Table of Contents

CONTRIBUTORS TO VOLUME 148 ... xi
PREFACE ... xvii
VOLUMES IN SERIES .. xix

Section I. Cells, Protoplasts, and Liposomes

1. Techniques of Cell Suspension Culture RICHARD BLIGNY AND JEAN-JACQUES LEGUAY 3
2. Culture and Characteristics of Green Plant Cells COLIN DALTON AND IAN MACKENZIE 16
3. Preparation of Protoplasts from Plant Tissues for Organelle Isolation MIKIO NISHIMURA, IKUKO HARA-NISHIMURA, AND TAKASHI AKAZAWA 27
4. Interaction of Plant Protoplast and Liposome TOSHIYUKI NAGATA 34
5. Liposomes as Carriers for the Transfer and Expression of Nucleic Acids into Higher Plant Protoplasts MICHEL CABOCHE AND PAUL F. LURQUIN 39
6. Interspecific Transfer of Partial Nuclear Genomic Information by Protoplast Fusion OTTO SCHIEDER 45

Section II. Vacuoles and Tonoplasts

7. Isolation of Mature Vacuoles of Higher Plants: General Principles, Criteria for Purity and Integrity GEORGE J. WAGNER 55
8. Isolation of Vacuoles and Tonoplast from Protoplasts ALAIN M. BOUDET AND GILBERT ALIBERT 74
9. Preparation of Tonoplast Vesicles from Isolated Vacuoles ROBERT T. LEONARD 82
11. Characterization of Tonoplast Enzyme Activities and Transport

 Benjamin Jacoby 105

12. Preparation of Tonoplast Vesicles: Applications to H⁺-Coupled Secondary Transport in Plant Vacuoles

 Eduardo Blumwald, Philip A. Rea, and Ronald J. Poole 115

13. Purification and Characterization of the Tonoplast H⁺-Translocating ATPase

 Stephen K. Randall and Heven Sze 123

14. High-Performance Liquid Chromatography for Simultaneous Kinetic Measurements of Adenine Nucleotides in Isolated Vacuoles

 M. Hill, A. Dupaix, P. Volfin, A. Kurkdjian, and B. Arrio 132

Section III. Plastids

15. Isolation of Intact Chloroplasts: General Principles and Criteria of Integrity

 David A. Walker, Zoran G. Cerovic, and Simon P. Robinson 145

16. Isolation of Plastids in Density Gradients of Percoll and Other Silica Sols

 Carl A. Price, John C. Cushman, Leticia R. Mendiola-Morgenthaler, and Ellen M. Reardon 157

17. Purification of Chloroplasts Using Silica Sols

 K. W. Joy and W. R. Mills 179

18. Separation of Chloroplasts and Cytosol from Protoplasts

 Simon P. Robinson 188

19. Use of Thermolysin to Probe the Cytosolic Surface of the Outer Envelope Membrane from Plastids

 Jacques Joyard, Albert-Jean Dorne, and Roland Douce 195

20. Characterization of Plastid Polypeptides from the Outer and Inner Envelope Membranes

 Jacques Joyard, Maryse A. Block, Jacques Covès, Claude Alban, and Roland Douce 206

21. Isolation of Amyloplasts from Suspension Cultures of Soybean

 Tom AP Rees and Fraser D. Macdonald 218

22. Isolation of Amyloplasts from Developing Endosperm of Maize (Zeamays L.)

 Jack C. Shannon, Edgardo Echeverria, and Charles Boyer 226

23. Isolation of Plastids from Buds of Cauliflower (Brassicaoleracea L.)

 Etienne-Pascal Journet 234

24. Isolation of Membranous Chromoplasts from Daffodil Flowers

 Bodo Liedvogel 241
<table>
<thead>
<tr>
<th>Section IV. Mitochondria</th>
</tr>
</thead>
<tbody>
<tr>
<td>37. Isolation of Plant Mitochondria: General Principles and Criteria of Integrity</td>
</tr>
<tr>
<td>38. Purification of Plant Mitochondria on Silica Sol Gradients</td>
</tr>
<tr>
<td>39. Isolation of Mitochondria from Leaves of C₃, C₄, and Crassulacean Acid Metabolism Plants</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VI</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section VII. General Physical and Biochemical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>53. Possible Approaches to Surface Labeling of the Plasma Membrane</td>
</tr>
<tr>
<td>55. Phosphoglyceride Synthesis in Endoplasmic Reticulum</td>
</tr>
<tr>
<td>56. Electron Microscopy of Plant Cell Membranes</td>
</tr>
<tr>
<td>57. Two-Dimensional Electrophoresis in the Analysis and Preparation of Cell Organelle Polypeptides</td>
</tr>
<tr>
<td>58. Plant Membrane Sterols: Isolation, Identification, and Biosynthesis</td>
</tr>
<tr>
<td>59. Separation of Molecular Species of Plant Glycolipids and Phospholipids by High-Performance Liquid Chromatography</td>
</tr>
<tr>
<td>60. Movement of Phospholipids between Membranes: Purification of a Phospholipid Transfer Protein from Spinach Leaf</td>
</tr>
<tr>
<td>61. Pesticides and Lipid Synthesis in Plant Membranes</td>
</tr>
<tr>
<td>62. Rapid Filtration Technique for Metabolite Fluxes across Cell Organelles</td>
</tr>
<tr>
<td>63. Application of Nuclear Magnetic Resonance Methods to Plant Tissues</td>
</tr>
</tbody>
</table>

AUTHOR INDEX .. 701

SUBJECT INDEX ... 729
α-Tocopherol and Plastoquinone Synthesis in Chloroplast Membranes

By JÜRGEN SOLL

Plant prenylquinones, α-tocopherol, plastoquinone-9, and phylloquinone, function in chloroplasts as membrane constituents, antioxidants, or electron carriers. For a long time biosynthetic studies were hampered by the fact that no chemical intermediates of the biosynthetic pathway or biochemically active organelles were available. Earlier studies proposed pathways with a multitude of chemically possible intermediates. The detailed work on the chemical synthesis of prenylquinones enabled others to work out the most probable pathway (Fig. 1) in plastoquinone and tocopherol biosynthesis.

Chemical Synthesis of Prenylquinones

The small-scale synthesis of IV (Fig. 2) is described here and can be applied to the synthesis of other prenylquinones (I, II, III, V, VI) without problems. In many cases methylquinones are not commercially available and have to be prepared in advance. The corresponding phenol (4 mmol) is dissolved in 10 ml methanol and oxidized by 10 mmol of Fremy's salt [(SO₃)₂NO]K₂ in 120 ml water and 4 ml sodium acetate (1 M). The reaction is allowed to continue for 30 min and the quinone is then extensively extracted with diethyl ether. The organic solvent is evaporated and the quinone purified by column chromatography (silica gel 60, Merck, FRG) using CHCl₃ as developing solvent. Quinone (0.7 mmol) is dissolved in 1.5 ml benzene, 2.5 ml H₂O, and 250 mg Na₂S₂O₄ is added. The reduction is completed after 5 min, the quinol is washed with ice water, and dried in a desiccator. Freshly distilled BF₃-etherate (0.3 ml in 1 ml tetrahydrofuran) is added dropwise via a syringe to a solution of 1.1 mmol quinol, 200 mg Al₂O₃ (W-200 basic, Woelm-Pharma, FRG), and 1.1 mmol

FIG. 1. Proposed pathway of α-tocopherol and plastoquinone-9 synthesis in spinach chloroplasts. From the available data these are the most likely intermediates to be involved in prenylquinone synthesis. A possible bypass in tocopherol synthesis might occur which leads from I via VII to VIII instead of I via IV to VIII (see text). SAM, S-Adenosylmethionine; SAH, S-adenosylhomocysteine.
isophytol in 2 ml dry tetrahydrofuran. The mixture is stirred under N₂ in the dark for 35 hr. Residual BF₃ is hydrolyzed on ice, and the prenylated quinols extracted with diethyl ether, the ether solution dried, and the organic solvent evaporated. The resulting quinol (IV) is oxidized by 400 mg Ag₂O in dry diethyl ether. Prenylquinones are purified by column chromatography (Silica-gel 60, Merck) developed with petrol (bp 60–80°)–diethyl ether, 15:1 (system 1). Purity of the products is verified by thin-layer chromatography (precoated plates on glass, silica gel, G-1500 LS254, Schleicher and Schüll, FRG) in system 1. When the prenylquinones I, II, and III are to be synthesized, care has to be taken to separate the isomers properly. This can be achieved by repeated thin-layer chromatography as above. The succession of prenylquinones in this thin-layer chromatography system is shown in Fig. 3A. Quinones and
quinols have a tendency to oxidize and polymerize during chromatography. We have obtained the best results using the systems described; other systems caused more oxidation, decomposition, and poor separation of quinones or prenylquinone isomers. All products should be stored and purified in the quinone form and not in the quinol form which is more susceptible to uncontrolled breakdown. Quinones and prenylquinones are detected on thin-layer plates with fluorescence indicator at 254 nm, while quinols and prenylquinoles are visualized with FeCl₃/2,2'-dipyridyl 0.1%:0.25% (w/w) in ethanol.

Chemicals Needed for the Enzymatic Assays

As can be seen from Fig. 1, homogentisate, polyprenyl diphosphate, and S-adenosylmethionine are necessary for the incubation. Unlabeled and labeled S-adenosylmethionine and homogentisate are commercially available, while phytol diphosphate and solanesyl diphosphate have to be prepared. Dry trichloroacetonitrile (15 mmol), 5 mmol ditriethylammonium phosphate, and 30 ml dry acetonitrile are mixed in a round-bottom flask. Two millimoles of phytol in 15 ml acetonitrile is added dropwise over a 3-hr period. The mixture is stirred for another 12 hr, then 50 ml of acetone is added and concentrated ammonia is dropped into the solution until no further precipitation occurs. Precipitation occurs for 2 hr at 0°. The solid is repeatedly washed with 0.28 M ammonia in methanol to eliminate prenyl monophosphates. The resulting prenyl diphosphate is dried and used in the enzyme assay. Product analysis showed that this preparation is still heavily contaminated by inorganic phosphates which, however, do not interfere with the enzyme assays. If further purification is desired this can be achieved by recrystallization in CHCl₃–methanol. [³H]Homogentisate, labeled by tritium exchange service, has to be purified prior to use in the following system: silica gel precoated thin-layer plates on glass and toluene/methanol/acetic acid (80/20/4 v/v/v) as developing solvent.

Preparation of Chloroplasts and Chloroplast Components

Chloroplasts are isolated from spinach leaves by standard procedures and further purified on silica sol gradients. Chloroplast compo-

nents, e.g., envelope and thylakoid membranes and soluble chloroplast protein, are prepared as described.13

Enzyme Assay for the Synthesis of Tocopherol and Its Intermediates in Chloroplasts

As outlined in Fig. 1, the synthesis of α-tocopherol comprises a number of reaction steps, catalyzed by the following enzymes: homogentisate decarboxylase-phytyltransferase; \textit{S}-adenosylmethionine: methyl-6-phytylquinol methyltransferase; 2,3-dimethylphytylquinol cyclase; \textit{S}-adenosylmethionine:γ-tocopherol methyltransferase (no EC numbers available).4 Of the precursors and cosubstrates used only homogentisate, polypropenyl diphosphate, and \textit{S}-adenosylmethionine are water soluble. Prenylquinones, prenylquinols, and tocopherols are not water soluble and it is difficult to determine their real concentration in the test. They are either added in ethanol (no more than 1% ethanol final concentration in the enzyme assay) or in diethyl ether, which is evaporated to dryness prior to the assay. Introduction of the methyl groups into the aromatic moiety is only possible at the quinol stage and not in the quinone form.4 The same is valid for the formation of the chromanol stage (IV \xrightarrow{} VIII). A photometrically adjusted amount of quinone (UV maxima, see Refs. 14 and 15; extinction coefficients, see Ref. 3) was dissolved in 1 ml methanol, reduced with a little solid NaBH\textsubscript{4} for 2 min, transferred to diethyl ether, and washed with H\textsubscript{2}O. The diethyl ether is evaporated to dryness under N\textsubscript{2} in the reaction vials which were used later in the enzyme assay. Substrate concentrations described4,14-16 are 50–100 μM prenyl diphosphate, 100 μM \textit{S}-adenosylmethionine, 100–200 μM prenylquinol or tocopherol at pH 7.6–8.2 with MgCl\textsubscript{2} as cofactor (1–10 mM) and chloroplasts equivalent to 0.5–1 mg of chlorophyll. Other cofactors like cysteine, dithiothreitol (DTT), light, and Mn2+ do not seem to be necessary.4,15,16 Increased solubilization of quinols and tocopherols can be achieved by detergents (Tween 80) which do not seem to inhibit the \textit{S}-adenosylmethionine:γ-tocopherol methyltransferase.17

\begin{itemize}
\end{itemize}
Identification and Purification of Labeled Products

The intermediates obtained in tocopherol synthesis are generally purified by repeated thin-layer chromatography\(^4\,18,19\) or HPLC.\(^15,20\) The incubation mixture is extracted with CHCl\(_3\) : MeOH (1 : 2, v : v).\(^21\) The chloroform phase contains prenylquinols, prenylquinones, tocopherols, other lipids, and pigments. Initial results have shown that prenylquinols are the products formed in this and the following reactions, if the products are analyzed under nonoxidizing conditions.\(^4,22\) In general quinols are oxidized by air prior to thin-layer chromatography (for reasons, see above). A 25-μg aliquot of standard substances corresponding to the possible reaction products is added to the chloroform phase.

The first reaction in tocopherol and plastoquinone synthesis involves the prenylation of homogenisate with simultaneous decarboxylation (Fig. 1). The decarboxylation proceeds with stereochemical retention during the biosynthetic process.\(^23\) While the chemical synthesis of monomethyl-prenylquinols using methylquinol, phytol, and BF\(_3\) as described earlier yields a mixture of I, II, and III, the enzymatic prenylation of homogenisate yields only one product (I).\(^5,15\) This is probably due to the directing influence of intermediates occurring during decarboxylation. Analysis of this reaction was done using spinach chloroplasts, \(^3\)H]homogentisate, and phytyl diphosphate. The products were purified by thin-layer chromatography using two different systems in succession [first run, silica gel, petrol (bp 60–80°) : diethyl ether, 10 : 1 (system II); rechromatography, cellulose plates impregnated with 7% paraffin, acetone : H\(_2\)O, 85 : 15 (system III), or by HPLC (Lichrosorb Si 60, 5 μm, Merck, 0.06% dioxane in isooctane\(^15\)]. Substances are recovered from thin-layer plates by elution of the zones in question twice with 1 ml of methanol. The methanol is evaporated under N\(_2\) and the residual dissolved in acetone. Only I was found to be labeled, this very specific initial reaction excludes already many further intermediates.\(^5,15\) This initial step of prenyquinone formation is followed by methylation of the aromatic moiety with S-adenosylmethionine as methyl group donor (see Fig. 4). Since the prenylation reaction yields only I the following methylation can occur only from two

different intermediates: (1) I, (2) after cyclization of I from VII. In vitro studies using isolated chloroplasts4 demonstrated that methylation of I was about three times higher than from VII. This specificity is underlined also by the finding that II and III are methylated at 10 and 5% of the rate of I, respectively, with experimental conditions as described above.

The methylation product of I is IV, which is processed in a homologous sequence of events to form X. X formation takes place via VIII, which is methylated to form X. Products are purified on systems II and III (see Fig. 3). This sequence was supported from the data that IV is not methylated to VI.4,15 In all reports known so far the cyclization of the prenylquinol to form the chromanol ring was not studied directly and it seems to be the slowest step in the α-tocopherol formation.

The reactions mentioned above described only one or two steps at a time of a series leading to α-tocopherol. If it is necessary to look at the whole sequence, all cosubstrates have to be included (homogentisate, phytol diphosphate, S-adenosylmethionine). The incorporation rates vary from pmol to nmol/hr · mg chlorophyll for single reaction steps, which makes it obvious that only highly active chloroplast preparations can be used for these approaches. When these multiple step analyses are done
the products formed are I, IV, VII, VIII and X, confirming the results described earlier. It should be stressed again that it is difficult to separate the different possible isomers in tocopherol synthesis. Monomethylphytylquinols can only be separated by repeated thin-layer chromatography on precoated plates on glass or HPLC (λmax, 254, λmax II, 253, λmax III, 249 nm). Compounds IV and V are separated by simple chromatography on precoated thin-layer plates on glass using system II. VIII and IX should be purified as nitroso derivatives or by HPLC. It is obvious from the literature and our own experience that successful separation of isomers depends strongly on the brand of chromatography plates used.

Plastoquinone Synthesis

Plastoquinone synthesis (Fig. 1) occurs essentially via reactions similar for tocopherol; homogentisate (20 μM) and solanesyl diphosphate (80 μM) are condensed to form the equivalent to I (2-methyl-6-solanesylquinol), which is then methylated by S-adenosylmethionine (70 μM) to yield plastoquinol-9 (2,3-dimethylsolanesylquinol) (Fig. 1). The rates of synthesis are again in the picomolar range per hr · mg chlorophyll. Purification of the incubation products is done by two successive thin-layer chromatography systems (first system; system I; rechromatography, cellulose plates impregnated with 7% paraffin, acetone: H2O, 90:10, system IV).

Localization of Prenylquinone Synthesis in Chloroplasts

Recently developed methods for the fractionation and purification of chloroplast components enabled us to localize all but one enzyme in tocopherol and plastoquinone synthesis at spinach chloroplast envelopes. Thylakoids or soluble chloroplast protein had no enzymatic activity. Recombination of membranes with soluble chloroplast extract did not increase prenylquinone synthesis. These observations are now extended to envelope membranes from pea chloroplasts (J. Soll, unpublished). All test and purification conditions were essentially as described for chloroplasts. The amount of membranes used was between 50 and 100 μg protein per assay. The available data do not demonstrate the enzyme responsible for the cyclization of IV to yield VIII. Though some enzymatic activity in plastoquinone synthesis is found associated with the thylakoid

25 S. Marcinkiewicz and J. Green, Analyst 84, 304 (1959).
membrane it is probably due to contamination of this membrane fraction by envelopes.

The envelope forms a two-membrane barrier, which surrounds the chloroplast and is present at all stages of chloroplast development.27 It is now possible to separate the two membranes into outer envelope and inner envelope membrane.27,28 Applying these methods it is possible to align tocopherol and plastoquinone synthesis with the inner envelope membrane.14 Again, all enzymes but the cyclization enzyme (IV \rightarrow VIII) were demonstrated.

Purification of Enzymes Involved in Tocopherol Synthesis

A membrane fraction obtained from pepper (\textit{Capsicum annuum}) chromatoplasts was shown to catalyze \(\alpha \)-tocopherol synthesis via the same intermediates as described for chloroplasts16 (Fig. 1). The methods used were essentially as above. This membrane fraction was then used as a source for the enzyme purification. An acetone powder is obtained from the membranes at -20° which is then solubilized in 0.1 \(M \) phosphate buffer (pH 7.0), 5 mM DTT, and Tween 80 (1 mg/ml), followed by (NH\(_4\))\textsubscript{2}SO\(_4\) precipitation (20–60\%). The protein is purified by column chromatography29: (1) blue Sepharose CL-6B, 50 mM KH\(_2\)PO\(_4\), 1 mM DTT, 1 mM EDTA, pH 6.2; (2) blue Sepharose CL-6B, 50 mM Tris–HCl, 1 mM DTT, 1 mM EDTA, pH 8; (3) DEAE–Sephacel, 50 mM Tris-HCl, pH 7.6, 1 mM DTT eluted with a gradient of 0–0.4 \(M \) KCl. Analysis of the active fractions obtained, by SDS–polyacrylamide gel electrophoresis showed only one band at about 33,000 Da29 (pH optimum, 8.2; \(K_m \) S-adenosylmethionine, 2.5 \(\mu M \); \(K_m \) \(\gamma \)-tocopherol, 13.7 \(\mu M \)).29

Analysis of Envelope Membranes for Tocopherol and Plastoquinone

Determination should be done from fresh or deep-frozen material. Freeze-dried membranes contain less quinols and tocopherols than fresh membranes and more quinone and tocoquinone instead.5,14,30,31 (see Table I). Membranes are extracted either by CHCl\(_3\)/MeOH (see earlier) or by

TABLE I

<table>
<thead>
<tr>
<th>Prenylquinone</th>
<th>Thylakoid</th>
<th>Envelope mixture</th>
<th>Inner envelope</th>
<th>Outer envelope</th>
<th>Retention time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Tocopherol</td>
<td>1.1</td>
<td>2.8</td>
<td>6.7</td>
<td>9.8</td>
<td>5.6</td>
</tr>
<tr>
<td>α-Tocoquinone</td>
<td>0.24</td>
<td>0.2</td>
<td>—</td>
<td>—</td>
<td>3.8</td>
</tr>
<tr>
<td>Phyloquinone K₁</td>
<td>0.34</td>
<td>0.1</td>
<td>0.07</td>
<td>0.05</td>
<td>7.3</td>
</tr>
<tr>
<td>Plastoquinone-9</td>
<td>3.9ᵇ</td>
<td>1.2ᵇ</td>
<td>1.63</td>
<td>1.1</td>
<td>25.5</td>
</tr>
<tr>
<td>Plastoquinol-9</td>
<td>—</td>
<td>1.54</td>
<td>1.1</td>
<td>—</td>
<td>11.3</td>
</tr>
<tr>
<td>Total prenylquinones</td>
<td>5.5</td>
<td>4.3</td>
<td>10.0</td>
<td>12.1</td>
<td>—</td>
</tr>
</tbody>
</table>

ᵃ Adapted from Refs. 14, 30, and 31; values are expressed in μg/mg protein.
ᵇ Represents the sum of plastoquinone and plastoquinol. ³⁰

hexane/acetone (10:4, v:v). ³⁰ The lipid extract is further analyzed by HPLC (RP8, 7-μm mesh, Merck) using methanol: water (95.7:4.3, v:v) as developing solvent (1.5 ml flow rate)¹⁴,³² and two UV detectors set at 250 nm (to detect quinones) and 292 nm (to detect tocopherol and quinol), respectively.¹⁴,³³

Acknowledgments

I would like to thank Prof. G. Schultz for his continuous support and encouragement during the progress of this work.