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Abstract

Classically, rigid objects with elongated shapes can fit through apertures only when properly aligned.
Quantum-mechanical particles which have internal structure (e.g. a diatomic molecule) also are affec-
ted during attempts to pass through small apertures, but there are interesting differences with classical
structured particles. We illustrate here some of these differences for ultra-slow particles. Notably, we
predict resonances that correspond to prolonged delays of the rotor within the aperture—a trapping
phenomenon not found classically.

1. Introduction

Continued advances in cold-atom technology have opened new opportunities for studying the influence of
internal structure upon the scattering of particles. Three such advances come to mind here: The formation of
cold molecules from a Bose—Einstein condensate [33] or Fermi gas [36], the observation of the eclipse effect [23]
in the scattering of helium clusters by a grating [37], and the creation of an Efimov state [8] in collisions between
cold atoms of cesium [39] and potassium [19, 61].

In the present paper we investigate the scattering of slow structured particles from an aperture in a thin
screen. Specifically, we consider a situation in which the aperture is comparable in size to the particle dimension.
We show that when the energy of the centre-of-mass motion is less than, or comparable to, the energy of the first
rotational excitation, then the classical transmission probability is dramatically suppressed [11, 58]. Moreover,
the particle can be trapped briefly within the aperture, as demonstrated by transmission resonances.

1.1. Transmission

The theory of wave scattering has a long history. A landmark paper by Arnold Sommerfeld in 1896 developed the
first full theory of electromagnetic wave diffraction from a half plane [54] (see chapter XI of [7]). Hans Bethe
generalized this approach in 1944 to treat the diffraction of light by small holes [5]. As has been discovered, novel
effects occur with transmission of light through subwavelength apertures in metal films, due to surface plasmons
[55]. Even entanglement between two photons can survive such transmission [3]. A review [21] describes the
effect of light scattering from arrays of subwavelength apertures.

The long-established wave nature of particles has, in recent years, found numerous applications in
theoretical studies and experimental demonstrations whereby atoms or molecules serve as the particles whose
wavelike properties are demonstrated by means of diffraction from slits or periodic arrangements of apertures in
screens [1, 2, 23], see section 5.4. Such wavelike attributes of particles become evident when the de Broglie
wavelength is comparable to, or larger than, the characteristic length scales of apertures, see section 5.2. In most
of the previous work the theory needed only to account for the centre-of-mass motion of the particles, and could
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neglect the internal structure, i.e. the shape of the particle. Here we examine a particularly simple model of
particle structure and show noteworthy effects.

Treatments of scattering have, for many years, allowed the use of composite projectiles that could, through
interaction with a target, undergo transforming reactions. An early analysis [24] of such projectile structure for
relatively energetic particles treated the nuclear reactions of deuterons, such as the stripping process analogous
to dissociation of a diatomic molecule.

Experimental progress has made possible studies of the transmission of particles through apertures, or
aperture arrays, in which the characteristic size of the projectile is comparable to the aperture. Examples include
the scattering from mechanical gratings of Rydberg atoms [ 18], helium clusters [37] or biomolecules and
fluorofullerenes [31]. Were such processes classically considered simply as the passage of a particle through an
aperture, it would be essential to account for its shape and orientation with respect to the aperture. Classically,
rigid objects with elongated shapes can fit directly through apertures only when properly aligned.

These geometric aspects are nicely illustrated by a bit of folklore associated with the construction of the old
Miinster (church) in Ulm, Germany. As local lore would have it, during the construction of this grand edifice
workmen were bringing needed long timbers into the city. Because the timbers had been placed across the
transporting wagon (i.e. transversely) they would not fit through the narrow entrance of the town wall. As the
workmen pondered their timber-transportation challenge, they anticipated having to widen the aperture. They
spied a small sparrow bringing a long straw to his nest inside a narrow hole. The workmen laughed to see that the
sparrow faced exactly their problem of passing a long stick through a narrow opening, though he lacked their
intelligence to realize his hopeless plight. To the surprise of the workmen, the sparrow simply twisted his head,
thereby orienting the straw longitudinally to the flight path, and in this way he brought the straw through the
aperture to the nest. Since then the sparrow (Ulmer Spatz) has become a symbol of the city of Ulm.

For small objects whose internal motion must obey the rules of quantum mechanics, the results of such
encounters can differ significantly from predictions based on classical trajectories. In quantum theory the fitting
of a nonspherical object through an aperture by suitable rotation takes the form of an entanglement between the
translational coordinates and the orientation degrees of freedom. Hitherto the corresponding experimental
investigations [8, 28] have found only small modifications of the transmission probability attributable to such
quantum effects. In the present paper we show that this entanglement can lead to resonances and to nearly
complete reflection of the particles, contrary to the predictions of classical dynamics.

The question we address here is: what suppression or enhancement of aperture passage of a quantum
particle occurs as a result of internal structure, specifically the structure of a rigid rotating particle. The regime of
interest occurs when the de Broglie wavelength of the particle is not only comparable to, or larger than, the
dimensions of the target apertures but also to those of the particle structure. We illustrate our predictions with
the aid of a simple two-dimensional model consisting of a rigid rotor slowly approaching a single slit. We also
suggest possible experimental realizations.

1.2. Trapping

Usually one associates trapping of a particle with a classical binding force. Quantum mechanics requires only a
minor modification of this concept: it restricts the classical continuum of energies to a discrete set. However,
John von Neumann and Eugene Paul Wigner showed in 1929 [57] that this summary of quantum-mechanical
binding is incomplete. They considered a completely repulsive radial barrier, which rapidly approaches
infinitely negative energy with increasing distance. Despite the lack of a second barrier to provide a classical
localization, this potential supports a single bound state.

The same principle of binding originating from the wave nature of a particle occurs [48,49, 53] in the
example of a staircase potential that approaches, stepwise, negative infinite energy with increasing distance.
When the heights and widths of the stairs have an appropriate ratio the interference of the waves reflected at the
stair corners leads to a destructive interference of the outgoing wave, thereby producing a binding effect
(48,49, 53].

Both examples rely on radially symmetric potentials in three dimensions [25]. However, already in two
dimensions a quantum particle can be bound in situations that would not bind a classical particle. For example,
an atom or electron confined to a channel that has a branch or an orthogonal crossing, experiences a bound state
localized at the intersection of the channels. Such states appear, for example, at crossings with three [59] or four
ports [51]; they have even been produced 50, 60].

Bound states can also occur at the bend of a waveguide [ 14, 16, 17, 40] (for an experimental verification see
[42]) orin a channel that has a rippled wall [43]. For a review of some aspects of such unusual bound states see
[9] and for recent experiments see [6].

In these examples the binding results from wave interference in more than one dimension. It can be
understood as the coupling of waves in different directions caused by a boundary. In this sense itis a
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generalization of the d’ Alembert principle for treating constraints within classical mechanics to quantum
mechanics [35, 38, 56] When the boundary changes abruptly, as at a sharp corner, then the corresponding
scattering creates secondary waves that cannot be neglected [4, 20]. When the change is smooth and slow, i.e.
adiabatic, it is possible to reduce the dimensionality with the aid of an effective potential [14, 16, 17]. Our
analysis of the scattering of a rotor from an aperture follows this approach. The interplay between the
translational and rotational degrees of freedom induced by the aperture appears as an effective potential for the
centre-of-mass motion.

There exists an interesting connection between the behaviour of a cold molecule enforced by an aperture and
the reflection and trapping of cold atoms by the vacuum field of a cavity [ 15, 32]. The latter example describes
the mazer [52], in which very slow atoms can be reflected from, or tunnel through, a cavity field.

The effects discussed in the present paper are reminiscent of the behaviour of waves in two-dimensional
waveguides where the separation of the walls changes adiabatically with position. In this situation a coupling
occurs between the longitudinal and transverse motions. Whenever the waveguide widens and then returns to its
initial width, an effective binding potential for the longitudinal motion can allow a bound state to form [11].
Likewise, whenever the waveguide narrows and then broadens again, a repulsive potential hill emerges, through
which the particle must tunnel.

In a moving frame of reference the variation of waveguide width appears as a temporal variation of the
confining walls. Therefore this problem is that of a particle in a box whose walls move with time [26, 41]. Such
time dependence produces a phase that has been observed in neutron scattering experiments [47].

1.3. Organization of this article

Our article is organized as follows: in section 2 we define the geometry of the scattering of a symmetric rotor
from a single slit. The motion involves two degrees of freedom: (1) centre-of-mass motion through the centre of
the slitand (2) rotation in a plane orthogonal to the slit. We identify two domains of rotor orientation,
corresponding to transmission or reflection. In section 3 we turn to the quantum mechanical description of this
two-dimensional scattering process. Here we concentrate on the transmitted wave. The rotational constraint,
when adiabatically eliminated, gives rise to a series of effective potentials for the centre-of-mass motion in the
interaction region. Section 4 uses numerical solutions of the corresponding one-dimensional time-independent
Schrodinger equations—valid in the interaction region—and discusses the matching at the boundary to obtain
the transmission probability T'as a function of energy. Plots of this dependence exhibit resonances that
correspond to particle trappings. Section 5 summarizes our results. It discusses energy requirements and
limitations of the model, concluding with a discussion of possible extensions of our model, and with some
possible experimental realizations.

In order to keep the article self-contained without hindering the narrative we have included reference
material and details of calculations in appendices. In appendix A we review the wavefunctions of rotation and
translation. Appendix B describes the coupled-mode equations used for obtaining the effective potentials.
Appendix C discusses the continuity equations for the complete wavefunctions. The resulting algebraic system
of equations provide the reflection and transition probabilities.

2. Classical elongated particles

We consider the scattering of a particle with rigid but orientable internal structure from a single slit in a thin
screen. More particularly we treat the simple model of a rigid rotor of mass M which is distributed symmetrically
alongalength 24 to give a moment of inertia

M =M X (ka)?. (D

Here the dimensionless, scaled mass-distribution parameter k quantifies the distribution of mass: it is equal to 1
for a dumbbell or diatomic molecule and to2/+/12 = 1/+/3 for a uniform bar. For simplicity we restrict
ourselves to a situation where the centre-of-mass motion is constrained to be along the x-axis. The slit, located at
x=0, is perpendicular to the x-axis and has a total width of 2b. Figure 1 illustrates these parameters and variables.

2.1. The classical Hamiltonian

The system has two degrees of freedom: the translational motion of the centre-of-mass characterized by the
position x and its conjugate momentum p,, and the rotational motion represented by the angle ¢ and angular
momentum p,. The Hamiltonian for this system,
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Figure 1. Geometry of classical scattering of a symmetric rotor from a single slit in a thin wall. The centre-of-mass of the rotor, of
length 24, is constrained to move along the x-axis towards a slit of width 2b which is located at x = 0. The rotation takes place in a plane
orthogonal to the wall. The angle of rotation ¢ is measured from the x-axis. In this drawingb/a = 0.5.

2 2
)%

H= P + 2)
oM 2M

is independent of position x or angle ¢.

The full specification of the system requires initial conditions of these variables. Indeed, we need to specify
the position x and the momentum p, of the centre-of-mass motion at timet — —oo0, when the rotor is far away
from the aperture. Moreover, we need to define the initial angle of rotation, ¢, and the angular momentum p,. In
order to be able to compare and contrast classical and quantum-mechanical scattering we consider an ensemble
of rotors, all with initial energy E and initial angular momentum p, = 0. Because the rotational motion is
unhindered when the rotor is far away from the screen the initial condition , = 0 implies that the initial energy
E consists solely of translational kinetic energy. Hence we deal with a stream of particles all with identical
velocities but uniformly distributed along the x-axis. Likewise, we interpret the ensemble of rotors of vanishing
angular momentum as an ensemble of rotors each of which has a fixed angle ¢ with respect to the x-axis, but with
these values distributed uniformly in ¢.

The effects of the screen and the slit appear as constraints. For classical motion the rotation is hindered when
the rotor approaches the screen: the regime of allowed angles becomes x dependent. As long as the horizontal
separation|x | of the centre-of-mass from the screen is greater than the critical distance

xCEx/az—bZEa\/l—cz, a>b, (3)

there is no effect. However, when the centre-of-mass is closer to the aperture the rotor cannot perform a
complete cycle of rotation, as shown in figure 2 for three selected geometries. Note that x, is only defined for
a > b;whenb > athe particle passes freely through the aperture.

In (3) we have introduced the aperture-to-length ratio

b
c=—. (4)
a
This parameter plays an important role throughout this article.
2.2. Classical constraints
A classical rotor can only pass through the slit (be transmitted) if its angle ¢ = ¢ (—x.) atx = —x, obeys the
inequality |@| < a, where the critical angle is
c
o, = arctan — = arctan ——— = arctan —. (5)

Xc a? — b? 1 —¢?

For all other angles the classical rotor will be reflected.

While the rotor is passing through the aperture its rotation is hindered. An elementary geometrical
argument shows that for a rotor at position |x| < x. the angle ¢ (x) is, in transmission, restricted by the
inequality
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Figure 2. Geometrical connection between the centre-of-mass position x and allowable rotation angles, for three characteristic
examples of a classical rotor passing through or reflected from a slit. Here we have chosen the ratio of rotor length to aperture size to be
¢ = b/a = 0.5.(a) Rotor geometry when the rotor tip just touches the openings of the slit. This position, x = —x,, with

x. = v a* — b*, marks a critical moment in the motion of the rotor towards the slit. Here the rotation angle ¢ first becomes hindered,
constrained to the domain |¢| < a..(b) For smaller separations |x| < x, there are two domains of allowed angles. For rotors that are
on their way through the slit the rotation angle |¢|is constrained by the anglea®) (x) = arctan (b/|x|). This region is shaded blue. For
rotors to be reflected the angle || must lie within a domain located symmetrically around #/2 and of width 2a (x) where

a” (x) = arcsin(|x|/a). This region is shaded red. The frame depicts x = 0.43a.(c) Rotor geometry when the rotor is centred in the
slit, at x = 0. Here the domain of reflection angles vanishes, i.e. a'” = 0. Therotor is essentially free, i.e. oW =z/ 2, provided the slit is
infinitely thin. However, the rotor cannot complete a full rotation.

lp(x)] < a¥(x), (6)

where

a¥ (x) = arctan L (7)
|x|

Likewise, a rotor at position x will be reflected if its angle ¢ (x) fulfills the inequality

% —a(x) < p(x) < g +a(x), (8)

where
x
a(x) = arcsinu. 9)
a
Asis evident from figure 3, rotation angles between a'”) (x) and 7/2 — a(” (x) cannot occur.

2.3. The classical transmission probability

We conclude our discussion of classical motions by noting that in the stream of particles in the rotational
ground-state that impinge on the screen only those rotors pass through the aperture whose angle of orientation
¢ lies within the interval |p| < a,. All other rotors are reflected. Hence the classical transmission probability T¢!
i.e. the ratio of the number of transmitted rotors to the number of incident rotors, is determined by the ratio

Td domain of rotor orientations allowing transmission

= . . —— — : (10)
domain of all possible rotor orientations in the initial state

For a symmetric rotor, as we consider, the physical structure is unchanged if the particle is rotated by z. Hence
the denominator of the ratio in (10) is z. From (5) we find the numerator, i.e. the domain of rotor orientations
that allows classical transmission, to be 2a,. The resulting formula reads

2a 2 2 .
= 2% _ 2 arctan ——— = —arcsin(c). (11)
b T 1—¢2 =«

Tcl

In the limit of a rotor size a approaching the aperture size b, thatis forc — 1,wefinda, — #/2 and hence
T = 1,i.e.all rotors are transmitted, as expected.

In the remainder of the paper we concentrate on the modifications of the classical transmission probability
introduced by quantum mechanics. We show that the classical transmission can be enhanced or suppressed. We
also find that the rotor can be (temporarily) trapped within the aperture. This delay of progress through the
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Figure 3. Geometrically allowed domains (red and blue) and forbidden domains (dark grey) of rotation angles ¢ corresponding to
reflection (r) and transmission (), respectively, for a rotor with¢ = b/a = 0.5. The figure shows angles ¢ = ¢ (x) associated with
positions x of the centre-of-mass of the rotor within the region |x| < x, where the rotation becomes hindered by the slit. Rotors
approaching from x < —x, will be transmitted or reflected depending on whether ¢ ( —x, ) lies within region ¢ (blue) or r (red) ,
respectively. Ata given position x the widths of the allowed angular intervals corresponding to the transmitted and reflected particles
are, respectively, 2a® (x) of (7) and 2a'” (x) of (9). The three locations (a), (b) and (¢) of the rotor from figure 2 are indicated on the
frame top .

aperture is visible as enhanced wavefunction density within the aperture and as a resonance increase in
transmission; the width of the resonance is inversely proportional to the delay.

3. Quantum particles with internal structure

The foregoing discussion of the scattering of a classical rotor from a slit in a thin screen only involved geometric
relationships between the length a of the rotor and the size b of the aperture, as expressed by the aperture-to-
length ratio ¢ = b/a. The mass-distribution parameter x of (1) plays no role in such geometrical constraints. The
reason for that is the following. We are concerned with rotors whose initial motion, far from the screen, is
entirely translational. Then the initial classical angular momentum B, vanishes, and the rotational contribution
to the Hamiltonian vanishes as well. Consequently the factor1/M, which contains the k-dependence, has no
effect classically and only the lengths a and b are needed to completely characterize the scattering.

By contrast, quantum mechanics allows the parameter « to affect the scattering process even for rotors that
are initially not rotating. Although the length a quantifies the extent of the structured particle as it interacts with
the slit, a second parameter is needed to express the distribution of mass. For example, in a diatomic molecule
the mass is concentrated in two nuclei, whereas the size of the molecule is determined by the distribution of
electron charge. The nuclei are essentially point charges, whereas the electrons are essentially massless. The
mass-distribution parameter « is the ratio of the length of the electron distribution to the internuclear
separation. It has maximum value, k = 1, when the mass is concentrated at the two ends.

In the quantum-mechanical description the classical Hamiltonian becomes a differential operator. The
rotational kinetic energy operator is proportional to the second derivative of the wavefunction with respect to
the angle ¢ and, as we shall explain below, this introduces an explicit dependence upon the mass-distribution
parameterx.

In the present section we show how the classical constraints discussed in the preceding section translate into
boundary conditions on the energy wavefunction describing the centre-of-mass motion and the rotation. We
then eliminate the rotational degree of freedom in the interaction region and derive a series of effective potentials
for the motion along the x-axis.

3.1. The quantum rotor

Our quantum mechanical model is that of a symmetric rigid rotor. That is, we allow rotation of the molecular
framework but neglect the possibility of vibrational motion that would alter its dimension. This is a reasonable
approximation as long as the initial translational energy is much lower than the energy of the lowest-lying
vibrational excited state. Vibrational excitation energies are significantly larger than rotational excitation
energies, and so our analysis is consistent with the assumption of a rigid rotor. As we will note in a concluding
section, our outlook offers some possible physical examples of molecules that might be suitable candidates for
the scenario we discuss.
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We assume that the incident particles are in their rotational ground state. As with the classical rotor, we
consider a quantum rotor whose axis of rotation (i.e. the quantization axis) is perpendicular to the velocity,
which we take to be in the x direction. We consider an apertured screen that is perpendicular to the velocity, at
x =0, and we simplify the centre-of-mass motion to be along a track through the centre of the aperture. Thus the
translational motion requires only one degree of freedom (coordinate x) , as does the rotational motion
(coordinate ¢).

3.1.1. The quantum Hamiltonian
The energy wavefunction ¥ = %% (x, ¢) for the moving rotor is determined, for translational and rotational
variables x and ¢ respectively, by the time-independent Schrédinger equation,

HY: (x, 9) = E¥: (x, ). (12)

The quantum mechanical Hamiltonian operator H appearing here follows from (2) by replacing the classical
momenta p,and p, by differential operators, respectively —i719/0x and —i710/0g. As aresult, the time-
independent Schrodinger equation (12) describing the scattering of a fixed-energy rotor from a slit becomes the
partial differential equation
n* 0? n* o’
— 4+ ———+ E|¥%(x, =0. 13
[2M ox?  2M dg? ] B ¢) (1)
This is the two-dimensional Helmholtz equation for variables x and ¢. It must be supplemented by appropriate
boundary conditions. As we next explain, these incorporate the quantum counterpart of the geometric
restrictions of classical rotation.

3.1.2. Dimensionless scaled variables
To identify the relevant parameters and get a dimensionless eigenvalue equation it is convenient to express the
energy E of the incoming rotor in terms of the energy E, of the rotor discussed in appendix A, that is:

h2
E=¢Ey  Ey=— . (14)
2M(ka)?
We introduce a dimensionless measure of distance s by expressing the position variable x in units of the
effective rotor length xa,
X = kas. (15)
With these definitions the Schrédinger equation reads
0? 0*
— 4+ — +¢e|¥%(s, ) =0, (16)
[ 02 d¢? ] e 9

where we see on the left the two-dimensional Laplace operator in the variables s and ¢.
When distances are expressed in terms of the dimensionless variable s then the critical distance s, where the
rotor begins to be affected by the screen,

1
s, = =1 —=¢2, (17)

K

isadjusted by the aperture-to-length ratio ¢ = b/a and is inversely proportional to the mass-distribution
parameter k. With these modifications the geometrical constraint of (6) for the transmission domain becomes

lp(s)] < ao(s), (18)
where

a(s) = arctan L, (19)
K |s

while (8) for the reflection domain reads

g —a(s) € p(s) <=+ a®(s), (20)

z
2
where

a(s) = arcsin(x |s]). (21)

These considerations show that the relevant parameters describing the geometrical situation arec = b/a and k.
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3.1.3. The incoming free rotor

The rotor Hamiltonian of (2) is the sum of two kinetic energies: translational and rotational. When the rotor is
far away from the screen the translational and rotational degrees of freedom are uncoupled. The energy
wavefunction ¥, is then expressible as a product of a plane wave, corresponding to the centre-of-mass motion,
and an eigenfunction of a free rotor—one that can experience unhindered rotation.

We confine our analysis to rotors that are initially in the rotational ground state, of zero rotational energy, as
specified by vanishing angular momentum quantum number m discussed in appendix A. As a result, the energy
eigenvalue € arises entirely from the initial translational kinetic energy and the wavefunction is separable: we
write it as the product of translational and rotational wavefunctions

Coin(s, @) =y, () 90 () = elbos

(22)

wheree = k. The rotational label (f) indicates that the rotation is unconstrained. Upon entering the aperture
the rotation becomes constrained and such a product must be replaced by a wavefunction that incorporates such
hindrance (h), see appendix A.

3.2. Coupled mode-functions
When the rotor enters the interaction region , where|s| < s, its rotation becomes hindered. Although the rotor
remains in the rotational ground state, the rotational eigenvalue increases as the motion becomes more
restricted. We treat this hindrance by requiring that the rotational wavefunction vanishes for angles that lie
outside the domain of classically allowed motion, given by (19) and (21). Figure 3 displays an example of the
allowed domains of ¢. The hindered motion, and the resulting entanglement of variables s and ¢, we incorporate
by imposing the boundary condition that the wavefunction should vanish at the borders of the allowed angular
domain.

We now derive a system of coupled equations for the wavefunctions of the centre-of-mass motion. The
coupling arises from the position dependence of the boundaries. We then specialize these equations to treat
transmission.

3.2.1. Quantum constraints as boundary conditions

Figure 3 shows that the allowed angular motion of the particle separates into two domains, transmission (¢) and
reflection (). It is necessary to consider separately the wavefunction for these two domains. In either one the
angle ¢ lies between two position-dependent values

P,(5) L@ < p,(5), withw(s) = ,(s) — ¢,(s). (23)

The boundaries of the allowed range of angles, ¢, (s) and ¢, (s) and the width w (s) differ for transmission and
reflection domains. For the transmission domain we find from (18)

@,(s) = —a'(s) and @,(s) =a?(s), sow(s) =2a(s). (24)

For the reflection domain we identify

@, (s) = % —a(s) and @,(s) = % +a(s), sow(s) = 2a(s). (25)

As shown in appendix A the appropriate rotational wavefunctions (A.13) for the hindered rotor are sine
functions of ¢

b, (@, s) =

sin[n il ((p—(pl(s))], n=1,2,... (26)

2
w(s) w(s)

andw (s) and ¢, (s) are given by either (24) or (25). Here we have omitted the superscript (k) indicator of
hindered motion used in appendix A.

3.2.2. General mode equations
Using the hindered-rotor wavefunctions (26) we make the ansatz

(s, 0) = D i ()b (9 9). (27)

n=1

We substitute this into the Schrodinger equation (16). After working out the derivatives we project the
resulting equation onto each hindered-rotor wavefunction ¢, (¢, s). We arrive in this way at the system of
differential equations for the translation functions y, (s),

8
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- ” 1
E{émnl% (s) + (6’ — nzaz(s)Z)%(S)]

’ ! 2 "
NPLACHS +[(a (s)) 5+ (a (s) ) Amn]% 5) L =0, (28)

a(s) al(s) a(s)

where primes denote differentiation with respect to the translation variable s. Expressions for the arrays A,,,,, and
B, are given in appendix B. These numbers form matrices A and B.

Three features stand out in (28). First, the bracketed term multiplying the Kronecker delta §,,,, represents a
semi-independent Schrédinger equation for the centre-of-mass motion with the fixed initial energy £ in an
effective potential

2
nz%ﬂ— =n2lil(s) forj=t,r (29)
[a(f)(s)] 4

determined by the dependence of the boundary angle a’) (s) on position s.

Second, the position dependence of the boundary, through a'” (s), gives a position dependence to the
hindered-rotor wavefunction ¢, and therebyleads to a coupling of the modes, expressed in the second line of
(28) by terms proportional to the constant arrays A,,,,, and B,,,,,.

Third, the spatial dependence of these couplings appears in the ratios a’/a and a”/a, which vanish for
boundaries that do not depend on s. The remaining portions of the couplings, the matrices A and B, are
independent of position.

3.3. Mode-decoupling approximation

To obtain useful analytical results we neglect the sharp changes ina (s) ats = +s. and s = 0 thereby neglecting the
ratiosa’/a and a”/a. This assumption allows us to neglect the mode coupling in (28) and deal with a set of
independent equations for the centre-of-mass motion. In this approximation each translational mode function
1//’10) (s) becomes effectively decoupled from all the others, obeying the equation

2 .
[% +e—n2yl) (S):|l//,£]) (s) =0, forj=t,r. (30)
s

Here we use (21) to express the effective potential for the reflection as

v (s) = (%)z[a(’)(s)]_2 = (%)z[arcsin(ldsl)]_z, (31)

while we use (19) to write the effective potential for the transmission as

2 _ 2 -2
y(s) = (g) [a(t)(s)] 2 _ (g) larctan(ﬁ)] . (32)

The expansion (27) of the total wavefunction in the two variables is fundamentally, and crucially, different in
the regions of free and hindered rotation. Therefore we cannot consider these potentials as part of a total
potential extending from — oo to 00 in s. They serve only to determine the wavefunction inside the|s| < s, region,
while the usual fitting of the solutions (i.e. matching functions and derivatives) is to be performed for the total
two-dimensional wavefunctions. The full domain of centre-of-mass positions we divide into three regions: in
region [ the particle approaches the slit, unhindered by any walls. In region IIT the particle continues moving
beyond the slit, again unhindered. In the intermediate region, II, the wall hinders rotation and there is a
correlation between translational and rotational degrees of freedom.

3.4. Properties of the effective potentials

Next we discuss the forms of the two effective potentials v (s) and ") (s) scaling with #° for higher modes (30).
We first analyse their general features and then illustrate them in figure 4 for certain values of cand a fixed k. In
particular, we examine limiting cases of the potential.

3.4.1. Reflection potential

Itis important to note that the reflection potential v") (s) given by (31) does not depend explicitly on the
aperture-to-length ratio c = b/a. This parameter affects the potential only implicitly: it changes the position + s,
of the boundary which, according to (17), depends on c as well as on k. The consequence of this property is
evident in the top frame of figure 4, where we show v (s)forc=0.5and c=0.9. At the end points of the region,

9
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Figure 4. Effective potentials v(") (top frame), from (31), and v*) (bottom frame), from (32), versus scaled centre-of-mass coordinate s
fork = 1. Dashed blue lines are forc = b/a = 0.5 while red lines correspond to c = 0.9. The potential v(") (s) responsible for reflection
displays an infinite barrier ats = 0, whereas the potential v(*) responsible for the transmission displays a minimum at this point. Note
that these potentials make sense only in the region |s| < s (II), as indicated by dotted vertical lines. We emphasize that the domain of
sc dependson c.

|s| < s, the height of the reflection potential,

2

v (xs,.) = (%)z[arcsinxﬂ — cz]_z = (%) [arccos ¢] 72, (33)

is independent of the mass-distribution parameter k. When the aperture is much smaller than the particle size
this value approaches unity,

v (s.) > 1, forc < 1. (34)

In the opposite limit, when the aperture is only slightly larger than the rotor we find

1(z) 1
N(s.) ~ == forc <1 35
v\ (s.) = , orc S 1.
so~5(5) = (35)
This value becomes large without limit as ¢ tends towards 1 and the rotor fills the slit. However, in this limit the
domain boundarys, also tends to zero, because s, & (v/2/k)~/1 — c. This behaviour expresses the fact that near
the centre of the aperture, ats = 0, the reflecting potential becomes unboundedly large,

) 1
v (s) - (—) , for |s| < s.. (36)
27 (lsly?

3.4.2. Transmission potential

We now turn to the transmission potential v (s), given by (32). In contrast to the reflection potential v (s) the
transmission potential depends explicitly on the parameter c. However, as in the case of the reflection potential
(33), the limiting value of v*) (s) at s, of height

2
v (xs) = v = (f) arctan| ——— , (37)
2 1 —¢?

is again independent of k. In the limit of a small aperture this expression tends to
201\2
Ve = (E) (—) , forc < 1. (38)
2 c

As the particle approaches the centre of the slit v'*) (s) decreases. In the neighbourhood of the centre of the
aperture we find from (32), with the help of the asymptotic expansionarctan(z) = #/2 — 1/z,valid forz — oo,
alinear dependence of the potential on distance away from the centre

4
vO(s) ~ 1+ —x |s|. (39)
zc
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Figure 5. The effective potentials v(*) (s) and v (s) versus scaled centre-of-mass distance s. Dashed red line is v(*). Fitted quadratic
oscillator potential 1 (s) is a continuous blue line. Parameters are c=0.5andx = 1.

The value of ") at the aperture centre,s = 0,
v(0) = v, =1 (40)

corresponds to the scaled energy e = 1ofahindered rotor that has complete access to all angles. The steepness
of the linear potential in (39) is proportional to1/c as well as to k. Notably, the potential v (s) at s = 0 is non-
differentiable. Indeed, the s-variation of v'*) (s) exhibits a kink (or corner) [4, 20] at the centre of the aperture.

For distances further away from the centre of the aperture, we use a linear approximation to thearctan
function, thereby obtaining from (32) a quadratic expression for the transmission potential,

v (s) (%)Z(S)Zsz‘ (41)

That is, the transmission potential is that of a harmonic oscillator. We note that when ¢ < 1the boundary
becomess, &~ 1/k and so fors = s, expression (41) correctly yields the limiting potential value v, predicted by
(38). Hence we can fita quadratic function

Vosc (8) = vo + (v — 1/0)(5/55)2 (42)

to the potential v(*) (s). As can be seen from figure 5 there is deviation from this quadratic form only around
s = 0, where there is a kink. This harmonic oscillator approximation will play an important role in section 4
where we discuss the quantum-mechanical transmission.

3.5. The scattering equations
For further simplification we modify the boundary conditions by requiring that the wavefunction vanish at
s = xs.for—n/2 < ¢ < — a.andfora, < ¢ < n/2,asshown in figure 6 by the vertical red lines. This
modification has no influence on the quantum-mechanical transmission probability because particles can only
pass through when ¢ is within the interval —a, < ¢ < a. marked by the vertical dotted lines. For this reason we
will focus on ¥'", which is nonzero only in the unshaded region (II) in figure 6.

In the region I the wavefunction is a superposition of a single right-going initial wave of unit amplitude and
several reflected waves of relative amplitudes,,, a property we express by the ansatz

v (= Y [5o,meikm(s+5c) + rme—ikm(5+5c)]¢,g ) (). (43)

m=—00

Note that in (43) the indices 7 corresponding to the different rotational wavefunctions of the free rotor,
1 .
D (p) = —ei2m, (44)
o (@ VT

run from — oo to ©0. In specifying the system we consider a fixed initial scaled energy € of the rotor approaching
the aperture. Because the scaled energy is the sum of the translational energy k7, and rotational energy 4m? (see
(A.22)),

e=kx+4m? (45)

it follows that fore < 4m? the higher modes are exponentially decaying functions, with kinetic energy
parametrized by

k= iVam? — ¢. (46)

Itis essential to include these non-oscillating functions when we fit the incoming plane wave (22) with
sinefunctions extending from —a, to . at the left and right boundary of region II.

11
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Figure 6. In regions(I) and (III) the rotation is uninhibited, while in region (II) it is hindered. The boundary of region (II) is given by
a® (s) defined in (19). The free rotor solutions describing an incoming wave from the left, with the transmitted and reflected part as
well, is given by " defined in (43) and %™ defined in (48). In the interaction region, where the rotation angle is restricted, the
wavefunction Y’él ) is given by (47). The two boundaries where the fitting should be done are ats = +s, definedin (17). The red line
marks the modified boundary where the wavefunction must vanish, while the dashed blue line reminds us of the periodic boundary
condition.

Continuing the ansatz (27) we replace 1//,5” (s) by alinear combination of two independent solutions f, (s)
and g, (s) of (30) and write the wavefunction in region II as

[s9)

v (s, 9) = X[ aif, ) + big, (9" @, 9), “

n=1

with constant coefficients a,, and b,,. The effective potentials in (30) are even functions of s so we can choose one
of the solutions (f,,) to be even while the other (g,,) is odd. However, we retain the wavefunctions ¢rfh) of the
hindered rotor, defined in (A.13). Note thatin (30) and hence in (47) the parameter € is set a priori by the energy
of the incoming wave (22).

In principle we can get the f,, and g, solutions numerically with the original effective potential (32). But as we
have seen in section 3.4 the potential v(*) (s) can be approximated by the quadratic form of a harmonic oscillator
potential. The equations for these approximate oscillator potentials (41) can be solved analytically by infinite
sums (see [27] for example).

Finally, in the region III there are only transmitted waves, with relative amplitudes ,,,, and we use the ansatz

l1,,;111) (s, ) = i [tmeikm(s—s[)]gbr(r{) (@). (48)

m=—0

Attheboundarys = +s, we require continuity of the wavefunctions and continuity of the derivatives, see
Appendix C.1. The boundary conditions lead to a set of linear equations (C.24) for the unknown quantities 7,,,,
a,, by, t,,,. The details of the derivation and the solution are given in appendix C. These constants completely
define the wavefunction for a given energy €.

From r,,,and t,,, the transmission and reflection coefficients for the probabilities of transmission T'and
reflection R are obtained as

,  R=— Re (k) |1 2 (49)

1 (s
=L % Re(k)fin L

m=—o0 m=—o0

(s8]

2 1

Note that we have allowed exponentially decaying functions so k,,, is not necessarily real.

4. Results: tunnelling, trapping and resonances

In this section we present results obtained from the solutions of the Schrodinger equation (16) based on the
approximations introduced in section 3.3. Specifically, we use here the approximate oscillator potential (41) to
solve the one-dimensional equations of (30) analytically. In spite of the numerous approximations in our
present treatment, the results obtained are surprisingly accurate, as we have confirmed by obtaining numerically
exact solutions of the Schrodinger equation on a discrete lattice with the boundary conditions shown in figure 6
[13]. Those calculations, shown as dashed lines in the figures below, constructed the Green’s function of the
system on a suitably chosen finite-sized discrete lattice. From the Green’s function we evaluated the S-matrix of
the problem and in turn the transmission and reflection probabilities as a function of energy.
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Figure 7. Transmission probability T versus scaled centre-of-mass energy € plotted in logarithmic scale, showing exponential
variation associated with tunnelling through the barrier provided by v(*) (s). The energy range here goes extremely far below the
minimum of the potential, ¢ = 1. Parametersarex = 1,¢c=0.7 (upper curve) and c=0.3 (lower curve).

4.1. Energies below the potential minimum: tunnelling

Quantum-mechanical waves, like electromagnetic waves, exhibit two characteristics that are alien to classical
particles: interference and tunnelling. Both phenomena are observable in the present scattering problem. At very
low energies, & < 1, = 1, itis not possible to have positive kinetic energy, meaninge — v\’ < 0, anywhere
within the interaction region |s| < s., and so a classical particle cannot be found there. A quantum particle can,
however, tunnel through such a classically forbidden region. At energiese < v, = 1 the potential provides a
barrier of width 2s, independent of further decrease of energy. Therefore one expects a tunnelling probability
that decreases exponentially with decreasing energy. Figure 7 shows, for x = 1 and two values of ¢, that indeed
this is the behaviour of the transmission for extremely low energies, ¢ < 1.

4.2. Energies below the barrier height: trapping and resonances
Atenergies above the potential minimum, & > vy, classical motion can occur within at least a portion of the
interaction region. However, the classical rotor will be reflected by barriers ats = +s.. The presence of two
potential barriers in a one-dimensional scattering equation allows solutions analogous to a Fabry—Perot
interferometer in which the wavefunction is almost entirely confined between the barriers. The transmission
potential v(*) (s) can, for suitable parameter choices, provide such confinement. For the elementary example of a
free particle encountering two very thin barriers the requirement for this wavefunction localization is that an
integer number of half waves should fit within the walls.

To quantify the energies which produce rotor localization we recall from (42) the fitted harmonic oscillator
potential 1, (s) that agrees very well with v(*) (s) away froms = 0,

2
Vosc () = vo + (v — V0)<5/5c) =1+ %wﬁsc s2. (50)

Here we have made use of (40) and have introduced the oscillator frequency

V2

Wose = = = 0. (51)

c

This model oscillator has the quantum-mechanically allowed energies

1 .
£, =V + (n + 5) Wose;, With n=20,1, 2, ...7mu, (52)
where the number of oscillator states 7,,,, is the integer obtained as the lower bound
V. — v, 1
Nmax = l CTOSC - EJ (53)

The potential v*) (s) is nonzero, i.e. confining, only within the region|s| < s, and hence it is only within this
region that the quadratic approximation can hold. This means that energies € above 1, = v{*) (s, ) lie above the
barrier. Energies greater than this value would allow classical particles to pass freely over the barriers. We can
expect that oscillator energies below this value will provide an approximation to the scattering energies for which
the wavefunction exhibits strong localization (bound states) manifested by resonances in the transmission
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Figure 8. (a) Potentials v (dashed grey line) and v, (solid blue line) versus scaled centre-of-mass coordinate s. Horizontal black
lines (thicker inside the well) mark the energies of the first two harmonic oscillator states. The horizontal red line marks the barrier
height1;. (b) Transmission probability T versus dimensionless energy parameter €. The thick curve is obtained from the oscillator
approximation, the dashed curve is from a numerically exact calculation [13]. The first two peaks approximately correspond to the the
oscillator energies. Parameters arex = 1,c=0.4.

probability. The number 7,4 is an excellent approximation to the number of these discrete bound states in the
transmission potential.

Figure 8 displays the low-energy regime ¢ < . for the parameter choice c=0.4 andx = 1. Frame (a) shows
the transmission potential v*) (s) (dashed grey). The peak of this potential barrier corresponds to an energy
V.= 14.57. The solid (blue) curve is the fit 1. (5) of a quadratic potential to v(*) (s). It is only appropriate within
region IT, where |s| < s.. The thick-black and thin-black horizontal lines mark the harmonic-oscillator energies
for this potential: there are two of them below the barrier of height v.. Frame (b) shows the transmission
probability T as a function of scaled energy € as obtained from the oscillator approximation (solid curve) and
from exact numerical calculations of [13] (dashed curve). The validity of the oscillator approximation is evident
in the good agreement between the two plots in frame (b). Indeed, the resonance peaks are very close to the
energy eigenvalues of the fictitious oscillator. The lowest-energy peak, corresponding to the lowest-energy
bound state in the potential well, is notably narrower that the peak at higher energy, which occurs at the top of
the potential well. The exact calculations [13] shift the resonance energy upward from the prediction of the
oscillator model. We suspect this shift is a consequence of the kink in the exact potential. According to [4] such
corners create secondary waves which superpose with the original wave to produce a phase shift in the total
wavefunction. In turn this causes an energy shift.

Our studies of wavefunctions [13] have confirmed that at the energies where there appears a resonance in the
transmission the wavefunction is much larger inside the region II: the particle is ‘trapped’ within the aperture.
The sharper the resonance the more strongly localized is the wavefunction.

4.3. Energies above the barrier: effect of rotor size

As the aperture-to-length ratio c = b/a increases the heights of the two barriers decreases and fewer harmonic-
oscillator states lie below the barrier height v.. Consequently the resonances become broader and less distinct.
Figure 9 shows examples of transmission probability for parameters that allow only a single bound state, over an
energy range that extends well above the barrier and four choices of the aperture-to-length ratio c.

As can be seen in figure 9, the harmonic-oscillator eigenenergies, marked here by thin horizontal lines, fit the
energies of resonances in the transmission probability. The oscillator model correctly predicts that as cbecomes
smaller and the potential becomes larger at the edges, the resonance becomes sharper. Exact numerical
calculations [13], shown as dashed grey curves, predict that as the aperture-to-length ratio ¢ diminishes, with
consequent broadening and steepening of the potential, the resonance energy shifts slightly upwards.

For energies above v, denoted by the horizontal red line, where classical particles would move freely, there is
little structure in the solid curves predicted by the oscillator model. However, the exact calculations (dashed
lines) reveal a distinct dip in transmission probability. This shifts towards higher energies as the aperture-to-
length ratio cbecomes smaller. Our computation of wavefunctions [13] show that such minima are not
examples of the broad Ramsauer—Townsend minima seen in electron scattering [46] nor the Cooper minima
observed in photoionization [10, 45].
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Figure 9. Transmission probability T'as function of scaled energy € for k = 1and four valuesc = 0.4, 0.5, 0.6, 0.7 of the aperture-to-
length ratio ¢ = b/a. Dark blue curves show the results from the oscillator approximation, while dashed grey curves are the results of
the exact numerical treatment [13]. Thin horizontal lines mark the ground-state energies of the approximate oscillators. The
horizontal red lines indicate the top of the potential barrier above which there are no bound states (cf. figure 8). Dashed, grey vertical
lines provide the classical transmission probability T of (11).

4.4. Energies above the barrier: effect of mass distribution

The dynamics of the quantum-mechanical scattering brings in a second independent parameter, k, expressing
the distribution of mass (as it influences the rotational kinetic energy) relative to the size of the particle as probed
by the interaction with the slit. According to (37) the height of the transmission-potential barrier v. does not
depend on k. However, the width does: with fixed rotor and aperture size (fixed c), a decrease of k broadens the
potential. This means that more oscillator eigenenergies fit into the energy domain ¢ < 1. In turn the resonance
peaks associated with these eigenenergies are more closely spaced and narrower with decreasing k.

Figure 10 shows examples of the energy dependence of the transmission probability, for four values of the
mass-distribution parameter x. Quite notable in the left-hand frames are resonances for energies above the top
of the oscillator well, indicated by the horizontal red line. The exact calculations do not show such sharp
resonances. Instead we see continuum structure marked by transmission dips. These become sharper as k
decreases. We attribute this difference to our neglect of the derivatives a’ (s) and a” (s) in (28), made in obtaining
the decoupled-mode equation (3.3) and the effective potentials used there.

4.5. Predictive power and accuracy of the oscillator model
From figures 9 and 10 we see that our oscillator approximation, while it gives very well the energies where
resonance peaks appear, loses the information about the value of T at the resonances. This disagreement
originates from our neglect of coupling between modes.

A comparison with the numerically exact solutions [13] shows that the effective oscillator potential provides
a good approximation for the low energy behaviour and this potential quantifies well the low-energy resonances.
The weakness of this approximation is apparent in results for transmission at higher energies, as seen in figures 9
and 10: the effective oscillator cannot explain the transmission dips that exact numerical solutions show, and it
predicts sharp resonances that are not seen with the exact solutions.

5. Outlook and conclusions

In this section we summarize our results and discuss the requirements on the energy of the centre-of-mass
motion of the rotor. We analyse the limitations of our elementary model, briefly suggest possible extensions and
list possible candidates for experiments that might reveal some of the phenomena reported here.

5.1. Summary

The present article discusses the scattering of a particle with some internal structure, specifically a rigid rotor,
from a single slitin a thin but impenetrable barrier. We have focused on the situation in which the length of the
rotor is larger than the size of the slit. In this case the hindered rotation imposes non-trivial constraints on the
centre-of-mass motion and leads to a complicated system of differential equations. A smoothing approximation

15



I0OP Publishing

NewJ. Phys. 17 (2015) 013046 B W Shore et al

20 20
18 18 ]
16/ 16 ]
14 14 ]
12 12 ]

£ 10 £ 10 ]
8 8 ]
6 6 6 6 ]
i 4 4 4 .
2 S op— o of ]
0% o5 I I (R 1 %0 1

T T T T

Figure 10. Transmission probability T'as a function of scaled energy € for fixed aperture-to-length ratioc = b/a = 0.5 and values

k = 0.2, 0.3, 0.5, 1.0 of the mass-distribution parameter. The horizontal red lines mark the top of the barrier above which there are
no bound states, see (37). A decrease of k, with ¢ fixed, broadens the width of the potential barrier. This change decreases the energies
of the resonances. As the potential becomes wider, the area under the tunnelling barrier increases and consequently the transmission
lessens. Dashed, grey vertical lines provide the classical transmission probability T of (11), independent of k..

of the constraint conditions simplifies the model to a set of uncoupled equations (30), which reformulate the
constraints as effective potentials, for transmission and for reflection.

The reflection potential is a simple barrier, but its extreme height at the aperture centre prevents any
tunnelling. The transmission potential has a maximum when the rotor first interacts with the screen, has a
minimum when the rotor is in the centre of the aperture, and increases again as the rotor moves further through
the aperture. The double-barrier form of the potential allows resonances in the transmission probability as a
function of incident kinetic energy. At these resonance energies the wavefunction becomes enlarged within the
aperture-interaction region, thatis, the rotor becomes trapped within the aperture. The trapping arises from the
wave nature of the rotor and from the coupling between the translational and rotational degrees of freedom
induced by the screen. Our smoothing approximation is a simplification which describes well the physics of a
non-rotating incoming object in the low energy regime. It also allows us to calculate the energies where
resonances occur i.e. where a significant enhancement in transmission appears.

For incident energies below the effective barrier one can gain a satisfactory description of trapping
resonances by approximating the effective potential as a quadratic function of the centre-of-mass position, and
treating the harmonic-oscillator states of that potential as approximations to the actual wavefunctions. There
can only be a finite number of bound states, each of which produces a resonance in the transmission probability.

The scattering wavefunctions used in these calculations are constructed as sums of analytic basis functions.
We emphasize that these sums include not only sinefunctions, which vanish on the boundaries, but also include
evanescent (exponentially decaying) waves.

5.2. Energy requirements
We now address the relationship between the scaled variables used to simplify the physics and the lengths and
energies that will occur in any practical application of the theory.

According to our analysis the most evident quantum mechanical modification of the classical transmission
probability T given by (11) occurs when the scaled energy € is smaller than, or of the order of, the maximum
value . of the transmission potential at the critical separationss,, i.e. fore < .. In the limit of a small aperture-to-
length ratioc = b/a <« 1 we find from (36) and the definition (14) of ¢, that the scaled energies must be small,

2 2
e = E/E, < (g) (%) . (54)

It is useful to convert this condition into unscaled energies.
As shown in appendix A, the energy of the first rotational excited state is E\/) = 4E,. Consequently, we find
that the classical scattering of the rotor begins to be influenced by quantum effects for initial energies

2
E < (Z—Z) EY. (55)
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Because we consider the aperture size 2b to be smaller than the rotor size 24, the pre-factor can be larger than
unity. For example, forb/a = 1/2 the pre-factor is (z/2)*. Hence the modification of classical scattering sets in
for energies E which are up to twice the energy of the first rotationally excited state.

The wave nature of the translational motion is characterized by the de Broglie wavelength

2 _2rka

AdB = = (56)
V2ME/R*  VE
where we have recalled in the last step the definition (14) of the scaled energy €. The low-energy resonances
occur for large A4p. The energy condition of (54), when expressed in terms of A4p, reads
b
A 2 4| —]a, (57)
a

thereby exhibits a relationship between centre-of-mass speed and the basic parameters of the model, namely: (i)
the size a of the rotor; (i) the rotor mass distribution, expressed by k; and (7ii) the aperture-to-length ratio c.
Pronounced resonance effects occur primarily forx < landc¢ < 1, and so the condition for resonances is that
the de Broglie wavelength be larger than the rotor radius a times a factor that is less than unity.

5.3. Caveats
Any application of our elementary model of a quantum-mechanical travelling-rotor must take note of several
limitations. A basic shortcoming of the present elementary model is the restriction to a single translational
degree of freedom: the centre-of-mass follows a track through the centre of the aperture. In reality, projectile
motion is three-dimensional. Quantum mechanics in two and three dimensions is certainly very different from
that of one dimension, and many modifications of our model will arise with the inclusion of additional
dimensions. These complications fall beyond our present mandate.

Our model, embodied in the Schrédinger equation (30), assumes that the different translational modes are
not coupled to each other by the constraints. An alternative approach avoiding this complication based on the
Green’s function of the problem is to be presented in a forthcoming publication [13].

5.4. Experimental prospects

Recent years have brought enormous progress in experimental techniques that enable the scattering of particles
with internal structure from gratings whose spacings are comparable to the size of the projectiles. Helium
clusters are candidates for projectiles. Helium dimers, for example, can be as large as 5 nm [28]. Moreover, they
occur only in rotational ground states. The Efimov state of the helium trimer, if it exists, is expected to have a size
of 8 nm [37].

Mechanical gratings are available with spacings of 100 nm or less. By tilting a grating the effective aperture
can be reduced considerably. As shown theoretically and experimentally the resulting slit width of a grating
whose spacing is 100 nm can be reduced to a few nm [8, 30]. When we recall that the Efimov state in helium is of
the order of 8 nm, the desired inequality, (57), is within reach. However, the de Broglie wavelength of helium
experiments at room temperature (less than 0.1 nm) are too small [30] so lower temperatures are needed.
Moreover, the atom-surface van der Waals potential from the grating could mask the effects of interest [29].

Another possibility for small apertures could be nanoscale sieves. These have been used to measure the
transmission of helium dimers [44].

Optically trapped dimers, such as Li, or Cs,, formed by three-body recombination of ultracold atoms by a
magnetic field-induced Feshbach resonance offer another approach towards realizing suitable projectiles. These
weakly bound structures have a remarkable size which depends upon the strength of the magnetic field [36].
Even the Efimov states of cesium might be possible candidate projectiles [39].

Size-selected short carbon nanotubes might be used as structured projectiles. However, here a serious
challenge would be to create a well-defined rotational state.

Another experiment, performed on molecules of perfluoroalkyl-functionalized azobenzene [22], has
demonstrated the wave nature of the centre-of-mass motion of an elongated molecule. These molecules appear
in cis and trans configurations, and the transition between these two configurations can be induced by uv
radiation. In the trans form this molecule has a length of 3 nm but is only a few tenths of a nm wide. Such a
molecule could be a possible realization of the straw of the Ulm sparrow [34]. In this experiment [22] the
molecules were in highly excited rovibrational states. The research group has also conducted an experiment [34]
using a classical Talbot-Lau interferometer for a beam in which only a few rovibrational states are populated.
Moreover they plan [34] to switch between cis- and trans-configurations, thereby altering the rotor length. In
this way they can observe the influence of the mass distribution.
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The idealization to an infinitesimally thin aperture whose chemical properties have no effect might be
created by suitable laser fields. Indeed, in the study of atom optics [1, 2] gratings based on appropriately tailored
laser beams are a standard technique.

We conclude this discussion of the experimental prospects by alluding to a recent experiment [12]
demonstrating a novel method for probing the alignment of the molecular axis of an ultracold, nonpolar dimer.
Indeed, [12] reports the preparation of Rb, molecules trapped in a three-dimensional optical lattice in various
precisely defined rotational quantum states. Although in these experiments the molecules were in the vibrational
ground state with an internuclear separation of about 6.09 Angstrom, to engineer the alignement of the
rotational axis of an ensemble of ultracold molecules represents a major step towards the realization of the Ulm
Sparrow.

5.5. Conclusion
Our article has examined a simple model of classical and quantum scattering of a particle that has internal
structure, specifically that of a rigid rotor, from a single slit in a thin wall. The transmission of the quantum
particle through the slit exhibits resonances that can be understood qualitatively by means of a harmonic-
oscillator approximation. A key result is that boundary conditions at the slit lead to entanglement of rotational
and translational degrees of freedom.

Experimental progress in creating cold molecular beams makes us confident that our toy model representing
the quantum version of the Ulm sparrow can be realized in an experiment.
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Appendix A. Wavefunctions of rotation and translation

In our analysis of the scattering of a symmetric rigid rotor from a narrow slit we build the wavefunction from
products of functions that describe the rotation and others that describe the centre-of-mass motion. This
appendix describes these wavefunctions and builds the two-dimensional wavefunction ¥ " (s, ¢) and

D (s ) from them.

A.1. Therotation equation
The rotational wavefunctions are solutions to the equation

62
— + & [p(p) = 0. (A.1)
dp*
Here ™) = E()/E, denotes the dimensionless rotational-energy eigenvalue in units of
h? h?
Ep=—= ———. (A.2)
2M  2(ka)*M

To complete the equations we must supply boundary conditions on the ¢ dependence. In so doing we
distinguish two classes: those in regions I and III where the the rotor is free to rotate fully, leading to
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wavefunctions we denote as qb(f ), and those in region II where the rotation is hindered, i.e. restricted to a finite
range of angles, denoted as w. Those hindered-rotor wavefunctions we further classify as referring to the domain
of transmission, ¢, and rotation, . As will next be shown, for each of these the solutions form a discrete set
of rotational mode functions.

A.1.1. Thefreerotor. A satisfactory wavefunction for a free rotor, i.e. a solution to (A.1) in regions I and III, can
be written

P () = Ne?, (A3)
where N is a normalization constant. From (A.1) it follows that the rotational eigenvalue €Y for the free rotor
is

gt = ¢{) = £2, (A.4)

The physical configuration of a symmetric rotor, as considered here, is unchanged if it is rotated by z about
its axis (for asymmetric rotors the needed angle is 27). It follows that the wavefunctions for an unhindered
symmetric rotor must be odd or even under such a rotation. In our analysis we confine our attention to the even

class, which contains the ground state.
We therefore consider functions that satisfy the periodic boundary conditions

P (@ + 7) = pP) (o). (A.5)

This condition, taken with the functional form of (A.3), leads to the condition that the allowed values of # form a
discrete set of values £, such that

tnrm = 2nm, (A.6)

where m is a positive or negative integer or zero. As a consequence, the allowed rotational energies of a free rotor
are

eV = ) = 24, with m =0, =1, +2, .... (A7)

The corresponding free-rotor wavefunctions, normalized on the interval |p| < 7/2, are
1 .
D () = — e (A.8)
P (# NEd

The functions for which m is a positive integer represent counterclockwise motions; for negative m they
represent clockwise motions.

According to (A.7) the lowest-energy state of free rotation, associated with m = 0, has vanishing rotational
energy, &) = 0. The corresponding wavefunction ¢od) defined by (A.8) is a constant; in this state all angles ¢ are
equally probable.

A.1.2. The hindered rotor.  Within region II the orientation of the rotor is constrained to lie within a finite range
of angles,

0,() L@ < py(s), withw(s) = ¢,(s) — @,(s) (A9)

and so the hindered-rotor wavefunctions must vanish at the borders ¢ = ¢, and ¢ = ¢,. With the imposition of
these boundary conditions the wavefunctions and the energy eigenvalues acquire implicit spatial dependence
through the dependence on @, (s). Then (A.1) becomes

[5—2 + e<h><s>]¢<h><¢, 5 =0. (A.10)
0¢p?

Here e (s) is the dimensionless energy eigenvalue, dependent on s through the boundary condition.
For a given position sand domainw = ¢, — ¢, a satisfactory trial expression is

¢ (@, s) = N sin [f(¢ - gol)]. (A.11)

This construction automatically obeys the boundary condition at¢p = ¢, and can be made to satisfy the
conditionaty = ¢, = ¢, + w byrequiring that the allowed values of £ form a discrete set, fixed by the
condition

W = nm, (A.12)
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where nis an integer. The null function obtained with # = 0 is not an admissible wavefunction. Hence we obtain
the expression

¢n(h) (@, s) = sin[n id ((p - ¢ (s))], n=1,2,... (A.13)

w(s) w(s)

where we have determined the normalization constant A for the allowed position-dependent angular interval
w (s). A change in sign of n produces only a change in sign of ¢rfh> . Therefore we restrict the wavefunctions to
positive values of .

The functions (A.13) satisfy the orthonormality relations

(ﬂz(S)
f . dp ¢ (9, 5) ¢ (@5 5) = Sy (A.14)
@S

These functions obey the Schrédinger equation (A.1) subject to the requirement that the rotational energies
form the discrete set

2
eV = ¢ M (5) = nz( ) , with n=1,2,.... (A.15)

w(s)
These are the allowed rotational energies of a symmetric rigid-rotor whose angular orientation is restricted to the
range (A.9). Significantly, according to (A.15) the non-vanishing wavefunction with lowest energy is that
withn=1.

A.1.3. Comparison. The two classes of rotors discussed above, free and hindered, each have eigenenergies £V
proportional tom?. However, the energies differ in three features:

(1) in the factors multiplying m? or n’, i.e. 4 versus (z/w)%
(2)in the restriction to positive n-values for the hindered rotor; and
(3)in the possibility of m = 0 for the free rotor, a choice that is not allowable for the hindered rotor.
Moreover, the two classes of rotational wavefunctions, though both discrete, differ significantly, as required
by the different boundary conditions.
In the limit of w = & the range of the hindered rotor becomes 7, and the factor #/w of the hindered rotor

becomes unity. Although the range of angles is then equal to that of the free rotor, the different boundary
conditions result in energies

et = () = 4 when w = 7, (A.16)
that differ by a factor of 4. In particular, the lowest allowed energy state of the hindered rotor is1/4 of the energy

of the first excited state of the free rotor.

A.2. Wavefunctions of translation
The centre-of-mass motion of the freely moving rotor we treat by using solutions

pt (s) = etk (A.17)
to the equation
az
F + k2 Wk(s) = 0: (Als)
s
where
kt=¢ — glrot) (A.19)

is the difference between the dimensionless total energy ¢ and the eigenvalue £V of the rotation. For a fixed
energy eigenvalue € and given domain (¢) or (r) we understand k as

g — ey, e > ¢e™,  travelling wave,

Ve — ¢ e < gy, exponential decay .

o~
1l

(A.20)
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Note that both plane-wave and exponentially decaying solutions are allowed, depending on the sign of k.
Solutions with exponential rise are not permitted because, as s becomes large they are unbounded.

A.3.Entanglement between rotation and translation
Next we deal with the combined centre-of-mass translation plus internal (rotational) motion. For both the free
and the hindered rotor we can write the solution ¥ (s, ¢) of the Schrodinger equation (16) as alinear
combination of products l//k(i) (s) ¢, (@), where the factors obey separately the equations (A.1)and (A.18) with
appropriate boundary conditions.

When the rotor is travelling unhindered, in regions I or IIT, we express the eigenfunctions obeying the
Schrodinger equation (16) as a superposition of rotational states combined with translational modes

v (s, @) = Zc,(ni)y/k(:) (s) (,i)ngf) (p) = ZC,%i)e’—”k'"s—elzm‘/‘, (A.21)
m,x m,+ \/ﬁ

where, for given total energy € the wavevectors k,,, are obtained from the relation
k2= e — m’4, with m =0, +1, +2, .... (A.22)

The rotational factors of this wavefunction, e are the result of stipulating the periodicity of the wavefunction
of a free symmetric rotor with a period of 7; see the discussion prior to (A.5).

Appendix B. Coupled mode equations

In this appendix we derive, starting from the time-independent Schrédinger equation of the travelling rotor, a
system of coupled Schrodinger equations for the centre-of-mass motion in domain II, where the rotor is
hindered.

We first consider the Schrodinger equation in the two variables s and ¢, with boundary conditions that force
the vanishing of the wavefunction on the boundaries ¢, (s) and ¢, (s). The complete wavefunction we take tobe a
superposition of products of rotational wavefunctions and wavefunctions of the hindered rotor. Then we project
the resulting Schrédinger equation onto the basis of hindered-rotor wavefunctions to obtain a system of coupled
differential equations of second order for the expansion coefficients y, (s) which now depend solely on s. The
coupling is due to the s-dependence of the boundaries. Finally we derive explicit expressions for the coupling
matrices in terms of ¢, and w and their derivatives. These formulas are more general than those of the rotor
model: they apply quite generally to any two-dimensional time-independent Schrodinger equation whose
boundaries depend in an arbitrary way on the translational variable, here s. We conclude by focusing on the
specific example of a travelling rotor where the equations simplify significantly because the boundaries vary
symmetrically and a single parameter suffices to describe the variation.

B.1. General structure
In order to solve the time-independent Schrédinger equation (16), repeated here as

0* 0*
[¥+a—(pz+e]%(s, @) =0, (B.1)
subject to the boundary conditions of domain II,
Fols, ) =0 for @p=¢() or ¢=p,), (B.2)
we make the ansatz of (27),
¥e(s, 9) = D0 (), (@, ), (B.3)
n=1

with the sine wavefunction of (A.13).
To simplify typography we introduce the phase

T

Ou(g9) = n——[¢ - 0.9 (B.4)

w(s)

and write the hindered-rotor wavefunction of (A.13) as

¢, (@, s) = 2 sin @, (¢, s). (B.5)
\ w(s)
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We emphasize thatw (s) as well as ¢, (s) depend on s due to the boundary conditions (B.2) on ¢. This fact is
important when we next derive an equation fory, (s).

We differentiate ¥ (s, ¢) with respect to the centre-of-mass position s, as denoted by primes, and find by the
familiar product rule the second derivative as (here suppressing function arguments)

¥, = i[w;@ + 2y, + v, | (B.6)

n=1

From the definition (B.5) of the hindered-rotor wavefunction together with (B.4) we derive the relation

0? A%
o= _(_) &, (B.7)
dp w
and obtain the result

0? - (nﬂ )2

—Y = —| wa,. B.8

o Z —) o (B.8)

n=1

With (B.6) and (B.8) the time-independent Schrodinger equation (B.1) becomes
- 4 n” 2 ! ! "
Z v, +|e— (?) v, b, + 2w, @, + @, ¢ =0. (B.9)
n=1

We now project this sum onto the hindered-rotor wavefunctions ¢, (¢, s) with an integration over ¢ and,
using the orthonormality of these functions, (A.14), we obtain the equation

o0 2
Z{(Smnl:w; + [8 — (E) )q/n] + ZC,(nl,zy/r: + C,Sf,f%} =0, (B.10)
w
n=1

where we have introduced arrays of s-dependent coefficients (matrices)
. (253 (s) a]
Cho = [ a0 0.9 =, (0.9, (B.11)
@, (s) 0s/

that couple the translational wavefunctions y, (s). When we recall the explicit form (A.13) or (B.5) of the
hindered-rotor wavefunction we find

, 9209 2 9’ 2
c(s) = d in O, (g, s) — in @, (¢, s) | B.12
= [ do s sin 09, 9) asj[ — 5 6 s)] (B.12)

B.2. Explicit evaluation of the integrals

Next we evaluate the integrals C\!) and C'2) defined by (B.4) and (B.12). At this point it is important to note that
w as well as ¢, depend on s and that due to the differentiation with respect to s we cannot include thesein a
change of integration variable. An exception is the case j = 0, that is, the orthonormality integral

2 4
cO =2 f d0 sin (m0) sin (n6) = Sy (B.13)
7 Jo
where we obtain the orthonormality relation (A.14) for the integration variable
T
=—(¢ — ). (B.14)
w
Hence for the cases j = 1 and j = 2 we have to first differentiate and then change the integration variable.
B.2.1. The first-derivative array cV. Westartour analysis with the array C!) and we note the relations
1w 2
¢ = __K¢n + .|= cos 6, O, (B.15)
2w w

and, from (B.4),

0, = —m[%((p ~ o)+ ﬁ]- (B.16)
w w
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Together these give the expression

1 2 (9 - ’
¢, = —Kl—dln +nx —(q) LA ﬁ] cos @n]- (B.17)
w2 w w w'

We now substitute (B.17) into the definition (B.12) of C,Efn) and use the orthonormality relations (A.14) to
find

cl) = —K[la‘m +2n Imn], (B.18)
w2
where we have introduced the integral
Ly = ﬂf(pz d(ﬂ)[u + qa_l/) sin O, cos 6O,. (B.19)
[ w w w
With the integration variable # and defining the ratio f = S (s),
— 4 S
0=22" " sl (B.20)
w w'(s)
we rewrite the definition (B.19) as
L (B) = / 019(g + ﬂ) sin (mf) cos (nf). (B.21)
0 r
To evaluate the integral (B.21) defining I,,,,, in case of m # n we use the identity
sin (m@) cos (n6) = —li cos [(m + m)0] + cos [(m = m)0] (B.22)
2 do m+n m—n
and integrate by parts, with the result
1 (6 cos [(m + n)0 cos [(m — mO] [
1) = —1 (_H,){ [(m + ] cos [( )]}
2 \z m+n m-—n o
L1 /n d9{ cos [(m + n)0)] L cos [(m — n)G]}. (B.23)
2 J o m+n m-—n
Because the integral here provides sinefunctions, which vanish at the boundaries § = 0 and@ = 7, we arrive at
the expression
1 A G 1 1
Inn(B) = —21 +ﬂ)[( AR ), ]+ ﬁ[— n ] (B.24)
2 m+n m-—n 2lm+n m-—n
The relationship

(_1)m—n — (_1)m+n—2n — (_1)m+n (B.ZS)

allows us to combine the two terms in the first square bracket and we find

m
Lin() = [ (14 P-1"" —p|———., form#n. (B.26)
m* —n
The result for m = n follows from the definition (B.21), rewritten as
Lo (B) = & /” de(g + ﬁ) sin (2m0), (B.27)
2 Jo T
and integration by parts yields
Lum (B) = —(ﬁ + ﬂ)—cos mo) ", 1 f " 4o L5 20) (B.28)
b4 4m g YO 4m
Using the fact that the integral in (B.28) vanishes we obtain the result,
Loy = —L. form = n. (B.29)
4m

We emphasize that these diagonal elements I,,,,, are independent of # and hence independent of s. By contrast,
the off-diagonal elements I,,,,, form # n depend on /3 and hence onss.
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When we substitute (B.26) and (B.29) into (B.18) we obtain the formula

w'(s)

Cim () = —= A5 (B), (B.30)
w(s)
where the final factor is
0 form = n,
(1) =
Ami (P) = [(1 + B)( —1)mtn _ﬁ]ifmn > for m # n. (B.31)
m* —n

Again we emphasize that in general the derivatives of the boundary ¢, (s) as well as of the width w (s) enter the

expression for C{!) (s); they appear in # and the ratiow’/w.

B.2.2. The second-derivative arrayC'®).  We now address the coupling array C2), obtained from integrals over
second derivatives of the hindered-rotor wavefunctions. Due to the complicated dependence of the phase 6, on
sthe resulting expression for ¢ is rather involved.

We first calculate the second derivative of the hindered-rotor wavefunction, starting from (B.15),

1{wY 1(w 1(w) [2
f=—|— ——|— 14, —=| —].|— cos 6, 6,
2 2(W)¢n 2(w)¢” Z(W) w "
2 2
- |= sino, (@,’,)2 + | — cos 6, o,. (B.32)
w w
Next we use (B.5) and (B.15) to express the contributions proportional to sine and cosine of @, in terms of ¢,
and ¢n’, with the result
) 1({wY 1(wY, 1(w , 1w
= — —] — _ =] — - —] — + ——
2 2(w)¢" 2(w)¢” 2(W)(¢” 2w¢")

_ q‘)n(@,;)z + \/% cos 6, 6, (B.33)

where, according to (B.16), we have

” W/ ' Wl ’ (/)/ ,
e (o0 e (5]
” 7\2 — " "y
N {[(W )-(%) ]u . («’_1 _ Z&K)}_ (B.31)
w w w w w w

We now substitute (B.16) and (B.34) into (B.33) and the resulting expression into the definition (B.11) of

C2) | use the orthonormality relation of the hindered-rotor wavefunctions and the definition (B.11) of C!), and

obtain
cli= _1[(1)/ R 1(1’)2]5,% - (%)es
2 w 2\ w w
( W’ )2 5 [ W” (W’ )Z:I
-2l —|n ﬂ]mn (ﬁ) -2n|— =2 — Irnn (7)) (B35)
w w w

where we have introduced the integral

or

r 2
Tom (B) = /0 do (g + /3) sin (m0) sin (n0), (B.36)

with /3 defined by (B.20).
The integral C!) needed here is that of (B.30) with the argument /8 and the integral I,,,, has the argument

@ = 2, W'iw

w' — 2(w/)2/w'

4 (B.37)
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To evaluate the integral J,,,, we use the identity

li{ sin [(m + n)0]  sin [(m — n)9]}

B.38
2do ( )

sin (m0) sin (nd) = —

m+n m-—n

and integrate by parts. Because the boundary terms only involve sine functions they vanish at the limits & = 0
and @ = z. Theresultis

() = 1 /—;r dH(Q N ﬂ){ sin [(m + n)0]  sin [(m — n)H]}. (B.39)
T Jo T m+n m-—n
We next use the definition (B.21) of I,,,,, to express J,,,, as
1 1
Imn = _[ (Imn + Inm) - (Imn - Inm):l (B40)
rlm+n m—n
and we take advantage of the symmetry relation
Ly = _llmn (B.41)
m
following from (B.26) to find, form # n,
1 4n
Jinn (ﬂ) = - 2 Ly (ﬁ) (B42)
7[ —

Finally, we turn to the diagonal elements, m = n. According to (B.36) these read

x 2
Jmm (ﬂ) = A dg(% + ﬂ) Sinz(mG),

or
1 = (0 1o (0 :
T == ["a0[ S+ p) =~ [" a0 = +p) cos 2mo). (B.43)
2 Jo n 2 Jo T
With the help of partial integration this reduces to
T 11
am (B) = = (1 + 36 + 3p%) - ——. B.44
Tom(B) = (14 36 + 34) = —— (B.44)

Itis interesting to note that in contrast to I,,,,, the diagonal elements of J,,,, do depend on 3.
We combine all of the preceding results using (B.18), (B.42) and (B.44)and obtain from (B.35)

" 7\2 \2
O _l[W_ _ l(i) ]5%1 + (1) 201 ()
21 w 2\ w w

w1 #? 8n’
+ (7) {[5 - ?(1 +36+ 3ﬁ2)n2]5mn + ﬁImn(ﬁ)}

m- —n

” 7\2
+ lw— - 2(1) ][lamn - (}/)]. (B.45)
w w 2

We have here separated explicitly the terms with 71 = n and hence I,,,,, always impliesm # n. This way we can use
the fact that according to (B.31) 2nl,,, = —A D).
Rearranging terms we arrive at the result

7\2 2
Cr%):(l) [ _i - %(1 +36+ 3ﬁ2)nz]5mn

w
7\2 2 2 ,,
+ (%) [ - %ASJ (B) — 241 (y)] - ”:V 21 L (7), (B.46)
or
’ 2 ’r
C$®=fl@)ﬂmﬂw+lﬁhwwy (B.47)
w(s) w(s)
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Here we have introduced the array

1 2
———ﬂ—(l+3ﬂ+3ﬂ2)n2 for m = n,
AZpn=q *, +33 ) (B.48)
m n
— ———Aum (B) = 2450 () for m# n.
m- —n

B.2.3. Mode equations. We are now in a position to present the coupled-mode equation (B.10) in explicit form.
For this purpose we recall the expressions (B.30) and (B.31) for C'Y) and (B.47) for C{?) and find

i ” _ ﬂ 2 K/ (1) /
S (o () u] 2o

7\2
+ [(l) A B,y + 2
w

"
w

A (y)] 1//} =0, (B.49)

where the arrays A,an) and A,Sf,j are defined in (B.31) and (B.48) respectively and § and y are defined in (B.20) and
(B.37) respectively.

We conclude by emphasizing that the formulas for the matrix elements in (B.49) are expressed quite
generally in terms of derivatives of the boundary-specification ¢, (s) and the width w (s) but make no assumption
about their functional form. They apply to arbitrary boundary shapes.

B.3. Specialization to the rotor
In the preceding section we have derived explicit expressions for the coupling coefficients C'Y) (s) and C2) (s)
and have displayed coupled-mode equations that use these. We now specialize the derived formulas to the rotor
model with its transmission (¢) and reflection (r) domains.

Comparing the transmission domain (24) with the reflection domain (25) we see that they only differ by the
constant phase shift 7/2. As the parameters  and y involve ¢, only through derivatives they have to take the same
form in the two domains. According to (B.20) and (B.37) we find that § and y are just numbers, independent of s

1 1

p= _E’ V= _E' (B.50)
Asaresult we find from (B.31)
o 1 0 for m=n
_~|= - mn
Amn( 2) = Amn [(_1)m+n + 1] m2 — fOI’ m ?é n (le)
and from (B.48) and (B.26)
2
N for m=mn
o 1 1 4 12
Amn ( _5> _E) = an = mn(3m2 + nz) (B.52)
_ [(_1)m+" + 1]—2 for m # n.
2 2

m* —n
Thus the coupled mode equations (B.49) reduce to

oo 2 ’
5 o o+~ () + 00
20 a

n=1

7\2 "
+ l(i) By + “—Amn] y/} =0, (B.53)
a a

where @ stands for ' or a”). The matrix elements A,,,,, and B,),, are independent of @ and thus are the same in
both domains.

Appendix C. Algebraic equations from continuity conditions

In appendix A we have defined wavefunctions for the rotation and the centre-of-mass motion of our quantum
rotor being scattered at the aperture. From products of these functions we construct the full wavefunction
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¥ (@, s). That two-dimensional function must be continuous, with continuous derivative at the two boundaries
of region II. This appendix describes the mathematics that leads from those continuity equations to expressions
for the transmission and reflection probability. In this approach we use the solutions of the Schrédinger
equation for the transmission potential v(*)

d? 5
- — (t) (t)
[dsz +e—n‘v (s)]y/n (s) =0. (C.1)
rather than the plane waves.
C.1. Wavefunction and continuity conditions

We first recall the constructions used in section 3.5 for the full wavefunctions:

(&)

v (s, @) = Z [50,me“‘m(5+55) + rme_ikM(”sf)]qﬁn(p (p), (C.2)
P (5, 0) = Y [an,(5) + big, (9|4 (@, 9), (€3)
n=1
and
wUi (5 ) = 2 [tmeikm(s—s[)]gbm(f) (). (C.4)

m=—oo

We impose the requirement that the functions be continuous at the boundaries of region I,

'{IbEI) (_Sca (P) = 'iléﬂ) (_SC) (P)

T T
YIS(H) (5o @) = 'PcEHI) (so @) 2 2
and that the derivatives with respect to s be continuous,
0 0
—¥ ()| == (s, )
0s . Os s,
—a. <@ <La. (C.6)

0
= _:{/CEHI) (s, @)

d
_TE(II) (53 fﬂ)
s. O0s

Js

Sc

C.2. Transformation to algebraic equations
Given the set of equations (C.2)—(C.6) we obtain the unknowns t,,, and r,,, that parametrize the transmission and

reflection probabilities by projecting the equations onto sets of basis functions. First we multiply (C.5) by [qﬁrg) I*

and using (C.2) and (C.3) for P and ¥"" together with the orthonormality relation for the free rotor
wavefunctions of (A.8)

/2 *
[T 0 [40 @] 69 @) = b (€7)
—n/2
and the definition of matrix elements of overlap between free and hindered rotation,
/2 *
[ o [P @] 60 (0,250 = ey (C8)
—r/2
we obtain the result
Oom + T = Z[anfn(sc) - bngn(sc)] Cmn> (C.9)
n=1

where we have used the symmetry relations
1, (=sc) =£,(5:)s g,(=s:) =—g,(s:). (C.10)

Likewise we find from the second equation of (C.5) together with (C.3) and (C.4) the relation

Z[anfn(sc) + bngn(sc):lcmn =tm (C.11)

n=1
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We now address the condition (C.6) of wavefunction-derivative continuity. We note that it is advantageous
to project onto the wavefunctions q[)rff') of the hindered rotor. These satisfy, for any value of sand & (s) = a'" (s),
the orthonormality relation according to (A.14),

als)
[0 4 @0, 94 @0, 9) = b (C12)
—a(s)

als

We differentiate (C.2) and (C.3) with respect to s and substitute the result into the continuity condition (C.6)
withs = —s.. Using the projection onto the hindered-rotor wavefunctions ¢n(h) and their orthonormality
relation (C.7) we obtain

i [[ik080 m = i | dums = =anf, (s2) + bug; (sc), (C.13)

m=—0oo

where primes denote differentiation with respect to s. Here we have introduce the values

din= [ dp 4 (0. 250 41 (0) (C14)

and have used the relations
f,;( —=s;) = _f,;(sc): g,;( =) = g,;(sc) (C.15)

which follow from the symmetry of the functions f, (s) and g, (s).
Likewise we obtain by differentiation of (C.3) and (C.4) together with the orthonormality of the hindered-
rotor wavefunctions the identity

o0

anf () + bug (s) = D ik tun dums (C.16)

m=—00

where we have used (C.14).
Because the wavefunctions of the hindered rotor are only nonvanishing in the domain|¢| < a, < /2 the
integral (C.8) becomes

cm= [ do [#0 @] 4 (9, x50, (C17)

and therefore this covers the same interval as d,,,,,. Moreover, from the definition of ¢rg) (A.8) we have the
property

[T = 9, <19
It follows that the connection between the values d,,,,, and c,,,,, is
Ao = C_n- (C.19)

Finally, we substitute the definitions for ¢7fh) and q’ﬂ) and obtain the explicit formula

n[l _ (_l)ne4ima(:|

Conn = 2T, e~ 2imae 5 . (C.20)
(4 mac> — (nn)?
In this way we arrive to the system of linear equations
60,m ==ty + Z[anfn(sc) - bngn(sc)]cmm (C.21)
n=1
0= —ty+ Y[ @uf, (s) + bug, (s2) e (C.22)
n=1
ikocon = —anf (sc) + bug, (sc) + D ikl (C.23)
m=—o0
0= anfr:(sc) + bng,;(sc) - z ikmtmc—mm (C24)

form = 0, =1, ...andn = 1, 2, 3, .... We have used the symmetry relations of (C.19) to eliminate d,,,,.
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These equations form an infinite set of linear equations for infinitely many unknowns, a,, b,,, 7,,,and t,,,. To
obtain useful solutions we truncate the set, taking 21, + 1 rotational modes in regions (I) and (IIT), with m
running from —m, to m,. Consistent with this we takeny = 2my + 1 rotational modes in region (II). This
procedure givesus4 X (2mq + 1) independent equations for the same number of unknowns. We increased m,
until we obtained self-consistency.
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