured by black holes, whereas in φ4 theory no obvi-
ous helper is visible.

On the other hand, in φ4 theory scattering for N � α−1
φ is unitary, whereas for gravity tree-

level unitarity is violated for small N and large s. However, as discussed above, in gravity this 
very domain is excluded by the black hole quantum portrait, due to collective effects of graviton 
Bose-gas. Thus, the black hole physics prevents us from entering there.

In contrast, the domain N � α−1 in gravity is perturbatively-safe, since in this domain αN ∼
λNe−N/N !, whereas the analogous domain in φ4 violates unitarity. In particular, as we have 
seen, in gravity this large-N behavior takes care of the exponential suppression in the production 
of classical configurations composed of gravitons softer than the Schwarzschild radius of a 

√
s

mass black hole.
The property of suppression of multi-particle amplitudes in N � α−1 domain is expected to 

be shared by other derivatively-coupled theories, which are also considered as candidates for 
classicalization. For example, in a theory (∂μφ∂μφ)2 the effective quartic coupling scales as the 
fourth power of momentum and the multi-particle production must be suppressed in the domain 
N � α−1.

7.2. Perturbative insights into non-perturbative black hole production

The former discussion on the factorial growth of the cross section for scalar theories of type 
φ4 sheds light on how the perturbative amplitudes can foresee the non-perturbative existence of 
black holes. The simplest way to identify non-perturbative physics within perturbation theory is 
to look for the limits of applicability of perturbation theory. As previously discussed a key aspect 
of the approach to quantum gravity based on classicalization lies in replacing ultra-Planckian 
2 → 2 strongly coupled processes, violating unitarity already at tree level, by 2 → N weakly 
coupled processes where the total center of mass energy 

√
s is equi-distributed into the N soft 

outgoing gravitons. Irrespectively how large is 
√

s the corresponding process at tree level is, 
for large enough N , well defined perturbatively. Indeed, all vertices involved in the process can 
be made, tuning N , arbitrarily small. However, there is a prize that we need to pay when we 
proceed in this way, namely the growth of the number of tree Feynman diagrams contributing 
to the 2 → N process. This growth is at the origin of the factorials discussed in the previous 
subsection. The interplay between the effective coupling constant and the growth of the number 
of diagrams sets the regime where weakly coupled perturbative analysis at tree level is reliable.
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To fix ideas let us consider a generic bosonic theory where amplitudes 2 → N for arbitrary 
large value of N are not forbidden by any form of the selection rule. To characterize the theory 
we need to know the number of vertices involved in the process, the number C(N) of tree level 
diagrams and the value of the effective coupling g entering into each vertex. If we assume N to 
be large enough and we consider a three point vertex the number of vertices will be order N and 
the number of trees will grow with N as (up to exponents unimportant for this discussion),9

C(N) ∼ N ! . (7.3)

consequently the cross section will behave as

σ2→N ∼ N !αN (7.4)

for α ≡ g2. Note that for a φ4 theory we get (7.2). The leading dependence of σ2→N on the 
center of mass momentum is implicitly contained in the effective coupling α ≡ g2. The effective 
coupling is defining the interaction in the underlying Lagrangian. This interaction term can define 
a relevant or an irrelevant operator depending on the spin of the bosonic field involved in the 
process. The φ4 case corresponds to the marginal case. If it is a relevant operator (as it will be with 
a gφ3 type of theory) then the effective coupling α will depend on the corresponding momentum 
transfer 

√
t (N) – which for the classicalization kinematics (where 

√
s is equi-distributed) is of 

order 
√

s
N

– as 1
t (N)

. However, if the interaction vertex defines an irrelevant operator, as it is the 
case for the three-point vertex of gravitons, α goes as t (N). In this case we obtain

σ2→N ∼ N !
(

sL2
P

N2

)N

(7.5)

that is precisely what we have reached for these amplitudes both in the KLT approach (supple-
mented by the results from scattering equations) as well as in the string approach.

Once we have fixed the effective coupling and its dependence both on s and N we can set 
the limits of perturbation theory. The perturbative approach to multi-particle scattering is reliable 
only if

σ2→N+1

σ2→N

� 1 , (7.6)

which leads to

α � 1

N
. (7.7)

Although the amplitude in absolute terms may not violate unitarity, the turning point indicates 
that some non-perturbative information must be included for the corresponding value of N . Thus, 
for gravity the bound (7.6) implies.

N � sL2
P . (7.8)

This is a very interesting result since this bound is telling us that N should be larger or equal to 
the corresponding black hole entropy (equivalently number of constituents) of a black hole with 

9 To be more precise if we use Cayley’s formula we should expect C(N) ∼ N !/2N where the factor 2N depends on 
the specific assumption that the vertex is a three point vertex. Incidentally, note that the factor 2−N is consistent with the 
similar factor appearing in the string result (5.81) presented at the end of Section 5.
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mass equal to the center of mass energy. It is instructive to see how the limits of applicability 
of perturbation theory are teaching us about the underlying physics. For large value of s and N
much smaller than s in Planck units, the amplitude is obviously violating unitarity. At this point 
you can wonder if increasing the value of N for the same value of s will improve the situation. 
What you observe is that while you are in the regime with N much smaller than s, increasing 
N is not making the situation better but worst. In other words in this regime the ratio (7.6) is 
bigger than one. This perturbative situation changes only when you reach a critical value of N
where the ratio (7.6) reaches one and starts to decrease. The regime where the ratio (7.6) is bigger 
than one is precisely the regime corresponding, in the black hole portrait, to the strong coupling 
regime with λ larger than one. Thus, whenever we violate the above perturbative bound we en-
ter into a regime that requires, in order to be analyzed, non-perturbative input. Nicely enough 
this regime precisely agrees with the region λ ≥ 1, i.e., with the region that is cut out using the 
non-perturbative corpuscular information of the black hole portrait. Moreover, the turning point 
happens precisely when N is equal to the black hole entropy. This makes explicit the way pertur-
bation theory anticipates not only the non-perturbative black hole formation but also, as already 
stressed many times, its corpuscular constituency. In other words the perturbative analysis, both 
in field theory as well as in string theory, sets the limit of applicability of perturbation theory 
in the classicalization kinematics precisely at the point where the system of outgoing gravitons 
reaches the dynamical condition defining the critical point of the black hole portrait. Further-
more, perturbation theory encodes information about the black hole existence, despite the fact 
that for corresponding value of N the amplitude is still unitary in the absolute sense.

Finally let us stress the difference with the case where the three point interaction vertex is a 
relevant operator. In this case the former bound becomes s ≥ N3. This means that we don’t have 
problems for arbitrarily large s and small N but instead for large N and small s. This is a key 
difference with the case of irrelevant operators i.e. with the case of gravity.

8. Outlook: classicalization and black holes in the light of graviton amplitudes

In previous sections we have collected some results regarding tree level N -graviton ampli-
tudes in the eikonal-Regge kinematical regime. In this summary section we shall complement 
the discussion, already initiated in the introduction, on the physical meaning of these findings.

In the field theory context we have focused our attention on two key issues. First of all, we have 
analyzed how for ultra-Planckian values of 

√
s the amplitude is smoothed-out once we increase 

the number N of outgoing gravitons. This kinematic mechanism of unitarization – which is at the 
core of the idea of classicalization – would be nevertheless completely useless if the contribution 
of this kinematics to the total scattering rate were very much suppressed. So our second task has 
been to extract from the concrete expressions of the amplitudes this suppression factor. By using 
the scattering equations in the classicalization limit this has been accomplished for graviton am-
plitudes (4.16) in Eq. (5.81). For large N the graviton scattering matrix element in this kinematic 

regime depends on s and N as ∼ (
sL2

P

N2 )NN !. From this expression we observe that the ampli-

tude starts to be smoothed-out for N = sL2
P . We can interpret this value of N as the unitarity 

threshold for the given value of s. In other words, a slower growth of N in the double-scaling 
limit (s, N → ∞) violates unitarity. Indeed, parameterizing the scaling as N1+γ = (sL2

P ), the 
matrix element in large N scales as ∼ NγNe−N , which for γ > 0 blows up for sufficiently large 
N . However, notice that the final states obtained in unitarity-violating scaling are precisely the 
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ones excluded by non-perturbative corpuscular physics, since they correspond to the over-critical 
region of the graviton bound-state, with λ > 1, since λ = sL2

P /N .
The key lesson we learn from the expression of the amplitude is how much this concrete 

kinematical configuration contributes to the total amplitude. Indeed, for this threshold value the 
suppression factor is ∼ e−N . The amplitudes with faster growing values of N with s are more 
suppressed, while the slower-growing ones, that would naively violate unitarity, are excluded by 
the non-perturbative many-body physics of soft gravitons.

As we have discussed, the physics interpretation of the previous result is quite transparent. 
The value of N at which the amplitude starts to smooth-out is precisely what would be the 
Bekenstein–Hawking entropy of a black hole of mass equal to the center of mass energy, i.e.,

√
s. 

Moreover, the suppression factor is precisely what would be the multiplicity of states of such a 
black hole according to the corpuscular quantum portrait. The crucial information we extract 
from here is how the amplitude reveals the microscopic structure of the black hole as being 
composed of the N soft outgoing gravitons. This is precisely, as already stressed in the introduc-
tion, what we expect from the N -portrait of black holes as composite systems of soft gravitons. 
Moreover, the kinematical conditions of the outgoing gravitons for N = sL2

P are the ones de-
termining the critical point of the graviton Bose–Einstein condensate. It is this criticality what 
accounts for the entropy needed to compensate the exponential suppression factor in the form of 
a large multiplicity of gapless Bogoliubov modes.

As already argued the regime with N larger than the threshold value determined by the per-
turbative amplitude corresponds to λ < 1 and although is not violating unitarity is very much 
suppressed. From the microscopic point of view we understand the large suppression of this 
multi-particle kinematics as due to the fact that the system defined by the outgoing gravitons is 
far from the critical point with a well-defined finite gap for the Bogoliubov modes. The regime 
with small number of outgoing gravitons violates unitarity and corresponds from the microscopic 
point of view to the strong collective-coupling regime λ > 1. This is the regime that the micro-
scopic non-perturbative dynamics is cutting out and this is the key of the unitarization mechanism 
through the black hole formation.

But what have we learned from the string theory amplitudes in this kinematical regime? In 
this eikonal-Regge kinematics it is easy to identify when purely stringy effects become relevant. 
Indeed, the effective center of mass energy 

√
si,i+1 between two consecutive final state gravitons 

goes like 
√

si,i+1 ∼
√

s
N

. Thus, this partial contribution to the total amplitude becomes sensitive 
to string effects if

√
s

N
≥ Ms , (8.1)

for Ms being the string mass scale. In such a case each of the N −3 vertical graviton propagators 
(see Fig. 7) should be effectively Reggeized. In other words, in this multi-Regge kinematics and 
in the regime (8.1), we should effectively dress each propagator with the Regge factor

s
(α′si,i+1)

i,i+1 , (8.2)

leading to an overall contribution of the order of e−(N−3) s

N2 ln( s

N2 )
with s measured in string 

units. This estimate is to be compared with the result (5.56) from the string theory computation.

Consequently, the field theory computation is reliable if 
√

s
N

≤ Ms . In this case the factor 
coming from the Reggeization of the exchanged gravitons becomes one. In Section 5 we have 
considered both situations in the double-scaling limit of both s and N large. In this double-scaling 
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Fig. 7. N -graviton scattering with N − 3 graviton propagators.

limit stringy Reggeization effects become relevant for 
√

s
N

larger than one (case (i)) while they 

are suppressed for 
√

s
N

smaller than one (case (ii)) (in both cases written in string units). Notice 
that the concrete value of Ls setting the regime where string effects are relevant only enters, in 
this kinematics, in the form of the formerly-described Reggeization of the exchanged gravitons.

In order to compare the field theoretic and the string theoretic pictures we need the relation 
between the two relevant mass scales, namely LP and Ls given in Eq. (5.2). With this relation 
we can, as described already in the introduction, consider different regimes. In the regime where 
g2

s N < 1 stringy effects due to the Reggeization of the exchanged gravitons starts to be relevant 
before the created soft gravitons organize themselves into a field theoretic self-sustained conden-
sate i.e. in the weak coupling regime λ < 1. For g2

s N > 1 instead the string effects are relevant 
only in the regime where the outgoing gravitons would be strongly coupled and therefore we 
could wonder if these Regge effects tame the field theoretical violation of unitarity.

However, the interesting value at which we want to focus our attention is g2
s N = 1, i.e., when 

the threshold of string effects exactly matches the field-theoretic critical point of black hole 
formation. For this special point we have,

gs = 1√
N

. (8.3)

What is the meaning of this relation? The answer is simply that this value corresponds to the well 
known string–black hole correspondence. The previous discussion sheds however a new light on 
this correspondence as determining the point where – for given kinematics – the threshold of 
string effects coincides with the critical point of the graviton Bose–Einstein condensate. Or, as 
already stressed in the introduction, this is the situation when at the would-be critical point the 
string coupling between the constituent quanta becomes equally important as the gravitational 
coupling [56] (see also [57,58]).

Finally, we would like to put forward a slightly more speculative observation. Until this point 
although we have been working within the general frame (closed = open × open) or equivalently 
(gravity = YM2) we have not used in any explicit way the information about the color of the 
YM gauge sector. What do we get if we naively use it? As it is customary, we have to use 
gs = g2

open, cf. Eq. (5.3). Moreover, if we think of the open string, as originally pointed out by 
’t Hooft, as the planar limit of the gauge theory, we should identify g2

open = 1
Nc

for Nc being the 
rank of the gauge group. If we naively combine these two ingredients we arrive to the formal 
“color-kinematics” relation,

N = N2
c . (8.4)

Of course in this formal relation N refers to the number of created soft gravitons and thus it 
must be interpreted with a bit of care. Note that we arrive to this formal relation only when we 
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put ourselves at the threshold of black hole formation. In these conditions the former relation 
between N and Nc becomes very reminiscent of the gauge/gravity duality relations. Indeed what 
this relation does is to identify the black hole entropy N with what would be the c-function of the 
gauge theory. Incidentally, an information that we have never used in our computation of graviton 
amplitudes. Pushing a bit forward the analogy, it seems to indicate a deep connection, taking 
place at the black hole threshold formation, between the hidden Chan–Paton factors dressing 
the open string we have used in the computation of the gravitational amplitudes and the gauge 
holographic dual. Obviously, this observation should be taken with a grain of salt but we feel it 
certainly deserves a further study.

The former “color kinematics” relation could be anticipated from a different point of view 
directly working with the gauge theory (or equivalently open string) amplitudes by simply im-
posing a good planar limit for higher loop amplitudes built using as generalized vertex the gauge 
theory amplitudes AN . For instance with the gauge theory amplitudes AN interpreted as effec-
tive vertex with N external lines we can define a 2 → 2 scattering amplitude with N − 3 internal 
loops. This loop gauge amplitude scales with the number of colors as NN−3

c and therefore in 
order to get a good large Nc planar limit we need to impose (for N large enough)

g2N
YMs−NN2N ∼ N−N

c . (8.5)

Using now g2
YM ∼ 1

Nc
the former condition becomes 

√
s = N (in open string units) which 

translated into Planckian language with gs = 1√
N

leads to the black hole threshold relation √
s = √

NMP . In other words what we observe is that at the level of the gauge amplitudes 
the condition of having a good planar limit in ’t Hooft sense (for loop amplitudes) underlies the 
mechanism of unitarization by black hole formation for the corresponding tree level gravitational 
amplitudes.

In conclusion, in this paper we have discussed a particular high-energy limit of Yang–Mills 
and gravity scattering amplitudes, both from the field theory as well as from the string perspec-
tive. From the technical side, we have derived new closed expressions for the tree-level string 
scattering amplitudes at high energies, which are valid for an arbitrarily large number of external 
particles. Moreover, we have considered a particular high-energy limit, which corresponds to the 
case of classicalization via black hole production, where black holes are bound states of a large 
number of very soft gravitons. As discussed, this correspondence finds additional support by the 
existence of a potentially new kind of large N gauge–gravity correspondence with N the number 
of external particles in eikonal Regge kinematics. As pointed out it would be interesting to relate 
this large N duality to the standard large N duality arising in the context of holography and the 
AdS/CFT correspondence.
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