Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

Graphical Abstract

Highlights
- Genome-wide RNAi screen identifies 405 genes required for ISC maintenance
- Comparison of ISC with female GSCs, and NBs finds common and distinct regulators
- COPI/Arf79F, CycT/Cdk9, and Mediator complexes are required in ISCs
- Unique cell-cycle regulators maintain diploid cells in intestine

Authors
Xiankun Zeng, Lili Han, ..., Xinhua Lin, Steven X. Hou

Correspondence
hou@nai.nih.gov

In Brief
In this study, Zeng et al. perform a systematic genome-wide RNAi screen and identify genes that regulate intestinal stem cells in Drosophila. These data provide a useful resource for understanding the regulatory networks of self-renewal and differentiation of adult somatic stem cells.
Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

Xiankun Zeng, Lili Han, Shree Ram Singh, Hanhan Liu, Ralph A. Neumüller, Dong Yan, Yanhui Hu, Ying Liu, Wei Liu, Xinhua Lin, and Steven X. Hou

1Basic Research Laboratory, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
2Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100864, China
3Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
4Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
5Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 München, Germany

Correspondence: hous@mail.nih.gov

http://dx.doi.org/10.1016/j.celrep.2015.01.051

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

SUMMARY

The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs) in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC) lineage differentiation, and ISC-to-enteroendocrine (EE) lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

INTRODUCTION

Animal tissues and organs are generated and maintained by stem cells. During development, they generate most of the cell types to form an organ, while in adult animals, they maintain tissue homeostasis by supplying new cells to replace dying or damaged ones. To accomplish this task, stem cells have to continuously renew themselves and, at the same time, generate daughter cells to produce terminal differentiated cells for their organ-specific functions. Furthermore, the somatic differentiated cells can be reprogrammed into induced pluripotent stem cells (iPSCs) through overexpression of a few transcription factors (TFs) or the metabolic switch (Ito and Suda, 2014; Takahashi and Yamanaka, 2006; Zhang et al., 2012). The primary functions of activated oncogenes and inactivated tumor suppressors may be to reprogram cellular metabolism and convert somatic cancer cells into pluripotent tumor-initiating cells (also called cancer stem cells [CSCs]) (Ward and Thompson, 2012; Zhang et al., 2012). Therefore, understanding how adult stem cells (particularly, somatic adult stem cells) are regulated is important for understanding tissue degeneration and tumorigenesis.

Because the digestive organs are the fastest renewing organs in all animals (Hakim et al., 2010), intestinal stem cells (ISCs) in both adult mouse and Drosophila have been studied extensively. Drosophila ISCs divide asymmetrically to produce one new ISC (self-renewal) and one immature enteroblast (EB) or one pre-enteroendocrine (pre-EE) cell. The EB differentiates into an absorptive enterocyte (EC), and the pre-EE cell matures into a secretory EE cell (Biteau and Jasper, 2014; Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006; Zeng and Hou, 2015). Notch (N) signaling plays a major role in regulating ISC self-renewal and differentiation (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006, 2007).

These different cell types can be identified morphologically as well as by their expression of marker genes. ISCs are diploid, have a small nucleus, and express Delta (Dl), a ligand for the N receptor signal transduction pathway. EBs are diploid, have a small nucleus, and express Su(H)/GBe-lacZ, a transcriptional reporter of the N pathway. ECs are polyploid, have a large nucleus, and express the transcriptional factor Pdm1. EE cells are diploid, have a small nucleus, and express the transcription factor Prospero (Pros). Like mammalian intestinal epithelium, the Drosophila intestinal epithelium is also constantly undergo turnover and can regenerate after tissue damage (Archer et al., 2009; Jiang et al., 2009; reviewed in Jiang and Edgar, 2011).

However, a systematic molecular understanding of self-renewal and lineage-specific differentiation of adult somatic stem cells is still lacking. In mammals, lists of stem-cell-enriched genes have been identified in both mouse ISCs and hair follicle stem cells through combined transcriptomics and proteomics (Morris et al., 2004; Muñoz et al., 2012; Tunber et al., 2004). However, the
functional relevance of these genes is largely unknown. Recent developments in genome-wide RNAi techniques in Drosophila have enabled the knockdown of near-complete sets of genes involved in cellular processes in living animals (Dietzl et al., 2007; Ni et al., 2011). In addition, genome-wide RNAi screens have been performed to identify regulatory networks function in several somatic tissues, including stem cells (Baumbach et al., 2014; Berns et al., 2014; Neely et al., 2010; Neumüller et al., 2011; Schnorrer et al., 2010; Yan et al., 2014). In this study, we carried out a genome-wide RNAi screen for genes that regulate ISC fates. We identified 405 genes that regulate ISC self-renewal, ISC proliferation, ISC-to-EC differentiation, ISC-to-EE cell differentiation, and ISC survival. Cross-correlation with regulators, neuroblasts (Nbs), and female germline stem cells (GSCs) revealed ISC-specific as well as shared regulators of the stem cells. Our data provide a useful resource for dissecting the regulatory networks of self-renewal and differentiation of adult somatic stem cells.

RESULTS

Test Conditions for High-Throughput Screen of Genes Involved in ISC Regulation

To identify candidate genes involved in ISC regulation, we generated GFP-marked cells that expressed UAS-RNAi in adult Drosophila intestine using esg-Gal4, UAS-GFP/++; tub-Gal80ts/+ driver. In the midgut, esg-Gal4 is mainly expressed in the ISCs and EBs (Micchelli and Perrimon, 2006). The temperature-sensitive Ga180 inhibitor, Ga180ts (McGuire et al., 2003), suppresses esg-Gal4 activity at the permissive temperature (18°C). When cultured at 18°C, these flies grew to adulthood with no obvious phenotype and no GFP expression (data not shown). We then shifted the adult flies to the restrictive temperature (29°C). After 1 week, the flies were dissected and examined under confocal microscope for ISC phenotypes.

The RNAi methodology has certain restrictions (Dietzl et al., 2007; Ni et al., 2011). First, the P-element-based upstream activating sequence (UAS)-hairpin constructs are randomly integrated in the genome, and the level of hairpin expression is affected by its chromosomal location. Second, the RNA level can be reduced only to a variable degree by the RNAi-mediated knockdown, which, in some cases, may insignificantly affect the gene’s activity. In addition, there are a large number of nonessential genes whose null mutations have no phenotype (flybase). To reduce the overall false-negative rate and conduct an efficient screen, we first performed a pilot experiment in which we selected 2,000 RNAi lines at random. Each of these lines was crossed in duplicate to Act5C-Gal4 and to esg-Gal4, UAS-GFP/++; tub-Gal80ts/+ drivers. The progeny from the cross with Act5C-Gal4 and to esg-Gal4, UAS-GFP/++; tub-Gal80ts/+ drivers. The progeny from the cross with esg-Gal4, UAS-GFP/++; tub-Gal80ts/+ were scored for ISC phenotype. We found that 95.4% of RNAi lines with ISC phenotypes were lethal in the cross with Act5C-Gal4. In the following screen, we first crossed all RNAi lines with Act5C-Gal4 to test lethality and then only crossed the lethal lines with esg-Gal4, UAS-GFP/++; tub-Gal80ts/+ to screen ISC phenotype (Figure 1A).

Genome-wide RNAi Screen for ISC Phenotype in Adult Drosophila

In total, we screened 16,562 transgenic lines of either double-stranded RNA (dsRNA) or short, small hairpin RNA (shRNA) from both the Vienna Drosophila RNAi Center (VDRC) and
Bloomington stock centers (Figure 1C; Table S5), representing 12,705 of the 14,139 protein-coding genes (89.8%) in release 5.7 of the Drosophila genome (Wilson et al., 2008). Among the total 16,562 transgenic lines tested, 7,429 (44.8%) lines corresponding to 6,170 genes were lethal once expressed by the Act5C-Gal4 driver. We then expressed the 7,429 transgenic lines in ISCs and EBs by crossing each line with esg-Gal4, UAS-GFP/+; tub-Gal80ts/+(Figure 2A) and analyzed 5–10 flies each for ISC phenotypes by observing the number of GFP-positive cells in midguts. A total of 478 promising lines, which correspond to 405 genes, were scored (Figure 1C) from the first-round screen were repeatedly screened and stained with molecular markers to confirm the phenotypes.

Quality Evaluation

Six lines of evidence suggest that our screen has identified ISC regulators with high confidence. First, the N signal transduction pathway plays a major role in regulating ISC-to-EC differentiation; inactivation of the pathway resulted in an excess of ISCs, and activation of the pathway resulted in premature ISC-to-EC differentiation (Bardin et al., 2010; Beebe et al., 2010; Michellani and Perrimon, 2006; Ohlstein and Spradling, 2006, 2007; Perdigoto et al., 2011). In this screen, we identified 19 positive regulators in the N pathway whose knockdowns resulted in an excess of ISCs or EBs and eight negative regulators of the N pathway whose knockdowns resulted in premature ISC-to-EC differentiation (Table S1). Second, we found many previously identified genes regulating ISC functions (Table S1). Third, many of the identified hits (132 genes) whose products are components of protein complexes show a high degree of phenotypic similarity (Figure 1D; Tables S3 and S4). Fourth, of 405 genes identified, 310 genes were from VDRC lines; among them, we randomly verified 65 genes by at least two or more independent lines (Figure 1D; Tables S4 and S5), and the rest of the lines scored were from either GD or KK libraries with no off-targets, as shown on the VDRC website. Among 405 genes, 95 genes were from Bloomington lines, which were predicted to have no off-targets. Furthermore, we also verified some of the genes identified in the RNAi screen by mutant clone analysis. Furthermore, even though many of the GSC-specific genes were lethal in the primary screen, none of them show any phenotypes in ISCs. Together, these lines of evidence suggest that our screen has a very low percentage (~5%) of off-targets. Fifth, among the remaining low-confidence genes, nine [eIF-5, (f)10Bb, cas, ial/AurB, dia, pAbp, Ccn, Cm, and CSN8] were identified in all three stem cell RNAi screens (Nbs: Neumüller et al., 2011; female GSC: Yan et al., 2014; Tables S4 and S5), and 42 other genes.

Figure 2. Representative Phenotypes Identified in the RNAi Screen

(A) Diagram of ISC lineage and expression of esg-Gal4 used in the screen. (B) Wild-type (WT) control. (C) Knockdown of dei resulted in ISC expansion. (D) Knockdown of CG15820 resulted in ISC overproliferation. (E) Knockdown of dBor resulted in large nuclei. (F) Knockdown of cpo resulted in ISC death. (G) Knockdown of Peb/hnt resulted in ISC-to-EC differentiation. (H) Knockdown of CG30023 resulted in ISC-to-EE cell differentiation. The posterior midguts of corresponding flies were dissected, stained with antibodies of GFP+Dl+Pros+DAPI, and analyzed by confocal microscopy. Scale bars represent 5 μm (B, C, E, G, and H) and 10 μm (D and F). See also Figure S2 and Tables S1A and S1C–S1E.
were identified in two of the three stem cell RNAi screens (Table S4). Finally, we showed efficient knockdown of a select set of genes by qPCR analysis or antibody staining (Table S2).

Gene Network that Regulates ISC Fates

To better analyze our screen results, we generated a gene-interaction network by querying publicly available databases containing yeast two-hybrid interactions, protein-protein interactions, text-mining data, and genetic interactions between *Drosophila* genes (Figure 3A). We divided the phenotypes into six categories: (1) genes whose knockdown resulted in an excess of ISCs or EBs; (2) genes important for ISC proliferation; (3) genes important for ISCs to maintain diploid status; (4) genes important for ISC survival; (5) genes important for ISC-to-EC differentiation; and (6) genes important for ISC-to-EE cell differentiation (Figures 1B and 2B–2H; Table S1). We performed a complex-enrichment analysis using COMPLEAT (Vinayagam et al., 2013) and identified a number of protein complexes required for ISC fate determination (Figures 3 and S1).
Genes Whose Knockdown Resulted in an Excess of ISCs or EBs
RNAi-mediated knockdowns of genes required for ISC or EB differentiation resulted in the accumulation of undifferentiated esg+ diploid cells. From our phenotype and network analysis, we identified three unique phenotypes that disrupt ISC differentiation; each phenotype involves genes that function in a distinguishing protein complex or pathway.

The Classic N-Signaling Network
RNAi-mediated knockdowns of genes in the N-signaling network resulted in either expansion of both ISCs and EE cells (DI high and EE cells more) (Table S1A) or expansion of ISCs only (DI high and EE normal; Figure 2C; Table S1A). Among known components of the N pathway (Bray, 2006; Fortini, 2009; Guruharsha et al., 2012), we found that knockdowns of N, O-fut1, rumi, kuz, psn, neur, shi, nct, aux, Ca-P60A, and mam resulted in expansion of both ISCs and EEs (DI high and EE cells more) (Table S1A), while knockdowns of aph-1, chc, and dei resulted in expansion of only ISCs (DI high and EE cells normal) (Figure 2C; Table S1A). Among the five new components of the N pathway identified in a previous genome-wide RNAi screen (Mummery-Widmer et al., 2012), we found that knockdowns of CG34345 and CG8021 resulted in expansion of both ISCs and EE cells, while knockdowns of CG5608 (Vac14), CG8136, and CG11286 resulted in expansion of only ISCs (Table S1A). These results suggest that components in the N pathway have differential requirements in ISC and EE fate regulation.

In addition to the reported components in the N-signaling network, we identified 26 other genes whose knockdowns resulted in expansion of ISCs (Table S1A). Among them are a histone acetyltransferase ATAC2 and a protein phosphatase type 2A (PP2A) regulator (dPR72, CG4733). Knockdown of ATAC2 resulted in dramatic accumulation of DI and expansion of ISCs without affecting EE cells (Ma et al., 2013; Table S1A). PP2A was reported to be a brain tumor suppressor that can inhibit self-renewal of Nbs (Wang et al., 2009). Knockdowns of the remaining 24 genes resulted in either expansion of both ISCs and EE cells or expansion of ISCs only (Table S1A). Further investigations of these genes will significantly advance our knowledge of ISC self-renewal/differentiation and the N-signaling network.

The Osa Complex
RNAi knockdowns of genes in the Osa-containing SWI/SNF chromatin-remodeling complex resulted in ISC expansion and EE cell reduction. In this screen, we identified four components of the SWI/SNF complex: *osa*, snr1, *brm*, and *dalaO* (Table S1A). However, these ISCs express low levels of DI but high levels of another ISC marker, Sanpodo (Sproto) (Table S1A) (Zeng et al., 2013). In a recent publication (Zeng et al., 2013), we demonstrated that the OSA-containing SWI/SNF chromatin-remodeling complex regulates ISC-to-EC lineage differentiation by controlling DI transcription and EE cell lineage differentiation by controlling ase transcription.

In addition to the components in the SWI/SNF chromatin-remodeling complex, we identified eight other genes whose knockdowns resulted in ISC expansion and EE cell reduction (Table S1A). Further investigations of these genes will advance our knowledge of DI and ase regulations.

The JAK-STAT Pathway
RNAi-mediated knockdowns of both dome and *stat92E* resulted in EE accumulation (Table S1A); the GFP+ cells were DI–Pros–. This finding is consistent with previous reports that mutations in the JAK-STAT signal transduction pathway disrupted EB differentiation (Beebe et al., 2010; Jiang et al., 2009).

Genes Important for ISC Proliferation
RNAi-mediated knockdowns of genes negatively regulating ISC proliferation resulted in hyperplasia, a dramatic increase of both ISCs and their differentiated cells (Figure 2D). From our phenotype and network analysis, we identified components in five known pathways, three novel complexes, and many other novel genes whose RNAi-mediated knockdowns resulted in midgut hyperplasia. Among the known pathways, we identified five negative regulators (*Cbl*, *Kek3*, *ttk*, *Cic*, and *CG15528*) in the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signal transduction pathway (Table S1B). EGFR/Ras/MAPK signaling plays a major role in ISC proliferation (Biteau and Jasper, 2011; Jiang et al., 2011; Xu et al., 2011); two components in the Dpp signaling pathway (Mad and Shn) negatively regulate *Drosophila* midgut homeostasis (Guo et al., 2013). In mouse intestine, EGFR signaling positively and bone morphogenetic protein (BMP) signaling negatively regulate stem cell proliferation (reviewed in Clevers, 2013). Therefore, the functions of the EGFR and Dpp/BMP in ISCs are conserved in *Drosophila* and mouse. We also identified a negative regulator (*puc*) of the JNK pathway, which also regulates ISC proliferation and differentiation (Biteau et al., 2008; Hochmuth et al., 2011); three components of the Hippo pathway (*hoop, mats*, and *msn*), which negatively regulates ISC proliferation (Li et al., 2014; Karpowicz et al., 2010; Ren et al., 2010; Staley and Irvine, 2010); and two components in the Scrib/Dlg tumor suppressor pathway (*dlg* and *scrib*), indicating that the Scrib/Dlg pathway also negatively regulates ISC proliferation.

In addition to the classic pathways, we identified three components in the magnesium transporter complex (CG7830, CG15168, and CG11781), two components in the aminopeptidase complex (CG6372 and CG4439), and two components in the autophagosome (*Atg2* and *Atg6*) whose knockdowns resulted in midgut hyperplasia.

We also identified 73 other genes (Table S1B) whose RNAi-mediated knockdowns resulted in midgut hyperplasia. The information provides a rich resource for investigating ISC proliferation and midgut hyperplasia in future studies.

Genes Necessary for the Maintenance of ISCs’ Diploid Status
In this screen, we identified 11 genes whose RNAi-mediated knockdowns resulted in GFP+ cells with much larger nuclei (Figure 2E; Figures 4A–4F; Table S1C), including TSC2. It was previously reported that TSC1/2 and Myc coordinately regulate ISC growth and division in the *Drosophila* posterior midgut (Amcheslavsky et al., 2011). In TSC2 dsRNA-expressing guts, the size of the ISCs, but not Ecs or EE cells, increased by ~10-fold in 10 days after RNAi initiation. The mutant ISCs expressed the ISC marker DI but are nonfunctional because they can no longer divide or differentiate (Amcheslavsky et al., 2011). In normal...
knockdowns resulted in ISC death (Figures 2 F, S2C, and S2D; Table S1 D). The data from this screen provide a useful resource for investigating the molecular mechanisms that specifically regulate stem cell death and survival.

Genes Important for ISC Survival

In this screen, we identified 124 genes whose RNAi-mediated knockdowns resulted in ISC death (Figures 2 F, S2C, and S2D; Table S1 D).

The COPI Complex and Lipolysis

Among the genes that are required for ISC survival, we identified seven components in the coat protein complex I (COPI)/Arf1 (Arf79F) complex (Figures S2C and S2D; Table S1 D), including dsRNA or shRNA lines for each gene (Table S1 D). The cell survival function of these genes was stem cell specific, because knockdowns of these genes in ECs using NP1-Gal4 did not result in EC death (compare Figure S2F with Figure S2E; data not shown).

COPI and coat protein complex II (COPII) are essential components of the trafficking machinery for vesicle transportation between the ER and Golgi (reviewed in Lee et al., 2004). The COPII complex mediates vesicle cargo transport from the ER to the Golgi, while the COPI complex mediates cargo transport from the Golgi back to the ER. In addition to its trafficking function, the COPI complex regulates lipid droplet utilization (lipolysis) by transporting enzymes of lipolysis to the lipid droplet surface (Beller et al., 2008; Soni et al., 2009). In this screen, we did not identify any components in the COPII complex, suggesting that lipolysis, rather than the general trafficking machinery between the ER and the Golgi, is required for stem cell survival. Consistent with this hypothesis, we also identified acyl-coenzyme A (CoA) synthetase long-chain (ACSL), an enzyme in the Drosophila lipolysis/β-oxidation pathway (Zhang et al., 2009; Palanker et al., 2009), and bubblegum (bgm), a very-long-chain fatty acid-CoA ligase activity (Min and Benzer, 1999).

In addition, we identified 113 other genes whose RNAi-mediated knockdowns resulted in ISC death (Table S1 D). The data provide a rich resource for investigating the molecular mechanisms that specifically regulate stem cell death and survival.

The CyclT/Cdk9 Complex

We also identified the Drosophila Cyclin T (CycT) gene (Figure 5A). Knockdowns of CycT by two independent dsRNAs (V37562 and BL31762) and two independent shRNAs (BL32976 and BL35168) all resulted in ISC quiescence/death phenotype (compare Figure 5C with Figure 5B; Table S1 D). Midguts of CycT knockdown contain single and isolated GFP-positive round-shaped cells, and they died within 2 weeks.
Coexpression of the pan-caspase inhibitor p35 could partially slow the death of these GFP-positive cells (Figure 5D). We further generated CycT mutant mosaic clones using the MARCM technique (Lee and Luo, 1999) and found that a few single isolated GFP-positive round-shaped ISCs were detected in CycT MARCM clones (compare Figures 5G and 5H with the control in Figure 5F), similar to phenotypes observed in CycT RNAi knockdown flies (Figure 5C). Coexpression of p35 in CycT MARCM clones could significantly rescue the ISC quiescence/death phenotypes (Figure S2J), but the rescued cells eventually died 14 days after clone induction (ACI) (Figure S2K). Furthermore, overexpression of CycT promoted ISC proliferation (Figure 5E). The CycT protein is ubiquitously expressed in posterior midgut (Figure S2G) and specifically expressed in GFP-positive cells in esgts > CycT flies (Figure S2H). Cdk9/CycT forms a functional complex in vivo and regulates transcriptional elongation and RNA processing through phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II (Pol II) (Ni et al., 2004; Figure 5A). We knocked down Cdk9 activity using its transgenic RNAi line and found a weaker but similar phenotype compared to that of CycT knockdown (compare Figure 5J with Figure 5I).

Figure 5. The CycT/Cdk9 Complex Regulates ISC Quiescence/Death

(A) Diagram of the CycT/Cdk9 complex.
(B) esgts wild-type control.
(C) Knockdown of CycT resulted in ISC quiescence/death.
(D) Expression of p35 partially rescued the knockdown phenotype of CycT.
(E) Overexpression of CycT promoted ISC proliferation.
(F) Control FRT79D MARCM clones 7 days ACI.
(G) FRT79D-CycT118G MARCM clones 7 days ACI.
(H) FRT79D-CycT118G MARCM clones 7 days ACI.
(I) esgts wild-type control.
(J) Knockdown of Cdk9 resulted in ISC quiescence/death.

The posterior midguts of corresponding flies were dissected, stained with the indicated antibodies, and analyzed by confocal microscopy. The flies were cultured at 29°C for 7 days in (A–E), and 14 days in (F–J). Scale bars represent 10 μm.
See also Figure S2 and Table S1D.
RNAi-mediated knockdowns resulted in premature ISC-to-EC differentiation (Figure 2G; Table S1E).

Negative Regulators of the N Pathway

Among the 98 genes, we identified eight negative regulators of the N signal transduction network: Vps22/Isn, Vps36, Vps25 (Figures 3B and 3C), Vps28, Vps23/TSG101, Hey, da, and Smr (Table S1E) (Gray, 2006; Fortini, 2009; Guruharsha et al., 2012).

The first five genes function in endosome protein sorting (Figure 3B) and regulate processing of either N or DI, and the last three are transcriptional factors and control expression of downstream targets of the N signaling. Knockdowns of these genes likely activated the N signaling and promoted ISC-to-EC differentiation. In addition to the known components in the N pathway, we identified five other genes (CG18398/Tango6, CG14084/Bet1, CG4214/Syr5, and CG15811/Rop) (Table S1E) involved in protein processing or exocytosis. These genes may also negatively regulate the N signaling by regulating the processing of N or DI.

The Mediator Complex

Among the 98 genes, we also identified ten components in the mediator complex: CG4184/MED15, CG5121/MED28, CG1245/MED27, CG18780/MED20, CG6884/MED11, CG3139/MED7, CG1057/MED31, CG12031/MED14, CG13867/MED8, and CG8491/MED12/ktc (Figure 3D and E; Table S1E). The mediator complex is a multiple protein complex with 33 identified components in Drosophila (Poss et al., 2013). It is involved in nearly all stages of Pol II transcription, including initiation, promoter escape, elongation, pre-mRNA processing, and termination (Conaway and Conaway, 2013). The mediator complex also generally bridges sequence-specific, DNA-binding TFs to the Pol II enzyme, thereby converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression) (Conaway and Conaway, 2013; Poss et al., 2013). In the posterior midgut, the mediator complex may perform a function similar to that of the aforementioned negative regulators in the N signal transduction pathway, and restrict activation of the N signaling. It will be interesting to determine how the mediator complex regulates N signaling in future studies.

Nucleosome Remodeling and Histone Modification

In addition to the genes described earlier, we identified 74 other genes (Table S1E), whose RNAi-mediated knockdowns resulted in premature ISC-to-EC differentiation. Among them are eight genes involved in nucleosome remodeling and histone modification: CG10272/gpp/dot1, CG32067/simj, CG31865/Ada1-1, CG8068/dPlaS, CG8103/MI-2, CG4236/Caf1, CG7776/E(Pc), and CG4643/Nurf-38. The data provide a rich resource for investigating ISC-to-EC lineage differentiation in future studies.

Genes Important for ISC-to-EE Cell Differentiation

Extrinsic Slit-Robo2 Signaling from EE Cells to ISCs

Regulates the Number of EE Cells through a Negative Feedback Mechanism

Loss-of-function mutations in the N signal transduction pathway resulted in expansion of both ISCs and EE cells (Michelli and Perrimon, 2006; Ohstein and Spradling, 2006; Table S1A). Two TFs, Scute (Sc) and Asense (Ase), have been shown, by mRNA profiling, to play a major role in EE cell fate determination and to be upregulated in the midgut that expressed a dominant-negative form of N (N\textsuperscript{Dleu}) (Bardin et al., 2010). Recent work has demonstrated that EE cells are directly generated from ISCs and that the AS-C complex regulates ISCs’ commitment to EE cells through Pros (Biteau and Jasper, 2014; Zeng and Hou, 2015). The AS-C complex includes four genes: achaete [ac], scute [sc], lethal of scute [l(1)sc], and asense [ase]). Overexpression of each of the four genes resulted in an increase of EE numbers to different degrees (Table S1F). We also identified a Roundabout receptor (Robo2/leak) in the ISC screen (Table S1F), whose knockdown in ISCs (compare Figure S3B with Figure S3A; Figures S3C and S3D), but not in EBs (compare Figure S3F with Figure S3E; Figures S3G and S3H), resulted in a significant increase in the proportion of Pros-positive EE cells.

We further generated GFP-marked ISC clones that are homozygous for the loss-of-function allele lealea (Figure S3J), using the MARCM technique. Seven days ACI, we found that the proportion of Pros+ EE cells was significantly increased in the GFP-marked clones (Figure S3B), as compared with their wild-type counterparts (Figures S3I and S3K), while the ISCs in the GFP-marked clones exhibited normal proliferation and self-renewal (Figure S3L). In addition, we examined posterior midgut of 40-day-old lealea heterozygous mutant flies and found that the number of Pros+ EE cells was significantly higher in the lealea flies than in the wild-type flies (Figure 6A).

Robo2 is one of the three receptors (Robo1, Robo2, and Robo3) of a secreted ligand Slt, and the Slt-Robo signal transduction pathway regulates various biological processes (Ysipantyi et al., 2010). We examined the expression of Robo1, Robo2, Robo3, and Slt using their respective antibodies and a LacZ reporter line that is under the slit promoter (SltZ05248). We found that Robo2 was expressed mainly in Esposito-positive ISCs and EBs (Figures S4A and S4A') in wild-type posterior midgut, but not in the Robo2-depleted posterior midgut (EspEsp) (Figures S6D and S6D'), suggesting that the RNAi depletes Robo2 protein expression. We could not detect expression of Robo1 and Robo3 in posterior midgut (Figures S6A–S6C). Furthermore, in our genome-wide RNAi screen, we screened one Robo1 RNAi line (EspEsp > robo1RNAi[42579]) and two Robo3 RNAi lines (EspEsp > robo3RNAi[44702] and EspEsp > robo3RNAi[425331]) and did not find any abnormal phenotype (data not shown). Together, these data suggest that only Robo2 functions in the posterior midgut.

It is interesting that the slit-lacZ reporter was strongly expressed in Pros-positive EE cells (Figures S4B and S4B') and weakly expressed ISCs (Figures S5A–S5E); the Slt protein is strongly expressed in EE cells and also weakly expressed in the periphery of Esg-positive ISCs and EBs (Figures S4C and S4C'). The secreting Slt protein may be diffused from EE cells to ISCs and then trapped there by the Robo2 receptor. To further test this hypothesis, we knocked down lea in ISCs and EBs by expressing the lea RNAi, using espEsp. Reducing the expression of Robo2/lea in ISCs and EBs was sufficient to reduce the amount of Slt protein near the periphery of these cells without affecting its expression in EE cells (Figures S4D, S4D', and S4F). Conversely, we overexpressed Robo2/lea in ISCs and EBs by expressing an UAS-lea(leaEP5285) using espEsp. As expected, increasing the expression of Robo2/lea in ISCs and EBs was sufficient to increase the accumulation of Slt protein.
down Slit expression in ISCs (ISCs) in EE cells (Figures S4E, S4E) at the periphery of these cells without affecting its expression in EE cells (Figures S4E, S4E, and S4F). These data, taken together, indicate that EE-cell-produced Slit may prevent new EE cell formation by binding Robo2 and activating the Slit-Robo2 signal transduction pathway in ISCs.

To further test this model, we knocked down Slit expression in EE cells using Gal4 (386Y-Gal4), which is specifically expressed in EE cells during larval stages and in EE cells and other cell types in adult posterior midgut (Reiner et al., 2011), and two independent slit RNAi lines. In both cases, we observed a small but consistent increase in the proportion of EE cells in the posterior midgut epithelium (Figures S7A and S7B). We also knocked down Slit expression in ISCs (ISCts > slitRNAi) and did not find a significant change of EE cells (Figure S7C). The Slit protein expression could not be detected in the RNAi-knocked-down posterior midgut (Figures S6E–S6H), suggesting that the RNAi effectively depletes Slit protein expression.

In summary, these data suggest that extrinsic Slit-Robo2 signaling from EE cells to ISCs regulates the proportion of EE cells through a negative feedback mechanism to keep the right balance of differentiated cells in the posterior midgut epithelium.

Slit-Robo2 Signaling Regulates EE Cell Fate Specification Either Upstream or in Parallel to AS-C Complex in ISCs

To determine which transcription factor mediates Slit-Robo2 signaling in ISCs to regulate EE cell generation, we first overexpressed pros in ISCs and EBs (esgts > pros) because Pros is an EE cell marker and closely associated with EE cell fate specification (described earlier). Overexpression of Pros in ISCs and EBs did not affect the proportion of EE cells but rather promoted ISC/EB-to-EC differentiation in the posterior midgut epithelium (Figure S5F), indicating that knocking down the Slit-Robo2 signal does not increase the number of EE cells through inducing pros expression.

Sc and Ase play a major role in EE cell fate determination (Bardin et al., 2010; Zeng et al., 2013; Zeng and Hou, 2015). To examine the relationship of Robo2/le a to Sc and Ase, we first compared mRNA levels of the AS-C genes in the midguts of wild-type and ISCts > leaRNAi flies, using qPCR. Among the four AS-C genes, the mRNA levels of ase, sc, and l(1)sc were significantly upregulated in ISCts > leaRNAi midguts, while the mRNA level of ac did not significantly change in comparison to that in wild-type midguts (Figure 6C). We further expressed scRNAi in the ISCts > leaRNAi midgut (ISCts > leaRNAi + scRNAi; Figure 6D) and found that the expression of scRNAi in the leaRNAi midgut suppressed the excess EE cell phenotype of leaRNAi (Figure 6D). Together, our data so far suggest that the Slit-Robo2 signaling regulates EE cell fate specification either upstream or in parallel to the AS-C complex in ISCs.

In addition to the genes described earlier, we identified 16 other genes whose RNAi-mediated knockdowns affect differentiation from ISCs to EE cells (Table S1F). The data provide a rich resource for investigating ISC-to-EE lineage differentiation in future studies.

Comparison of Genes that Regulate ISCs, Female GSCs, and Neural Stem Cells

We compared our results with previous screens in Nbs (Neumüller et al., 2011) and female GSCs (Yan et al., 2014) to identify common or unique factors that regulate self-renewal and differentiation of different stem cell systems (Figure 7A). Neural stem cell (NSC) self-renewal and differentiation are controlled through intrinsic asymmetric division, while the fates of female GSCs are regulated through a local niche-dependent mechanism. The adult *Drosophila* ISCs are regulated by signals from multiple directions, including underlying visceral muscle cells (reviewed in Jiang and Edgar, 2011; O’Brien et al., 2011), differentiated ECs during tissue damage and bacterial infection (Jiang and Edgar, 2011), and trachea-derived Dpp (Li et al., 2013). Because all three stem cell types are actively dividing, self-renewing, and generating lineage-specific differentiated cells, we expected that some of the basic cellular processes are commonly
required and that the stem-cell-specific regulatory signals are different.

Among the 405 genes identified in the ISC screen, 19 were identified in all three screens, another 31 genes were identified in both ISC and female GSC screens, and the other 43 genes were identified in both ISC and NSC screens (Figure 7B; Table S4). Most of the shared genes are regulators of basic cellular processes.

Knockdown of several components (osa, brm, Snar1, and dalao) of the Brahma (BRM) chromatin-remodeling complex resulted in an expansion of stem-cell-like cells in both ISCs and type II Nb lineages (Neumüller et al., 2011; Zeng et al., 2013; Table S1) while knockdown of these genes in female GSC lineage was without detectable phenotypes (Yan et al., 2014). On the other hand, knockdown of several components of the COPI complex resulted in ISC-specific cell death (Figure 7E; Table S1D) and defects in female GSC lineage (Yan et al., 2014), but none of these genes were identified in the Nbs screen (Neumüller et al., 2011). Most of the genes involved in the signal transduction pathways identified in our screen are ISC specific. As mentioned before, the N signal transduction pathway plays a major role in regulating ISC self-renewal and differentiation. We identified 19 positive and 8 negative regulators of the N pathway in our ISC screen (Tables S1 and S4), but only two positive regulators (Dl and aux) were identified in the female GSC screen and one negative regulator (da) was identified in the Nbs screen (Neumüller et al., 2011; Yan et al., 2014; Table S4). Most of the genes required for ISC proliferation are ISC specific, including components in the EGFR, JAK-Stat, Dpp, JNK, and Hippo signal transduction pathways (Tables S1 and S4).

In summary, factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are only required in the unique stem cell type.

DISCUSSION

Drosophila midgut stem cells provide an excellent genetic system for studying tissue homeostasis, regeneration, hyperplasia, stress, and aging (Amcheslavsky et al., 2009; Buchon et al., 2009a, 2009b; Biteau et al., 2008; Buszczak et al., 2009; Cronin et al., 2009; Hochmuth et al., 2011; Jiang et al., 2009, 2011; Jin et al., 2013; Wang et al., 2014; Zeng et al., 2013). In the past few years, using homozygous mutant animals or mosaic analyses, several genes have been identified to be required in ISC self-renewal and differentiation. However, a systematic molecular understanding of self-renewal and lineage-specific differentiation of adult ISCs has not been performed. Here, we screened 44.8% of the fly genome and identified 405 genes that regulate various fates of adult *Drosophila* ISCs. Since we screened the RNAi lines giving an adult lethal phenotype, we might have missed some adult gut-specific genes in this screen. Nevertheless, the genes identified here, we further obtained precise quantification of phenotypic data and identified regulatory networks through a computer network analysis. From our phenotype and network analysis, we reached a number of important conclusions. First, ISC self-renewal, EE cell fate determination, and EB differentiation are regulated by distinct networks or pathways (Table S1A). The JAK-Stat pathway regulates EB differentiation; some components in the N signal transduction network control both ISC self-renewal and EE cell fate determination, and knockdowns of these components resulted in expansion of both ISCs and EE cells. The other components in the N signal transduction network control only ISC self-renewal, and knockdowns of those components resulted only in ISC expansion. The way that the Brm/Osa complex regulates ISC self-renewal and EE cell fate determination is different from that of the N signaling; knockdowns of the components in the Brm/Osa complex resulted in ISC expansion and EE cell reduction. Second, ISC proliferation...
is uniquely regulated. Very few genes whose knockdowns resulted in ISC overproliferation in the ISC screen were also isolated in the screens of Nbs and female GSCs (Neumüller et al., 2011; Yan et al., 2014; Table S4), suggesting that these genes and signal transduction pathways regulate ISC proliferation only. Third, knockdowns of several regulators of mitotic cell cycle and mitotic cytokinesis resulted in large nuclei (polyploidy) in ISCs and EE cells, suggesting that the cell-cycle regulators uniquely maintain diploid cells. Fourth, we found that the COPI and CyclinD/Cdk9 complexes specifically regulate ISC survival. Quiescent CSCs are often resistant to traditional cancer therapies that primarily target dividing and actively metabolizing cells (Trumpp and Wiestler, 2008). Studying stem cell death using the data generated from this screen may lead to the design of new therapies to selectively eliminate stem cells in cancer. Fifth, we identified a large mediator complex that regulates ISC-to-EC differentiation. Sixth, we found that the Slt/Robo2-negative feedback pathway, the N inhibitory pathway, and the Brm/Osa complex together regulate EE cell fate specification in ISCs, either upstream or in parallel to AS-C/Pros. Seventh, by comparing genes identified in screens of ISCs, Nbs, and female GSCs, we found that factors related to the cellular processes of basic stem cells are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. The information obtained from this study will help to further dissect the regulatory networks in stem cell biology.

EXPERIMENTAL PROCEDURES

Fly Stocks

The following fly strains were used: esg-Gal4 line (from Shigeo Hayashi); Su(H) GBE-Gal4 (Zeng et al., 2010), Su(H)GGE-tub-Gal80, and ISCA esg-Gal4, UAS-CycT, UAS-GFP; tub-Gal80. The following transgenic RNAi lines were provided by the Bloomington Drosophila Stock Center (BDSC) supplied the following strains: tub-Gal80ts, lea1, lea2, UAS-p35, N(2D); lea1, RNAi (BL29862), slit4, UAS-slit (BL31468), UAS-robo3 RNAi (BL29398), UAS-CycT RNAi (BL31762), UAS-CycT RNAi (BL29376), UAS-Cdk9 RNAi (BL34982), CycT1, 1B2 (BL2101), as well as fly lines used for MARCM clones, including FRT7a, pm, FRT6os-1, pm, SM6, hs-3, MPRS, hs-3, FRT1a tub-Gal80, FRT6os-2 tub-Gal80, and FRT1a tub-Gal80. The following transgenic RNAi lines were obtained from VDRC: UAS-tub (v108853), UAS-roboRNAi (v42579), and UAS-robo3RNAi (v47402). CycT RNAi (Kyoto125610) was from the Kyoto Drosophila Stock Center.

Flies were raised on standard fly food at 25°C and 65% humidity, unless otherwise indicated.

RNAi Stocks Used in the Screen

UAS-RNAi lines were generated by the VDRC and the Transgenic RNAi Project (TRIPT) and are available at the VDRC and the BDSC. The sequences used for VDRC knockdown strains are available for each line at https://stockcenter.vdrc.at, and those for Bloomington knockdown strains are available for each line at http://flystocks.bio.indiana.edu.

MARCM Clonal Analysis

To induce MARCM clones of FRT7a-pm (as a wild-type control), FRT7a, CycT1, 1B2, FRT6os-CycT RNAi, FRT6os-1, pm (as a wild-type control), FRT6os-lea2, FRT1a-lea2, w1118 (as a wild-type control), and FRT1a-N(2D); lea1, we generated the following flies: act>y-G4a, UAS-GFP; SM6, hs-flp; FRT1a tub-Gal80/FRT1a mutant or FRT1a tub-Gal80/FRT1a mutant; and MPRS, hs-flp act > CD2 > G4a, UAS-GFP or hs-flp, tub-Gal80, FRT1a-CycT RNAi mutant; and act>y-G4a, UAS-GFP/+ . Three- or 4-day-old adult female flies were heat shocked at 37°C for 45 min twice, at an interval of 8–12 hr. The flies were transferred to fresh food daily after the final heat shock, and their posterior midguts were processed for staining at the indicated times.

RNAI-Mediated Gene Depletion

Male UAS-RNAi transgene flies were crossed with female virgins of esg-Gal4, UAS-CycT, tub-Gal80ts, esg-Gal4, UAS-CycT, Su(H)GBE-Gal80, tub-Gal80 (for ISC-specific expression), Su(H)GBE-Gal4, UAS-CycT, tub-Gal80 (for EB-specific expression), or UAS-mCD8.GFP; esg-Gal4, wg-Gal4; tub-Gal80 (for expression in both posterior midgut and hindgut ISCs). The flies were cultured at 18°C. Three- to 5-day-old adult flies with the appropriate genotype were transferred to new vials at 20°C for 7 days or 14 days before dissection.

Histology and Image Capture

The fly intestines were dissected in PBS and fixed in PBS containing 4% formaldehyde for 20 min. After three 5-min rinses with PBT (PBS + 0.1% Triton X-100), the samples were blocked with PBT containing 5% normal goat serum and kept overnight at 4°C. Then, the samples were incubated with primary antibody at room temperature for 2 hr and incubated with the fluorescence-conjugated secondary antibody for 2 hr at room temperature. Samples were mounted in the Vectashield mounting medium with DAPI (Vector Laboratories).

We used the following antibodies: mouse anti-Gal80 (1:200; Clontech); mouse anti-Di (1:50; Developmental Studies Hybridoma Bank [DSHB]); mouse anti-Pro (1:50; DSHB); nc82 (1:20; DSHB); anti-Slt (1:20; DSHB); guinea pig anti-Pro (1:3,000, a gift from Tiffany Cook); rabbit anti-Robo2 (1:100, a gift from Barry Dickson); mouse anti-Robo1 (1:50; DSHB); mouse anti-Robo3 cytoplasmic (15H2) (1:50; DSHB); mouse anti-Robo3 extracellular (14C9) (1:50; DSHB); rabbit anti-CycT (1:1,000; generated in L.‘s laboratory), and chicken anti-GFP (1:3,000, Abbcam). Secondary antibodies were used goat anti-mouse, anti-chicken, anti-guinea pig, and anti-rabbit immunoglobulin G conjugated to Alexa Fluor 488 or Alexa Fluor 568 (1:400; Molecular Probes). Images were captured with the Zeiss LSM 510 confocal system and processed with the LSM Image Browser and Adobe Photoshop.

Quantification and Statistical Analysis

To quantify the percentage of Pros+ EE cells (except for Figures S7A–S7H, in which the Pros+ EE cells and total cells were counted in a 1 x 105 μm2 area of a z stack of multiple confocal planes), the Pros+ EE cells and total cells were counted in a 1 x 105 μm2 area of a single confocal plane. To quantify the strength of fluorescence of Slt staining, all the images were taken with the same confocal settings, and the fluorescence intensity was measured using an LSM Image Browser (Zeiss). All the data were analyzed using Student’s t test, and sample sizes (n) are shown in all figures with error bars.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.01.051.

AUTHOR CONTRIBUTIONS

X.Z., S.X.H., and X.L. conceived and designed the experiments. X.Z., S.R.S., L.H., H.L., Y.L., and S.X.H. performed the experiments. R.A.N., D.Y., S.R.S., and Y.H. performed the bioinformatics. S.R.S., and Y.H. performed the data analysis. L.H. and S.R.S. made equal contributions in performing experiments, and all authors approved the final version of the manuscript.

ACKNOWLEDGMENTS

We thank Shigeo Hayashi, Tiffany Cook, VDRC, the Bloomington Stock Centers, and TRIPT at Harvard Medical School for fly stocks; Barry Dickson, Tiffany Cook, and DSHB for antibodies; and S. Lockett for help with the confocal microscope. Work in the laboratory of S.X.H. was supported by the Intramural Research Program of the National Cancer Institute; work in the laboratory of...

