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Musical training has been shown to have positive effects on several aspects of speech
processing, however, the effects of musical training on the neural processing of speech
prosody conveying distinct emotions are yet to be better understood. We used functional
magnetic resonance imaging (fMRI) to investigate whether the neural responses to
speech prosody conveying happiness, sadness, and fear differ between musicians and
non-musicians. Differences in processing of emotional speech prosody between the two
groups were only observed when sadness was expressed. Musicians showed increased
activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior
cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity
of emotional processing in musicians with respect to sadness expressed in speech,
possibly reflecting empathic processes.
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training, temporal processing

INTRODUCTION
Musical training is associated with changes in cognitive and
affective processing (Barrett et al., 2013). Musicians exhibit
different expressions of musical emotion (Juslin and Laukka,
2003), and show stronger emotional experience in response
to music (Blood and Zatorre, 2001). Musicians possess higher
skills for the recognition of emotions expressed in music (e.g.,
Bhatara et al., 2011), and they differ from non-musicians in the
processing of the sadness and fear conveyed in music (Park et al.,
2014). However, the effects of musical training are not limited to
the musical domain, and in particular certain aspects of speech
processing have been shown to benefit from musical training
(Thompson et al., 2004; Hyde et al., 2009; Lima and Castro, 2011;
Patel, 2011, 2014). Musicians show improved performance in
the encoding of speech sounds (Musacchia et al., 2007; Wong
et al., 2007; Strait et al., 2009a,b), in detecting speech in noise
(Strait and Kraus, 2011a), in extracting rhythmical patterns in
auditory sequences (Su and Pöppel, 2012), and in processing
pitch in speech (Moreno and Besson, 2005; Magne et al., 2006;
Besson et al., 2007; Musacchia et al., 2007; Chandrasekaran and
Kraus, 2010). Moreover, musicians seem to possess advantages
in processing speech prosody (Thompson et al., 2004; Lima
and Castro, 2011) and extra-linguistic properties such as

the emotional content of speech (Nilsonne and Sundberg, 1985;
Schön et al., 2004; Chartrand and Belin, 2006; Magne et al., 2006).

The advantages musicians exhibit in both music and speech
processing have been explained by enhanced acoustic skills that
musicians acquire through continuous training (Patel, 2003;
Chartrand et al., 2008). The transfer effect from musical training
to speech processing is assumed to be due to acoustic and rhyth-
mic similarities between the two functional domains (Besson
et al., 2011; Strait and Kraus, 2011b; Jäncke, 2012). Specifically
in the communication of affect, music and speech share strong
similarities, which has motivated the proposition of a shared
“emotional protolanguage” of music and speech (Thompson
et al., 2012). In order to express emotions, both music and speech
make use of the same or similar acoustic elements such as timbre
or pitch (Patel, 2003; Besson et al., 2007; Chartrand et al., 2008).
Similarities between music and speech are also observed in the
temporal domain as musical and verbal expressions use “temporal
windows” of a few seconds within which musical motives or
speech utterances are represented (Pöppel, 1989, 2009).

These strong associations between music and speech have also
been observed on the neural level. Similarities have been found
in brain networks active during processing of both music and
language (Maess et al., 2001; Levitin and Menon, 2003; Brown
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et al., 2004; Koelsch et al., 2004; Abrams et al., 2011; Zatorre and
Schönwiesner, 2011; Escoffier et al., 2013; Frühholz et al., 2014),
and it has been assumed that the communication of emotion in
both domains may be based on the same neural systems associ-
ated with social cognition, including the medial superior frontal
gyrus (SFG) and the anterior cingulate cortex (ACC; Escoffier
et al., 2013). Similar to music, processing of emotional speech
prosody has traditionally been associated with right hemispheric
activation (Schirmer and Kotz, 2006; Wildgruber et al., 2006) but
this view has recently been challenged by multi-phase models
that assume several stages to be involved in emotional prosody
processing recruiting both the left and the right hemisphere (e.g.,
Brück et al., 2011; Kotz and Paulmann, 2011; Witteman et al.,
2012; Grandjean and Frühholz, 2013; Kotz et al., 2013). The
network of brain areas involved in processing emotional prosody
is assumed to mainly consist of the primary auditory cortices,
the superior temporal gyrus (STG) and the inferior frontal gyrus,
as well as subcortical regions including the amygdala and the
hippocampus (Ethofer et al., 2012; Frühholz et al., 2012, 2014;
Frühholz and Grandjean, 2013a; Kotz et al., 2013; Belyk and
Brown, 2014).

Music training has been shown to alter the neural process-
ing of music presumably based on functional and structural
changes in the musician’s brain (Hyde et al., 2009; Kraus and
Chandrasekaran, 2010). Are the transfer effects of musical train-
ing on speech prosody processing also observable on the neu-
ral level? Research has been supportive of this view and it has
been suggested (Besson et al., 2011; Strait and Kraus, 2011b;
Patel, 2014) that intense and continuing musical training leads
to structural and functional changes of the brain that advance
cognitive processes and increases sensitivity to acoustic features
in music processing (Besson et al., 2011; Strait and Kraus, 2011b)
which may subsequently also improve speech and specifically
prosody processing. A number of studies have described dif-
ferences between musicians and non-musicians in speech and
prosody processing on the neural level (see Wong et al., 2007;
Strait et al., 2009a,b; Patel, 2014). However, these studies have
investigated the advantages in musicians compared to non-
musicians on the level of subcortical auditory processing (Kraus
and Chandrasekaran, 2010). To our knowledge, no brain imaging
study has to date explicitly investigated the effects of musical
training on cortical activation patterns in response to emotions
conveyed in speech prosody. In line with previous studies showing
that individual differences, such as stable personality traits, and
also acquired musical expertise (Park et al., 2013, 2014), alter the
neural responses to musically conveyed emotions such as sadness
and fear, we aimed at identifying a potential cross-modal effect
of musical training on the neural processing of speech prosody
conveying different emotions. We expected musical training to be
associated with an enhanced competence of emotional recogni-
tion, and distinctive differences in neural responses to emotional
speech prosody.

METHODS
PARTICIPANTS
Twenty four healthy volunteers participated in the study. Twelve
were non-musicians (7 female, mean age = 19.00, SD = 0.60)

who had no previous musical training and did not play any
instruments, and 12 were musicians (7 female, mean age = 20.25,
SD = 1.76 years) who had received formal music training (mean
years of training = 13.83, SD = 2.58 years) in a variety of
musical instruments (stringed instruments: 29%, accordion:
24%, piano: 35%, flute 12%). All participants were right-handed.
All of them were German native speakers. None of them had
a record of neurological or psychiatric illness, head trauma
or psychoactive substance abuse, or had contraindications for
MRI (e.g., pacemaker implant, pregnancy). Musicians and non-
musicians did not differ in general health (GHQ-12, German
Version by Linden et al., 1996), (independent t-test: t(21) = 1.88,
p > 0.05) or general intelligence (t(22) = −0.65, p > 0.05). There
was no difference between the groups in mood, measured by
the “Delighted-Terrible Scale” (Andrews and Withey, 1976),
before (Mann-Whitney U-test: z = 1.17, p > 0.05), or after the
experiment (z = −0.06, p > 0.05), also there was no differences
within neither the non-musician (Mann-Whitney U-test: z = 0.46,
p > 0.05) nor the musician (z = 1.38, p > 0.05) group before and
after the experiment. The study was performed in accordance to
the Code of Ethics of the World Medical Association (Declaration
of Helsinki) and was approved by the ethics committee of the
Medical Faculty of the University of Munich. All participants
signed an informed consent.

MATERIAL
Items from the Berlin Database of Emotional Speech (Burkhardt
et al., 2005) were used for the study. The database includes pre-
evaluated semantically neutral sentences spoken in German in six
different emotional tones (happiness, sadness, fear, disgust, bore-
dom, neutral) by five different male and female actors. For the
present study, sentences spoken by both male and female voices
with three different emotional intonations conveying happiness,
sadness and fear were selected. Neutral sentences spoken with a
neutral intonation served as the control condition. The stimuli set
has been evaluated for correct identification rates and naturalness
of expression (Burkhardt et al., 2005) and for the present study,
only stimuli with high values for correct detection (>65%) and
naturalness (>65%) were chosen. To provide comparable and
relatively long duration times, several original recordings of a
given emotional quality by the same speaker were combined to
last about 21 s each.

EXPERIMENTAL PROCEDURE
During scanning, participants listened to the stimuli binaurally
via pneumatic, noise attenuating and non-magnetic headphones.
Sound level was individually adjusted to be comfortable, and
light was dimmed to suppress further visual stimulation. The
participants listened passively to the sentences and were asked to
keep their eyes closed during the experiment.

During three measurement sessions (runs) three emotional
qualities (happiness, sadness, fear) and a control condition (neu-
tral) were presented twice (same sentences and same emotional
intonation but spoken by a female and a male speaker respec-
tively). In total, six iterations (trials) of each emotion were pre-
sented. The different conditions were presented under computer
control in a pseudo-randomized order. To control for order
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effects, two versions of stimuli sequences were created and par-
ticipants were randomly assigned to either one of them. Each
stimulation-interval was followed by a pause. After scanning,
participants listened to the set of stimuli again and were asked
to identify the expressed emotion after each sentence by selecting
an emotion from a provided list (happiness, fear, anger, dis-
gust, sadness, surprise, neutral) or by choosing an individual
label.

IMAGE ACQUISITION AND fMRI DATA ANALYSES
The experimental set-up was similar to a previous study (Park
et al., 2014). MRI was performed using a 3 T whole body system
(Magnetom VERIO, Siemens, Erlangen, Germany) at the Uni-
versity Hospital of the LMU Munich. The scanner was equipped
with a standard TIM head coil (12 elements) and the partic-
ipant’s head was securely but comfortably fastened by a foam
cushions in order to minimize head movements. For acquiring
the blood oxygen level dependent (BOLD) functional images,
an T2∗-weighted Echo-Planar Imaging (EPI) sequence was used
with the following parameters: repetition time (TR) = 3000 ms,
echo time (TE) = 30 ms, flip angle (FA) = 80◦, number of
slices = 28, slice thickness = 4 mm, inter-slice gap = 0.4 mm,
interleaved acquisition, field of view (FOV) = 192 × 192 mm,
matrix = 64 × 64, in-plane resolution = 3 × 3 mm. Func-
tional images were obtained in axial orientation, covering the
whole cerebrum and dorsal cerebellum. A total of 183 scans were
conducted for each participant over all three runs. The func-
tional measurement session lasted approximately 10 min in total.
To provide an anatomical reference and to rule out structural
abnormalities, a sagittal high-resolution 3D T1-weighted Mag-
netization Prepared Rapid Gradient Echo (MPRAGE) sequence
was performed: TR = 2400 ms, TE = 3.06 ms, FA = 9◦,
number of slices = 160, FOV = 240 × 256 mm, spatial
resolution = 1 mm.

Data were analyzed with SPM8 (Statistical Parametric Map-
ping1). The first five volumes were discarded due to T1 satu-
ration effects. All functional images were realigned (“estimate
and reslice”), co-registered (“estimate”; EPI template; Montreal
Neurologic Institute, MNI), spatially normalized (“estimate and
write”) into standard stereotaxic space using standard SPM8
parameters, re-sliced to 2 × 2 × 2 mm voxels, and smoothed with
an [8 8 8] mm full-width at half maximum (FWHM) Gaussian
kernel. Each condition was modeled by a boxcar function con-
volved with the canonical hemodynamic response function. At
the first level, t-tests were computed for each subject and for each
condition vs. the baseline. The baseline of statistical parametric
maps in our study is comprised of time periods not defined
as conditions in the first-level model (i.e., happy, sad, fearful,
and neutral prosody). The individual contrast images for each
subject were used for the random-effects second level analysis
(Full factorial design with one between-subjects (musicians, non-
musicians) and one within-subjects (happy, sad, fearful, neutral
prosody) factors). The statistical parametric maps were cluster-
level thresholded (cluster-level thresholded at p(FDR) < 0.05,
starting from p uncorrected < 0.01; cluster-size threshold = 300

1http://www.fil.ion.ucl.ac.uk/spm

voxels). Anatomical description was done referring to the AAL
atlas (Automated Anatomical Labeling of Activations; Tzourio-
Mazoyer et al., 2002).

RESULTS
IDENTIFICATION TASK
A main effect of emotion was revealed by a two-way analysis of
variance (ANOVA) with emotion as within-subject variable and
group as between-subject variable, F(3,66) = 9.454, P < 0.001.
Further paired t-tests showed that sadness conveyed by speech
prosody was as easily identified as neutral voice (0.69 vs. 0.70
in correct identification rate, P > 0.05), while happy and fearful
voices were equally difficult to be identified (0.48 vs. 0.58 in
correct identification rate, P > 0.05), as significant differences
were only observed between the two categories (i.e., sadness
and neutral vs. happy and fear, P < 0.05). Importantly, no
significant main effect of group was observed, F(1,22) = 1.546,
p > 0.05, and no significant two-way interaction was observed
either, F(3,66) = 1.728, p > 0.05. These results seemed to indicate
that both musicians and non-musicians are equally capable to
identify emotions conveyed in speech prosody, although both
groups are better at recognizing sadness as compared to fearful
and happy emotions.

SIMILARITIES BETWEEN GROUPS—CONJUNCTION ANALYSIS
Conjunction analysis (conj. null) for the three basic emotions
(happiness, sadness, fear) vs. baseline revealed bilateral activation
in the temporal cortex, specifically in middle temporal (BA 21)
and STG (BA 22) (Table 1, Figure 1). Possibly due to scanner
noises, no distinct increases of activation were found in primary
auditory cortices in response to the three emotions.

DIFFERENCES BETWEEN GROUPS
We observed significant differences in neural activation between
the groups in response to sentences with sad prosody. In response
to sad prosody musicians showed a significant increase of activa-
tion in the frontal cortex (BA 10, BA 9, 46), ACC (BA 32), pos-
terior cingulate (BA 23, 31) and retrosplenial cortex (BA 29, 30)
(Table 1, Figure 2). We did not observe any differences in neural
activation between musicians and non-musicians in response to
happy or fearful prosody. No increases of activation for non-
musicians relative to musicians in response to any of the emotions
were found.

DISCUSSION
The present study revealed similarities and differences between
musicians and non-musicians in processing of emotional speech
prosody expressing happiness, sadness and fear.

Conjunction analysis for fear, happiness and sadness revealed
bilateral activations in temporal cortex, in the middle temporal
gyrus (MTG) and the STG in both musicians and non-musicians.
These areas are part of an auditory processing stream for
categorizing auditory information (Hickok and Poeppel, 2007),
including the identification and processing of linguistic and
paralinguistic features of speech (e.g., Wildgruber et al., 2005;
Schirmer and Kotz, 2006; Ethofer et al., 2012). The STG and
the MTG crucially involved in processing emotional prosody
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Table 1 | Neurofunctional correlates.

Brain region Cluster kE Coordinates Z -value

x y z

A. Conjunction (all emotions vs. baseline)
R. superior temporal g., R. middle 1 548 66 −10 −6 3.72
temporal g. (BA 21, 22)
L. middle temporal g., L. superior 2 359 −64 −16 −2 3.37
temporal g. (BA 21, 22)
B. Sadness (musicians vs. non-musicians)
R./L. cingulate g., middle part, R./L. precuneus, 1 1591 2 −40 40 3.72
R./L. cingulate g., posterior part (BA 23, 31, 7, 29, 30)
R./L. cingulate g., anterior part, R. middle 2 962 12 44 8 3.64
frontal g., R. superior frontal g.,
R. superior frontal g.,
medial part (BA 9, 10, 46, 32)

Note. kE = size in voxels (2 × 2 × 2 mm). R. = right, L. = left, g. = gyrus. The x, y and z coordinates are in the MNI stereotactic space.

FIGURE 1 | Conjunction analysis (happiness, sadness, fear vs.
baseline). TC = temporal cortex. x coordinate is in the MNI stereotactic
space; cluster-level thresholded at p (FDR) < 0.05.

(e.g., Mitchell et al., 2003; Leitman et al., 2010; Frühholz and
Grandjean, 2013b; Grandjean and Frühholz, 2013) and reliably,
the (right) STG is found in studies on emotional prosody pro-
cessing (Brück et al., 2011; Ethofer et al., 2012; Frühholz et al.,
2012; Frühholz and Grandjean, 2013a; Kotz et al., 2013; Belyk
and Brown, 2014). It is assumed to play a major role in the early
stages of prosody processing and has recently been referred to as
the crucial part of the “emotional voice area” (Ethofer et al., 2012).

These common activations suggest that in musicians and non-
musicians similar neural mechanisms are recruited for early stage
processing of emotional vocal stimuli.

Apart from these similarities we also observed differences
in neural responses to emotional speech prosody between the
groups. Specifically, musicians showed enhanced activations in
several brain areas when responding to sentences spoken with
sad prosody, suggesting higher sensitivity in emotion processing.

FIGURE 2 | Sadness (musicians vs. non-musicians). ACC: anterior
cingulate cortex; MPFC: medial prefrontal cortex; MFG: middle frontal
gyrus; Prec: precuneus; PCC: posterior cingulate cortex. x coordinate is in
the MNI stereotactic space; cluster-level thresholded at p (FDR) < 0.05.

Our observations will be discussed in the context of local neu-
ral activations and their assumed associations with subjective
representations, being well aware of the conceptual problems
when attributing high level cognitive processes to local neu-
ral modules or distributed neural networks (Bao and Pöppel,
2012).

We observed activation increases in the musician group in
response to sad prosody in right frontal areas, in the middle and
SFG (BA 10, BA 9, BA 46). Structural plasticity in right frontal
regions has previously been associated with musical training
(Hyde et al., 2009). Consistently, models on prosody processing
agree in assuming the frontal cortex to play a crucial role in
higher levels of prosody processing (see Witteman et al., 2012),
specifically in the detection and judgment of emotional speech
prosody (see Schirmer and Kotz, 2006). Specifically, the middle
frontal gyrus has previously been found to be associated with
processing of incongruity of in emotional prosody (Mitchell,
2013) and the detection of sad emotional tone (Buchanan et al.,
2000). The stronger activations in right prefrontal areas may
thus reflect processes related to the evaluation and categorization
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of emotional prosody and it might also point to an enhanced
sensitivity in the musician group specifically for the sad emotional
content of the stimuli.

The increases in frontal activation for the group of musicians
in response to sad speech prosody also included the an area com-
prising the medial part of the SFG and the ACC (BA 10, 32); areas
that are both particularly associated with emotional processing,
the appraisal and the regulation of emotions (Etkin et al., 2011),
and also the induction of emotions (Amodio and Frith, 2006).
The ACC is assumed to be part of a network specifically sensitive
to monitoring of uncertainty and emotional saliency (Nomura
et al., 2003; Cieslik et al., 2013) and the ACC and the medial pre-
frontal cortex have been specifically associated with the induction
of sadness (Beauregard et al., 1998; Mayberg et al., 1999; Bush
et al., 2000). Furthermore, the medial prefrontal cortex has been
observed to be involved in emotional voice processing (Johnstone
et al., 2006; Ethofer et al., 2012), and activation in the ACC
has been found to play a special role in processing of emotional
prosody (Bach et al., 2008; Belyk and Brown, 2014). We previously
found increased activation in prefrontal regions in musicians in
response to sadness in a study on musically conveyed emotions
(Park et al., 2014) and Escoffier et al. (2013) found activations in
the superior frontal cortex and the ACC during the processing of
emotions that were expressed in music and through vocalization.
The authors assumed that specific social processes might underlie
emotion perception in both domains as both the superior frontal
cortex and the ACC play a crucial role in mentalizing and other
theory of mind (TOM) mechanisms (Escoffier et al., 2013). In
fact, the medial prefrontal cortex and the ACC have consistently
been associated with empathic processes and perspective taking
(Amodio and Frith, 2006; Decety and Jackson, 2006; Etkin et al.,
2011) and in particular the medial prefrontal cortex has been
termed a “hub of a system mediating inferences about one’s own
and other individual’s mental states” (Ochsner et al., 2004). The
increased activations in the medial prefrontal cortex and the ACC
in the group of musicians in response to sad sentences might
thus suggest stronger emotional responses specifically related to
the sad prosody of the stimuli. The increases of activation might
furthermore point towards specific empathic processes related to
the perceived sadness expressed in the stimuli (Harrison et al.,
2007).

We also observed stronger activation in musicians in response
to sad speech prosody in the posterior cingulate (PCC, BA 23,
31) and the retrosplenial cortex (BA 29, 30). The PCC and
retrosplenial region have been associated with internally directed
thought and episodic memory functions (Vann et al., 2009;
Leech et al., 2012), and they are also involved in the “neural
network correlates of consciousness”, playing an important role
in cognitive awareness, self-reflection (Vogt and Laureys, 2005)
and control of arousal (Leech and Sharp, 2014). The PCC and
retrosplenial region are also assumed to be involved in pro-
cessing of the salience of emotional stimuli (Maddock, 1999)
and the emotional content of external information (Cato et al.,
2004), specifically of emotional words (Maddock et al., 2003).
The increased activation we observed in the PCC and retrosple-
nial region in response to the sad prosody might, thus, reflect
enhanced memory processes as well as increased assessment of

emotional saliency of the sad prosodic stimuli and monitoring of
arousal.

Some of the areas in which we found activation increases for
musicians in response to sad speech prosody can be considered
parts of the default mode network (DMN, Raichle et al., 2001;
Buckner et al., 2008), specifically the cortical midline structures
ACC and PCC and the anterior medial regions of the prefrontal
cortex. The DMN shows strong activity at rest and deactivation
during tasks that call for external attention. The DMN as a
functional system has been associated with processing of self
(Zaytseva et al., 2014) and reflects introspective activities and
stimulus-independent thought. Such “mentalizing” detaches
from the present moment in which stimulus processing takes
place (Pöppel and Bao, 2014). Furthermore, the DMN has been
associated with induction of emotions, processing of affective
saliency (Andrews-Hanna et al., 2010) and with social-emotional
processing (Schilbach et al., 2008, 2012), such as attributing
mental states to self and others (e.g., Mars et al., 2012).

It may be a puzzling result that the only significant differences
between the groups were observed in the neural response to
prosody expressing sadness but not in response to the other
emotions. However, sadness is consistently found to be one of
the emotions that are easiest to recognize (see Thompson et al.,
2004). It is characterized by a particularly relevance to social loss
(Panksepp, 2005) and may therefore be considered a highly salient
and socially relevant signal. Furthermore, the expression of sad-
ness in both music and speech prosody relies on similar acoustic
features (Curtis and Bharucha, 2010), which musicians, due to
their enhanced acoustic skills, may be able to extract more readily.
In a previous study on musical emotions (see Park et al., 2014), we
also found that musicians showed stronger neural activations to
musical excerpts conveying negative emotions including sadness,
and indicated stronger arousal in response to sad music. It was
hypothesized that musicians may possibly be at an advantage
to respond to the high social saliency of this emotion due to
certain gains in social-emotional sensibility. In fact, the social
functions and effects of music making have recently received
increased attention (Koelsch, 2013) and listening to music has
been shown to automatically engage TOM processes such as
mental state attributions (Steinbeis and Koelsch, 2009), possibly
implying that musicians because of their ongoing training may
be particularly experienced in those specific aspects of social-
emotional cognition. In fact, there is some empirical indication
that musical training does indeed positively influence social
emotional and communication development (Gerry et al., 2012)
and that musical interventions effectively improve social skills
(Gooding, 2011). Thus, a specific increase of social competence
and social-emotional sensibility may be one cross-functional
benefit of long-term musical training. Assuming these potentially
enhanced social cognitive and empathic competences, musicians
might thus be more responsive to the high social saliency of
sadness in speech prosody. However, while several studies have
reported advantages in recognition of emotional speech prosody
due to musical training (Thompson et al., 2004; Lima and Castro,
2011), we only observed the difference between musicians and
non-musicians in identifying sadness on the neural level, but we
did not find any significant differences on the behavioral level.
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This dissociation between neural responses and verbal reports
to sadness supports the general concept to distinguish between
the levels of explicit and implicit experience (Pöppel and Bao,
2011). The fact that the difference between the groups was only
observed on the neural level suggests that for musicians sadness
may be characterized by a unique implicit representation. The
neural activations we observed in response to the sad prosody,
in particular the activations in the MPFC and other parts of
the DMN (Ochsner et al., 2004; Mitchell et al., 2005; Amodio
and Frith, 2006), may possibly reflect these social-emotional
mechanisms that crucially involve implicit introspective, i.e.,
self-referential, processes to infer the mental state of the speaker.

Finally, while a transfer effect of musical training to speech
processing may mainly depend on acoustic and rhythmic sim-
ilarities between music and speech (see Jäncke, 2012) temporal
mechanisms might constitute another driving force for this cross-
functional learning effect. Temporal mechanisms are of utmost
importance in coordinating cognitive processes and can be con-
sidered to be an anthropological universal (Bao and Pöppel,
2012). Positive learning effects related to temporal training have
been observed previously on the level of temporal order thresh-
olds (Bao et al., 2013) of native speaker of the tonal language Chi-
nese who show different thresholds compared to subjects from a
non-tonal language environment. Furthermore, temporal mecha-
nisms are crucial for conveying poetry (Turner and Pöppel, 1988)
and they can be regarded basic to the expression and experience
of music (Pöppel, 1989). Since neuro-imaging studies have shown
music and language to rely on similar neural structures (Abrams
et al., 2011) and considering the temporal similarities between
music and speech it might be suspected that musical training
also positively impacts temporal processing, and the observed
effects thus may reflect enhanced temporal sensitivity as an effect
of inter-modal transfer (Pöppel, 1989, 2009) which might also
involve a higher competence to detect sadness in speech.

In conclusion, consistent with a previous study showing differ-
ences in emotion processing presumably due to musical training
(Park et al., 2014), our study supports the notion that such
training also alters the neural processing of distinct emotions
conveyed in speech prosody. In particular, while musicians and
non-musicians do not differ in their performance in recognizing
sadness in speech, they process this particular emotion signif-
icantly differently on the neural level. Musicians show distinct
increases of neural activations only in response to the sad prosody,
possibly due to a higher affective saliency that the sentences
spoken with sad intonation might possess. Our results imply that
the cross-modal transfer effects of musical training go beyond
auditory processing and explicit emotional recognition skills; we
suggest that such training may also impact the empathic aspects
in human communication.
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