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Two-Photon Microscopy Allows Imaging and Characterization
of Cochlear Microvasculature In Vivo
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Impairment of cochlear blood flow has been discussed as factor in the pathophysiology of various inner ear disorders. However,
the microscopic study of cochlear microcirculation is limited due to small scale and anatomical constraints. Here, two-photon
fluorescence microscopy is applied to visualize cochlear microvessels. Guinea pigs were injected with Fluorescein isothiocyanate-
or Texas red-dextrane as plasma marker. Intravital microscopy was performed in four animals and explanted cochleae from four
animals were studied.The vascular architecture of the cochleawas visualized up to a depth of 90.0±22.7 𝜇m. Imaging yielded amean
contrast-to-noise ratio (CNR) of 3.3 ± 1.7. Mean diameter in vivo was 16.5 ± 6.0 𝜇m for arterioles and 8.0 ± 2.4 𝜇m for capillaries.
In explanted cochleae, the diameter of radiating arterioles and capillaries was measured with 12.2 ± 1.6 𝜇m and 6.6 ± 1.0 𝜇m,
respectively. The difference between capillaries and arterioles was statistically significant in both experimental setups (𝑃 < 0.001
and 𝑃 = 0.022, two-way ANOVA). Measured vessel diameters in vivo and ex vivo were in agreement with published data. We
conclude that two-photon fluorescence microscopy allows the investigation of cochlear microvessels and is potentially a valuable
tool for inner ear research.

1. Introduction

The pathogenesis of most inner ear disorders is still largely
unknown and subject to controversial discussion [1]. Hearing
depends on a homeostasis of fluid and ions in the inner
ear which is maintained by cochlear microcirculation [2].
Inner ear blood supply is provided by the labyrinthine artery
as a branch of the anterior inferior cerebellar artery. Its
terminal vessel, the spiral modiolar artery, radiates arterioles
to the lateral cochlear wall forming a capillary system in
the stria vascularis which lies within the spiral ligament [3].
Impairment of cochlear blood flow has been considered as
a factor in the pathophysiology of various kinds of inner
ear disorders [4–6] like noise-induced hearing loss and
presbycusis [7]. Owing to the typical clinical features, this is
also discussed as the cause for sudden sensorineural hearing
loss [7, 8].

However, in humans direct evidence for this hypothesis
is lacking due to limits for clinical investigation. Difficulties

result from the complexity and the hidden localization of the
cochlea within the temporal bone, thus precluding visualiza-
tion of cochlear microcirculation. Well-established clinical
imaging modalities such as magnetic resonance imaging
(MRI) [9], single photon emission computed tomography
(SPECT) [10], and ultrasound imaging [6] have been adopted
for vascular imaging but lack either sufficient spatial resolu-
tion, satisfactory contrast, or both to be effective for cochlear
microvascular imaging.

Data about the configuration of cochlear blood supply
had been gathered at first by ex vivo examination of cast or
dissected preparations of animal and human cochleae [3, 11–
13]. Intravital microscopy was developed to study cochlear
microvessels in guinea pigs in vivo [14, 15], and various animal
models were established to assess cochlear blood flow. Meth-
ods applied include laser-Doppler flowmetry [16, 17], micro-
electrode oxygen tension determination [18], labeled [19] or
unlabeled [20]microsphere techniques, laser speckle contrast
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imaging in combination with Doppler optical microangiog-
raphy [21], and intravital fluorescence microscopy [14, 22–
24]. Conventional fluorescence microscopy provides the best
spatial resolution of these techniques and thereby allows
selective quantification of blood flow in stria vascularis
capillaries. However, it requires ablation of the overlying bone
to access cochlear microvessels. Moreover, a specific inves-
tigation is limited to capillaries, which lie in the outermost
part of the cochlear turn in the spiral ligament. Cochlear
radiating arterioles cannot be investigated directly so far.
This is because of their anatomical location deep within the
ceiling of the scala vestibuli [3, 25]. Moreover, conventional
fluorescencemicroscopy requires preparatory thinning of the
cochlear lateral wall [14], with so far undefined but potentially
severe consequences on local physiology [26].

Two-photon laser scanning fluorescence microscopy was
first described by Denk and coworkers [27]. It is a light
microscopy technique that allows in vivo imaging up to a
depth of one millimeter from the surface of a specimen in
some tissues [28–30], providing subcellular resolution and
good light penetration aswell as lowphototoxicity [31, 32]. An
important constraint of conventional lightmicroscopy is scat-
tering and absorption of photons. Multiphoton fluorescence
microscopy overcomes this by exciting with near-infrared
light in frequencies that have superior scattering charac-
teristics. Beyond this, absorption of biological molecules is
minimal at the frequencies applied, allowing deeper tissue
penetration [33]. The application of two simultaneous pho-
tons with high frequency and low energy additionally allows
a more focused approach with imaging confined to small
volumes [34].Thus, two-photonmicroscopymay circumvent
invasive preparation while enabling volumetric visualization
of a specimen.

In the present study we applied two-photon microscopy
to the cochlea of guinea pigs to test whether it allows
visualization of the cochlear microvasculature without prior
removal of the overlaying cochlear bone.

2. Material and Methods

2.1. Experimental Setup. Six female adult albino Dunkin-
Hartley guinea pigs (weight range, 250–300 g) were obtained
from Charles River Laboratories (Sulzfeld, Germany). The
experiments were performed according to Bavarian state
regulations for animal experimentation and were approved
on July 27, 2006, by theDistrict Government ofUpper Bavaria
(animal license number: 55.2-1-54-2531-57-06).

Guinea pigs were anesthetized using intraperitoneal in-
jections of ketamine 85mg/kg b.w. (Ketavet Parke-Davis,
Berlin, Germany) and xylazine 8.5mg/kg b.w. (Rompun;
Bayer, Leverkusen, Germany). A surgical level of anaesthesia
was maintained by supplementary half doses of ketamine
and xylazine injected every 45min. This protocol was shown
earlier to reliably maintain systemic blood pressure [22].

During the experiments, replacement fluid was infused
(NaCl, 8 𝜇L/100 g b.w./min) to maintain renal blood flow and
to compensate for fluid loss encountered during anaesthesia.
The animals were placed on a thermostatically controlled

heating pad which maintained temperature at 38∘C. Heart
rate and oxygen saturation were continuously monitored by
pulsoxymetry. During surgical procedures, middle arterial
pressure was 67 ± 12mmHg and heart rate was 230 ± 26/min
on average (𝑛 = 6). A polyethylene catheter (PE 50) was
placed in the right jugular vein for intravenous injections.
Head fixation of the animals was realized by a custom-made
head holder as described previously [22].

2.2. Surgical Preparations. Through a postauricular inci-
sion, the right auditory bulla was opened by a dorsolateral
approach. The auricle, overlying soft tissue, the lateral bony
part of the bulla including the tympanicmembrane, posterior
annulus, and tensor tympani tendon as well as parts of the
bony bulla were removed. To provide access of the objective
to the cochlea, the perpendicular portion of the ramus of
the mandibular was sacrificed as well as the middle ear
ossicles in order to allow a direct line of visualization.Mucosa
and mucosal vessels overlying the second and the third
turns of the cochlea were gently wiped off by a piece of gel
foam. Anatomic landmarks such as the facial nerve and the
semicircular canals were identified (Figure 1).

Following in vivo measurements, animals were euth-
anized by intraperitoneal injection of 800mg/kg b.w. of
sodium pentobarbital. For the examination of explanted
cochleae, after systemic injection of fluorescent dye and
euthanasia, the petrous part of the temporal bone was
removed as a whole.Then, the cochlea was exposed by careful
dissection of the bulla. The specimen was studied unfixed in
a solution of 0.9% NaCl.

2.3. Two-Photon Microscopy. Fluorescein isothiocyanate-
(FITC-) labeled dextran (order number 46947; molecular
weight 500 kDa; 0.05 to 0.1mL of a 5% solution in 0.9%NaCl;
Sigma, Deisenhofen, Germany) or Texas red-labeled dextran
(order number D1830; molecular weight 70 kDa; 1.0mL of
a 5% solution in 0.9% NaCl; Life Technologies, Carlsbad,
CA, USA) was injected intravenously as a plasma marker to
visualize cochlearmicrocirculation.Multiphotonmicroscopy
was performed on a TriMScope (LaVision BioTec, Bielefeld,
Germany) described elsewhere [35, 36].

Two water immersion objectives were used for image
acquisition, either 20x (numerical aperture 0.95, working
distance 2mm, field number 22mm, and field of view
in current study 0.5mm × 0.5mm) or 10x magnification
(numerical aperture 0.3, working distance 3.5mm, field
number 26.5mm, and field of view in current study 1mm ×
1mm). 0.9%NaCl or ultrasound gelwas applied as immersion
liquid. Excitation was achieved with 800, 860, or 1180 nm.

2.4. Image Processing and Analysis. Two-dimensional images
of fluorescence intensity (𝑋𝑌) in successive depths were pro-
cessed as three-dimensional stacks (𝑋𝑌𝑍) in Tagged Image
File Format (TIFF) by ImageJ 1.47v [37], the distribution Fiji
[38], or Imaris 7.6 (Bitplane, Zürich, Switzerland). Stitching of
neighboring stacks to one was performed with a plug-in for
Fiji [39].

Vessels were classified by their branching characteristics
as radiating arteriole before the first offshoot or as capillary
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Figure 1: Exposure of a guinea pig cochlea. (a) The right bulla was opened through a lateral and ventral approach to allow access to the
cochlea (box) for two-photon microscopy. (b) Explanted cochlea in a larger magnification.

thereafter. Radial arterioles have been described to runwithin
the spiral osseous lamina perpendicular to the midmodiolar
axis of the cochlea while capillaries are branching from them
in the lateral cochlear wall with an angle of about 60 degrees
[3]. These characteristics were readily identifiable in our
experimental setup.

Depth of visualization was determined by identifying the
deepest visible vessel in each stack and averaging the depth
value across stacks. Vessel borders could be easily identified
and blurred edges constituted nomajor obstacle due to viable
resolution. However, to rule out any remaining variability,
values for vessel diameters were obtained by averaging 5
independent measurements along the visible sector on each
identified vessel, thereby correcting for variations along the
vessel axis.Themean coefficient of variation of the individual
measurements of diameter for the respective vessels was 0.05
(standard deviation 0.04, range 0.01–0.19), signifying a low
variation.

Contrast-to-noise ratio (CNR) was calculated bymeasur-
ingmean grey value (M) and standard deviation of grey value
(SD) in representative regions of interest within (M

𝑊
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𝑊
)

and outside (M
𝑂
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𝑂
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as described before [40, 41].

2.5. Statistical Analysis. Statistical analysis was performed
using SigmaPlot 12 (Systat Software, Chicago, IL, USA). To
identify differences greater than expected by chance, result
values were compared using two-way analysis of variance
(ANOVA). Thereby, vessel diameter and contrast-to-noise
ratio (CNR) were analysed for differences dependent on
vessel type (capillary or arteriole), specimen (in vivo mea-
surement or explant), and dye (FITC or Texas red-dextran).
To correct formultiple comparisons, theHolm-Sidakmethod
was applied. A𝑃 value< 0.05was considered to be statistically
significant.

3. Results

After surgical exposure of the cochlea (Figure 1), intravital
observation of cochlear microcirculation with two-photon
laser scanning microscopy was feasible through the intact
cochlear bonywall without ablation of the bone.Visualization
was possible up to a depth of 90.0 ± 22.7 𝜇m from the outer
surface of the bone. Optical sections of the stria vascularis
vasculature were recorded along the 𝑍-direction from the
third turn (Figure 2).

Four cochleae from four animals were examined by intra-
vital two-photonmicroscopy. From the respective images, six
arterioles and six capillaries were selected for quantification.
As an alternative to intravital microscopy, four explanted
cochleae from four animals were subjected to two-photon
microscopy. The elimination of animal movement allowed
recording of higher resolution images with slower scan rates
(Figure 3).

Regarding image quality, two-photonmicroscopy yielded
amean contrast-to-noise ratio (CNR) of 3.3±1.7 in all images.
CNR for images obtained from explanted cochleae was 3.7 ±
1.7 while CNR was 3.1 ± 1.8 in in vivo images. Fluorescein
isothiocyanate (FITC) as a fluorescent dye resulted in a CNR
of 3.6±1.6while CNR of images obtained with Texas red was
3.1 ± 1.8. Image quality with Texas red was higher in images
from explanted cochleae compared to in vivo images (𝑃 =
0.015). Contrastingly, in measurements on living animals,
FITC was superior to Texas red (𝑃 = 0.022). An overview
of contrast-to-noise values is given in Table 1.

Mean diameter in vivo was 16.5±6.0 𝜇m for six arterioles
and 8.0 ± 2.4 𝜇m for six capillaries. The difference was
statistically significant (𝑃 < 0.001, two-way ANOVA). An
example of a time series of a𝑋𝑌-image is presented in Video
1 (see Video 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/154272). In freshly explanted,
unfixed cochleae, the diameter of five radiating arterioles
and five capillaries was measured with 12.2 ± 1.6 𝜇m and
6.6 ± 1.0 𝜇m, respectively. This difference was statistically
significant (𝑃 = 0.022, two-way ANOVA). Although a change
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Figure 2: Three-dimensional two-photon imaging of an explanted cochlea. (a) The schematic drawing shows the location of successive𝑋𝑌-
images of the guinea pig cochlear lateral wall (dark grey) in relation to neighboring structures in a cross section of a cochlear turn. The
images are recorded along the 𝑍-direction using two-photon microscopy after application of Texas red-labeled dextran and excitation with
1180 nm. (b) Four of the equidistantly acquired optical sections were selected for representation in this figure to show specific features. A
strong autofluorescence signal visualizes the bony capsule of the cochlea. ∗, radiating arteriole;, stria vascularis capillaries; 1, organ of Corti;
2, membrane of Reissner; 3, basilar membrane; 4, scala vestibuli; 5, scala media; 6, scala tympani; 7, spiral ganglion.
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Table 1: Image quality in two-photon microscopy of cochlear microvessels ex vivo and in vivo.

Specimen/dye FITC Texas red 𝑃 (two-way ANOVA)

Ex vivo examination (explanted cochlea) Number of vessels 5 5
CNR 3.0 ± 1.0 4.4 ± 2.1 =0.161

In vivo examination Number of vessels 6 6
CNR 4.2 ± 2.0 2.0 ± 0.4 =0.022∗

P (two-way ANOVA) =0.227 =0.015∗

ANOVA: analysis of variance; CNR: contrast-to-noise ratio; FITC: fluorescein isothiocyanate; ∗difference statistically significant with 𝑃 < 0.05.

Table 2: Diameter of cochlear microvessels ex vivo and in vivo by two-photon microscopy.

Specimen/vessel Arterioles Capillaries 𝑃 (two-way ANOVA)

Ex vivo examination (explanted cochlea) Number of vessels 5 5
Diameter [𝜇m] 12.2 ± 1.6 6.6 ± 1.0 =0.022∗

In vivo examination Number of vessels 6 6
Diameter [𝜇m] 16.5 ± 6.0 8.0 ± 2.4 <0.001∗

P (two-way ANOVA) =0.060 =0.512
ANOVA: analysis of variance; ∗difference statistically significant with 𝑃 < 0.05.

500𝜇m

∗

Figure 3: Vascular architecture of the guinea pig cochlea. Visu-
alization of microvessels in an explanted cochlea by two-photon
microscopy. The main image shows an 𝑋𝑌-projection of those
sections which are between the vertical yellow lines in the 𝑌𝑍-
section on the right. This 𝑌𝑍-section is placed at the vertical yellow
line in the main image. The horizontal yellow line indicates the
position of the 𝑋𝑍-section shown at the top, mostly covered by the
inset. ∗, radiating arteriole; , stria vascularis capillaries.

in diameter might be expected for vessels in explants, for
example, due to postmortal shrinking, the difference to in
vivo diameters was not significant in the present data. An
overview of the vessel diameters obtained can be found in
Table 2.

4. Discussion

Conventional intravital fluorescent microscopy after surgical
reduction of the bony cochlear lateral wall was to date
the only published approach for quantification of vessel
count, diameter, length, density, permeability, and blood flow
velocity in cochlear microcirculation [14, 22–24]. However,
surgical preparation of the cochlear lateral wall as required
for conventionalmicroscopy bears the risk of disturbing local
physiology [26], thus potentially invalidating the measure-
ments performed. Here we demonstrate that investigations
are possible through the intact cochlear lateral wall with two-
photon fluorescence microscopy. We were able to visualize
the three-dimensional anatomy of the cochlear vasculature,
assess vessel diameters in vivo and ex vivo, and show that
in principle blood flow measurements are possible with this
approach.

In microcirculatory experiments under anesthesia, an
independent effect of anesthetics on microvessels is to be
discussed. Xylazine and ketamine are known to provide
reliably stable cardiorespiratory parameters during surgical
experiments [42]. There are currently no studies focusing
explicitly on the effect of this combination on cochlear
microcirculation. In an experimental setup employing a
dorsal skinfold chamber, ketamine was supposed to cause
a constrictive state during induction and maintenance of
anesthesia compared to the awake state [43]. Contrasting
reports have shown a negligible effect of xylazine on vessel
diameters [44]. The anesthesia protocol applying ketamine
and xylazine in the present report has been shown to provide
stable narcosis without confounding experiments in several
studies to date [22, 45–50].

The definition of cochlear capillaries is an issue not yet
finally resolved. A considerable fraction of the studies on
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cochlear microvasculature do not elaborate on the classifica-
tion system applied, most likely since in vivo only capillaries
were visible [11–14, 24, 51]. Preparations of the cochlea by
cast in earlier studies allowed following the complete vessel
tree and thereby identifying different segments.The radiating
arterioles have been described as singular vessels branching
from the spiral modiolar artery and running perpendicularly
from the midmodiolar axis within the spiral lamina towards
the cochlear lateral wall [3, 52], where they feed into the
stria vascularis in regular intervals [11, 52]. Capillaries have
been described to branch off these vessels with an angle
of about 60 degrees [3]. Other investigators acknowledged
the classification of cochlear microvessels as an issue in in
vivo experiments but concluded that visual classification by
known branching characteristics is a method with acceptable
accuracy [15].

A mean contrast-to-noise ratio (CNR) of 3.3 ± 1.7 in all
images of the present study represents an acceptable level of
quality. Other optical or combined approaches that attempted
to achieve subsurface imaging in vivo reported a CNR of 1.95
for a penetration depth of up to 7mm [41] or 3.5 to 10 for up to
8mm [53]. However, no previous study had to deal with the
challenging situation of bone as an optically dense substance
overlying a liquid as in the guinea pig cochlea in the present
study.

Previously published data stated the diameter of stria
vascularis capillaries in guinea pigs from 7.5 to 16.0𝜇m in vivo
[15, 24, 51] and 9.2 to 21.8 𝜇m ex vivo [11–13], while radiating
arterioles were reported to measure 12.0 to 19.3 𝜇m ex vivo
[3, 12, 52]. Our results of 8.0±2.4 𝜇mfor capillaries in vivo and
12.2 ± 1.6 𝜇m for arterioles ex vivo are well in line with those
earlier reports. The diameter of stria vascularis capillaries in
unfixed, freshly explanted cochleae of 6.6 ± 1.0 𝜇m ex vivo
in the present study was considerably smaller than values
published on fixed material. An explanation for that could be
an enlargement of the vasculature by increased pressure that
was discussed to occur during perfusion with fixation agents
[12]. No prior in vivo data on radiating arterioles are available,
most likely due to their location within the roof of the scala
vestibuli inaccessible for traditional methods. Therefore, this
was assessed with 16.5 ± 6.0 𝜇m in vivo for the first time in
the present report.

There is an ongoing debate where blood flow regulation
in the cochlea takes place. Arteriolar resistance vessels sur-
rounded by smooth muscle cells have been suggested to play
an important part [2]. In contrast, capillaries showno smooth
muscle cells but contain a high density of pericytes [2, 54]
which exhibit vasocontractility under both in vivo and in
vitro conditions [2, 54, 55] and thereby may be an impor-
tant factor in the regulation of cochlear microcirculation
[2, 54]. Conventional intravital microscopy lacks the depth
resolution that is crucial for characterizing three-dimensional
microvascular morphology of the vascular bed on a cellular
level, thereby making two-photon microscopy a valuable
novel approach to address those questions. A possible restric-
tion, however, might be imaging speed, as visualization by
a laser-scanning application like two-photon microscopy
might limit the image section accessible for real-time imaging
[33]. A further limitation is the required amount of surgical

removal of tissue that does not allow repeated assessments
over several days or longer. However, during the experiments
the surgical procedures and consecutive measurements were
tolerated quite well and cardiovascular parameters were
stable.

The feasibility of observation of cochlear vasculature
through the intact cochlear bony wall as demonstrated here
bears the potential to develop into a valuable animal model
for research on inner ear microcirculation. In addition to
superior penetration depth compared to conventional con-
focal microscopy [29], two-photon excitation minimizes
photobleaching, the destruction of fluorophores, and tissue
damage by phototoxicity, ameliorating further problems
of earlier approaches. Two-photon-excitation line-scanning
approaches [56–59]may allowmeasurement of red blood cell
velocity, shear stress, and related hemodynamic parameters of
cochlear blood flow.

5. Conclusion

Two-photon microscopy allows the differentiation of radiat-
ing arterioles and stria vascularis capillaries of the cochlea
in vivo and ex vivo and has potentially broad applications in
imaging and characterization of cochlear microcirculation in
health and disease models.
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