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 Introduction 

 Growth and development are central characteristics of 
childhood. Growth can be characterised quantitatively as 
a gain in length or height, head circumference, body mass 
or other measures. The importance of regular monitoring 
of children’s growth patterns as part of standard paediat-
ric health care and of research studies, e.g. by plotting re-
peated growth measures on percentile references, is wide-
ly acknowledged  [1, 2] . Up- and downward deviations of 
growth from normal patterns, based on growth standards 
or percentile curves, may reflect grave disorders, such as 
genetic, syndromic or endocrine conditions, infectious or 
inflammatory diseases, malnutrition, psychosocial depri-
vation or abuse, or a broad spectrum of other disorders. 
Based on the results of the Multicentre Growth Reference 
Study (MGRS), which collected data points on about 
8,500 children in six countries around the globe (Brazil, 
Ghana, India, Norway, Oman and the USA), the World 
Health Organisation takes the view that a single set of 
growth curves adequately describes normal growth of all 
economically advantaged breastfed infants and children 
up to an age of 5 years  [3, 4] . However, a recent system-
atic review on growth data from studies performed in 55 
countries or ethnic groups found that growth varied 
among different national and ethnic groups  [5] . Means of 
height were generally within 0.5 of the standard deviation 
(SD) of the MGRS means, whereas weight varied by as 
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 Abstract 

Growth and development are central characteristics of child-
hood. Deviations from normal growth can indicate serious 
health challenges. The adverse impact of early growth falter-
ing and malnutrition on later health has long been known. 
In contrast, the impact of rapid early weight and body fat 
gain on programming of later disease risk have only recently 
received increased attention. Numerous observational stud-
ies related diet in early childhood and rapid early growth to 
the risk of later obesity and associated disorders. Causality 
was confirmed in a large, double-blind randomised trial test-
ing the ‘Early Protein Hypothesis’. In this trial we found that 
attenuation of protein supply in infancy normalized early 
growth and markedly reduced obesity prevalence in early 
school age. These results indicate the need to describe and 
analyse growth patterns and their regulation through diet in 
more detail and to characterize the underlying metabolic 
and epigenetic mechanisms, given the potential major rel-
evance for public health and policy. Better understanding of 
growth patterns and their regulation could have major ben-
efits for the promotion of public health, consumer-orientat-
ed nutrition recommendations, and the development of im-
proved food products for specific target populations.
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much as 1.5 SD. Mean head circumference values also 
varied widely, with means in many groups consistently 
0.5–1 SD above the MGRS mean. Of interest, head size in 
breastfed children at any age examined was found to be 
far closer to local norms than to the MGRS mean  [5] . 
These data question whether the use of one single inter-
national growth standard is justified and call for further 
work aiming at a better understanding of the predictors 
and regulators of child growth. 

  Early growth faltering and malnutrition have long 
been known to induce adverse later outcomes, such as 
poor cognitive and motor function  [6, 7] . In contrast, the 
adverse effects of excessive growth and in particular of 
rapid weight and body fat gain on long-term health have 
only recently received increased attention. It is now wide-
ly recognized that early growth and tissue development 
during the first 1,000 days of human life and beyond – 
from conception through to early childhood – are impor-
tant predictors of long-term health and performance up 
to adulthood and old age  (Early Metabolic Programming 
of Lifelong Health, Developmental Origins of Adult Health)  
 [8–13] . Therefore, the study of child growth receives in-
creasing interest.

  Infant Diet, Early Growth and Later Obesity 

 A relationship between diet in early childhood, rapid 
early growth and later outcomes has been found in many 
studies. More than 1 decade ago, our group showed in a 
large cross-sectional study including more than 9,000 
children in Germany that breastfed children have a mark-
edly reduced later risk of obesity at school age than previ-
ously bottle (formula)-fed children, with an inverse dose-
response relationship between breastfeeding duration 
and the adjusted odds ratios for obesity ( fig. 1 )  [14] . This 
finding was subsequently confirmed in numerous cohort 
studies and meta-analyses  [15–18] , which has markedly 
influenced policy on breastfeeding promotion worldwide 
 [12, 19–21] . We hypothesized that breastfeeding protects 
through reducing weight gain velocity during early child-
hood, resulting from a different substrate supply with 
breastfeeding compared to feeding conventional infant 
formula, in particular the markedly lower protein content 
in human milk than in infant formula  [22, 23] . Indeed, 
rapid weight gain during the first 2 years of life is highly 
predictive of overweight at early school age  [24] , which 
was confirmed in numerous other studies: an increase in 
weight-for-age SD score >0.67 SD during the 1st and 2nd 
year of life predicts two- to threefold increased odds of 

obesity in children, teenagers and adults  [25] . A recent 
systematic review and meta-analysis of 15 studies exam-
ining body composition in healthy infants showed that 
breastfed infants had a lower body fat mass at age 1 year 
than formula-fed infants  [26] . Accordingly, we recently 
found that weight gain velocity during the first 6 months 
of life is closely correlated to infant body fat mass, as as-
sessed by isotope dilution (deuterium method), whereas 
lean body mass is not related to weight gain velocity  [27] . 
It seems likely that variation in substrate supply is the 
causative factor. It is of key importance to elucidate the 
underlying mechanisms and which substrates are the ma-
jor modulators of early growth.

  The Early Protein Hypothesis  

 We explored ‘The Early Protein Hypothesis’ ( fig. 2 ): 
high protein supply in infancy increases plasma and tis-
sue concentrations of amino acids that stimulate an en-
hanced secretion of the growth factors insulin-like growth 
factor-1 (IGF-1) and insulin, with consecutively increased 
weight gain in the first 2 years of life, increased adipo-
genic activity, and increased long-term risk of later obe-
sity and associated disorders  [10, 28, 29] . We tested this 
Early Protein Hypothesis in a large, multicentre ran-
domised controlled trial consecutively funded by the Eu-
ropean Commission Framework Programmes, the Child-

0
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  Fig. 1.  Longer duration of breastfeeding is linked to a lower ad-
justed odds ratio of obesity at early school age. Data from a cross-
sectional study in more than 9,000 children in Bavaria, Germany 
 [14] . 
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hood Obesity Project (CHOP) Trial  [30, 31] . In this trial, 
we enrolled 1,678 healthy term infants born appropriate 
for gestational age that were either exclusively breastfed 
for at least the first 3 months of life (by parental choice) 
or formula fed; the latter were randomised double blind 
to receive during the 1st year of life milk formulas with 
equal content of energy and most nutrients, but either 
(conventionally) high or reduced protein contents. Re-
ducing protein supply with infant formula normalised 
growth measures at 2 years of age relative to the breastfed 
reference group and the WHO growth standards. Higher 
protein intake induced significantly increased weight for 
length and body mass index (BMI) in early childhood 
 [32] . Follow-up of subjects up to school age demonstrates 
lasting large effects of early substrate supply and growth 
on later health. At 6 years of age, previously breastfed 
children have a much lower BMI than those fed conven-
tional formula with high protein contents ( fig. 3 ), which 
agrees with results of observational studies  [33] . In con-
trast, children who had been double-blind randomised to 
receive experimental formula with reduced protein but 
equal energy content in the 1st year of life have a signifi-
cantly lower BMI than those in the control group with 
conventional formula, and they achieve a BMI which is 
not different from the breastfed reference group  [31] . 
There was a very large effect of early feeding and growth 
on the risk of obesity at age 6 years: Lower protein supply 
in infancy reduced the risk for obesity at early school age 
2.43-fold (unadjusted) or 2.87-fold (adjusted), respec-
tively  [31]  ( table 1 ).

  These data demonstrate that metabolic modulation of 
early growth has a very large impact on later obesity prev-
alence, which indicates major opportunities for disease 
prevention and public health promotion. Therefore, it is 
of paramount importance to investigate and understand 
the underlying mechanisms and key drivers through 
which early metabolic exposure modulates child growth 
and long-term health, which also requires meaningful de-
scription of the kinetics of child growth. 

  Metabolic Mechanisms 

 In our randomised CHOP Trial, a higher formula 
protein supply to infants induced markedly elevated 
plasma concentrations of the branched-chain amino ac-

 Protein

 Insulin/IGF-1

 Weight gain  Adipogenicity

 Insulinogenic
amino acids

 Obesity/NCD
long term

  Fig. 2.  The Early Protein Hypothesis stipulates that a high infant 
protein supply in excess of metabolic requirements increases plas-
ma and tissue concentrations of amino acids that stimulate an en-
hanced secretion of the growth factors IGF-1 and insulin, with 
consecutively increased weight gain in the first 2 years of life, in-
creased adipogenic activity and increased long-term risk of later 
obesity and associated non-communicable diseases (NCD) such as 
diabetes mellitus type 2  [10] . 

Co
lo

r v
er

si
on

 a
va

ila
bl

e 
on

lin
e Table 1.  Prevalence and relative risk of obesity at the age of 6 years 

in children participating in the multicentre CHOP trial who had 
been randomised to receive conventional formula with high pro-
tein content (control) or intervention formula with reduced pro-
tein but equal energy content

Intervention: lower protein 4.4%

Control: higher protein 10%

Unadjusted relative risk 2.43
95% CI: 1.12 – 5.27

p = 0.024

Adjusted relative risk 2.87
95% CI: 1.22 – 6.75

p = 0.016

Breastfed reference group 2.9%

 A group of breastfed children was followed for reference. Low-
er protein supply in infancy reduced the risk for obesity at early 
school age 2.43-fold (unadjusted) or 2.87-fold (adjusted), respec-
tively [31].
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ids leucine, isoleucine and valine, along with slight ele-
vations in other indispensable amino acids  [34] . In con-
trast, high protein supply did not change the plasma 
concentrations of most other amino acids, and even re-
duced the plasma concentrations of glutamine and gly-
cine. We hypothesise that enhanced concentrations of 
branched-chain amino acids in response to protein sup-
ply may be causative for inducing excessive weight gain 
and higher body fat mass in formula-fed compared to 
breastfed subjects. Experimental observations provide 
support for a potential key role of amino acids in growth 
regulation  [25] . Verification of this hypothesis would al-
low new avenues to early obesity prevention by modify-
ing specifically the amino acid composition of feed, 
rather than reducing further the total protein intake, 
which has considerable limitations for practical and 
safety reasons. 

  In fact, amino acids have been shown to be more po-
tent stimulators of IGF-1 release than glucose in fetal rat 
islets  [35] . Studies in 4-week-old rats showed that feeding 
a diet with 15 instead of 5% protein for only 1 week in-
creased serum IGF-1 more than fourfold  [36] . Amino ac-
ids also markedly influence insulin secretion with key 
regulatory roles for anabolic pathways and lipid deposi-
tion during early growth  [37, 38] . Glucose is a key driver 
of insulin secretion, but glucose-induced insulin secre-
tion is markedly attenuated by low protein supply. Also, 
leucine and most likely also other amino acids enhance 
insulin secretion via both acute effects, such as activated 
glutamate dehydrogenase activity, as well as chronic ef-
fects, such as gene transcription and regulation of β cell 

metabolism  [39] . One pathway through which amino ac-
ids and the growth factors insulin and IGF-1 could effec-
tively modulate metabolic response and growth in chil-
dren is the mammalian target of rapamycin (mTOR), a 
highly conserved Ser/Thr kinase present in two structur-
ally and functionally distinct complexes ( fig. 4 )  [40] . The 
growth factors insulin and IGF-1 stimulate mTORC2 via 
an unknown pathway, and mTORC1 via phosphoinosi-
tide 3-kinase (PI3K) and Akt inducing the mTORC1 ac-
tivator Rheb. Amino acids enhance ATP loading of RAG 
proteins and RAG-GTPases, which interact with Rheb 
and activate mTORC1  [40] . Of importance, full activa-
tion of mTORC1 is only achieved through the synergistic 
action of both growth factors and amino acids, while a 
low energy supply downregulates mTORC1  [40] . Thus, 
this pathway represents an elaborate sensor system by 
which nutritional supply regulates metabolism and 
growth. The enormous power of this system is demon-
strated, for example, in mice with knockout of raptor in 
adipose tissue, which leads to disruption of mTORC1. 
These mice are lean and resistant to diet-induced obesity, 
and they have improved metabolic characteristics, such 
as better glucose tolerance and insulin sensitivity, as well 
as resistance to diet-induced hypercholesterolaemia  [41] . 
These observations lead us to the conclusion that regula-
tion of mTORC1 signalling by amino acids may control 
whole body energy metabolism, body weight and body fat 
deposition. This hypothesis needs to be tested by detailed 
metabolic characterisation of prospective cohorts in 
which precise phenotyping of growth has been performed 
and in which informative biomarkers of nutritional expo-
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  Fig. 3.  Evolution of mean BMI from early 
infancy to the age of 6 years in children 
with different infant feeding regimens par-
ticipating in the multicentric CHOP trial. 
Previously breastfed children have a lower 
BMI than those fed conventional formula 
with high protein contents. In contrast, 
children who had been double-blind ran-
domised to receive experimental formula 
with reduced protein but equal energy con-
tent (lower protein) in the 1st year of life 
have a significantly lower BMI than those 
in the control group with conventional for-
mula, and they achieve a BMI equal to that 
of the breastfed reference group  [31] . 
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sure, status, function, growth and other effects are deter-
mined  [42] . 

  This approach has now become feasible with estab-
lished high-throughput, precise analytical tools for tar-
geted metabolomic profiling from minimal sample vol-
umes using flow injection analysis with triple-quad mass 
spectrometry, which is extremely powerful  [43–49] . Ap-
plication of these sophisticated tools bears the very prom-
ising potential to detect relevant but as yet unidentified 
regulatory substrates involved in the modulation of 
growth and body composition.

  Do Epigenetic Mechanisms Regulate Growth? 

 Epigenetic modifications might be the missing link be-
tween the metabolic environment and alterations in gene 
expression inducing persistent later effects. Epigenetics is 
the study of heritable changes in gene expression not 
caused by changes in the DNA sequence, but by biochem-
ical modifications of DNA that determine whether or 
not genes are expressed. Epigenetic mechanisms control 

modifications in chromatin, regulate its accessibility to 
transcription factors and thus contribute to determine 
the level of expression of different genes. Mechanisms of 
epigenetic modification include the addition of methyl 
groups to DNA cytosine bases  [50] , the addition of meth-
yl and acetyl groups to proteins (histones) around which 
DNA is folded  [51]  and interfering microRNA  [52, 53] . 
Recently, interest in epigenetic research in relation to dis-
ease, development and aging has increased  [9, 54, 55] . 
The available evidence for epigenetic effects of nutrition 
in animal models and first human studies are based on 
alterations in DNA methylation, where powerful analyti-
cal methodology for human genome-wide analysis has 
now become available. 

  Addition of a methyl group to the 5 ′  carbon of a cy-
tosine base in the context of CpG is the most frequent 
and stable form of epigenetic modification that does not 
affect primary DNA sequence, but affects secondary in-
teractions, which play a critical role in the regulation of 
gene expression. Normally, genes are expressed when 
transcriptions factors bind to DNA and activate the 
gene. DNA methylation prevents transcription factor 

mTORC1 mTORC2

S6K Akt SGK1 PKC

Metabolism and growth

Rag
A/B

Rag
C/D

Amino acids Insulin, IGF-1

IRS1 PI3K

PDK1

Akt

TSC1/2

Rheb

Low energy
Hypoxia

4E-BP

  Fig. 4.  Simplified scheme of nutrient sens-
ing by mTOR and its regulatory signalling 
for metabolism and growth. Amino acids 
and the growth factors insulin and IGF-1 
modulate metabolic response and growth 
through mTOR. Insulin and IGF-1 stimu-
late mTORC2 via an unknown pathway, 
and mTORC1 via PI3K and protein kinase 
B (Akt) inducing the mTORC1 activator 
Rheb (GTP-binding protein Rheb). Amino 
acids enhance ATP loading of RAG pro-
teins and RAG-GTPases, which interact 
with Rheb and activate mTORC1. A low 
energy supply downregulates mTORC1. 
mTORC1 effects the regulators of protein 
translation 4E-BP and S6K. Activation of 
mTORC2 induces phosphorylation of the 
AGC protein kinases Akt, serum- and glu-
cocorticoid-induced kinase (SGK1) and 
protein kinase C (PKC), which modulate 
cell survival, metabolic response and cyto-
skeletal organisation.    
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binding while it favours the binding of transcription-
inhibiting proteins and is therefore mostly associated 
with switching genes ‘off’. The degree of activation of a 
given gene generally depends upon its degree of meth-
ylation. Accumulating evidence from animal studies 
and from some first albeit limited studies in humans 
point to the possibility that differences in DNA meth-
ylation patterns, and potentially other epigenetic pro-
cesses, are the ‘missing link’ in the ‘Early Origins of Lat-
er Disease Hypothesis’. 

  It has been shown that differentially methylated re-
gions (DMR) are often the result of perturbations of the 
environment in sensitive or critical early periods of life 
(periconceptional and postnatal periods, and puberty), 
which can lead to alternative pathways of cell and organ 
development (‘developmental plasticity’)  [9, 56, 57] , 
and that can enhance the susceptibility of later diseases 
(e.g. obesity, diabetes or cancer). Methylation is princi-
pally reversible  [58] , e.g. by nutritional intervention. 
For example, folate or genistein supplementation can 
counteract bisphenol-A-induced DNA hypomethyl-
ation and the change in the coat colour phenotype in 
mice  [59] . Such nutritional reprogramming of genetic 
and metabolic expression may even be induced trans-
generationally, e.g. by paternal diet in combination with 
a low-protein diet of the offspring mice  [60] . At this 
time, it is not known how stable nutrient-induced al-
terations are over time, i.e. whether and to which extent 
they show alterations in humans followed up over sev-
eral years. Thus, exploring epigenetic markers over time 
may be a very important path for exploring future strat-
egies of individual disease prevention and perhaps even 
treatment. 

  Nutritional effects on DMR so far have been mostly 
studied in animal models with a focus on folate supply 
and on caloric restrictions as determinants, but only to a 
very limited extent in humans  [61, 62] . A relation to adi-
posity was recently reported in a single study that assessed 
methylation status of 68 CpG sites from five candidate 
genes in umbilical cord tissue DNA from healthy neo-
nates using Sequenom MassARRAY, which explored ma-
ternal pregnancy diet and child’s adiposity at age 9 years 
in two cohorts  [63] . In both cohorts, higher retinoid X 
receptor-α chr9:   136355885+ methylation was associated 
with childhood fat mass, and in one cohort also with low-
er maternal carbohydrate intake in early pregnancy. Re-
gression analyses including sex and neonatal epigenetic 
markers explained >25% of the variance in childhood ad-
iposity. Thus, programming effects of early nutrition and 
metabolic exposure may be mediated through altered 

DMR, which thus needs to be explored in greater detail 
and with the much more powerful genome-wide methods 
that are now available.

  There is only limited information on the effects of 
protein intake on DMR from animal studies. A recent 
review on epigenetic programming of diabetes and obe-
sity  [64]  identified 14 animal studies from 1999 to 2011 
focussing on protein exposure during the fetal or neona-
tal period, and the impact on the obesity and diabetes risk 
mediated by epigenetic modifications. Of importance, 
the dietary interventions used in these animal studies 
generally tend to be extreme and are hardly comparable 
to the types of exposures observed in contemporary hu-
man populations. Several animal studies in rat and mouse 
models showed that the effects of very low maternal pro-
tein intake in pregnancy on later obesity of the offspring 
in puberty or adulthood, or even trans-generationally, 
are mediated by hypo- or hypermethylation mostly in 
promoter regions of different genes (e.g. PPARα, IGF2/
H19 locus, Leptin or PEPCK) or gene receptors (GR, 
LXR or IR). 

  So far, there are only very few genome-wide DNA 
methylation studies in relation to protein intake in ani-
mals  [65] , while there is accumulating evidence that pro-
tein intake during pregnancy and in the postnatal period 
affects the methylation status of various genes and may 
indeed be a diet-induced mediating factor for later obe-
sity  [60, 66–76] . However, so far, there is not a single 
study in humans on protein intake and DNA methyla-
tion, nor are there any studies on the mediating effects of 
DMR regarding protein intake and growth or body com-
position.

  Limited existing studies explored mediating effects of 
DNA methylation on rapid growth and obesity in adoles-
cence  [77] . In three studies, mediating effects of maternal 
folate intake in early pregnancy on birth weight were ex-
plored  [78, 79] . Fryer et al.  [78]  performed a genome-
wide methylation study. A further genome-wide study 
analysed the effect of the FTO gene on obesity mediated 
by DMR  [80] . Some epigenetic studies analysed mediat-
ing effects of DMR in placental tissue regarding intrauter-
ine growth restriction and fetal growth  [81] .

  Conclusions 

 The description and analysis of growth patterns and 
their regulation through diet, and the potentially under-
lying metabolic and epigenetic mechanisms are of major 
relevance for public health and policy, and have the po-
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tential to contribute greatly to promoting health and 
well-being in the population  [82] . Hence, it is important 
to address these questions in large prospective cohort 
studies with detailed phenotyping of growth, markers of 
body composition as well as available biosamples that 
allow assessment of markers with state-of-the-art meth-
odology. Groundbreaking research with the use of un-
conventional, new and sophisticated methodology is 
needed that goes significantly beyond the state of the art. 
Research collaboration of academic investigators and 
researchers from industry in this field has the potential 
to increase outputs and success  [83] . If successful, the 
results of such research should provide answers to key 
questions on the regulation of growth, with major ben-
efit for scientific understanding, opportunities for fu-
ture research, promotion of public health, nutrition rec-
ommendations and development of improved food 
products.
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