Ultrashort Laser Pulses and Applications

Edited by W. Kaiser

With Contributions by D.H. Auston K.B. Eisenthal R.M. Hochstrasser C.K. Johnson W. Kaiser A. Laubereau D. von der Linde A. Seilmeier C.V. Shank W. Zinth

With 196 Figures

Sektion Physik der Universität München Viererbibliothek 3000 München 40 Robellingstraße 4/IV VB 4867

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Professor Dr. Wolfgang Kaiser Physik Department E11, Technische Universität, Arcisstr. 21 D-8000 München 2, Fed. Rep. of Germany

Managing Editor: Dr. Helmut K. V. Lotsch Springer-Verlag, Tiergartenstraße 17 D-6900 Heidelberg, Fed. Rep. of Germany

ISBN 3-540-18605-0 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-18605-0 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Ultrashort laser pulses and applications. (Topics in applied physics; v. 60) Includes bibliographies and index. 1. Laser pulses, Ultrashort. I. Kaiser, W. (Wolfgang), 1925– . II. Auston, D. H. III. Series. QC689.5.L37U469 1988 621.36'6 88-2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988 Printed in Germany

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Asco Trade Typesetting Limited, Hong Kong Printing and binding: Brühlsche Universitätsdruckerei, Giessen 2154/3150-543210

Contents

1.	Introduction. By W. Kaiser	1
	1.1 Organisation of the Book	Z
2.	Generation of Ultrashort Optical Pulses	
	By C. V. Shank (With 20 Figures)	5
	2.1 Introduction	5
	2.2 Mode-locking	5
	2.2.1 Basic Concepts	5
	2.2.2 Active Mode-locking	7
	2.2.3 Synchronous Pumping	8
	2.2.4 Passive Mode-locking	9
	a) Type 1: Giant-Pulse Lasers	10
	b) Type 2: Continuous Lasers	11
	2.3 Short Pulse Laser Systems	13
	2.3.1 Dye Lasers	13
	a) Synchronous Mode-locking	13
	b) Passive Mode-locking	15
	c) Hybrid Mode-locking Techniques	18
	d) Amplification	19
	2.3.2 Color Center Lasers	22
	2.3.3 Novel Pulse Generation Techniques	23
	2.3.4 Diode Lasers	24
	2.4 Pulse Compression	25
	2.4.1 Theory	26
	2.4.2 Compression Experiments	29
	References	31
2	Ontial Nanlingarities with Ultrashort Pulses	
з.	By A Laubaraon (With 27 Figures)	35
	21 Nenlineer Polarization	35
	2.2 Three Wave Interactions	36
	3.2 Inter-wave Interactions	36
	2.2.2 Sum Ergguongy Congration and Its Application for	50
	UV Pulses	42
	3.2.3 Difference-Frequency Generation and	15
	Down-Conversion to the Far Initiated	- 40

		3.2.4	Stimulated Parametric Interaction	47
			a) Stimulated Parametric Generators	49
			b) Optical Parametric Amplifiers	50
			c) Synchronously Coupled Parametric Oscillators	51
			d) Stimulated Parametric Emission in Extended	
			Spectral Regions	52
		3.2.5	Further Applications	53
			a) Second Harmonic Probing	53
			b) Ultrafast Parametric Light Gates	54
			c) Analysis of Pulse Shape	56
	3.3	Four-	Wave Interactions	60
		3.3.1	Sum-Frequency Generation	60
			a) Third and Higher Order Harmonic Generation	60
			b) Four-Wave Up-Conversion	62
		3.3.2	Four-Wave Difference-Frequency Mixing	63
			a) General Discussion	64
			b) Degenerate Four-Wave Mixing (DFWM)	66
		3.3.3	Stimulated Four-Wave Interactions	68
			a) Stimulated Four-Wave Parametric Emission	69
			b) Optical Phase Conjugation	70
			c) Stimulated Raman Scattering and Related	
			Raman Interactions	73
		3.3.4	Further Four-Wave Interactions	83
			a) Induced Population Gratings	83
			b) The Coherence Peak	88
			c) Continuum Generation	90
			d) Ultrafast Bistability and Hysteresis	91
	3.4	Short	Pulse Nonlinearities with Special Boundary Conditions	94
		3.4.1	Nonlinear Effects at Interfaces	94
		3.4.2	Quantum Size Effects in Nonlinear Optics	97
		3.4.3	Nonlinear Pulse Propagation in Optical Fibers	98
	3.5	Conc	lusions	101
	Refe	erence	28	102
4.	Ultr	ashor	t Interactions in Solids	
	By I	D. vo	n der Linde (With 42 Figures)	113
	4.1	Excit	on Dynamics	114
		4.1.1	Exciton-Polariton Dispersion	115
		4.1.2	Exciton Relaxation	119
		4.1.3	Exciton Screening	123
	4.2	Elect	ron-Hole Dynamics	129
		4.2.1	Electron-Hole Plasma	130
		4.2.2	Carrier Thermalization	137
		4.2.3	Electronic Relaxation in Disordered Materials and	
			Quantum Wells	142

	4.3	Phone 4 3 1	on Dynamics	146 149
		4.3.1	Delayation of Incoherent Phonons	152
		4.3.2	Multiphonon States	156
	11	H.J.J Hitra	fast Phase Transformations	159
	4.4	1 A 1	Amorphization	161
		4.4.1	Surface Melting	164
		2 1 1 3	Density of Electrons and Holes	169
			Electron and Lattice Temperature	172
	45	Concl	Luding Remarks	177
	Ref	erence		178
		crence		170
5.		afast i	Optoelectronics. By D. H. Auston (With 26 Figures) .	183
	5.1	Onto	Juction	185
	5.2 5.2	Mate	rials for Litrafast Ontoelectronics	188
	5.5	5 2 1	Photoconducting Materials	188
		5.5.1	a) Intrinsic Speed of Response of Semiconductors	189
			b) High Electric Field Effects	101
			c) Trapping and Recombination	191
			d) Radiation Damage	192
			e) Carrier Mobilities	193
			f) Other Photoconducting Materials	194
		532	Flectro-ontic Materials	195
		5.5.2	a) Selection of Electro-optic Materials for	104
	5 A	C	Picosecond Optoelectronics	190
	5.4	Gene	ration and Detection of Ultrashort Electrical Pulses	190
		5.4.1	Picosecond Photoconductors	190
			a) Response of an Ideal Photoconductor in a	200
			L Dhata and usting Electrical Dulas Compreters	200
			b) Photoconducting Electronic Sampling	200
			d) Electronic Autocorrelation Measurements	202
		512	U) Electronic Autocorrelation measurements	203
		5.4.2	a) Electro-optic Sampling	204
			b) Optical Rectification	204
			c) Electro-optic Cherenkov Radiation	208
		5/3	Liltrafast Electrical Transmission Lines	200
	55	Onto	electronic Measurement Systems and Their Annlications	211
	5.5	551	Ontoelectronic Measurement Systems	211
		5.5.1	a) Sensitivity	212
			b) Timing Accuracy	212
			c) Non-invasive Probing	212
			d) Low Temperature Environments	212
			-,	

e) High Power
t) Simultaneous Time and Frequency Measurements. 21.
g) Electrical Isolation
5.5.2 Characterization of High Speed Discrete Devices 21
a) Photoconductive Sampling of High Speed
Photodetectors
b) Electro-optic Sampling of High Speed
Photodetectors
c) Optical Mixing in Photodetectors
d) Impulse Response of High Speed Transistors 21
e) Picosecond Photoemissive Sampling
5.5.3 Optoelectronic Measurements of Integrated Circuits . 21
a) Substrate Probing of GaAs Integrated Circuits 21
b) A Picosecond Electro-optic Wafer Prober 21
c) Charge Density Probing in Integrated Circuits 21
d) Direct Optical Stimulation of Integrated Circuits . 21
e) Integrated Photoconductors
5.5.4 Microwave, Millimeter-Wave, and Far-Infrared
Applications
a) Photoconductive Switching and Gating
b) Optical Rectification
c) Phase Modulation of Microwave and Millimeter
Waves
d) Radio Frequency Mixing
e) Photoconducting Antennas
5.5.5 High Power Optoelectronic Switches
a) Applications of High Power Photoconductors 22
5.6 Discussion
References
6. Ultrafast Coherent Spectroscopy
By W. Zinth and W. Kaiser (With 20 Figures)
6.1 Theory of Time-Resolved Coherent Spectroscopy 23

y_	W. ZII	in and w. Kaiser (with 20 Figures)	•	•	•	•	٠	255
1	Theor	ry of Time-Resolved Coherent Spectroscopy						236
	6.1.1	The Theoretical Model	•	•				236
	6.1.2	Equations of Motion			•			237
	6.1.3	Ultrafast Coherent Techniques	•	•				239
		a) One Excitation Pulse						239
		b) Two Excitation Pulses	•					240
		c) Three Excitation Pulses						241
	6.1.4	Electric Dipole and Raman-Type Transitions	s					241
		a) Electric Dipole Transitions.						241
		b) Raman-Type Transitions						242
		c) Pulse Area and Population Changes in U	ltı	raf	<i>i</i> as	t		
		Coherent Experiments						243
		•						

	6.2	Coherent Spectroscopy Using a Single Excitation Process .	244
		6.2.1 Time-Resolved Coherent Raman Spectroscopy of a	
		Single Homogeneously Broadened Transition	244
		a) Experimental Arrangements	246
		b) Dephasing in Liquids	247
		c) Vibrational Transitions in Solids	251
		d) The Collision Time	255
		6.2.2 Time-Resolved Coherent Raman Scattering of a	
		Distribution of Resonance Frequencies	256
		a) Time-Domain Experiments	256
		b) Transient Frequency-Domain Experiments	259
		6.2.3 Resonant Pulse Propagation in the Infrared	262
	63	Coherent Spectroscopy Using Multiple Excitation Processes	264
	0.5	6.3.1 Ultrafast Two-Pulse Echo Spectroscopy	265
		6.3.2 Three-Pulse Echos	267
		a) Measurements of Fnergy Relaxation Times	269
		b) Measurements of Dephasing Times	270
		c) Accumulated Three-Pulse Echos	271
		d) Two-Color Echos	271
	64		273
	65	$\Delta \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{d} \mathbf{v}$	273
	Ref	Appendix	274
	Rei		214
7	TIIt	rashort Intramolecular and Intermolecular Vibrational	
	Ene	ergy Transfer of Polyatomic Molecules in Liquids	
	Bv	A Seilmeier and W Kaiser (With 22 Figures)	279
	71	Experimental Techniques	280
		7.1.1 Excitation	280
		7.1.2 Probing	282
		713 Experimental System	284
	72	Vibrational Population Lifetimes T. of Small Molecules	20.
	1.2	in the Electronic Ground State S.	285
		7.2.1 Experimental Data $3000000000000000000000000000000000000$	286
		7.2.7 Dependential Data	290
		a) $CH_{-} = CCI_{-}$	292
		b) $trans-CHCl=CHCl$	293

7.3 Vibrational Redistribution in Large Molecules

7.4.2 Molecular Excitation via Rapid Internal Conversion . 30.	5				
7.4.3 Discussion and Model for Energy Transfer 30	6				
7.5 Equalization of Energy in Liquids Measured with a					
Molecular Thermometer	9				
7.5.1 The Molecular Thermometer	9				
7.5.2 Energy Transfer Processes)				
7.5.3 Experimental Observations	1				
7.6 Intramolecular Vibrational Relaxation of Large Molecules					
in the First Excited Electronic State S_1	4				
References	5				

8. Ultrafast Chemical Reactions in the Liquid State

9. Bi	ological	Processes Studied by Ultrafast Laser Techniques	
By	/ R. M. I	Hochstrasser and C.K. Johnson (With 23 Figures).	. 357
9.	1 Heme	Proteins	. 357
	9.1.1	Optical Spectroscopy of Heme Proteins	. 359
	9.1.2	Structural Information	. 363
	9.1.3	Transient Raman Spectroscopy	. 364
	9.1.4	Picosecond Transient Infrared Spectroscopy	. 367
	9.1.5	Protein Dynamics	. 367
	9.1.6	Fluorescence of Tryptophans in Mb and Hb	. 368
	9.1.7	Molecular Dynamics Simulations	. 372
	9.1.8	Geminate Recombination	. 374
	9.1.9	Photophysics of Hemes and Heme Proteins	. 375
	9.1.10	Laser Induced Heating	. 377
	9.1.11	Summary	. 380
9.	2 Photos	synthesis	. 380
	9.2.1	Electron Transfer	. 381
	9.2.2	Bacterial Reaction Centers	. 384
	9.2.3	Antenna Energy Transfer	. 390
	9.2.4	Reaction Centers in Green Plants	. 395
9.	3 Rhodo	opsin and Bacteriorhodopsin	. 396
	9.3.1	Introduction and Background	. 396
	9.3.2	Rhodopsin and Bacteriorhodopsin Photochemistry	. 396
	9.3.3	Picosecond Experiments	. 401
		a) Visual Pigments	. 401
		b) Purple Membrane Pigments	. 404
	9.3.4	Summary	. 409
R	eferences	\$. 409
Subj	ect Index		. 419

6. Ultrafast Coherent Spectroscopy

Wolfgang Zinth and Wolfgang Kaiser

With 20 Figures

Coherent spectroscopy, initially started in the mid-sixties, is intimately connected with the development of intense coherent light sources. The generation of ultrashort light pulses enabled coherent spectroscopy to be extended to real-time measurements of rapid dynamic processes on the time scale of 10^{-12} s. The early measurements of picosecond time-resolved coherent Raman scattering in 1971 were followed by numerous time-resolved techniques adapted to a variety of ultrafast phenomena. Most investigations are concerned with rapid dynamic processes in the condensed phases. The experimental progress stimulated theoretical investigations, improving our understanding of the interactions in liquids and solids. In recent years, a number of dynamic relaxation processes have been elucidated.

The title of this chapter, *Ultrafast Coherent Spectroscopy*, requires some explanation since it implies investigations in the time *and* frequency domain. Actually, it adequately characterizes the present situation. Coherent techniques give information on dynamic processes in the time domain as well as on linewidths and line positions in the frequency domain.

Numerous ultrafast investigations are concerned with coherent Raman scattering by molecular levels in the electronic ground state. The experimental techniques are well established on the picosecond time scale. Currently, these experiments are being extended to the study of even faster processes in the femtosecond time domain. A substantial fraction of coherent experiments deal with the study of vibrational levels in excited electronic states. Here, echo and induced-grating experiments have been successfully applied to reveal the relaxation dynamics.

The present chapter is organized as follows: In Sect. 6.6.1 the theoretical background of ultrafast coherent spectroscopy is given together with a short description of dynamical processes in condensed matter. Section 6.2 reports on time-resolved investigations using a single excitation process. Various time resolved coherent Raman and infrared techniques are discussed. Finally, in Sect. 6.3 echo-type experiments, i.e. experimental techniques with multiple excitation are presented.

6.1 Theory of Time-Resolved Coherent Spectroscopy

This section deals with the principles of time-resolved coherent experiments in a semi-classical approach. The electromagnetic light field is treated classically, the molecular system quantum-mechanically by its density matrix. Dynamic interaction processes between molecules have two important relaxation times – the phase relaxation time T_2 and the energy relaxation time T_1 . We shall repeatedly refer to the relationship between time-domain coherent experiments and frequency-domain steady-state measurements.

6.1.1 The Theoretical Model

Coherent spectroscopy is presented here as a tool to investigate transitions between different energy levels or - more precisely - to study the transition frequencies and the relaxation processes related to these energy states. The essential features of the theoretical model are:

i) Of the many molecular transitions we treat only two levels, the ground state $|b\rangle$ and the excited state $|a\rangle$ separated by the energy $E = \hbar \omega_0$. All other states are assumed not to interact with the electromagnetic excitation and probing fields. This approach is well justified for most molecular systems [6.1].

ii) We assume that each molecular two-level system is only weakly interacting with the other molecules which are assumed to act as a fluctuating bath [6.2–6]. The Hamiltonian H of the molecule is written as a sum of an unperturbed Hamiltonian H_0 and two interaction Hamiltonians, the latter are: H_{im} which gives the interaction between the molecules and H_{ie} characterizing the interaction of the molecules with the electromagnetic fields [6.7,8]. The molecular interaction consists of a static contribution which leads to a constant frequency shift, and of a fluctuating contribution which modulates the resonance frequency and leads to a broadening of the transition band. The microscopic nature of the dynamic interaction may be understood in liquids in terms of "collisions" between individual molecules [6.2,4]. The collision process will be treated in detail in the context of Sect. 6.2.1. A major interaction in solids is caused by the thermal distribution of the acoustic phonons. In the macroscopic ensemble of two-level systems the dynamic interaction leads to relaxation time constants in the equation of motion (see below).

iii) The ensemble of two-level systems is described by the density matrix ρ with the diagonal elements ρ_{aa} and ρ_{bb} and the off-diagonal elements $\rho_{ab} = \rho_{ba}^*$. The density matrix follows the equation of motion

$$\frac{\partial \rho}{\partial t} = \frac{i}{\hbar} [\rho, H] . \tag{6.1}$$

iv) The electromagnetic field is treated classically, since the number of photons is quite large in most coherent experiments. We work with plane waves, i.e. the fields have the form: $E = E_0 \cos(\Omega t + kr)$ and consider electric dipole interactions with the Hamiltonian $H_{ie} = \hat{\mu}E(t)$. $\hat{\mu}$ is the component of the dipole operator along the direction of the electric field E with $\mu_{aa} = \mu_{bb} = 0$ and $\mu_{ba} = \mu_{ab} = \mu$.

The evolution of the electromagnetic fields is described by the wave equation

$$\Delta E - \frac{n^2}{c^2} \frac{d^2 E}{dt^2} = \frac{1}{\varepsilon_0 c^2} \frac{d^2 P^{\rm NL}}{dt^2} .$$
 (6.2)

The source term on the right-hand side of (6.2) describes the generation of light fields. The nonlinear polarization is proportional to the macroscopic dipole moment, $P = N \langle \hat{\mu} \rangle = N \times \text{Tr} \{ \hat{\mu} \rho \} = N \mu (\rho_{ab} + \rho_{ba})$, where N is the number of molecules per unit volume. Thus the radiation intensity observed in the coherent experiment is proportional to $|N \text{Tr} \{ \hat{\mu} \rho(t) \}|^2$.

6.1.2 Equations of Motion

Here we discuss the equations for the different components of the density matrix. The system of equations can be solved in a formal way by simple multiplication of matrices. In this way it is possible to readily see the salient features of the coherent spectroscopy. The discussion presented here follows a treatment given by *Hesselink* and *Wiersma* [6.9].

The equation of motion (6.1) is rewritten in (6.3–5) for the different density matrix elements. The electric field is coupled to the molecules via the interaction Hamiltonian $H_{ie} = -\hat{\mu}E(t)$. It is convenient to introduce $\tilde{\rho}_{ba} = \rho_{ba} \exp(i\Omega t)$ and to apply the rotating frame approximation.

$$\dot{\rho}_{aa} = \frac{\mathrm{i}\mu E_0}{2\hbar} (\tilde{\rho}_{ba} \mathrm{e}^{-\mathrm{i}kr} - \tilde{\rho}_{ab} \mathrm{e}^{\mathrm{i}kr}) - \frac{\rho_{aa}}{T_1} , \qquad (6.3)$$

$$\dot{\tilde{\rho}}_{ba} = \frac{\mathrm{i}\mu E_0}{2\hbar} (\rho_{aa} - \rho_{bb}) \mathrm{e}^{-\mathrm{i}kr} + \left(\mathrm{i}\varDelta - \frac{1}{T_2}\right) \tilde{\rho}_{ba} \quad , \tag{6.4}$$

$$\dot{\rho}_{bb} = 1 - \rho_{aa} \ . \tag{6.5}$$

 Δ determines the detuning between the driving frequency Ω and the molecular resonance frequency ω_0 , i.e. $\Delta = (\omega_0 - \Omega)$. It is assumed in (6.3-5) that the molecular system consists only of two levels $|a\rangle$ and $|b\rangle$. The equations may be modified to describe other situations, e.g. when relaxation to a third level is relevant. In the latter case one has to extend (6.5).

The significance of the relaxation times T_1 and T_2 is readily seen, when the electric field is turned off, i.e. for $E_0 = 0$. The energy relaxation time T_1 describes the relaxation of the population of level $|a\rangle$ with $\rho_{aa}(t) = \rho_{aa}(0)\exp(-t/T_1)$. The phase relaxation time T_2 determines the decay of the dipole moment $P = N\mu(\rho_{ba} + \rho_{ab})$ with $P(t) = P(0)\exp(-t/T_2)$. There are three contributions which determine the dephasing of the system. (i) The macroscopic dipole moment P

may decay by orientational motion of the individual molecules (orientational relaxation time $T_{\rm R}$); (ii) the molecules may "get out of step", i.e. lose their phase relation by interaction with the surroundings (pure dephasing time T_2^*); (iii) the population of the upper level may decay (energy relaxation time T_1). The observed effective dephasing time T_2 is related to the individual time constants as follows: $1/T_2 = 1/T_{\rm R} + 1/T_2^* + 1/(2T_1)$.

The applied electric field excites the system to the upper level $|a\rangle$ via (6.3) and generates a polarization via (6.4). For the following discussion it is important to introduce the pulse area $A = \int \mu E/\hbar dt$ [6.10]. The magnitude of A frequently determines whether a certain nonlinear coherent process occurs or not, e.g. whether a photon echo may be observed. When the applied electric field is strong and the pulse area is large, $A \gg 2\pi$, repeated excitation and de-excitation processes occur, causing the population ρ_{bb} to oscillate with the Rabi frequency $\chi = \mu E/\hbar$. In most of the following investigations with short pulses one has A < 1. Analytical solutions of (6.3-5) can be found for two limiting conditions:

i) Without an applied electric field the density matrix evolves freely. Only the relaxation processes influence $\rho(t)$. The four components of the density matrix may be asigned to a vector ρ , as listed in the Appendix [Eq. (6.20)]. The density matrix at time t is obtained by a linear transformation from the initial density matrix $\rho(0)$:

$$\rho_j(t) = \sum_{k=1}^4 Y_{jk}(t) \rho_k(0) \quad \text{or} \quad \rho(t) = \underline{Y}(t) \rho(0) .$$
(6.6a)

The transformation matrix contains exponentials of t/T_2 and t/T_1 . It is given explicitly in the Appendix [Eq. (6.21)].

ii) When a resonant electric field of pulse area A is applied, which is short compared to the relaxation times T_1 and T_2 , the density matrix at the end of the pulse is calculated by a linear transformation $\underline{X}(A)$,

$$\boldsymbol{\rho}(A) = \underline{X}(A)\boldsymbol{\rho}(0) \quad . \tag{6.6b}$$

The elements of the transformation matrix $\underline{X}(A)$ depend on the pulse area and the wave vector of the electric field. They are given in the Appendix, [Eq. (6.22)]. The important aspects of many coherent experiments can be seen from the analytical solutions. Experimentally one has periods of short excitations with pulse areas A_i , i = a, b, ... and free evolution periods of durations $t_1, t_2, ...$ At the time of observation, t, after the final excitation pulse with area A_f , the density matrix is calculated as a product of the individual excitation and evolution matrices $\underline{X}(A_i), \underline{Y}(t_i)$:

$$\boldsymbol{\rho}(t) = \underline{Y}(t)\underline{X}(A_{\rm f})\dots \underline{Y}(t_2)\underline{X}(A_b)\underline{Y}(t_1)\underline{X}(A_a)\boldsymbol{\rho}(0) \quad . \tag{6.7}$$

Detailed examples for the solution of (6.7) are given below in Sect. 6.1.3. Here we refer briefly to the situation depicted in Fig. 6.1c, where three excitation fields are applied. The density matrix at time t is as follows:

 $\boldsymbol{\rho}(t) = \underline{\boldsymbol{Y}}(t)\underline{\boldsymbol{X}}(A_c)\underline{\boldsymbol{Y}}(t_2)\underline{\boldsymbol{X}}(A_b)\underline{\boldsymbol{Y}}(t_1)\underline{\boldsymbol{X}}(A_a)\boldsymbol{\rho}(0) \ .$

The treatment given above in (6.6,7) is well justified when the applied light fields are separated in time and the radiating polarization of the sample is small at all times t_i . In the more general case reference is made to the literature cited in Sect. 6.3.2.

6.1.3 Ultrafast Coherent Techniques

A short overview of coherent spectroscopy is given here. Two types of molecular systems are treated: System I contains molecules with a single resonance frequency ω_0 (homogenous broadening), while System II shows a distribution of resonance frequencies $f(\omega_0)$ (inhomogeneous broadening).

a) One Excitation Pulse

In the most elementary coherent experiment one short laser pulse traverses the sample. After the excitation of the system by the pulse with area A_a and wave vector k_a radiation is emitted from the sample in the direction k_a . From (6.7) one derives the polarization P(t) observed at the time t after the excitation pulse $P(t) = \mu N [\rho_{ab}(t) + \rho_{ba}(t)]$:

$$P(t) \propto \int d\omega f(\omega) e^{-i\omega t} e^{-t/T_2} \sin(A_a) e^{-ik_a r} .$$
(6.8)

A schematic of the decay of P(t) is shown in Fig. 6.1a. The generated polarization has an amplitude proportional to sin (A_a) ; it has the same wave vector as the exciting light pulse. For the molecular system I with $f(\omega) = \delta(\omega - \omega_0)$

Fig. 6.1a-c. Schematic of various coherent techniques. The electric field pulses (solid triangles) excite the sample. The resulting coherent signal is shown for homogeneously broadened transitions (dashed curves), and for inhomogeneously broadened transitions (dash-dotted curves). (a) A single excitation pulse with wave vector k_a . Homogeneously broadened transitions lead to an exponential decay with dephasing time T_2 , while inhomogeneous broadening induces a faster decay. (b) Two excitation pulses a and b with wave vectors k_a and k_b give echos in the direction $2k_{\rm b} - k_{\rm a}$. For inhomogeneously broadened transitions the echo is emitted at time $t = t_1$. The echo amplitude measured as a function of t_1 allows determination of the dephasing time T_2 . (c) When three excitation pulses are used the coherent signal emitted in the direction $k_{\rm b} + k_{\rm c} - k_{\rm a}$ allows determination of the dephasing time T_2 and the energy relaxation time T_1

(broken line in Fig. 6.1a), the polarization decays exponentially with the dephasing time T_2 . For a distribution of resonance frequencies $f(\omega_0)$ the decay of polarization starts exponentially, but accelerates due to the interference of the different resonance frequencies (dash-dotted line in Fig. 6.1a). With increasing width of the frequency distribution, the decay becomes more rapid and it is difficult – often impossible – to determine the dephasing time T_2 . The explicit mathematical solution for the signal decay is readily obtained from (6.8). We note that the polarization is proportional to the product of the Fourier transform g(t)of the distribution function $f(\omega_0)$ of the resonance frequencies times the exponential decay with $\exp(-t/T_2)$.

Investigations with single-pulse excitation are well established in ultrafast coherent spectroscopy. A series of interesting experiments are discussed in Sect. 6.2.

b) Two Excitation Pulses

When two excitation pulses of areas A_a and A_b separated by the evolution time t_1 (see Fig. 6.1b) are applied to the (molecular) system, a more complex time dependence of the coherent signal or of the density matrix is found. At time t after the second pulse, the radiating polarization consists of three contributions: two parts are independently produced by the two exciting pulses, radiating in the corresponding directions k_a and k_b . The two polarizations are described by (6.8). Of special interest is a third term, where the polarization evolves as follows:

$$P_{2\text{PE}}(t) \propto \int d\omega f(\omega) \exp\left[-i\omega(t-t_1) - \frac{t+t_1}{T_2}\right]$$

$$\times \sin A_a \sin^2 \frac{A_b}{2} \exp\left[-i(2k_b - k_a)r\right] .$$
(6.9)

The signal is emitted with the wave vector $2k_b - k_a$ and may readily be separated from the exciting beams. For a homogeneously broadened transition (System I), the peak of the polarization is proportional to $\exp(-t_1/T_2)$. The polarization decays at later times with $\exp(t/T_2)$ (see Fig. 6.1b, broken line). Quite different is the situation for strong inhomogeneous broadening (System II). Now the (underlined) interference term in (6.9) is removed at one delay time, $t = t_1$, and a delayed signal appears, i.e. one finds a photon echo with an amplitude proportional to $\exp(-2t_1/T_2)$ [6.11–13]. Variation of t_1 , i.e. of the distance between the two exciting pulses, therefore enables one to deduce the dephasing time T_2 even for inhomogeneously broadened transitions [6.13]. (For the intermediate case with small inhomogeneous broadening see [6.14]).

An important aspect for the application of the photon echo technique is the dependence of the signal on the area of the excitation pulses. Good echo signals are generated for $A_a \simeq \pi/2$ and $A_b \simeq \pi$. For small areas A_a , $A_b \ll \pi$ the signal

amplitude drops with $A_a A_b^2$ or the signal intensity with $(A_a A_b^2)^2$. We recall that in the case of a single excitation pulse the emitted signal intensity is proportional to A_a^2 . Consequently, coherent echo experiments become more difficult when the transitions are weak and the pulses and relaxation times are very short.

c) Three Excitation Pulses

When three excitation pulses with areas A_a , A_b , and A_c separated in time by t_1 and t_2 are applied to the molecular system, a variety of coherent signals is produced: single excitation signals, two-pulse echos from each pair of the three pulses, and so-called three-pulse echos at the time $t = t_1$ after the third pulse, the latter echos are emitted in the direction $k_b + k_c - k_a$ (see Fig. 6.1c). The introduction of the third pulse allows one to measure the dephasing time T_2 of the molecular transition and to determine the energy relaxation time T_1 . The application of three pulses gives considerable flexibility to the design of experiments. Similar limitations regarding the signal strength exist as in two-pulse experiments; the three-pulse echo intensities are proportional to $(\sin A_a \sin A_b \sin A_c)^2$. For small area pulse the echo signal decreases proportion to $A_1^2 A_2^2 A_3^2$. Experiments with ultrafast three-pulse echos have been performed for a number of electronic transitions. These are discussed in Sect. 6.3.2.

6.1.4 Electric Dipole and Raman-Type Transitions

The interaction between the system of interest and the light field depends on the specific type of interaction Hamiltonian H_{ie} . We address here two situations, the electric dipole and the Raman-type transitions. The common aspect of the (molecular) excitation is best demonstrated by introducing the operator \hat{q} for the excitation coordinate (of the molecules). In the case of a vibrational transition, \hat{q} represents the coordinate of the nuclear motion of the vibrating molecules. For an electronic transition, \hat{q} is related to the motion of the electrons. For an ensemble of two-level systems the expectation value $\langle \hat{q} \rangle$, called the coherent or collective amplitude, is given by:

$$\langle \hat{q} \rangle = \operatorname{Tr} \{ \rho \hat{q} \} = q(\rho_{ab} + \rho_{ba}) , \qquad (6.10)$$

where $q_{ab} = q = \langle a | \hat{q} | b \rangle$ is the transition matrix element.

a) Electric Dipole Transitions

Electric dipole transitions are commonly investigated with light frequencies close to a resonance frequency. In this case the interaction cross sections are large and the polarizations resulting from the excitation process generate new electromagnetic waves.

The electric dipole moment μ related to the transition between the levels $|a\rangle$ and $|b\rangle$ (of one molecule) is a vector; its direction (unit vector u) is fixed in

the reference frame of the molecule and its amplitude is proportional to the amplitude of the coordinate $q: \mu = u d\mu/dq q[6.15, 16]$. The interaction of the dipole moment with an electric field is given by the Hamiltonian $H_{ie} = -\mu E = d\mu/dq qE \cos \theta$, where θ is the angle between the dipole moment and the electric field. For an ensemble of molecules the relaxation of the total dipole moment $\langle \mu \rangle$ as a function of time depends on (i) the orientational relaxation of the vector u (irrelevant in most solids) and (ii) the relaxation of the absolute value of the coherent amplitude $\langle \hat{q} \rangle$. This topic is the subject of intensive investigations discussed in this chapter.

It is of interest to compare the quantities measured in time-resolved coherent investigations and in steady-state spontaneous spectroscopy, i.e. the time dependence of the expectation values $\langle \hat{q} \rangle$ or $\langle \mu \rangle$ with the absorption spectra [6.3,15]. The latter can be calculated from (6.3–5), when the left-hand side of the equations, i.e. the time-dependent terms, are equal to zero. One readily finds the absorption line to be of Lorentzian shape with a peak absorption cross section $\sigma = (d\mu/dq)^2 \omega T_2/(\varepsilon_0 cn\hbar)$ and a linewidth (FWHM) of $\Delta v = 1/\pi T_2$. Here ε_0 is the permittivity, *n* the refractive index, *c* the velocity of light, and \hbar Planck's constant.

The absorption spectrum $J(\omega)$ may be related to the time-dependent dipole moment in a general way without referring to the special model introduced above. Line-shape theory gives [6.2-6,15,16]:

$$J(\omega) \propto \int_{-\infty}^{+\infty} e^{i\omega t} \phi(t) dt = \int_{-\infty}^{+\infty} e^{i\omega t} \langle \langle \mu(t)\mu(0) \rangle \rangle dt , \qquad (6.11)$$

where $\langle\langle \cdots \rangle\rangle$ denotes the equilibrium ensemble average. According to (6.11) the spectral line shape is the Fourier transform of the correlation function $\phi(t)$, i.e. of the time dependence of $\mu(t)$, which is measured in straightforward coherent experiments [see Sect. 6.1.3(a)]. Introducing an exponential decay with time constant T_2 for the dipole moment in (6.11) one obtains the same Lorentzian line shape as determined above directly from (6.3-5).

b) Raman-Type Transitions

Raman type transitions have the advantage that excitation is possible with a wide range of available electromagnetic fields, i.e. resonance frequencies are not required. On the other hand, the Raman interaction is a weak, second-order process; the pulse area and the degree of excitation are small. In spite of this difficulty, ultrafast Raman spectroscopy has provided valuable new information. Direct observation of several rapid dynamic processes has become possible and superior spectral resolution was demonstrated in congested spectral regions.

According to *Placzek* [6.17], the interaction between a given vibrational mode and the electric field can be described by the interaction Hamiltonian $H_{ie} = (\partial \underline{\alpha}/\partial q) q E E/2$, where $d\underline{\alpha}/dq$ stands for the change of the electric polarizability tensor with the vibrational coordinate q. It leads to the excitation of the molecular mode (frequency ω_0) under the action of the light field E, provided

that components *i*, *j* of the electric field exist, where the product $E_i E_j^*$ oscillates at the frequency ω_0 . The Raman process may again be described by (6.3–5), if we replace the quantity μE_0 by $(\partial \underline{\alpha}/\partial q)q_{ab}E_iE_j/2$. In a similar way, the radiating polarization is obtained as

$$P_i = N\mu_i = N\frac{\partial \underline{\alpha}_{ij}}{\partial q} E_j \langle \hat{q} \rangle \quad . \tag{6.12}$$

The polarization is proportional to the electric field E, i.e. the molecular excitation $\langle q \rangle$ leads to a scattered light field when monitored by a probing field. Without a probing field the coherent amplitude $\langle \hat{q} \rangle$ does not produce electromagnetic radiation. When the transition is electric dipole and Raman active, some light emission may occur, provided the molecules are in a crystal without inversion symmetry. This case will not be treated here. For isotropic Raman transitions the tensor $\partial \underline{\alpha}/\partial q$ is reduced to a scalar quantity $\partial \alpha/\partial q$. In this case, rotational motion of the molecules does not effect the evolution of the coherent signal and the decay of the coherent amplitude $\langle q \rangle$. The more complex case of an anisotropic Raman tensor has been treated in the literature by *Laubereau* and *Kaiser* [6.7], by *Kohles* and *Laubereau* [6.18], and by *Dick* [6.19]; it will not be discussed here in detail.

Comparing time-resolved coherent and spontaneous Raman scattering, one obtains very similar equations as in the case of electric dipole transitions. The spontaneous Raman line shape can again be calculated from (6.3–5) or from the line-shape theory [6.2–6]. The spectral shape is the Fourier transform of a molecular correlation function; for isotropic Raman lines it is proportional to the Fourier transform of $\langle\langle q(t)q(0)\rangle\rangle$.

c) Pulse Area and Population Changes in Ultrafast Coherent Experiments

For practical experiments it is important to know how strongly the (molecular) system is excited under the action of a light pulse. The strength of the excitation determines which type of coherent experiment can be performed with given light pulses. The important quantity is the pulse area A which is directly related to the changes of the population of the various levels [see (6.6,22)]; e.g. for a system initially in the ground state a short pulse with area A changes the ground-state population by $\Delta \rho_{bb} = (1 - \cos A)/2$. Using an exciting pulse with peak intensity I, duration t_p , and absorption cross section σ one estimates the pulse area to be $A = \mu E_0 t_p/\hbar = (2n^2 I T_2 \sigma/\hbar \omega_0)^{1/2}$. We assume here that the duration of the pulses is equal to the dephasing time. We now give numbers for the pulse area for three relevant examples using the following parameters: dephasing time $T_2 = 10^{-12}$ s, intensity $I = 10^{10}$ W/cm², refractive index n = 1.5.

i) For an infrared-active vibrational CH-stretching mode at $\lambda = 3 \,\mu\text{m}$ with $\sigma = 10^{-19} \,\text{cm}^2$ one obtains $A = 2.6 \times 10^{-1}$ and $\Delta \rho_{bb} = 1.6 \times 10^{-2}$.

ii) For an electronic transition at $\lambda = 0.5 \,\mu\text{m}$ with $\sigma = 10^{-16} \,\text{cm}^2$ one calculates A = 3.4 or $\Delta \rho_{bb} = 0.99$. The two examples show that electronic transi-

tions may lead to large pulse areas making coherent experiments quite easy, while for vibrational transitions the observation of two- and three-pulse echos with echo amplitudes proportional to A^6 is difficult.

iii) For Raman active transitions the pulse area $A = 1/2(\partial \alpha/\partial q)q_{ab}t_p E^2/\hbar$ may be calculated using the definitions of $\partial \alpha/\partial q$ and q_{ab} from the literature [6.8]. One obtains $A = In\lambda^2 t_p \sqrt{\delta\sigma}/(\pi c\hbar)$, where $\delta\sigma$ is the Raman cross section integrated over one Steradian. Taking $\delta\sigma = 2.5 \times 10^{-29}$ from benzene [6.10] (which has a rather large Raman cross section for a molecular vibration) and $\lambda = 0.5 \,\mu\text{m}$ we compute an area A of $A = 1.9 \times 10^{-2}$ or a population change $\Delta \rho_{bb} \simeq 10^{-4}$. These numbers are even smaller than the values calculated for resonant infrared absorption, see (i). It is evident that under the present conditions, ultrafast Raman-echo experiments appear to be unrealistic, while single-pulse coherent Raman experiments are found for resonant Raman transitions. Only under these conditions might ultrafast Raman-echo experiments become possible.

In this section a set of equations was introduced which allows one to treat time-resolved coherent spectroscopy within the framework of the model presented in Sect. 6.1.1. We have briefly outlined and compared different experimental methods for which applications are discussed in the following sections.

6.2 Coherent Spectroscopy Using a Single Excitation Process

We focus here on investigations of time-resolved coherent spectroscopy using single excitation processes. It is the aim of this section to demonstrate the different time-resolved techniques and to show the advantages of coherent techniques over spontaneous frequency-domain methods.

6.2.1 Time-Resolved Coherent Raman Spectroscopy of a Single Homogeneously Broadened Transition

The experiments of time-resolved coherent Raman spectroscopy are performed in two steps. First, the sample is excited by a pair of light pulses via transient stimulated Raman scattering (see Fig. 6.2, upper part) [6.20-23]. Subsequently, the degree of excitation is interrogated by a probe pulse, which is delayed in time relative to the excitation pulses. The probe pulse monitors the coherent amplitude by Raman scattering [6.1,7,8]. The experiments are described by two different sets of equations: the material equation governing the generation of the excitation under the action of the light fields [see (6.3-5)] and the wave equation (6.2) determining the light field due to the interaction with the material excitation. We recall that in coherent Raman processes the pulse areas are quite small [see Sect. 6.1.4(c)]. For this reason the changes of the diagonal elements of the density matrix are small and the off-diagonal elements may be calculated by using only Excitation

Anti-Stokes-Probing

Fig. 6.2. Schematic of a time-resolved coherent Raman experiment. The excitation of the upper level $|a\rangle$ is accomplished via stimulated Raman scattering by the laser and Stokes pulses at frequencies $\omega_{\rm L}$ and $\omega_{\rm s}$, respectively. The wave vectors of the two laser fields determine the wave vector of the coherent excitation, $k_v = k_{\rm L} - k_{\rm s}$ (upper part). At a later time the coherent Raman probing process (lower part) with a second laser pulse $E_{\rm L2}$ ($\omega_{\rm L2}, k_{\rm L2}$) monitors the coherent excitation. The coherent anti-Stokes signal emitted under phase matching conditions $k_a = k_{\rm L2} - k_v$ is a measure of the coherent amplitude at the probing time

(6.4). For Raman-type interactions (6.4) may be solved by direct integration. The electric field producing excitation consists of two components:

$$E = E_{\rm L}\cos(-\omega_{\rm L}t + k_{\rm L}x) + E_{\rm s}\cos(-\omega_{\rm s}t + k_{\rm s}x) ,$$

and for the coherent material excitation one makes the ansatz of a plane wave

$$\langle q \rangle = \frac{\mathrm{i}}{2} Q \exp(-\mathrm{i}\omega_0 t + k_v x) + \mathrm{c.c.} = q_{ab}(\rho_{ab} + \rho_{ba}) \; .$$

With these expressions (6.4) yields the amplitude Q after one integration [6.1,7,8,24]:

$$Q(x,t) = \frac{\mathrm{i}q_{ab}^2}{2\hbar} \frac{\partial \alpha}{\partial q} \int_{-\infty}^{t} E_{\mathrm{L}}(t',x) E_{\mathrm{s}}^{*}(t',x) \exp\left[\frac{1}{T_2}(t'-t) + \mathrm{i}\Delta t'\right] dt' \quad . \tag{6.13}$$

The excitation process is shown schematically in Fig. 6.2, upper part. The two components of the electric field at frequency ω_L and ω_s drive the vibration with frequency $\Omega = \omega_L - \omega_s$ close to the resonance frequency ω_0 . The wave vector of the coherent amplitude k_v is determined by $k_v = k_L - k_s$. Q shows the properties discussed previously: a rapid rise with the driving force $E_L E_s^*$ and an exponential decay with $\exp(-t/T_2)$ of the freely vibrating system. The 'back' reaction of the coherent amplitude on the light fields is governed by the polarization **P**:

$$\boldsymbol{P} = N \frac{\partial \alpha}{\partial q} \langle q \rangle \boldsymbol{E} + \underline{\boldsymbol{\chi}}_{NR}^{(3)} \varepsilon_0 \boldsymbol{E} \boldsymbol{E} \boldsymbol{E} \ . \tag{6.14}$$

The coupling of the wave equation and the material equation via the polarization leads to stimulated Raman scattering or Stokes/anti-Stokes coupling, which have been discussed in detail elsewhere [6.8,20-23,25-28]. The nonresonant nonlinear polarization $\chi_{NR}^{(3)}$ is due to distant electronic transitions. It leads to self-phase-modulation and nonresonant scattering [6.10,28].

For time-resolved coherent Raman spectroscopy a probing pulse is necessary to obtain information on the time dependence of the coherent amplitude (see Fig. 6.2, lower part). The third light pulse $E_{L2} = E_{L2}(t)\cos(-\omega_{L2}t + k_{L2}x)$ generates a radiative polarization according to (6.14). A short probing pulse at variable time delay t_D after the excitation pulses allows one to map out the time dependence of the coherent amplitude. The scattered signal at the anti-Stokes frequency $\omega_A = \omega_{L2} + \omega_0$ or at the Stokes frequency $\omega_{s2} = \omega_{L2} - \omega_0$ is observed. Efficient generation of the coherent signal requires phase matching, i.e. the wave vectors of the material excitation k_v , the probing field k_{L2} , and generated light, e.g. k_A , have to satisfy the condition $k_v + k_{L2} = k_A$.

a) Experimental Arrangements

A typical experimental system is depicted schematically in Fig. 6.3. A pumping laser source generates exciting and probing light fields at the frequencies ω_L , ω_s , and ω_{L2} in several frequency converters. In early experiments a simple optical system was used: the Stokes pulse was generated via stimulated Raman scattering of the strong laser pulse in the sample itself [6.29,30]. More recently, frequency conversion by dye lasers produced tunable Stokes pulses [6.31–34]. The exciting

Fig. 6.3. Experimental system used for time-resolved coherent Raman scattering. Synchronized pulses at frequencies ω_L , ω_s , and ω_{L2} are generated by different frequency converters from one pumping laser source. The pulses at ω_L and ω_s excite the sample via stimulated Raman scattering. The coherent excitation is monitored by the delayed (optical delay OD) probing pulses at frequency ω_{L2} . The different beams cross in the sample at phase-matching angles. Polarization and wavelength filters separate the coherent signal from the excitation light

Stokes and laser pulses are focused at a specific angle into the sample generating the coherent material excitation. The probing light pulse at frequency ω_{L2} is delayed relative to the excitation process in the optical delay system OD and monitors the excited volume of the sample. The geometry of the exciting and probing beams in the sample have to be adjusted to obtain phase matching for the coherent probe-scattering process. In most experiments the signal intensities are much smaller than the intensities of the excitation pulses. Consequently, the coherently scattered light must be separated carefully from the incoming light beams by diaphragms and spectral and/or polarization filtering. The detection system is a highly sensitive photo-detector. Frequently, the spectra of the coherently scattered light are analyzed with the help of a spectrograph.

b) Dephasing in Liquids

A straightforward application of time-resolved coherent Raman spectroscopy on the picosecond time scale is the investigation of single Raman active vibrational transitions. Such an experiment was performed for the first time by *von der Linde* et al. [6.29] in 1971. The authors observed the coherent anti-Stokes signal for ethanol (C_2H_5OH) and carbontetrachloride (CCl₄) on the picosecond time scale.

A large number of other molecules and transitions have been studied in the meantime [6.32–43]. The state of the art of coherent measurements with high time resolution is demonstrated in two recent publications by *Gale* et al. [6.42] and by *Zinth* et al. [6.44]. In the first experiment, a Nd: glass laser system supplied light pulses with relatively long duration ($t_p = 5$ ps). The high time resolution was achieved by a specially designed excitation and probing system that allows the signal decay to be measured over 9 orders of magnitude. With the nearly Gaussian-shaped pulses from the Nd: glass laser, the decay of the response function (see broken curve in Fig. 6.4) accelerates with decreasing signal at later delay times. As a consequence, the favorably high signal-to-noise ratio of the experiment allowed the measurement of decay times considerably shorter than the pulse duration. In Fig. 6.4a the solid curve corresponding to the v_1 mode of acetonitrile at v/c = 2943 cm⁻¹ shows an exponential decay over the entire observation range. This fact clearly demonstrates that the vibrational transition is homogeneously broadened with a dephasing time $T_2 = 1.63 \pm 0.07$ ps.

Superior time resolution is achieved with very short light pulses. Zinth et al. [6.44] introduced an experimental system with femtosecond pulses ($t_p \simeq 80$ fs) from a ring dye laser. A recent result is presented in Figs. 6.4b and 6.5. In Fig. 6.4b the same acetonitrile mode was studied as in Fig. 6.4a. Using femtosecond pulses the coherent signal is well separated from the autocorrelation trace, just 100 fs after time zero. Consequently, the decay time is determined with very high precision to be $T_2 = 1.70 \pm 0.02$ ps. In Fig. 6.5a and b the coherent signal decays are shown for the v_2 and v_7 modes of liquid acetone. In both cases one finds for delay times larger than 200 fs a clear exponential decay. The time constants are 510 ± 30 fs (v_7 mode) and 305 ± 10 fs (v_2 mode); i.e. one obtains

Fig. 6.4a, b. Coherent anti-Stokes signal for the v_1 mode of acetonitrile plotted as a function of the time delay of the probing pulses. (a) Laser pulses of 5 ps duration were used. The signal is recorded over nine orders of magnitude. •: Coherent response of acetonitrile CH₃CN. From the exponential decay a dephasing time $T_2 = 1.65 \pm 0.07$ ps is determined. o: Response function of the experimental system measured by coherent scattering in C₂H₅OH. (Redrawn from *Gale* et al. [6.42]). (b) Laser pulses of 80 fs duration were used. A ready separation between coherent signal and autocorrelation trace starts within 100 fs. The dephasing time is determined to be $T_2 = 1.70 \pm 0.02$ ps [6.44b]

dephasing times of $T_2 = 1020 \pm 60$ fs and 610 ± 20 fs. At shorter delay times the signal deviates from the pure exponential decay. In Fig. 6.5a this effect is mainly due to the nonresonant susceptibility. There may also be some residual influence from collisional processes (see below) which are not included in (6.3-5).

The experiments on time-resolved coherent Raman scattering have initiated a number of theoretical investigations treating dephasing and energy relaxation of vibrational levels in molecular liquids. *Fischer* and *Laubereau* [6.2] have estimated relaxation times assuming a binary collision between the molecules with exponential intermolecular interaction potential. Despite its several simplifying assumptions this model is capable of predicting dephasing times in liquids over a range of parameters such as temperature, concentration, and viscosity. A number of other theoretical approaches, e.g. molecular dynamics simulations, correlation function modelling, or hydrodynamic models have been discussed in the literature [6.45–60]. For a review see Oxtoby [6.3].

In many coherent experiments the initial signal is strongly affected by the nonresonant susceptibility $\chi_{NR}^{(3)}$ deviating substantially from the single exponential decay discussed theoretically (for an example see Fig. 6.5 or 6.6). The influence

Fig. 6.5a, b. Coherent signal from aceton measured with femtosecond laser pulses. The v_7 (a) and v_2 (b) modes are studied. Exponential decay with time constants $T_2/2 = 510 \pm 30 \,\text{fs}$ (v₇) and $305 \pm 10 \,\text{fs}$ (v_2) are found at later delay times. The signal shape in (a) around time zero is influenced by the nonresonant susceptibility $\chi_{NR}^{(3)}$. The dashed curve shows the response function of the experiment measured with the help of sum-frequency generation in a nonlinear KDP crystal. The narrow response function clearly demonstrates the power of the experimental system to measure very short decay times [6.44]

of the nonresonant susceptibility $\chi_{NR}^{(3)}$ on time-domain coherent Raman experiments was investigated for the first time by Zinth et al. [6.61] in mixtures, where molecular modes of highly diluted molecules were studied. Figure 6.6 shows the data for the v_1 mode of liquid CCl₄ (9 vol.%) dissolved in cyclohexane, C₆H₁₂, (experimental system Nd: glass laser with $t_p = 7 \text{ ps}$). The peak of the scattered Stokes signal is close to $t_{\rm D} = 0$, where the driving force $(E_{\rm L}E_{\rm s}^*)$ overlaps with the probing light pulse. At first the signal decays very rapidly by a factor of 50; it subsequently decays more slowly with a time constant of $T_2/2 = 3.6$ ps (broken line). This time dependence is readily understood by taking into account the nonresonant susceptibility $\chi_{NR}^{(3)}$ of the system [see (6.14)]. The nonresonant susceptibility induces an additional signal close to time zero due to a polarization proportional to $\chi_{NB}^{(3)} E_1 E_2 E_{1,2}$. This part of the signal has the time dependence of the experimental response function. At later delay times, the slower decay due to the resonantly excited solute molecules (CCl_{4}) takes over and determines the decay curve. Under the existing experimental conditions the later decay is close to an exponential (further details are given together with the discussion of results on pure CCl_4 in Sect. 6.2.2). Comparing the experimental signal curves with the

Fig. 6.6. Coherent signal from a mixture of CCl₄ and C_6H_{12} . Here, the effect of the nonresonant susceptibility $\chi_{NR}^{(3)}$ in a time resolved Raman experiments was demonstrated for the first time. While the exponential decay at later delay times is due to the resonant coherent excitation of the CCl₄ molecules, the signal peak at time zero originates from the nonresonant susceptibility $\chi_{NR}^{(3)}$ of the solvent molecules C_6H_{12} [6.61]

theory of (6.3-5) and (6.13,14) allows one to deduce the ratio of the nonresonant to the resonant susceptibility in the mixture.

The experimental results show that the resonant and the nonresonant part of the nonlinear susceptibility may be separated in a time-domain experiment. While at time zero, both the nonresonant and the resonant part contribute to the signal, the measurement at later delay time gives access to the resonant part of the susceptibility. This separation allows frequency-domain coherent anti-Stokes Raman experiments (CARS) without the disturbing influences of $\chi_{NR}^{(3)}$; picosecond light pulses and delayed probing with tuning of the frequency difference $\omega_{L} - \omega_{s}$ are required (see [6.61–64]).

In the experiment of Fig. 6.6 the strong Raman band of CCl₄ at $\tilde{v} = 459 \text{ cm}^{-1}$ was investigated and the influence of the nonresonant susceptibility of the solvent cyclohexane was evident because of the high dilution of the CCl₄ molecules, which reduced the resonant contribution to the signal. There are many experiments, where $\chi_{NR}^{(3)}$ contributes to the probe signal even in concentrated samples. This situation occurs, when (i) weak Raman transitions are investigated, (ii) very strong nonresonant susceptibilities exist, as e.g. in semiconductors, or (iii) the excitation process is very transient, i.e. when the duration of the excitation pulses is much shorter than the dephasing time T_2 . The latter case was realized under the experimental conditions of Fig. 6.5a, where the excitation pulses of $t_p = 70 \text{ fs}$ were considerably shorter than the dephasing time $T_2 = 1 \text{ ps}$.

Fig. 6.7. Time-resolved CARS signal for LO-phonons in GaP measured for different polarization conditions showing the influence of the nonresonant susceptibility $\chi_{NR}^{(3)}$ (around time zero) and the exponential decay of the resonant signal at later delay times [6.65]

An interesting example, where a time-domain experiment allows determination of the components of the nonresonant susceptibility tensor $\chi_{NR}^{(3)}$ in crystalline gallium phosphate, GaP, is presented in Fig. 6.7 [6.65]. The coherent anti-Stokes signal was recorded for three different polarization conditions of excitation and probing fields (curves 1, 2, and 4 in Fig. 6.7). The slow exponential decay at later times corresponds to the LO-Raman resonance of GaP at 403 cm⁻¹. Each configuration of polarization of excitation and probing light fields yields the same dephasing time for the LO-phonons, but a different ratio between nonresonant and resonant part of the signal (represented by the values Y_i obtained after extrapolation of the resonant part back to time zero). A complete analysis of the data of Fig. 6.7 together with measurements at other polarization configurations has provided numbers for the components of the nonlinear susceptibility tensor $\chi_{NR}^{(3)}$.

c) Vibrational Transitions in Solids

Time-resolved coherent Raman scattering supplies valuable dynamical information on vibrations (phonons) in the solid phase at low temperatures. Here the relaxation times are often long, e.g. $T_2 \simeq 10^{-10}$ s, and the study of the corresponding line shapes (width $\Delta v/c \sim 0.1 \text{ cm}^{-1}$) via spontaneous Raman scattering becomes difficult. On the other hand, time-resolved coherent experiments are readily made in this time domain. Due to the well-defined dispersion relations $\omega(k)$ of the phonons in crystalline solids, the time-resolved experiments require special care to properly adjust the polarization and propagation conditions to the symmetry of the investigated modes (see e.g. Giordmaine and Kaiser [6.1] and Velsko et al. [6.66]). The relaxation time T_2 of vibrational modes in crystals has been treated theoretically in a number of publications [6.9, 56, 67–79]. It could be shown that the pure dephasing times increase with decreasing temperature proportional to $(T_D/T)^7$ for $T \ll T_D$, where T_D is the Debye temperature [6.67]. On the other hand, the energy relaxation time T_1 approaches a finite value at low temperatures and therefore determines the total phase relaxation $1/T_2 = 1/(2T_1)$ for $T \to 0$.

The equivalence of the coherent relaxation time τ to the energy relaxation times T_1 at low temperatures has been shown experimentally for molecular crystals, e.g. by echo experiments for pentacene in naphthalene and by measuring time-resolved spontaneous anti-Stokes Raman scattering for non-thermal LO-phonons in GaAs at 77 K [6.9,80,81].

Time-domain coherent Raman investigations exist for a number of crystals. In an early investigation the TO lattice mode of diamond was found to have a relaxation time $T_2/2$ of 3.4 ps and 2.9 ps at 77 K and 295 K, respectively [6.82]. Another example is given in Fig. 6.7, where GaP is investigated. The slow exponential decay of the coherent signal allows one to deduce the lifetime of the LO-phonon mode of GaP at 403 cm⁻¹ A value of $T_2/2 = 6.7 \pm 0.3$ ps was reported [6.33]. In a recent paper, *Bron* et al. [6.83] studied the temperature dependence of T_2 of the LO-phonons of GaP and ZnSe by time-resolved coherent Raman scattering. The authors interpret their data as follows: At low temperatures the LO-phonons with wave vector $|k| \simeq 0$ decay into two acoustic phonons with half the energy and with equal wave vectors q_i of opposite sign, $q_1 = -q_2$. Impurity scattering was not relevant in the presence of nitrogen impurities of the order of 10^{16} cm⁻³ in the GaP crystal. For elevated temperatures T > 150 K, higher-order phonon-phonon interactions begin to play a role.

The internal A_1 mode of α -quartz at $v/c = 465 \text{ cm}^{-1}$ was investigated over a wide temperature range by *Gale* and *Laubereau* [6.84]. The experiments yielded a pronounced temperature dependence of the relaxation times, e.g. time constants of $T_2/2 = 0.8$ and 3.4 ps were found at 295 and 23 K, respectively. The phonon relaxation in α -quartz was discussed in terms of a three-phonon process, where the population of the excited 465 cm^{-1} phonon decays, generating an acoustic phonon at $v_1 = 51 \text{ cm}^{-1}$ and an optical phonon at $v_2 = 414 \text{ cm}^{-1}$ The temperature dependence of the decay time T_2 was successfully described by the relation $2/T_2 = \gamma [1 + n_1(T) + n_2(T)]$, where n_1 and n_2 are the thermal occupation numbers of the created phonons, γ is the low-temperature relaxation rate and T the temperature.

Besides the examples given above numerous publications have focused on other inorganic crystals. They have treated, for example, the dephasing of one-phonon states in calcite [6.30,85,86], of polaritons in ammonium chloride [6.87], or of two-phonon states [6.88–90].

A number of papers have addressed vibrational modes in organic molecular crystals [6.91-102]. In these materials the transition frequencies are often similar to those in molecular liquids. When several molecules are in the elementary cell, a splitting of the transition lines may occur due to the different local symmetry

Fig. 6.8. Time-resolved CARS signal decay for the v_1 mode, A_g factor group of crystallized benzene of natural isotope composition at 1.6 K. (a) Measured signal and best-fit curve. From the exponential decay a time constant of $T_2/2 = 40 \pm 2$ ps is deduced. (b) Instrumental response function [6.97]

of the molecules (factor group splitting). Extensive investigations of the relaxation processes in crystalline benzene were carried out by *Hochstrasser*'s group [6.96-101].

An example is given in Fig. 6.8, curve a, where the coherent anti-Stokes signal at 1.6 K is plotted as a function of the time delay $t_{\rm D}$ for the A_{18} factor group of the v_1 mode (v/c = 991 cm⁻¹) of benzene with natural carbon isotopic composition (curve b gives the instrumental response) [6.97]. The signal decays exponentially with a time constant of $\tau = T_2/2 = 40 \pm 2$ ps at later delay times. Extrapolating the exponential slope back to time zero one finds a slight contribution from the nonresonant susceptibility $\chi_{NR}^{(3)}$. A number of additional experiments were carried out with benzene at low temperatures in order to deduce the relevant relaxation mechanism. Measurements of different factor groups indicated faster decay times of $\tau = 35.6$ ps for the B_{2g} component [6.99]. Mixed crystals containing C₆D₆ molecules gave increased decay rates [6.97]. Important for the understanding of the relaxation mechanism is the finding that the decay rates depend on the isotopic composition of carbon in the benzene molecule. It should be noted that natural benzene contains 1.1% of ¹³C carbon. Experiments have been performed with neat ¹²C₆H₆ benzene crystals giving considerably longer decay times of $T_2/2 = 61.7$ ps (A_{1g}) and $T_2/2 = 56$ ps (B_{2g}) . Strong isotope effects have also been found for a number of other vibrational modes of benzene crystals [6.99].

The low-temperature relaxation rates of the isotopically pure benzene crystals show mode specific energy relaxation. The ¹³C "impurities" in the molecules cause increased relaxation rates due to impurity phonon scattering or near resonant ($\Delta E \sim 9 \text{ cm}^{-1}$) energy trapping. The experiments with benzene crystals demonstrate that the relaxation rates measured via time-resolved coherent Raman scattering give a lower value for the energy relaxation time T_1 in the isotopically mixed samples, while they give T_1 in the pure crystals. These observations provide convincing evidence that the isotopic composition of the molecules has to be taken into account when interpreting the phonon relaxation.

Fig. 6.9a–f. Time-resolved coherent Raman data for 1-(t)-histidine. HCl·H₂O crystals at 10 K (semilog plots). (a) Positions of the lowfrequency modes. (b)-(f) Timeresolved data for the five lowfrequency modes shown in (a). Exponential decays are found for the totally symmetric modes at 99 cm⁻¹, 65 cm⁻¹, and 50 cm⁻¹, whereas the two modes at 55 cm⁻¹ (b) and 75 cm⁻¹ (c) suggest inhomogeneous line-broadening [6.102]

Of special interest are time-resolved coherent Raman investigations in large inolecules which are of biological relevance. Extensive investigations of lowfrequency vibrational modes (librons) in crystals of aminoacids and peptides were reported by *Dlott* [6.79]. An example is presented in Fig. 6.9, where crystals of \mathcal{L} -histidine hydrochloride monohydrate were investigated at 10 K [6.102]. The frequency positions, the intensities, and the observed lifetimes are summarized schematically in Fig. 6.9a. A common feature of the relaxation properties of the vibrations in the aminoacid crystals is the following: Modes with frequencies higher than 150 cm^{-1} show lifetimes $\tau = T_1$ shorter than 10 ps. For the symmetric Inodes the lifetimes increase with decreasing frequency ω_0 . The relaxation data for the totally symmetric 99, 65, and 50 cm^{-1} lattice modes are depicted in Fig. 6.9d-f, where the lifetimes extend up to $\tau = 1.2$ ns. From the frequency depen-Gence of T_1 the authors concluded that the decay times are determined by spontaneous decay of librons into two counterpropagating acoustic phonons or into one libron and one acoustic phonon. The non-totally symmetric local modes at 55 and 75 cm⁻¹ show non-exponential (Gaussian) decay (see Fig. 6.9b,c). The inhomogeneous broadening of these local modes is believed to be due to dipolar interactions or small variations in the crystal packing.

A short summary should be given here concerning the coherent relaxation times and the relaxation mechanisms found in molecular crystals:

i) Homogeneously broadened lines are frequently found. The inhomogeneity which one would expect due to the site-specific frequency shifts appears in most

systems as factor group splitting. It is commonly accepted that imperfections of the crystals are less effective due to the delocalisation of the phonons (motional narrowing); but they may strongly affect the relaxation processes.

ii) The frequency widths or time constants at elevated temperatures are determined by energy relaxation, dephasing or intraband relaxation, and impurity scattering. In a number of cases the temperature dependence of the time constant allows one to determine the relaxation mechanism.

iii) At very low temperatures the relaxation rates become constant. They are determined by energy relaxation and impurity scattering. The decay times measured in coherent experiments give directly the energy relaxation time T_1 . Care has to be taken when impurities influence the coherent decay times; in this case only a lower limit for T_1 may be estimated.

d) The Collision Time

We return now to molecular modes in liquids. The theoretical model of Section 6.1 treated the relaxation processes in terms of two time constants, T_1 and T_2 . At very early times, $t_D \ll T_2$, however, the time-dependent interaction during the collisions of the molecules becomes important. As a consequence, the correlation function $\langle\langle q(0)q(t)\rangle\rangle$ is no longer a single exponential, but has the form [6.3,4,50,103]:

$$\langle \langle q(0)q(t) \rangle \rangle \propto \exp\left\{-\frac{t}{T_2} - \frac{\tau_c}{T_2}\left[\exp\left(-\frac{t}{\tau_c}\right) - 1\right]\right\}$$
 (6.15)

Equation (6.15) was derived by Kubo for an exponential decay of the frequency correlation function, $\langle \delta \omega(t) \delta \omega(0) \rangle = \exp(-t/\tau_c)$. The collision time τ , is the time for which a certain frequency shift $\delta \omega(t) = \omega(t) - \omega_0$ is maintained.

At later times (6.15) gives the exponential decay of the coherent amplitude with $\exp(-t/T_2)$, while at short times, $t \to 0$, (6.15) implies a Gaussian time dependence $\exp[-t^2/(T_2\tau_c)]$. For short collision times $\tau_c \ll T_2$ the collision process leads to small corrections of the coherent signal. Nevertheless, time resolved coherent scattering may be used to determine the collision time τ_c or can enable one to estimate an upper limit for τ_c . For an example we refer to Figs. 6.4b and 6.5. The decay of the coherent signal was found to be exponential for times larger than 0.3 ps. Taking into account the accuracy of the experimental data and the nonresonant susceptibility $\chi_{NR}^{(3)}$, one may estimate an upper limit for the collision time of both acetone modes and for the acetonitrile mode of $\tau_c < 0.3$ ps.

For sufficiently long collision times $\tau_c \ge 0.5$ ps, picosecond light pulses from a Nd: glass laser may be used for the direct determination of τ_c . Telle and Laubereau have performed coherent experiments with a carefully controlled time resolution of the experiment [6.104]. They simultaneously measured the temporal response of their system (by coherent scattering of a purely nonresonant susceptibility) and the coherent signal of the investigated transition (liquid CH_2BrCl). From the experimental curves and numerical calculations based on the (measured) temporal system response the authors estimated a collision time of

$$t_{\rm c} = 0.4 \binom{+0.4}{-0.1} {\rm ps}$$
, i.e. $0.3 - 0.8 {\rm ps}$.

In a recent paper *Chesnoy* investigated the kinetics of vibrational dephasing of nitrogen under supercritical conditions [6.41]. He demonstrated that, after some initial delay, the coherent signal decays exponentially with time. Comparing the time-resolved coherent Raman data with spontaneous Raman spectra enabled a collision time of $\tau_c \simeq 10$ ps to be deduced; this is of the same order as the measured dephasing time of $T_2 \simeq 20$ ps. The long collision time τ_c indicates the importance of density fluctuations as a source of frequency modulation close to the critical point.

6.2.2 Time-Resolved Coherent Raman Scattering of a Distribution of Resonance Frequencies

a) Time-Domain Experiments

In the previous sections we discussed time-resolved coherent investigations, where dynamic processes such as dephasing and energy relaxation were of major relevance. Here we address new spectroscopic studies which allow accurate measurement of frequency differences between vibrational modes and the resolution of transitions within congested spectral regions.

The following time-resolved coherent experiments are described by (6.1-13) discussed above. For each vibrational mode one introduces individual coherent amplitudes Q_j and vibrational resonance frequencies ω_j . The coherently scattered field is a sum of field components scattered from the individual molecular modes Q_j [6.7,37,105].

$$E_{\mathbf{A}}(t,t_{\mathbf{D}}) = \sum_{j} E_{\mathbf{A}j}(t,t_{\mathbf{D}}) \propto \sum_{j} Q_{j}(t) E_{\mathbf{L}2}(t-t_{\mathbf{D}}) \exp(-\mathbf{i}\omega_{j}t) \quad .$$
(6.16)

The observed coherent signal has the form $S(t_D) \propto \int dt |E_{AS}(t, t_D)|^2$. It can be shown that in the limit of short excitation and probing pulses the signal $S(t_D)$ at $t_D > 0$ is proportional to the absolute square of the Fourier transform of the spontaneous Raman spectrum $R(\omega)$, i.e. $S(t_D) \propto |\int d\omega \exp(i\omega t_D)R(\omega)|^2$ [6.3,105]. In the time domain – according to (6.16) – simultaneously excited modes lead to a beating of the coherent signal at the frequency differences $\delta \omega_{ij}$ between the various transition frequencies ω_i and ω_j , with $\delta \omega_{ij} = \omega_i - \omega_j$. These "quantum" beats of the coherent signal were found for the first time by *Laubereau* et al. [6.36] in a number of tetrahalides. Later, similar beating phenomena were reported in several publications [6.37,44,94,98,102,106–108].

Fig. 6.10a, b. Coherent Stokes signal from the v_1 mode of liquid CCl₄. The isotope composition of CCl₄ leads to a splitting of the v_1 band in the spontaneous Raman spectrum – see insert in (a). The different resonance frequencies lead to the beating phenomenon which is clearly resolved in (b) where exciting and probing pulses of 3 ps duration were used. For longer ($t_p = 8$ ps) pulses the beating structure is smeared out. Nevertheless, the dephasing time T_2 is readily determined in both experiments [6.57]

Figure 6.10 presents the results of a study of the v_1 mode of liquid carbontetrachloride ($v/c \simeq 459 \,\mathrm{cm}^{-1}$) where the influence of the pulse duration on the observed beating was investigated [6.37]. Due to the natural isotopic composition of the CCl₄ molecules (the two chlorine isotopes ³⁷Cl and ³⁵Cl have abundances of 24% and 76%, respectively), the transition is split in five equidistant components (distance $\Delta v/c = 3 \text{ cm}^{-1}$). Four of the more abundant components are readily resolved in the spontaneous Raman spectrum as shown in the insert of Fig. 6.10a. In the time-resolved coherent experiment one expects a beating phenomenon with maxima separated by $\Delta t = 1/\Delta v \simeq 11$ ps. This beating is indeed observed in Fig. 6.10b, where short excitation and probing pulses with $t_p = 3$ ps were used. In addition, one obtains information on the dephasing time T_2 . The solid curve was calculated using the measured pulse parameters ($t_p =$ 3 ps, Gaussian shape), a difference of the neighboring frequency components of 3.0 cm^{-1} , a dephasing time $T_2 = 6 \text{ ps}$ (assumed to be the same for all components) and the nonresonant susceptibility $\chi_{NR}^{(3)}$. Figure 6.10a shows the signal curve for longer excitation and probing pulses ($t_p \simeq 8 \text{ ps}$). Here the beating phenomenon is smeared out and the decay, with the time constant $T_2 = 6$ ps, appears quite clearly. The longer pulses influence the signal curve in two ways: (i) During the longer excitation process the most intense transition of the Raman spectrum is preferentially excited, and (ii) the long duration of the probing pulse gives a levelling of the modulation. The two experiments of Fig. 6.10 show convincingly

Fig. 6.11. Time-resolved coherent Raman data for a special phasematching condition, where the A_g and the B_{2g} factor group components of the 991 cm⁻¹ vibron of crystallized benzene are probed simultaneously. The modulation of the signal is due to the frequency shift of 0.64 cm⁻¹ between the two interfering lines. Also shown is the experimental response function [6.98]

Fig. 6.12. Terahertz beats observed in timeresolved coherent Raman scattering from liquid toluene using femtosecond light pulses. The interference of the three simultaneously excited toluene modes at 788, 1001, and 1028 cm^{-1} generates a rich structure with beat frequencies up to 7.2 THz [6.106]

that time-resolved coherent experiments are well suited to investigate frequency differences and decay times in spectral regions consisting of discrete frequency components.

Beating between transitions of different factor groups was studied by Velsko et al. [6.98] in crystallized benzene at low temperature (1.6 K). Some results are shown in Fig. 6.11. The geometry of the excitation and probing light field was selected in such a way that coherent signals were obtained from the A_g and B_{2g} states in the factor groups of the 991 cm⁻¹ transition of benzene. From the beating of the signal (i.e. the time between the peaks) and from its magnitude the authors determined the frequency difference to be $\Delta v = 19$ GHz, the relative amplitudes to be 20:1, and the decay times of the two modes to be 40 and 34 ps, respectively.

While the experiment on crystallized benzene gave beating frequencies in the 20 GHz range, the advent of femtosecond light pulses allows one to measure beating frequencies far into the terahertz regime. Beat frequencies of more than 10 THz have been reported [6.44]. Figure 6.12 shows very recent data from a coherent Raman experiment on liquid toluene [6.106]. In the wide frequency

range of $700-1100 \text{ cm}^{-1}$ three vibrational modes are excited simultaneously by the (broadband) femtosecond light pulses. The scattered coherent anti-Stokes signal exhibits an amazing beating structure with beat frequencies of up to 7.2 THz. The frequency components of the signal curve are evaluated by Fourier transformation or other more specialized numerical methods in order to obtain the spectral information. This procedure called "Fourier transform Raman spectroscopy" was first demonstrated by Graener and Laubereau [6.107]. The authors studied coherent beating in gaseous methane-argon mixtures on a much longer time scale of many picoseconds to nanoseconds.

It should be noted here that the case of continuously distributed resonance frequencies (e.g. an inhomogeneously broadened transition) leads to a more difficult situation. There is no recurrence of the signal but only destructive interference with a rapid signal decay. An early attempt to measure T_2 in inhomogeneously broadened frequency distributions by using a "selectivity in k-space" had to be reconsidered [6.36,109–114]. Zinth et al. showed experimentally that with the existing dispersion of the samples, a selectivity for a molecular subgroup is not possible [6.37]. In addition, general theoretical arguments prove that the information from a single-pulse coherent experiment and from a spontaneous Raman spectrum is equivalent [6.103,115,116]; i.e. T_2 cannot be obtained in a coherent Raman experiment, where the spontaneous Raman line is strongly inhomogeneously broadened.

Under certain conditions, however, time-resolved coherent Raman techniques may give information on the line-broadening mechanism. Two processes cause similar non-Lorentzian spontaneous Raman bands: (i) Long collision times $\tau_c \simeq T_2$ and (ii) inhomogeneous broadening (cross-relaxation times much longer than T_2).

Gale et al. [6.42] pointed out that coherent experiments give new information on the broadening mechanism: (i) If τ_c is relatively long, $\tau_c \simeq T_2$, the coherent signal decays non-exponentially around time zero but turns to an exponential decay at later times. (ii) For a small inhomogeneous contribution an initial exponential decay with time constant $T_2/2$ (close to time zero) is followed by an increasingly rapid decay at later times [6.105]. If the inhomogeneous width adds 10% to the homogeneous linewidth, the slope of the signal decay (on a semilog plot) gives $T_2/2$ around time zero. This slope increases with time. For example, four orders of magnitude below the signal peak, the slope is larger than at time zero by more than 50%. While the influence of weak inhomogeneous broadening [case (ii)] and of long collision times τ_c [case (i)] yield very similar spontaneous Raman spectra, the time-resolved coherent data are different and may be used to decide which line-broadening mechanism exists.

b) Transient Frequency-Domain Experiments

In the previous section we discussed investigations where the spectral information on the molecular system was deduced from time-resolved coherent data followed by a numerical analysis. Now we present a technique which avoids the Fourier transformation by directly measuring the spectrum of the coherent signal generated by properly shaped probing pulses [6.64,117–121].

The basic idea of the technique is readily seen by considering the spectrum of the scattered coherent anti-Stokes signal of a single vibrational transition

$$I_{\rm A}(\omega) \propto \left| \int dt \exp(i\omega t) E_{\rm A}(t) \right|^2$$
 (6.17a)

$$I_{\rm A}(\omega) \propto \left| \int dt \exp(i\omega t) E_{\rm L2}(t) \exp\left(-\frac{t}{T_2}\right) \right|^2$$
 (6.17b)

$$I_{\rm A}(\omega) \propto \left| \int dt \exp(i\omega t) \exp\left[-\left(\frac{t}{t_0}\right)^2 - \frac{t}{T_2} \right] \right|^2$$
 (6.17c)

$$I_{\rm A}(\omega) \propto \left| \int dt' \exp(i\omega t') \exp\left[-\left(\frac{t'}{t_0}\right)^2 \right] \right|^2$$
 (6.17d)

In these equations it is assumed that the excitation and the initial effects of the collision process are terminated. Equation (6.17a) represents the Fourier transform of the anti-Stokes signal. The freely relaxing coherent amplitude $Q = Q_0 \exp(-t/T_2)$ is monitored by a Gaussian shaped laser field $E_{1,2}(t) \propto$ $\exp(-t^2/t_0^2)$ [see (6.17b,c)]. By introducing a new time t', one eliminates the dephasing time. According to (6.17d), the anti-Stokes spectrum has the same frequency shape, i.e. the same frequency bandwidth, as the probing laser pulse $E_{1,2}$. With the phase factors included in (6.17) one finds the anti-Stokes band centered at the anti-Stokes frequency $\omega_{AS} = \omega_{L2} + \omega_0$. When sufficiently long $(t_p > 1.5 T_2)$ probing pulses of Gaussian shape are used, the spectral width Δv of the time-resolved coherent anti-Stokes band, $\Delta v = 0.44/t_{\rm p}$, is narrower than the spontaneous Raman line $\Delta v = 1/\pi T_2$. In practical applications it is advantageous to use a short exciting force and a prolonged Gaussian shaped interrogation pulse. As an acronym the spectroscopic technique is known as SEPI spectroscopy. A more detailed description of the theory is given in the literature by Zinth et al. [6.119] and Collins et al. [6.122].

An experimental example of the line-narrowing SEPI spectroscopy is given in Fig. 6.13. The v_1 mode of liquid CCl₄ was investigated using a Nd: glass laser system supplying 20 ps probing pulses of Gaussian shape. In Fig. 6.13a the spontaneous Raman spectrum of the v_1 mode is shown as measured with a high-resolution Raman spectrometer; the isotopic structure has been discussed above. The SEPI spectrum (Fig. 6.13b) was taken by using a high-resolution spectrograph in conjunction with an optical spectrum analyser. The entire coherently scattered spectrum is recorded immediately for each probe pulse. When the excitation force (i.e. $E_L E_s^*$) is centered at 460 cm⁻¹ (see Fig. 6.13b), the two high-frequency components of the isotopically split Raman band appear very narrow and thus well resolved. The SEPI spectrum clearly separates the two

261

Fig. 6.13a, b. Line-narrowing coherent Raman spectroscopy using short excitation and prolonged coherent interrogation (SEPI) of the v_1 mode of liquid CCl₄. Broad overlapping lines of the spontaneous Raman spectrum (a) are considerably narrowed by the coherent SEPI technique (b) [6.105]

Fig. 6.14a-c. Raman spectra of pyridine: methanol mixtures. (a) Polarized spontaneous Raman spectrum measured at a pyridine concentration of 0.33 molar fraction taken with a standard Raman spectrometer of spectral resolution of 0.5 cm^{-1} . (b) and (c) Short excitation and prolonged interrogation (SEPI) spectra obtained for a set of excitation frequencies, $v_L - v_s$, at two pyridine concentrations, $\chi_{py} = 0.33$ molar fraction (b) and $\chi_{py} = 0.66$ molar fraction (c). The spectra taken at excitation frequencies $v_L - v_s < 994 \text{ cm}^{-1}$ are drawn with reduced amplitudes. The SEPI spectra resolve three Raman lines of different hydrogen-bonded aggregates hidden under the broad band of the spontaneous Raman spectrum (see dash-dotted lines) [6.120]

bands and allows a very accurate determination of the frequency difference of $\delta v/c = 3.0 \pm 0.08 \,\mathrm{cm^{-1}}$.

An interesting application of the line-narrowing SEPI spectroscopy is presented in Fig. 6.14 [6.120]. The molecular system pyridine: methanol was investigated, which exhibits a broad featureless spontaneous Raman band around 1000 cm⁻¹ (see Fig. 6.14a). The position and amplitude of this band changes with varying methanol concentration. With the help of a picosecond dye laser system, the frequency of the excitation force was tuned over the frequency range of interest. SEPI spectra taken at fourteen excitation frequencies are shown in Fig. 6.14b, c for two different methanol concentrations. In both cases the band at 1000 cm^{-1} can be resolved in three components at 997.3, 1000.0, and 1001 cm⁻¹. The positions of the three bands remain constant while the amplitudes depend on the methanol concentration. From these data new information on hydrogenbonded complexes between pyridine and methanol were obtained: there exist at least three distinct molecular complexes of pyridine and methanol with frequency positions remaining constant with methanol concentrations. The apparent frequency shift of the Raman band observed in spontaneous spectroscopy results from the changing abundance of the complexes as a function of the methanol concentration.

The following points concerning the line-narrowing transient Raman spectroscopy are of interest:

- i) The SEPI method investigates the freely relaxing molecules.
- ii) Influences of $\chi_{NR}^{(3)}$ are eliminated as the probing process is performed at late delay times.
- iii) We emphasize that the amplitudes of the SEPI bands depend on the Raman cross sections and also on the dephasing times T_2 of the individual modes. This fact provides increased spectral resolution in congested spectral regions when fast decaying bands disappear at late delay times.
- iv) The SEPI experiments may be performed with coherent anti-Stokes or Stokes scattering. The two spectra give the same information.

6.2.3 Resonant Pulse Propagation in the Infrared

In the previous sections the discussion concentrated on Raman-type interactions. The absence of a dipole moment required a pair of light pulses for the excitation of the molecules and a separate probing pulse to study the time evolution of the material excitation. In this section we focus on infrared-active transitions where the material is excited by resonant ir light and where the oscillating molecules emit radiation. We discuss the case of a single small area excitation pulse propagating resonantly through the absorbing medium [6.7,123-125].

It has been shown in [6.7] that small area pulse propagation may be treated by a single equation containing the dephasing time T_2 and a modified Bessel function. The discussion may be further simplified for the case of optically thin samples, i.e. where the absorbance $a = \alpha l =$ (absorption coefficient × sample length) is small, $a \ll 1$. The transmitted electric field may then be written as follows [6.125]:

$$E_{\rm tr}(t) = E_0(t) - \frac{\alpha l}{2T_2} \int_{-\infty}^t dt' E_0(t') \exp\left[\left(t'-t\right)\left(\frac{1}{T_2}-i\varDelta\right)\right]. \tag{6.18}$$

As previously, Δ stands for the difference between resonance and driving frequency. According to (6.18) the transmitted electric field consists of the incoming light field minus a second term which decays with the dephasing time T_2 . Thus the dephasing time T_2 can be directly measured from the slope of the trailing part of the transmitted, i.e. coherently emitted, light field. In the general case of $\alpha l \gtrsim 1$ the trailing part of the signal decays more rapidly. For values $\alpha l = 1$ a simple correction formula may be used in order to deduce T_2 from the measured decay [6.126].

An elegant experimental system to measure the small area pulse propagation in the infrared was developed by *Hartmann* and *Laubereau* [6.124]. The main difficulty which had to be overcome was the slow time resolution of the photodetectors. Existing infrared detectors are not able to measure the transmitted pulse with picosecond time resolution. The detection of the pulse intensity as a function of time is accomplished by gated ultrafast infrared up-conversion. This technique provides the convolution of the instantaneous infrared intensity with a short probing pulse. Tuning the time delay between the exciting infrared pulse and the probing gate pulse allowed the evolution of the coherently radiated infrared signal to be followed.

In a recent experiment, the coherent interaction of an infrared pulse with rotational transitions of HCl: Ar gas mixtures at medium pressure was studied [6.127]. HCl was used with natural isotope abundance of the ³⁵Cl and ³⁷Cl isotopes. Transitions of the R(J) branch of HCl around 3000 cm⁻¹ were investigated for different values of the rotational quantum number J of the $J \rightarrow J + 1$ rotation-vibrational transition. An example is presented in Fig. 6.15. The infrared

Fig. 6.15. Resonant propagation of an infrared pulse through a HCl:Ar mixture. The conversion signal representing the transmitted and reemitted infrared intensity is plotted versus delay time t_D . Note the beating in the reemitted part at $t_D > 10 \text{ ps}$ which is due to the interference from the emission from the R(2) transition of HCl containing the two chlorine isotopes ³⁵Cl and ³⁷Cl. From the decay of the signal a dephasing time $T_2 = 48 \pm 5 \text{ ps}$ was determined [6.127]

pulse is tuned to the R(2) transition of H³⁵Cl. The related R(2) transition of H³⁷Cl is shifted by $\simeq 2 \text{ cm}^{-1}$ to smaller frequencies but also interacts with the incident pulse. [For the numerical analysis of the experimental data the second transition has to be incorporated in (6.18)]. The time integrated conversion signal $C(t_{\rm D})$ is plotted in Fig. 6.15 on a logarithmic scale as a function of the delay time of the probing pulse. Around $t_{\rm D} = 0$ the conversion signal of the emitted pulse (open circles, solid line) follows the input pulse (full circles, broken line). For longer delay times, $t_{\rm D} > 10$ ps, the emitted pulse decays more slowly. A beating phenomenon (beat time 15.3 ps) is found which is superimposed on an approximately exponential decay ($\tau = 19.5$ ps). The analysis of the data – taking into account the optical thickness of the sample, $\alpha l = 1.2$ – yielded a frequency distance between the isotope components of 2.18 cm^{-1} and the dephasing time of $T_2 = 48 \pm 5$ ps. Measurements at different partial pressures of HCl and Ar gave the following results: HCl-HCl collisions are much more efficient for the dephasing process than HCl-Ar collisions; the relaxational data for the rotational-vibrational transitions of HCl agree well with the relaxation data for pure rotational transitions, suggesting that vibrational relaxation contributes little to the observed dephasing process. The authors proposed that total dephasing is due to pure rotational dephasing (quasi-elastic collisions) and the population decay of the rotational levels (inelastic collisions).

6.3 Coherent Spectroscopy Using Multiple Excitation Processes

In the preceding sections we have discussed various applications of coherent spectroscopy using a single excitation process. One major result was the determination of the dephasing time T_2 in a variety of systems. On the other hand, these techniques do not allow measurement of the dephasing time T_2 for wide inhomogeneously broadened lines and give no information on the energy relaxation time T_1 (except in solids at low temperature).

In the theoretical part (Sect. 6.1.3) it was shown that multiple excitation experiments provide additional information. These experiments, frequently called echo experiments, have their analogues in magnetic resonance. They have been demonstrated for optical transitions, initially on a nanosecond or even longer time scale [6.11–13]. More recently, picosecond and femtosecond measurements have been reported. Successful echo experiments require a pulse area A of approximately one. For small pulse areas, the echo signal is drastically reduced, since the signal intensity is proportional to A^6 . For this reason ultrafast echo experiments are only possible when the relaxation times T_1 and T_2 are sufficiently long and when the transition dipole moment μ is large. Since 1975 ultrafast echo experiments have been performed on electronic transitions in dye solutions [6.128–130], in low-temperature solids (e.g. excitons in semiconductors [6.131, 132] and molecular crystals [6.9,133–139] on a picosecond time scale or, more recently, in dye solutions with femtosecond pulses [6.140-142]. A number of theoretical papers treat the different echo techniques [6.143-147].

In the literature different – and in some cases misleading – names have appeared for the same coherent experiment. We briefly discuss (i) the echo experiments and (ii) the induced grating experiments, two aspects of the same coherent investigation.

i) In a coherent experiment with multiple excitation pulses, the system is excited (at time zero) by a first pulse (wave vector k_a). After an evolution time t_1 a second excitation pulse (wave vector k_b) passes through the sample and interacts with the excited molecules. Rephasing of the excited molecule leads (in the case of inhomogeneous broadening) to the formation of a delayed radiation – the echo. The echo is emitted at a time $t = t_1$ after the second pulse under the well-defined phase-matching condition with wave vector $k_e = 2k_b - k_a$.

ii) In the excitation process, the polarization produced by a first excitation pulse and part of the second pulse, form an excitation grating in the sample (the induced grating) with the wave vector $k_g = k_b - k_a$. The trailing part of the second pulse or a third pulse (see Sect. 6.3.2) interacts with the grating, generating radiation at the wave vector $k_s = k_b + k_g = 2k_b - k_a$. This radiation – which forms the echo – is emitted with a time delay of $t = t_1$ in the case of inhomogeneously broadened transitions.

6.3.1 Ultrafast Two-Pulse Echo Spectroscopy

In the theoretical part [Eq. (6.7) in Sect. 6.1.2] a formal solution for the evolution of a two-level system was derived for the limiting case of light pulses with duration t_p much shorter than the system's time constants T_1 and T_2 . In the case of a two-pulse echo, two pulses of area A_a and A_b are applied to the sample with a time separation of t_1 . The resulting echo polarization is given by (6.9). The signal amplitude is proportional to $\sin A_a \sin^2 (A_b/2)$ and decays with the dephasing time T_2 . The emission direction is determined by the wave vector $k_e = 2k_b - k_a$. An important point emerges from the underlined part of (6.9): in the case of a wide inhomogeneously broadened transition the signal is emitted close to time $t = t_1$, i.e. the emission occurs delayed as a photon echo.

In a standard two-pulse echo experiment the echo energy, i.e. the time integral of the absolute square of the echo amplitude, is measured as a function of the separation t_1 between the two excitation pulses. In the case of a broad inhomogeneous line the signal is emitted only close to $t = t_1$ and its intensity decays with $\exp(-4t_1/T_2)$. For homogeneously broadened transitions the signal is emitted starting at t = 0. The decay (as a function of t_1) follows $\exp(-2t_1/T_2)$. (For intermediate line broadening see [6.14]). In order to obtain the dephasing time independently of the nature of the line broadening, only the polarisation at the time $t_e = t_1$ should be measured (this may be done by optical gating techniques). Under these conditions the signal depends on t_1 as $\exp(-4t_1/T_2)$ and is independent of the line shape. The preceding discussion shows that the two-pulse echo technique allows determination of the dephasing time T_2 even for inhomogeneously broadened transitions, where experiments with single excitation pulses fail.

A number of two-pulse echo experiments have been performed on exciton bands of molecular crystals at low temperature. For instance, the relaxation of the 0-0 transition of pentacene in naphthalene (and in p-terphenyl) was studied as a function of temperature by *Hesselink* and *Wiersma* [6.9,133]. Here the energy relaxation times T_1 are much longer ($\simeq 20$ ns) than the dephasing times T_2 and the pure dephasing times T_2^* could be readily determined from the relation $1/T_2 = 1/T_2^* + 1/(2T_1) \simeq 1/T_2^*$. The temperature dependence of T_2^* was fitted with a relaxation theory involving low-energy ($\nu/c \simeq 16$ cm⁻¹) pseudo-local phonons coupled to the pentacene transition. The experiment clearly demonstrated the importance of this relaxation channel for the dephasing of the excitonic transitions.

Recently, the two-pulse echo technique has been applied to two-dimensional excitons in GaAs-AlGaAs quantum wells by Schultheis et al. [6.132]. The authors used a synchronously pumped dye laser emitting pulses (with 12.6 ps autocorrelation width) tunable in the range of the exciton absorption band between $\lambda = 820$ nm and $\lambda = 750$ nm. A pair of pulses at the temporal separation t_1 with wave vectors k_a and k_b was focussed into a sample consisting of 78 alternating layers of GaAs and AlGaAs (thickness 102 Å and 200 Å, respectively), grown by molecular beam epitaxy. The sample was kept at 2K. The transmission spectrum of the inhomogeneously broadened exciton band is shown in the insert of Fig. 6.16 (broken curve). The echo signal was detected in the phasematching direction $2k_b - k_a$ with the help of a lock-in system. A series of data is shown in Fig. 6.16. The echo signals are plotted as a function of delay time t_1 for three different energies of the excitation photons. Curve a investigates the exciton at the low-energy side of the absorption band, curve b was measured at somewhat higher energies, and curve c was taken close to the peak of the exciton absorption.

The relaxation times of the sample do not fulfill the limit of $T_2 \ll t_p$ as assumed in the theoretical discussion of (6.19). A more detailed analysis was required in order to derive the relaxation time T_2 from the experimental curve. Together with T_1 -data from hole-burning experiments, the analysis yielded interesting numbers. Close to the peak of the exciton band (curve c) the relaxation times are fast; $T_2 \simeq 4$ ps and $T_1 = 8$ ps. Consequently, the diffracted signal intensity is small and the signal decay is very rapid. At the low-energy side of the exciton band the energy relaxation time T_1 is much longer (100 ps), while the dephasing increases to 22 ps. There is no change of the time constants T_1 and T_2 at the frequency positions a and b in the low-energy tail of the exciton band. The results are interpreted as follows: Near the peak of the exciton band, there are several contributions to the coherent decay: scattering with acoustic phonons, impurities and well thicknesses (spectral diffusion). Below the absorption peak, excitation is more localized and spectral diffusion contributes less to the dephasing pro-

Fig. 6.16. Two-pulse photon echo experiments from two-dimensional excitons in GaAs-AlGaAs quantum wells. Experimental (----) and theoretical (---) scattered intensity as a function of the delay time t_1 for three different photon energies. The data show different relaxation times T_2 depending on the spectral position of the excitation pulse within the heavy-hole exciton transition. The insert gives the scattered intensity at zero delay (solid curve) together with the transmission spectrum (dashed curve) [6.132]

cess. Very recent investigations of high-quality single quantum wells show a homogeneously broadened exciton band. Under these conditions acoustic phonon scattering is found to be the dominant broadening mechanism of the 2D excitons [6.148].

6.3.2 Three-Pulse Echos

Experiments with three incident pulses constitute an important extension of the preceding coherent techniques. A schematic of this method was shown in Fig. 6.1c. Adding a third excitation pulse – which enters the sample at a time t_2 after the second pulse – gives new possibilities for studying molecular systems. For a two-level system, the three-pulse technique allows one to determine T_1 in a coherent experiment by varying the delay time t_2 . When other molecular levels are involved in the relaxation process, a third pulse at a wavelength differing from that of the first two excitation pulses gives information on the path of the energy decay.

The three-pulse echo is calculated for a two-level system by solving (6.7) for the appropriate pulse sequence. The solution for the polarization P(t) contains

a number of different terms, which describe (i) the single-pulse excitation due to pulses a, b, and c, radiating in the directions k_a , k_b , and k_c , respectively, (ii) two-pulse echos originating from pairs of excitation pulses radiating in the direction $2k_i - k_j$ for the various pulses i, j = a, b, c, (iii) higher-order terms of the order A^5 , and finally (iv) the three-pulse echo:

$$P_{3PE}(t) \propto \int d\omega f(\omega) \exp[-i\omega(t-t_1) - (t_1+t)/T_2] G(T_1, t_2)$$

$$\times \sin A_a \sin A_b \sin A_c \exp[-i(\mathbf{k}_b + \mathbf{k}_c - \mathbf{k}_a)r] ,$$
(6.19)

where $G(T_1, t_2)$ depends on the level scheme involved. For a closed system consisting of only two states $|a\rangle$ and $|b\rangle$, $G(T_1, t_2)$ has the form $G^c(T_1, t_2) =$ $\exp(-t_2/T_1)$. For an open system, where the upper level decays to a long-lived $(\tau \gg t_1, t_2, t)$ state, which is not probed, $G(T_1, t_2)$ is $G^0(T_1, t_2) = 1 + \exp(-t_2/T_1)$. Equation (6.19) suggests a variety of possibilities for applying the three-pulse echo technique.

1) Variation of the excitation time t_1 allows the determination of the dephasing time T_2 in the case of inhomogeneously and homogeneously broadened transitions (in the same way as in the two-pulse echo experiment).

2) Variation of the time t_2 gives access to the population decay of the upper state. The experimentally observed kinetics depend on the details of the molecular system. If a closed two-level system is investigated, the coherent signal intensity decays with $\exp(-2t_2/T_1)$. A more complex time dependence is observed for an open system where the decay of the signal is proportional to $[1 + \exp(-t_2/T_1)]^2$; i.e. one observes a biexponential decay with decay times $T_1/2$ and T_1 , and the signal shows a constant background. The repopulation of the lower level $|b\rangle$ may also be deduced from the later kinetics.

3) The constant background, which is found due to the long-lived intermediate state in open systems allows accumulation of the echo by a sequence of excitation pulse pairs with a repetition rate faster than the spectral crosscorrelation time or the repopulation of the ground state. The accumulation of the grating may become so efficient that even weak cw mode-locked lasers can be used to induce a grating and to stimulate an echo.

4) Other aspects of the three-pulse echo technique may be inferred from the grating picture of the three-pulse echo experiment. The first two exciting pulses induce a population grating for the two levels coupled by the two pulses. The populations of the ground and excited state are changed. Energy transfer of either of the two grating states can be monitored. Using the third pulse at a new wavelength, it becomes possible to selectively monitor the relaxation processes. An example of such a two-color echo will be given below.

The laser systems for three-pulse or induced-grating experiments are cw mode-locked dye lasers with a repetition rate of ~ 100 MHz and a mean power of 30 mW. In some cases, amplified pulses from cw mode-locked dye lasers at

repetition rates of 10-100 Hz were applied. For high repetition rate lasers it is advantageous to use perpendicular polarizations for the excitation and probing process in order to remove artifacts due to temperature changes.

a) Measurements of Energy Relaxation Times

A number of interesting grating experiments were performed by Ippen's group using femtosecond light pulses [6.140-142]. In Fig. 6.17 the three-pulse echo experiment was done with amplified 75 ps pulses ($\lambda = 620$ nm) from a colliding pulse mode-locked ring dye laser (repetition rate of the amplified pulses 10 Hz) [6.147]. The first two excitation pulses with wave vectors k_a and k_b entered the sample simultaneously, i.e. $t_1 = 0$. The scattered energy induced by a third pulse is plotted in Fig. 6.17 as a function of the delay time t_2 . Two different samples, the dyes cresyl violet and oxazine 720, were investigated and the results are shown in Fig. 6.17a and b, respectively. Both dyes were embedded in a thin film of a polymethylmethacrylate (PMMA) polymer and held at 15 K. The excitation laser pulses populate vibronic levels in S_1 , the first excited electronic state of the dyes. The first decay of the signal occurs on a time scale of several 100 fs. It results from an energy redistribution within the electronic state of the dye molecules. Similar rapid relaxation processes were found for dye molecules in solutions at room temperature [6.149]. At later times t_2 , longer than 2 ps, a constant level of the signal is approached which decays within nanoseconds with the S_1 lifetime. The different amplitudes of the slower component found for the two dyes suggest complicated relaxation processes. They cannot be explained by simple closed or open two-level systems.

Fig. 6.17. Three-pulse scattering experiment from the organic dye molecules cresyl violet (a) and oxazine 720 (b) at 15 K using femtosecond light pulses at 620 nm. The scattered energy is plotted as a function of time t_2 for zero relative delay t_1 . The signal decay with a time constant of several hundred femtoseconds corresponds to the energy redistribution within the first excited electronic states of the dye molecules [6.142]

b) Measurements of Dephasing Times

Ippen et al. have extended their experiments to measure the short dephasing times in dye molecules. The dephasing processes were determined by varying the time t_1 , while keeping t_2 constant at 1.3 ps. The signal scattered by the third pulse was detected in two directions $k_4 = k_c + k_b - k_a$ and $k_5 = k_c + k_a - k_b$. It has been shown in [6.142] that inhomogeneously broadened transitions with long dephasing times $T_2 > t_p$ give scattered signal curves which do not peak at time zero.

Figure 6.18 shows the results for cresylviolet in PMMA at 15 K (Fig. 6.18a) and at 290 K (Fig. 6.18b). The asymmetry is detected for the low-temperature sample. One observes a 60 fs separation of the peaks of the signal curves which demonstrates the presence of inhomogeneous line broadening. With increasing temperature the splitting of the peaks decreases. At room temperature (see Fig. 6.18b) the coincidence of the two signal curves suggests that homogeneous broadening dominates. The same experiments have been performed with Nile blue and oxazine 720. For both dyes the scattered curves coincide over the entire temperature range (15-300 K). These results have been explained as follows: For Nile blue and oxazine 720, the excitation photons at 620 nm have energies of several hundred wavenumbers in excess of the 0-0 transition energy. At large excess energies, background states of high densities exist and a rapid decay of the initially prepared states into these background states can occur. In cresyl violet, on the other hand, low-lying vibronic states, interacting with a small number of background states, were populated; these decay relatively slowly at low temperatures.

Fig. 6.18a, b. Three-pulse echo experiments for the study of dephasing processes in large dye molecules. For a constant pulse separation, $t_2 = 1.3$ ps, the first delay time t_1 was varied and the three-pulse echo energy was detected in the two directions $k_4 = k_c + k_b - k_a$ and $k_5 = k_c + k_a - k_b$. The asymmetry found in (a) – cresyl violet in PMMA at 15 K – indicates the presence of inhomogeneous line broadening. At higher temperatures the asymmetry disappears. At room temperature (b) the two curves coincide. Here, homogeneous line broadening is dominant [6.142]

Fig. 6.19a, b. Accumulated photon echo from the nitrogen bond exciton in GaP: N at 1.5 K ($\lambda = 534.95 \text{ nm}$). The echo intensity is plotted in a linear scale (a) and in a logarithmic scale (b) versus delay time t_1 . The low-temperature decay time of 25.5 ps is interpreted as the exciton relaxation time out of the initially excited A state [6.131]

c) Accumulated Three-Pulse Echos

Accumulated three-pulse echos have been observed in a number of molecular crystals and semiconductors where the existence of a long-lived bottleneck state allowed the accumulation of the population grating [6.9,134,136-138]. The experiments discussed here were performed by Wiersma's group [6.131]. The authors investigated nitrogen-doped GaP with a N-concentration of $1.3 \times$ 10^{16} cm⁻³. The nitrogen bound exciton at 534.95 nm was investigated at 1.5 K. In optical absorption only the A-state (J = 1) can be reached from the ground state (J = 0) while the energetically lower B-state (J = 2) is forbidden and is only seen in emission. The long lifetime of $4\,\mu$ s makes the *B*-state a bottleneck state. In the experiment a synchronously pumped picosecond dye laser was used at the high repetition rate of 80 MHz without amplification. The time dependence of the accumulated echo intensity as a function of the delay time t_1 is plotted on a linear scale and logarithmic scale in Fig. 6.19a and b, respectively. From Fig. 6.19b, a low-temperature decay time of 25.5 ps was deduced. This decay time is interpreted as the exciton relaxation time from the A- to the B-state. The rapid transfer process explains the absence of the A-line in the low-temperature emission spectrum. The temperature dependence of the decay times gives two activation energies. It appears that two distinct interaction processes determine the exciton lifetime.

d) Two-Color Echos

The three-pulse echo proves to be a versatile tool for the study of vibrational deactivation processes when different laser frequencies are applied for the excitation and probing processes. In the upper part of Fig. 6.20 a four-level system (A) is depicted, where the vibrational states $|a\rangle$ and $|b\rangle$ belong to the electronic

Fig. 6.20. Two-color stimulated photon echos applied to the study of energy relaxation pathways. Left part: Level scheme of the two-color experiment. In case A the first two excitation pulses 1 and 2 generate the population grating in states $|a\rangle$ and $|d\rangle$. Pulses 3 has a wavelength probing only the grating of levels $|b\rangle$ and $|d\rangle$. Varying the delay time t_2 between pulses 2 and 3 allows one to measure the decay of the population of state $|d\rangle$ (curve A). In case B the wavelength of the probing pulse is selected in order to probe states $|b\rangle$ and $|c\rangle$. An echo found with this probing wavelength allows one to follow the population grating of state $|c\rangle$ or $|b\rangle$ built up in the course of relaxation out of state $|d\rangle$. Curve B in the right part of the figure shows a delayed build-up of this echo suggesting the existence of additional levels $|i\rangle$ populated during the relaxation process [6.131]

ground state, and $|c\rangle$ and $|d\rangle$ to the excited electronic state. With two excitation pulses 1 and 2, a population grating is generated in the levels $|a\rangle$ and $|d\rangle$; the probe pulse 3 connects levels $|b\rangle$ and $|d\rangle$. When the inhomogeneous broadening in the different levels is correlated, the third pulse generates an echo signal. The echo amplitude measured as a function of the time t_2 monitors the population decay of state $|d\rangle$. Data from a related experiment are shown in curve A of the right part of Fig. 6.20. The system pentacene in naphthalene was investigated. The first excitation pulse at 17 335 cm⁻¹ prepares a vibrational level at 747 cm⁻¹ above the absorption origin. The probing pulse at $v_3 = 16579 \text{ cm}^{-1}$ monitors the occupation of state $|d\rangle$; curve A may be fitted by an exponential decay with a time constant of 33 ps. With the smaller probing frequency $v_3/c = 15832 \text{ cm}^{-1}$ transitions between levels $|b\rangle$ and $|c\rangle$ are monitored [see Fig. 6.20, scheme (B)]. According to the experimental curve B in the right part of Fig. 6.20 no signal is detected at time zero, i.e. no population is found in the two levels $|b\rangle$ and $|c\rangle$. The echo intensity starts to increase delayed. Within 100 ps it reaches a plateau, where the signal stays constant for the observation time of 800 ps (the lifetime of state $|c\rangle$ is 20 ns). The echo-curve B indicates a population transfer from level $|d\rangle$ to level $|c\rangle$. A more careful inspection of the experimental data suggests a complex transfer process. The experimental echo-curve B deviates from the broken curve which is calculated for a direct population transfer from state $|d\rangle$ to state $|c\rangle$. As a consequence, the authors conclude that there exist intermediate levels $|i\rangle$ with short lifetimes of the order of 20 ps involved in the relaxational processes from level $|d\rangle$ to level $|c\rangle$.

This section clearly demonstrates the power of time-resolved multiple-pulse coherent techniques. The possibility of measuring dephasing times T_2 for inhomo-

geneously broadened transitions, and also of studying relaxational path ways is very promising. We mention corresponding experiments in the frequency domain: The techniques of spectral hole-burning have become well established. Holes are first "burnt" in an inhomogeneously broadened transition and the widths are subsequently monitored by properly delayed pulses. From the frequency width, the coherent dephasing time may be determined, while the decay of the holes gives information on the energy relaxation T_1 due to cross correlation within the inhomogeneously broadened line or due to the energy decay to other levels. Time- and frequency-domain methods are intimately related. Optimum information is gained by a combination of both techniques.

6.4 Summary

In this chapter we have discussed more than thirty investigations of time-resolved coherent spectroscopy. Many more experiments may be found in the literature. From the various time-resolved coherent techniques we can obtain the following information:

- i) whether a transition is homogeneously broadened,
- ii) the dephasing time of homogeneously or inhomogeneously broadened transitions,
- iii) dominant line broadening mechanisms,
- iv) pure dephasing times,
- v) energy relaxation times,
- vi) mechanisms and pathways of energy relaxation,
- vii) collision times,
- viii) nonresonant susceptibilities,
- ix) transition frequencies within congested spectral regions,
- x) precise frequency differences of vibrational modes separated by up to 10 THz.

6.5 Appendix

For the analytical solution of (6.3-5) we introduced in Sect. 6.1.2 the vectorial form $\rho(t)$ of the density matrix and the transformation matrices $\underline{X}(A)$ and $\underline{Y}(t)$ for the excitation process and the free-evolution process, respectively. In detail they are given as follows:

$$\rho_1(t) = \rho_{bb} ; \qquad \rho_2(t) = \rho_{ba} ; \qquad \rho_3(t) = \rho_{ab} ; \qquad \rho_4(t) = \rho_{aa}$$
(6.20)

$$Y(t) = \begin{pmatrix} 1 & 0 & 0 & Y_{14} \\ 0 & e^{(id-1/T_2)t} & 0 & 0 \\ 0 & 0 & e^{(-id-1/T_2)t} & 0 \\ 0 & 0 & 0 & e^{-t/T_1} \end{pmatrix}$$
(6.21)
$$X(A_j) = \frac{1}{2} \begin{pmatrix} 1 + \cos A_j & -i\sin A_j e^{ik_j r} & i\sin A_j e^{-ik_j r} & 1 - \cos A_j \\ -i\sin A_j e^{-ik_j r} & 1 + \cos A_j & (1 - \cos A_j) e^{-2ik_j r} & i\sin A_j e^{-ik_j r} \\ i\sin A_j e^{ik_j r} & (1 - \cos A_j) e^{2ik_j r} & 1 + \cos A_j & -i\sin A_j e^{ik_j r} \\ 1 - \cos A_j & i\sin A_j e^{ik_j r} & -i\sin A_j e^{-ik_j r} & 1 + \cos A_j \end{pmatrix}$$
(6.22)

where A_j is the pulse area of the excitation pulse, k_j is the wave vector. The matrix element Y_{14} depends on the type of two-level system used. When a closed two-level system is treated, where the system is only in level $|a\rangle$ or $|b\rangle$, Y_{14} becomes $Y_{14} = 1 - \exp(-t/T_1)$. For an open system, where level $|a\rangle$ decays into a long-lived state $|c\rangle$, Y_{14} vanishes: $Y_{14} = 0$.

References

- 6.1 J.A. Giordmaine, W. Kaiser: Phys. Rev. 144, 676 (1966)
- 6.2 S.F. Fischer, A. Laubereau: Chem. Phys. Lett. 35, 6 (1975)
- 6.3 D.W. Oxtoby: Adv. Chem. Phys. 40, 1 (1979)
- 6.4 R. Kubo: In Fluctuations, Relaxation and Resonance in Magnetic Systems, ed. by D. ter Haar (Plenum, New York 1962) p. 101
- 6.5 R.G. Gordon: Adv. Magn. Reson. 3, 1 (1968)
- 6.6 R.G. Gordon: J. Chem. Phys. 39, 2788 (1963)
- 6.7 A. Laubereau, W. Kaiser: Rev. Mod. Phys. 50, 607 (1978)
- 6.8 A. Penzkofer, A. Laubereau, W. Kaiser: Progr. Quant. Electron. 6, 55 (1979)
- 6.9 W.H. Hesselink, D.A. Wiersma: J. Chem. Phys. 73, 648 (1980)
- 6.10 A. Yariv: Quantum Electronics (Wiley, New York 1975) p. 372
- 6.11 N.A. Kurnit, I.D. Abella, S.R. Hartmann: Phys. Rev. Lett. 13, 567 (1964)
- 6.12 I.D. Abella, N.A. Kurnit, S.R. Hartmann: Phys. Rev. 141, 391 (1966)
- 6.13 S.R. Hartmann: IEEE J. Quant. Electron. QE-4, 802 (1968)
- 6.14 R.F. Loring, S. Mukamel: Chem. Phys. Lett. 114, 426 (1985)
- 6.15 R.G. Gordon: J. Chem. Phys. 43, 1307 (1965)
- 6.16 R.G. Gordon: J. Chem. Phys. 44, 1830 (1966)
- 6.17 G. Placzek: Handbuch der Radiologie, ed. by E. Marx (Akad. Verlagsges., Leipzig 1934) p. 1
- 6.18 N. Kohles, A. Laubereau: Appl. Phys. B 39, 141 (1986)
- 6.19 B. Dick: Chem. Phys. 113, 131 (1987)
- 6.20 N. Bloembergen: Am J. Phys. 35, 989 (1967)
- 6.21 W. Kaiser, M. Maier: In Laser Handbook, Vol. 2, ed. by F.T. Arecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) p. 1077
- 6.22 S.A. Akhmanov: Mater. Res. Bull. 4, 455 (1969)
- 6.23 R.L. Carman, F. Shimizu, C.S. Wang, N. Bloembergen: Phys. Rev. A 2, 60 (1970)
- 6.24 M. Maier, W. Kaiser, J.A. Giordmaine: Phys. Rev. 177, 580 (1969)

- 6.25 Y.R. Shen, N. Bloembergen: Phys. Rev. 137A, 1786 (1965)
- 6.26 N. Bloembergen: Nonlinear Optics (Benjamin, New York 1965)
- 6.27 P.D. Maker, R.W. Terhune: Phys. Rev. 137A, 801 (1965)
- 6.28 A. Penzkofer, W. Kaiser: Opt. Quant. Electron. 9, 315 (1977)
- 6.29 D. von der Linde, A. Laubereau, W. Kaiser: Phys. Rev. Lett. 26, 954 (1971)
- 6.30 R.R. Alfano, S.L. Shapiro: Phys. Rev. Lett. 26, 1247 (1971)
- 6.31 C.H. Lee, D. Richard: Appl. Phys. Lett. 32, 168 (1978)
- 6.32 J.P. Heritage: Appl. Phys. Lett. 34, 470 (1979)
- 6.33 J. Kuhl, D. von der Linde: In Ultrafast Phenomena 111, Proc. Topical Meeting, Garmisch-Partenkirchen, Germany, June 1982, Springer Ser. Chem. Phys., Vol. 23, ed. by K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser (Springer, Berlin, Heidelberg 1982) p. 201
- 6.34 R. Leonhardt, W. Holzapfel, W. Zinth, W. Kaiser: Chem. Phys. Lett. 133, 373 (1987)
- 6.35 A. Laubereau: Chem. Phys. Lett. 27, 600 (1974)
- 6.36 A. Laubereau, G. Wochner, W. Kaiser: Opt. Commun. 17, 91 (1976)
- 6.37 W. Zinth, H.J. Polland, A. Laubereau, W. Kaiser: Appl. Phys. B 26, 77 (1981)
- 6.38 H. Graener, A. Laubereau, J.W. Nibler: Opt. Lett. 9, 165 (1984)
- 6.39 M.L. Geirnaert, G.M. Gale, C. Flytzanis: Phys. Rev. Lett. 52, 815 (1984)
- 6.40 M.L. Geirnaert, G.M. Gale: Chem. Phys. 86, 205 (1984)
- 6.41 J. Chesnoy: Chem. Phys. Lett. **125**, 267 (1986)
- 6.42 G.M. Gale, P. Guyot-Sionnest, W.Q. Zheng: Opt. Commun. 58, 395 (1986)
- 6.43 M. van Exter, A. Lagendijk: Opt. Commun. 56, 191 (1985)
- 6.44a W. Zinth, R. Leonhardt, W. Holzapfel, W. Kaiser: J. Quant. Electron. QE-24, 455 (1988)
- 6.44b R. Leonhardt, W. Holzapfel, W. Zinth, W. Kaiser: private communication
- 6.45 D.W. Oxtoby, D. Levesque, J.J. Weis: J. Chem. Phys. 68, 5528 (1978)
- 6.46 J.P. Riehl, D.J. Diestler: J. Chem. Phys. 64, 2593 (1976)
- 6.47 D.J. Diestler, R.S. Wilson: J. Chem. Phys. 62, 1572 (1975)
- 6.48a P.A. Madden, R.M. Lynden-Bell: Chem. Phys. Lett. 38, 163 (1976)
- 6.48b R.M. Lynden-Bell, G.C. Tabisz: Chem. Phys. Lett. 46, 175 (1977)
- 6.49 S. Bratos, E. Marechal: Phys. Rev. A 4, 1078 (1971)
- 6.50 W.G. Rothschild: J. Chem. Phys. 65, 455 (1976)
- 6.51 W.G. Rothschild: J. Chem. Phys. 65, 2958 (1976)
- 6.52 D.J. Diestler, J. Manz: Mol. Phys. 33, 227 (1977)
- 6.53 R. Wertheimer: Mol. Phys. 35, 257 (1978)
- 6.54 R. Wertheimer: Chem. Phys. Lett. 52, 224 (1977)
- 6.55 D. Oxtoby: J. Chem. Phys. 70, 2605 (1979)
- 6.56 R.M. Shelby, C.B. Harris, P.A. Cornelius: J. Chem. Phys. 70, 34 (1979)
- 6.57 S.F. Fischer, A. Laubereau: Chem. Phys. Lett. 55, 189 (1978)
- 6.58 S. Mukamel: Phys. Rev. A 26, 617 (1982)
- 6.59 S. Mukamel: Phys. Rev. A 28, 3480 (1983)
- 6.60 W.G. Rothschild, M. Perrot, F. Guillaume: Chem. Phys. Lett. 128, 591 (1986)
- 6.61 W. Zinth, A. Laubereau, W. Kaiser: Opt. Commun. 26, 457 (1978)
- 6.62 F.M. Kamga, M.G. Sceats: Opt. Lett. 5, 126 (1980)
- 6.63 M.G. Sceats, F. Kamga, D. Podolski: In *Picosecond Phenomena 11*, Proc. Topical Meeting, Cape Cod, Mass., USA, June 1980, Springer Ser. Chem. Phys., Vol. 14, ed. by R.M. Hochstrasser, W. Kaiser, C.V. Shank (Springer, Berlin, Heidelberg 1980) p. 348
- 6.64 W. Zinth: Opt. Commun. 34, 479 (1980)
- 6.65 B.K. Rhee, W.E. Bron, J. Kuhl: Phys. Rev. B 30, 7358 (1984)
- 6.66 S. Velsko, J. Trout, R.M. Hochstrasser: J. Chem. Phys. 79, 2114 (1983)
- 6.67 D.E. McCumber, M.D. Sturge: J. Appl. Phys. 34, 1682 (1963)
- 6.68 R. Orbach: IEEE Trans. Sonics Ultrason. SU14, 140 (1967)
- 6.69 R. Orbach, L.A. Vredevoe: Physics 1, 91 (1964)
- 6.70 P.G. Klemens: Phys. Rev. 148, 845 (1966)

- 6.71 I.I. Abram, R.M. Hochstrasser: J. Chem. Phys. 72, 3617 (1980)
- 6.72 S. Velsko, R.M. Hochstrasser: J. Chem. Phys. 82, 2180 (1985)
- 6.73 G.J. Small: Chem. Phys. Lett. 57, 501 (1978)
- 6.74 K.E. Jones, A.H. Zewail: In *Advances in Laser Chemistry*, ed. by A.H. Zewail (Springer, New York 1978) p. 196
- 6.75 C.B. Harris, R.M. Shelby, P.A. Cornelius: Phys. Rev. Lett. 38, 1415 (1977)
- 6.76 C.B. Harris J. Chem. Phys. 67, 5607 (1977)
- 6.77 P. de Bree, D.A. Wiersma: J. Chem. Phys. 70, 790 (1978)
- 6.78 R.G. Delle Valle, P.F. Fracassi, R. Righini, S. Califano: Chem. Phys. 74, 179 (1983)
- 6.79 D.D. Dlott: Ann. Rev. Phys. Chem. 37, 157 (1986)
- 6.80 W.H. Hesselink, D.A. Wiersma: Chem. Phys. Lett. 65, 300 (1979)
- 6.81 D. von der Linde, J. Kuhl, H. Klingenberg: Phys. Rev. Lett. 44, 1505 (1980)
- 6.82 A. Laubereau, D. von der Linde, W. Kaiser: Phys. Rev. Lett. 27, 802 (1971)
- 6.83a W.E. Bron, J. Kuhl, B.K. Rhee: Phys. Rev. B 34, 6961 (1986)
- 6.83b J. Kuhl, W.E. Bron: Solid State Commun. 49, 935 (1984)
- 6.84 G.M. Gale, A. Laubereau: Opt. Commun. 44, 273 (1983)
- 6.85 A. Laubereau, G. Wochner, W. Kaiser: Opt. Commun. 14, 75 (1975)
- 6.86 A. Laubereau: In Semiconductors Probed by Ultrafast Laser Spectroscopy, Vol. 1, ed. by R.R. Alfano (Academic, Orlando 1984) p. 275
- 6.87 G.M. Gale, F. Vallee, C. Flytzanis: Phys. Rev. Lett. 57, 1867 (1986)
- 6.88 G.M. Gale, P. Guyot-Sionnest, W.Q. Zheng, C. Flytzanis: Phys. Rev. Lett. 54, 823 (1985)
- 6.89 G.M. Gale, F. Vallee, C. Flytzanis: In *Time Resolved Vibrational Spectroscopy*, Proc. Conf. June 1985, Springer Proc. Phys. IV, ed. by A. Laubereau, M. Stockburger (Springer, Berlin, Heidelberg 1985) p. 117
- 6.90 C. Flytzanis, G.M. Gale, M.L. Geirnaert: In Applications of Picosecond Spectroscopy to Chemistry, ed. by K.B. Eisenthal (Reidel, Amsterdam 1984) p. 205
- 6.91 P.L. Decola, R.M. Hochstrasser, H.P. Frommsdorff: Chem. Phys. Lett. 72, 1 (1980)
- 6.92 B.H. Hesp. D.A. Wiersma: Chem. Phys. Lett. 75, 423 (1980)
- 6.93 K. Duppen, B.H. Hesp, D.A. Wiersma: Chem. Phys. Lett. 79, 399 (1981)
- 6.94 K. Duppen, D.P. Weitekamp, D.A. Wiersma: J. Chem. Phys. 79, 5835 (1983)
- 6.95 C.L. Schosser, D.D. Dlott: J. Chem. Phys. 80, 1394 (1984)
- 6.96 F. Ho, W.S. Tsay, J. Trout, R.M. Hochstrasser: Chem. Phys. Lett. 83, 5 (1981)
- 6.97 F. Ho, W.S. Tsay, S. Velsko, R.M. Hochstrasser: Chem. Phys. Lett. 97, 141 (1983)
- 6.98 S. Velsko, J. Trout, R.M. Hochstrasser, J. Chem. Phys. 79, 2114 (1983)
- 6.99 T.J. Trout, S. Velsko, R. Bozio, P.L. Decola, R.M. Hochstrasser: J. Chem. Phys. 81, 4746 (1984)
- 6.100 S. Velsko, R.M. Hochstrasser: J. Chem. Phys. 89, 2240 (1985)
- 6.101 R.M. Hochstrasser: In *Time Resolved Vibrational Spectroscopy*, Proc. Conf. June 1985, Springer Proc. Phys. IV, ed. by A. Laubereau, M. Stockburger (Springer, Berlin, Heidelberg 1985) p. 96
- 6.102 T.J. Kosic, R.E. Cline Jr., D.D. Dlott: J. Chem. Phys. 81, 4932 (1984)
- 6.103 R.F. Loring, S. Mukamel: In *Time Resolved Vibrational Spectroscopy*, Proc. Conf. June 1985, Springer Proc. Phys. IV, ed. by A. Laubereau, M. Stockburger (Springer, Berlin, Heidelberg 1985) p. 293
- 6.104 H.R. Telle, A. Laubereau: Chem. Phys. Lett. 94, 467 (1983)
- 6.105 W. Zinth, W. Kaiser: In Organic Molecular Aggregates, Springer Ser. Solid-State Sci., Vol. 49, ed. by P. Reinecker, H. Haken, H.C. Wolf (Springer, Berlin, Heidelberg 1983) p. 124
- 6.106 R. Leonhardt, W. Holzapfel, W. Zinth, W. Kaiser: private communication
- 6.107a H. Graener, A. Laubereau: Opt. Commun. 54, 141 (1985)
- 6.107b H. Graener, A. Laubereau: In *Time Resolved Vibrational Spectroscopy*, Proc. Conf. June 1985, Springer Proc. Phys. IV, ed. by A. Laubereau, M. Stockburger (Springer, Berlin, Heidelberg 1985) p. 11

- 6.108 S. De Silvestri, J.G. Fujimoto, E.P. Ippen, E.B. Gamble Jr., L.R. Williams, K.A. Nelson: Chem. Phys. Lett. 116, 146 (1985)
- 6.109 A. Laubereau, G. Wochner, W. Kaiser: Chem. Phys. 28, 363 (1978)
- 6.110 A. Laubereau, G. Wochner, W. Kaiser: Phys. Rev. A 13, 2212 (1976)
- 6.111 C.B. Harris, H. Auweter, S.M. George: Phys. Rev. Lett. 44, 737 (1980)
- 6.112 S.M. George, H. Auweter, C.B. Harris: J. Chem. Phys. 73, 5573 (1980)
- 6.113 S.M. George, C.B. Harris: Phys. Rev. A 28, 863 (1983)
- 6.114 S.M. George, A.L. Harris, M. Berg, C.B. Harris: J. Chem. Phys. 80, 83 (1984)
- 6.115 J.C. Diels: IEEE J. Quant. Electron. QE-16, 1020 (1980)
- 6.116 R.F. Loring, S. Mukamel: J. Chem. Phys. 83, 2116 (1985)
- 6.117 W. Zinth, W. Kaiser: In Lecture Notes in Physics, Vol. 182, ed. by J.D. Harvey, D.F. Walls (Springer, New York 1983) p. 152
- 6.118 W. Zinth, M.C. Nuss, W. Kaiser: Chem. Phys. Lett. 88, 257 (1982)
- 6.119 W. Zinth, M.C. Nuss, W. Kaiser: Opt. Commun. 44, 262 (1983)
- 6.120 W. Zinth, M.C. Nuss, W. Kaiser: Phys. Rev. A 30, 1139 (1984)
- 6.121 M.C. Nuss, W. Zinth, W. Kaiser: J. Opt. Soc. Am. B 2, 322 (1985)
- 6.122 M.A. Collins, P.A. Madden, A.D. Buckingham: Chem. Phys. 94, 291 (1985)
- 6.123 M.D. Crisp: Phys. Rev. A 1, 1604 (1970)
- 6.124 H.J. Hartmann, A. Laubereau: Opt. Commun. 47, 117 (1983)
- 6.125 H.J. Hartmann, A. Laubereau: J. Chem. Phys. 80, 4663 (1984)
- 6.126 H.J. Hartmann, K. Bratengeier, A. Laubereau: Chem. Phys. Lett. 108, 555 (1984)
- 6.127 H.J. Hartmann, H. Schleicher, A. Laubereau: Chem. Phys. Lett. 116, 392 (1985)
- 6.128 D.W. Phillion, D.J. Kuizenga, A.E. Siegman: Appl. Phys. Lett. 27, 85 (1975)
- 6.129 A.E. Siegman: Appl. Phys. Lett. 30, 21 (1977)
- 6.130 R. Trebino, A.E. Siegman: J. Chem. Phys. 79, 3621 (1983)
- 6.131 K. Duppen, L.W. Molenkamp, D.A. Wiersma: Physica 127B, 349 (1984)
- 6.132 L. Schultheis, M.D. Sturge, J. Hegarty: Appl. Phys. Lett. 47, 995 (1985)
- 6.133 W.H. Hesselink, D.A. Wiersma: Chem. Phys. Lett. 56, 227 (1978)
- 6.134 W.H. Hesselink, D.A. Wiersma: Phys. Rev. Lett. 43, 1991 (1979)
- 6.135 W.H. Hesselink, D.A. Wiersma: J. Chem. Phys. 74, 886 (1981)
- 6.136 L.W. Molenkamp, D.A. Wiersma: J. Chem. Phys. 80, 3054 (1984)
- 6.137 K. Duppen, D.P. Weitekamp, D.A. Wiersma: Chem. Phys. Lett. 108, 551 (1984)
- 6.138 K. Duppen, D.P. Weitekamp, D.A. Wiersma: Chem. Phys. Lett. 106, 147 (1984)
- 6.139 L.W. Molenkamp, D.P. Weitekamp, D.A. Wiersma: Chem. Phys. Lett. 99, 382 (1983)
- 6.140 A.M. Weiner, E.P. Ippen: Opt. Lett. 9, 53 (1984)
- 6.141 S. De Silvestri, A.M. Weiner, J.G. Fujimoto, E.P. Ippen: Chem. Phys. Lett. 112, 195 (1984)
- 6.142 A.M. Weiner, S. De Silvestri, E.P. Ippen: J. Opt. Soc. Am. B 2, 654 (1985)
- 6.143 J.L. Skinner, H.C. Andersen, M.D. Fayer: J. Chem. Phys. 75, 3195 (1981)
- 6.144 W.H. Hesselink, D.A. Wiersma, J. Chem. Phys. 75, 4192 (1981)
- 6.145 D.P. Weitekamp, K. Duppen, D.A. Wierma: Phys. Rev. A 27, 3089 (1983)
- 6.146 H. Paerschke, K.E. Süsse, B. Wilhelmi: Opt. Quant. Electron. 15, 41 (1983)
- 6.147 J.G. Fujimoto, T.K. Yee: Appl. Phys. B 34, 55 (1984)
- 6.148 L. Schultheis, A. Honold, J. Kuhl, K. Köhler, C.W. Tu: Phys. Rev. B 34, 9027 (1986)
- 6.149 A.M. Weiner, E.P. Ippen: Chem. Phys. Lett. 114, 456 (1985)

Subject Index

Aberration correction 67 Absorption 314 - grating 66 - saturation 283 - spectra of electron-hole plasmas 131 Accumulated echo 268, 271 Acetone 247 Acetonitrile 247 Acetylene (C_2H_2) 286 Acoustic phonon 86 Acousto-optic mode-locking 14 Active mode-locking 7 Adiabatic photodissociation 338 ADP (ammonium dihydrogen phosphate) 40, 41, 44, 50, 52 Adsorbates 95 Ag (silver) 94, 95 AgBr 91 AgCl 94 AgGaS₂ 46 Air/liquid interface 96 Air/solid interface 96 Au (gold) 94 Aluminium 176 Amino acids 254 Amorphization 161 Amplification 19 Angle tuning 47, 52 Anharmonic coupling 292, 311 - intramolecular 290 Anharmonic intramolecular interactions 286 Anharmonic mixing 291 Anharmonicities of potential 286 Anisotropic Raman tensor 243 Anisotropy of Raman polarization 81 Antenna energy transfer 390 Approximate phase-matching 37 Aqueous solution 65 Artificial nonlinearity 92 Association of alcohol molecules 290 Autocorrelation function 89 Autocorrelation measurements 56 Automatic phase-matching 65, 72, 77

7-azaindole dimer 348 Azulene 300 Backward emission 73 Bacterial reaction centers 384 Bacteriorhodopsin 396 Bandwidth product 56 Barium sodium niobate (Ba₂NaNb₃O₁₅) 49 Barium vapor 80 Bathorhodopsin 401 Beam divergence 38 Benzene alcohol 97, 253, 258 Benzophenon 330 1.1'-binaphthyl 323 Binary collisions 248 Biradicals 339 Bistability 91 BK-7 glass 91 Bleaching dynamics of organic dyes 314 Bleaching sequence 396 Boltzmann factor 302 Borosilicate glass 69 Bound exciton 93 Bragg scattering 84, 96 Brilliant green 87 Buffer gas 80 Cadmium 62 Cadmium sulfide 91, 93, 116, 134 Calcite 63, 149 Carbenes 333, 334 Carrier thermalization 137 CARS 63, 66, 250 Cascade process 42 CCl₄ 249, 257, 260 CDA (CsH₂AsO₄) 41 CdS 91, 93, 116, 134 CdSe 134 Cesium vapor 80 CH₂BrCl 256 CH₃CCl₃ 81 CH₃I 82 Charge density probing 219

Charge transfer 329 Charged particle emission 172 Chemical intermediates 329 Chirp 25 Chlorobenzene 66 Cholesteric liquid crystals 61 CO₂ 158 Coherence peak 67, 88 Coherence time t_c 89 Coherent anti-Stokes Raman probing 59 Coherent anti-Stokes Raman scattering see CARS 63, 66, 250 Coherent artifact 138 Coherent spectroscopy 253 - in solids 251 Collision time 255 Collision-induced transitions 290 Color center laser 22 Composite materials 97 Continuum generation 90, 98 Conversion efficiency 38, 40, 49, 78 Coumarin 96, 294, 298 CPM laser 16, 30 Cresyl violet 269 Cross-correlation curve 285 Crown glass K8 97 Crystal damage 53 CS₂ 66, 67, 68 (Fig. 3.12c), 72, 97, 157 CuCl 116 Cyanine dyes 61 Cyclohexane C₆H₁₂ 249 D₂ 98 D₂O 44, 70, 90 Degenerate four-wave mixing (DFWM) 17, 64, 66, 70, 72, 97 Degenerate parametric amplification 41 Density of states 289, 294 Dephasing in liquids 247 Dephasing time T_2 75, 238 Depopulation lifetimes see Energy relaxation time T_1 310, 313 Diamond 149, 252 Dielectric breakdown 54, 62 Difference-frequency generation 45 Difference-frequency resonance 69 Diode laser 24 Distributed feedback laser 23, 88 DODCI 71 Double proton transfer 348 Double resonance of nonlinear susceptibility 74 Down conversion 45, 47, 54, 56 Electric dipole transition 241 Electrical isolation 213

Electrical transmission lines 209 Electron donor-acceptor complexes 332 Electron transfer to quinone 389 Electron-hole scattering 190 Electronic autocorrelation measurement 203 Electro-optic Cherenkov radiation 208 Electro-optic wafer prober 218 Energy decay law 307 Energy dissipation to surroundings 296 Energy equalization 284, 309, 313 Energy exchange 292, 294 Energy relaxation time T_1 236, 238, 268, 269, 306 Energy transfer in chlorophylls 390 Energy transfer law 305 Energy transfer to translation 287 Excess population 281 Excited-state proton transfer 341 Factor group 253 Far infrared 45, 52, 53 - applications 221 - generation 46, 47 Femtosecond continuum 51, 91 Femtosecond dye laser 17 Fermi resonance 158, 290 - mixing 292 Fifth harmonic generation 62 Fifth-order correlation function 65 Flow of vibrational energy 286 Fluorescence 368, 404 - excitation spectrum 299 Fourier-transform Raman spectroscopy 259 Four-photon mixing process 69 Fourth harmonic 43 Four-wave difference frequency 63 Four-wave mixing 64, 68, 83, 90, 98 Four-wave up-conversion 62 Frequency mixing 43 Frequency shift 90 Frozen-wave generator 222 Fuchsin 61 Fused silica 70 GaAs 91, 117, 131, 153, 161, 175, 266 Gain coefficient 75 Gain of electron-hole plasmas 131 Gain factor 47 Gain measurements 314 Gain saturation 76 GaP 150, 251, 252, 271 Gaussian beam 38 Ge (germanium) 87, 94, 161

Germinate reactions with CO₂, NO, and O₂ 374 Giant-pulse lasers 10 Green plant reaction centers 395 Group delay 38, 41, 42, 77 Group velocity 116, 117 – dispersion 38

H,O - 90 HCl 263 Halorhodopsin 409 Heat conduction 308 Heat pipe 61, 63, 80 Helical structure 61 Heme proteins 357-380 Hexafluoroisopropanol 61 Higher-order cross correlation 59 Higher-order scattering 86 High-power photoconductors 226 High-speed photodetectors 214 High-speed transistors 215 Homogeneously broadened transition 239, 265 Hot-phonon effects 137 Hybrid mode-locking 18 Hydrogen atom transfer 330 Hydrogen gas 77 Hysteresis 92, 96

 I_2 (iodine) 328 Image reconstruction 72 Impulsive stimulated Brillouin scattering 86 Impulsive stimulated scattering 78 Incoherent phonons 152 Indigo 345 Induced absorption spectra 119 Induced birefringence 67 Induced dichroism 314 Induced population grating 68, 83 Infrared bleaching 283 Infrared continuum 55 Infrared spectra 367 InGaAs 136 Inhomogeneous broadening 239, 259 Inhomogeneous line 265 Integrated circuits 217, 218, 219 Integrated photoconductors 220 Intensity-and-phase autocorrelator 57 Intensity autocorrelation function 56, 59 Intensity grating 85 Interaction Hamiltonian 236 Interaction length 37, 38 Interfaces 94

Interferometric autocorrelation 57, 58 (Fig. 3.9a) Interferometric technique 67 Intermolecular energy transfer 303, 304, 305, 306 Intermolecular proton transfer 342 Intermolecular relaxation of energy 295 Intermolecular vibronic relaxation 315 Internal conversion 281, 300 Internal temperature 299, 300, 301 Intervalley scattering 155 Intramolecular energy transfer 286, 290 Intramolecular proton transfer 343 Inverse gap effect 335 Inversion symmetry 37, 53 Isoenergetic combination modes 302 Isolated binary collisions 308 KB5 (potassium penta borate) 44 KDP (potassium dihydrogen phosphate) 38, 39, 40, 41, 43, 51, 53 KD*P 40, 44 Kerr cell 227 Kerr nonlinearity 26 Kramers model 321 KTiOPO₄ (KTP) 40 Langevin equation 322 Langmuir-Blodgett film 95 Laser heating 94 Laser-induced breakdown 54 Laser-induced heating 377 Laser-induced orientational grating 87 Lattice temperature 172 Lattice vibrations 209 Light harvesting 390 Light-induced grating 64 Light-induced phase-shift 68 LiIO₃ 40, 41, 44, 45, 46, 51, 53 LiNbO₃ 38, 39, 41, 47, 49, 50, 51 Local temperature 309 Luminescence 55 Macroscopic heat conduction 311 Melting 94 Metal colloids 98 Metal vapor 61, 78 Methanol 59, 96 Microcanonical distribution 301 Microwave applications 221 Microwave generation 222 Mid-infrared 52, 53 Millimeter wave applications 221 Model for energy transfer 306 Models for primary processes 399

Mode-locked semiconductor 24 Mode-locking 5 - of color center 22 Molecular beam 324, 349 Molecular crystals 152 Molecular dynamics simulations 372 Molecular thermometer 309 Monolayer 95 Mott transition 135 Multiphonon states 156 Multiphoton processes 404 Multiple excitation processes 264 Multiple quantum well 93 Multiple trapping 144 NaCl 70 Ne (neon) 62 Nearly degenerate four-wave mixing 65, 66.73 Nitrenes 337 Nitrobenzene 66 Nitrogen 256 Noble gases 61 Non-centrosymmetric crystals 42 Noncritical phase-matching 51 Nondegenerate four-wave mixing 65 Nonexponential dephasing 82 Noninvasive probing 212 Nonlinear Kerr media 90 Nonlinear polarization 37 Nonlinear refraction 96 Nonlinear refractive index 66, 67, 91, 92, 96, 100 Nonlinear Schrödinger equation 99, 100 Nonlinear susceptibility $\chi^{(3)}$ 60, 94 Nonlinear transmission lines 210 Nonlinear wave equation 85, 99 Nonresonant susceptibility $\chi_{NR}^{(3)}$ 246, 249 NOR gate 93 Off-axis geometry 43, 67 One-photon resonance 69, 70, 72 Optical absorption 401, 404 Optical bistability 92, 96 Optical inhomogeneity 50 Optical Kerr effect 97 Optical parametric amplifier (OPA) 48, 50 Optical parametric oscillator (OPO) 47, 48 Optical phase conjugation 67, 69, 70, 73 Optical phonon lifetimes 149 Optical pulse compression 59 Optical rectification 187, 207, 222 Optical spectra 359 Optical Stark effect 93

Optical surface spectroscopy 95 Optoelectronic devices 185 Optoelectronic measurement systems 211 Organic polymers 72 Orientational Kerr effect 66, 67 Orientational relaxation 141 Oxazine 720 269 Parametric continuum 53 Parametric emission 65 Parametric fluorescence 68 Parametric light gate 54 Parametric oscillation 51, 70, 71 Parametric process 285 Parametric superluminescence 48 Passive mode-locking 9, 11, 15 Pentacene in naphthalene 266 Pentadecanoic acid 96 Peptides 254 Phase conjugation 87 Phase-grating 67 Phase-matching 42, 61, 99, 246 Phase-matching bandwidth $\Delta v = 39, 44$ Phase memory 86 Phase mismatch 37 Phase modulation 81, 223 Phase relaxation time T_2 236, 237, 247, 251, 267, 270 Phenol 95 Phonon dynamics 146 Photochemistry 395 Photoconducting antenna 224 Photoconducting electrical pulse generators 200 Photoconducting electronic sampling 202 Photoconducting materials 188 Photoconductive switches 221, 227 Photocycle 397 Photodissociation of I₂ 328 Photoelectric emission 217 Photo-emissive sampling 217 Photo-excited carrier distribution 139 Photofragmentation 349 Photoisomerization 320, 325 Photon counting 54 Photon echo 240, 265 Photophysics 375 Photoreduction 330 Photosynthesis 374, 380-395 Phycobilin energy transfer 393 Picosecond continuum 44, 53 Picosecond mass spectrometry 349 Picosecond photoconductors 198 Plasma density 172 Plasma frequency 170

Pockel's cell 227 Polarization 36 mismatch scheme 43 Polydiacetylene 72, 85, 97 Population lifetime T_1 see also Energy relaxation time 75, 279, 285, 288, 289, 290, 291, 295, 296, 306, 311 Population probability of vibrational states 302 Proustite (Ag_3AsS_3) 53 Pulse area 238, 243, 244 Pulse compression 25, 93 Pulse dispersion 210 Pulse shape analysis 56 Pump-probe coupling 88 Pump-probe experiment 88 Pure dephasing time T_2^* 238 Pure dephasing time in solids 252 Purple membrane pigments 404 Pyridine 95, 261 Quantum beats 256 Quantum-confined Stark effect 146 Quantum dots 97 Quantum noise 48, 81 Quantum size effects 98 Quantum wells 266 Quantum-well heterostructures 97 α-quartz 149, 252 Quasi-free electrons 54 Quasi-thermal distribution 299 Quasi-thermal equilibrium 313 Radiation damage 192 Radiationless transition 279 Radio frequency mixer 186, 223 Raman echos 83 Raman fiber soliton laser 101 Raman gain 76, 98 Raman-induced Kerr effect 68 Raman spectra 364, 379, 398, 404, 406 Raman-type transitions 69, 242 Rayleigh-type mixing 87 Rb vapor 56 Recombination of I₂ 328 Recombination lifetime 146 Redistribution time 295 Regenerative pulsation 92 Relaxation process 55 Relaxation in solids 254 Relaxation of vibronic levels 314 Renormalization of band gap 131 Resonance enhancement 61 Resonance of nonlinear susceptibility 64 Resonant pulse propagation 262

Rhodamine 6G 55, 72, 95 Rhodopsin 396 Ruby 72 Sampling gate 186 Saturation of absorption 138 Saturation intensity 283 Screening by free carriers and excitons 127 Screening of Fröhlich interaction 137 Second harmonic 96 - generation 36, 98-99 - probing 53 - pulse shape 39 Second-order susceptibility 36 Self-diffraction 86, 89 Self-phase modulation 49, 82, 90, 91 SEPI (short excitation and prolonged interrogation spectroscopy) 260 SF₆ 77 Signal and idler 47 Silica glass fiber 99 Silicon (Si) 87, 161 Silicon-on-sapphire 173 Silver (Ag) 94, 95 Silver thiagollate $(AgGaS_2)$ 46 Single-photon resonance 68 Single-shot autocorrelation technique 58 Single-shot pulse analysis 73 Single-shot technique 57, 60 Singlet oxygen 338 Small-area pulse propagation 83 Small molecular limit 289 Smoluchowski limit 322 Sodium vapor 62 Solitons 99, 100 Solvent effects 319 Solvent polarity 327 Specific heat of molecule 298 State-selective chemistry 279 Stilbene 324, 325, 327 Stimulated amplification 47, 68, 73, 78 Stimulated anti-Stokes Raman scattering 74 Stimulated Brillouin scattering 78 Stimulated electronic Raman scattering 80 Stimulated four-photon generation 70 Stimulated four-wave parametric amplification 99 Stimulated four-wave parametric emission 69 Stimulated parametric devices 44 Stimulated parametric emission 47 Stimulated parametric generator 96 Stimulated Raman amplifier 77

Stimulated Raman excitation 280 Stimulated Raman generator 77 Stimulated Raman interaction 101 Stimulated Raman oscillator 77 Stimulated Raman scattering 59, 73, 98, 244 Stokes-anti-Stokes coupling 74 Stokes pulse 77 Streak camera 14, 228 Subharmonic generation 92 Sum-frequency generation 40, 42, 54, 56, 60 Sum-frequency spectrum 96 Superbroadening 90 Supercontinuum 91 Supercooling 161 Superheating of solid 176 Surface melting 164 Surface polariton 95 Surface second harmonic generation 94. 168 Switching 185 Synchronous mode-locking 13 Synchronous pumping 8 T_1 see Energy relaxation time T_2 see Phase relaxation time Tellurium (Te) 54 Temperature tuning 49 Thermal model 160 Thermal population 301 Thermodynamic equilibrium 301 Third harmonic 52, 63 - generation 43, 60, 94 Third-order autocorrelation 61 Third-order nonlinear susceptibility $\chi^{(3)}$ 36, 60, 97 Three-beam grating technique 88 Three-dimensional phase-matching 84, 89 Three-pulse echo 267 Time-correlated transmission measurements 138 Time-domain metrology 213 Time-of-flight method 175 Time-resolved CARS 76 Time-resolved photoluminescence 133 Time-resolved reflectivity measurements 164 Toluene 258 Transient absorption 297 Transient amplification 75 Transient fluorescence excitation 298 Transient frequency-domain experiments 259 Transient grating 265

Transient hot band 298 Transient hot molecule 301 Transient internal temperature 298 Transient refractive index 67 Transient vibrational distribution of energy 297 Traveling-wave excitation 23 Traveling-wave Pockel's cell 227 Trigger jitter 212 Tuning range 44, 52 Twisted internal charge transfer 326 Two-beam grating 86 Two-color echo 271 Two-dimensional carrier confinement 144 Two-level molecules 84 Two-level system 85 Two-photon absorption 41, 54 Two-photon fluorescence 57 Two-photon resonance 70 Two-photon transition 305 Two-pulse echo 265 Two-pulse fluorescence 282 Two-pulse infrared spectrum 299 Two-step process 305 Ultrafast chemical reactions 319 Ultrafast phase transformations 159 "Umklapp" third-harmonic generation 61 Up-conversion 44, 54, 56, 59, 63, 95 UV pulses 42 Vacuum ultraviolet 62 191 Velocity overshoot Vibrational dephasing time T_2 279 Vibrational distribution 297 Vibrational excitation 280 Vibrational heating by electronic excitation 300 Vibrational redistribution 279, 294, 297, 299 – in azulene 300 Vibrational relaxation 314 Vibrational-resonant sum-frequency generation 95 Vibrational states 301 Vibrational temperature 296 Visual pigments 401 VT-processes 311 VV-transfer 311 Walk-off angle 38 Water 65, 69 Wave vector mismatch 61 Zero-point fluctuation 68.78 ZnSe 91, 116, 252