Soil Microbial and Ecological Studies in Southern Victoria Land

ROY CAMERON, JONATHAN KING, and CHARLES DAVID

Bioscience Section
Jet Propulsion Laboratory
California Institute of Technology

Since 1961, the Jet Propulsion Laboratory (JPL) has conducted a desert-microflora program involving investigations on several continents of desert environments, soils, and microorganisms relevant to the detection and quarantine of life on Mars. The objectives are to study and identify basic groups of microorganisms of extreme environments, especially those of desert soils, and to correlate the environmental parameters with the distribution, abundance, and kinds of microorganisms and their activities.

Antarctic dry valleys have been studied during the austral summers of 1966–1967 (Cameron, 1967) and 1967–1968. Five field sites were established for approximately one-week periods, some in cooperation with the Virginia Polytechnic Institute (VPI) (Benoit and Cameron, 1967). Soil samples were collected aseptically from the surface to a level a few inches below the upper surface of permafrost at selected sites throughout the valleys. Measurements or observations were made either continuously or every three hours of soil temperature, solar-radiation flux, net thermal exchange, ultraviolet-radiation flux, light intensity, wind direction and velocity, barometric pressure, evaporation rate, relative humidity, dew point, and gas concentration.

During the past season, 58 surface and subsurface soil samples were collected. Twelve of them were obtained with Dr. James Turnock of NASA, Washington, D.C., for testing at the Lunar Receiving Laboratory. Microbiological analyses of 45 samples from 22 sites were made at the McMurdo biological laboratory. More than 1,000 pounds of frozen samples were sent to JPL's Soil Science Laboratory for further processing and analysis. Sandy, saline soils that are sometimes high in chlorides, nitrates, and sulfates, but quite low in organic matter, yielded few microorganisms.

For the first time in the study of desert-soil microbial ecology, it was found that the abundance and diversity of microorganisms was greatly dependent upon variations of specific ecologic factors. Unfavorable environmental conditions, such as east-west valley orientation, south-facing slopes, low solar-radiation flux, high southerly winds, low humidities, short duration of available water, and salty soils, were observed to restrict greatly the existence and activity of microorganisms. A comparison of favorable and unfavorable ecologic factors important for determining the distribution of life in the antarctic dry valleys is shown in Fig. 1. Under the least favorable conditions, either no microorganisms or only a single population of heterotrophic, aerobic, nonpigmented bacteria was observed. For example, such conditions were observed

![Figure 1. Ecological factors determining distribution of life in antarctic dry valleys.](121)
The abundances of microorganisms determined for 18 samples are shown in Fig. 3. The maximum total abundance did not exceed 10^5/g of soil, and some samples contained few or no microorganisms as determined by culture techniques. In three out of every four sites investigated, the subsurface microflora was more abundant than the surface microflora. Nonpigmented bacteria were generally more abundant than pigmented species and had the ability to grow in a wider variety of culture media. Most of the bacterial isolates were Bacillus spp., soil diptheroids, Micrococcus spp., and Mycococcus spp. The algae were primarily oscillatorioid and cocoid blue-green forms, including Oscillatoria spp., Microcoleus spp., Schizothrix spp., Anacystis spp., and Coccochloris spp. The fungi included a number of ascomycetous molds and some yeasts. Protozoa were of the flagellated or amoeboid forms. No bacteriophages were found. The absence of anaerobes is especially significant since they have not been found in the harshest of other desert soils (such as those of the Sahara and Atacama Deserts) investigated by JPL.

The relationship of population diversity and abundance of microorganisms in samples obtained from a valley in the Asgard Range is shown in Fig. 2. As indicated in this figure, species diversity and abundance increase with the favorableness of ecological conditions. For this valley, as well as for other valleys investigated, it was predicted and then substantiated that, with a given set of environmental conditions, there would be an ecological succession as well as a numerical increase in organisms as the environment became more favorable (Fig. 4).

Additional antarctic soil samples will be analyzed and attempts made to correlate the abundance, distribution, and kinds of microorganisms according to pertinent ecological factors operative in the dry valleys. For life-detection purposes, whether terrestrial or
extraterrestrial, it is becoming more evident that the environmental conditions, especially the duration of availability of nonsalty moisture, are extremely important for the existence of life in a harsh environment.

References
