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THE PLASTIDIC SHIKIMATE PATHWAY AND ITS ROLE IN THE SYNTHESIS OF PLASTO-
QUINONE-9, «-TOCOPHEROL AND PHYLLOQUINONE [N SPINACH CHLOROPLASTS

Schultz, G., Bickel, H., Buchholz, B. and Soll, J.
Institut fir Tiererndhrung, Arbeitsgruppe filir Phytochemie und Futtermit-
telkunde, Tier&rztliche Hochschule, D 3000 Hannover 1 (FRG)

ABSTRACT

The plastidic SkA pathway is operative in the synthesis of aromatic amino
acids and of the prenylquinones PQ-9, «T and phylloquinone. Neither exo-
genous substrates nor coenzymes are needed under photosynthetic conditions.
However, addition of PEP - and for Trp formation Gln and Ser - enhances
the rates of synthesis. The pathway exhibits a specific feedback: Trp in-
hibits the pathway at the steps between SkA and chorismate and not at the
KDAHP-step as in some microorganisms, whereas Phe and Tyr only inhibit
their cwn synthesis.

The introductory step in PQ-9 and «T-synthesis is the oxidation of p-hydro-
xyphenylpyruvate to homogentisate /1/. It is prenylated to the methyl-6-
prenylquinol by the corresponding prenyl=-PP under simultaneous elimination
of the carboxylgroup of homogentisate. The only site of «T synthesis is

the envelope membrane of the chloroplast, whereas that of PQ-9 synthesis

is the envelope and the thylakoid membrane too. The sequence in «T syn-
thesis in spinach is (Fig. 3.):

Homogentisate Phytyl-PF_ Me-6-PQH2 SAM_ 2,3-Me,-PQH, Cyclization

T EEEL-aT; for the PQ-9 biosynthesis it is: Homogentisate Solanesyl-PP_

Me-6-5aH, m pQH,.
Abbreviations: EBRP - erythrose-h-P; GGPP - geranylgeranyl-PP; HPP - p-hydro-
xyphenylpyruvate; KDAHP - 2-keto-3-deoxyarabinoheptonic acid-7-P; Me-6-GGQH
- 2-methyl-6-geranylgeranylquinol; Me-6-PQH, and isomers - 2-methyl-6-phy-
tylquinol and isomers; 2,3-Me2~PQH2 - 2,3-dimethyl-5-phytylquinol; Me -PQH2
- trimethylphytylquinol; Me-6=SQH, “- 2-methyl-6-solanesylquinol; PGA 2 3-D=
phosphoglycerate; PQ-9 - plastoquinone-9; PQH, - plastoquinol-9; PEP -
phosphoenolpyruvate; SkA - shikimate; PRPP - %—P—ribosyl-]-PP; SAM - S-ade-
nosylmethionine; oT, 8T, pT, 67 - o, B-, p-, §-tocopherol.

311
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From isotopic studies using CO, /2/,SkA /3/ and o-benzoylsuccinate /4/ it
has been proved that higher plants are able to synthesize phylloquinone
(2-methyl-3-phytylnaphthoquinone vitamin K1). The envelope membrane is the
site of prenylation of 1.4-dihydroxy-2-naphthoateto form 2-methyl-naphtho-
quinol which is methylated by SAM to yield phylloquinol. Consequently, the
sequence in its biosynthesis seems to correspond with that in microorgan-

isms /5, 6, 7/: SkA —= (Chorismate Succinylsemialdehyde-TPP ) o-Suc-

cinylbenzoate Prenyl-PF, 2-Preny1naphthoquino]-—Eém-—Z-Meﬁhyl-3-prenyl-
naphthoquinol. In plants phytyl-PP is preferred as prenylcompound.

The SkA pathway operates in the synthesis of aromatic amino acids in plants
It is also involved in the synthesis of prenylquinones by synthesizing the
aromatic moiety. The prenyl sidechain originates from the plastidic meva-
lonate pathway /8/. These prenylquinones operate in different ways in the
photosynthetic tissue: PQ-9 acts in the photosynthetic electron transport
/9/, «T inactivates energetisized oxygen species formed by light (by sca-
venging radicals and also by quenching 102 /10, 11/). «T is also an im-
portant membrare constituent. The function of phylloquinone in plants is

not yet clear. The first problem was to study the compartmentation of the

SkA pathway involved in these syntheses.

Identification of a plastidic SkA pathway

Biosynthesis of aromatic amino acids in spinach chloroplasts under pho-

tosynthetic conditions: The findings that isoenzymes of SkA dehydrogenase

/12, 13/ and enzymes of Tryp synthesis /14/ are enriched in chloroplast
fractions, strongly indicate the occurence of enzymes of SkA pathway in
this organelle. To prove the function of this pathway, purified intact chlo
roplasts were illuminated under phetosyntﬁetic conditions with IMCOZ and
the label in the expected aromatic amino acids and prenylquinones was de-
termined/15, 16, 17/ (see Fig. 1). In all experiments chloroplasts suspen-
sions with at least 1 mg chlorophyll/ml were used; t = 30 min; control

expt. disproved microbial contamination /16/. The purity of the chloro-

plasts isolated acc. to /18/ was tested for marker enzymes /19, 20/.

PEP PEP GluNH2 PRPP Ser
\ \ \
PEP \_,_ - \ Choris—XAnthrr \ Indol-
o Photosynthetic E4p SkA—.“.mate nilate —’_’glycerpl -p Trp
2 C-fixation
Prephenate
CHLOROPLASTS
Phe)/B ,\ryr LAS
1]
E4pP SkA Chorismate Anthranilate

Fig. 1. SkA pathway in spinach chloroplasts and substrates tested /24/



Schultz et al. 313

Table 1. Il'C-lm:orporation from 1“c0 into amino acids of illuminated
intact spinach chloroplasts of different purity /21/.

Purified Non purified
chloroplasts chloroplasts
% of photosynthetically fixed ‘hCOZ__
Sum of amino acids 0.34 0.44

% of label in amino acids

Asn+ Asp+Gln+Glu 16.6 1.8
Ser+Gly 38.9 79.9
Ala 40.3 12.9
Phe + Tyr +Trp 10.2 5.4

‘Increasing the purity of the chloroplasts, the label of Gly and Ser decrea-
sed, whereas that of the aromatic amino acids (and of Ala) increased /21/.
Decrease of Gly and Ser synthesis is due to the elimination of the peroxy-
somes and mitochondria /21/ (Table 1). .

As pointed out by /22/ at the onset of illumination the exchange of di-
hydroxyacetonephosphate from the chloroplasts versus Pi of the suspension
medium by the phosphate translocator /23/ of the envelope membranes results
in a lagphase of photosynthetic carbon fixation. This is caused by a lack
of PGA which is needed by the Calvin-cycle. The same should be valid to
metabolic pathways adjacent to the Calvin-cycle, e.g. the SkA pathway in-
vestigated here. Experiments with and without Pi in the medium proved this
assumption /17/: omission of Pi of the medium effects in a manifold in-
corporation from ]ACOZ into aromatic acids (Table 2).

Requirement of exogenous substrates: As shown above, the SkA pathway

operates under conditions of photosynthetic carbon fixation by intact
chloroplasts at considerable rates. In additional studies the influence
of exogenously added substrates on the plastidic SkA pathway was determi-
ned /24/. To narrow the study, the metabolic flow of the SkA pathway was
directed only to the Trp branch by inhibiting the other two branches by

Table 2. ‘“C—Incorporation from Il'(ZO into aromatic amino acids and prenyl-
quinones of illuminated intact spinac% chloroplasts adding and omitting Pi
to the suspension medium /17/.

P‘ added Pi omi tted
To 3 Tof photosynthetically fixed 1465;-
Phe 35 66
Tyr 0.45 4
Trp 2.3 4
PQ-9 0.42 1.3
0.73 1.3

of
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14 . .
Table 3. II'C-lncor’.)oratlon from 1‘.CO or /1,6- C/-SkA into aromatic
amino acids of Illuminated intact spinach chloroplasts in the presence of
Phe, Tyr and Trp, respectively /25/.

+Phe +Tyr +Trp
~ each 6 mM - _
% of control”

L1

COZ

Phe 82 163 18
Tyr 386 25 37
Trp 545 212 12
+/1,6-"/-skn

Phe 5 152 7
Tyr 147 B84 10
Trp 120 208 38

§

without addition of aromatic amino acids

adding Phe and Tyr (see below). An addition of PEP, GIn and Ser increased
the incorporation from ]bCOZ into Trp. The optimal concentrations were
(without added substrate = 1.0): ca 3.5 fold increase at 5 x 10-h M PEP;

ca 2.5 fold increase at 10-6 M GIn and Ser, resp. . Furthermore, /l-]AC/-
PEP is incorporated into aromatic amino acids of chloroplasts in consider-
able yields /24/. When E4P, SkA, chorismate and anthranilate, respectively,
were applied in ]hCOZ experiments in increasing concentrations, the label
in the aromatic amino acids more or less decreased /24/. This might be cau-
sed by isotopic dilution of endogerous intermediates and/or regulatory phe-
nomena.

Feedback control by endproducts: From ]hCOZ-experiments in the presen-

ce of Phe, Tyr or Trp (each 5 mM) it could be revealed that the SkA path-
way is subject to feedback control by endproducts /25/ (Table 3). Phe and
Tyr exert feedback control over their own rates of synthesis, whereas Trp
controls the rate of synthesis of all three aromatic amino acids. To deter-
mine a point of attack more exactly, /1.6-IAC/-SkA was fed as a more direct
precursor (Table 3).These results indicate thatTrp attacs a step between
the synthesis of SkA and chorismate (Fig. 2) and not the KDAHP step as in

some microorganisms (for survey see /26/).

[:
T

he
Prephenate
//” P .

e
X

C0, —= —= KDAHP —= SkA 4> Chorismate ~
2 M, \Trp ‘

Fig. 2. Feedback control of SkA pathway by Phe and Tyr and Trp in spinach
chloroplasts /25/.
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Transfer of aromatic amino acids across the envelope membranes: Feeding

/1.6-1QC/-SkA to spinach chloroplasts, the main portion of label in the
aromatic amino acids was found in the suspension medium after a period of
30 min /16/. This finding as well as the considerable incorporation of
/B-]hC/-Tyr applied to endosperm, into PQ and flavonoids of leaves of bar-
ley seedlings /27/ indicates a relatively rapid transfer of aromatic amino
acids across the envelope membranes in vitro and in vivo.

Oxidation of HPP to homogentisate: This step which is a prerequisite

for the synthesis of PQ and «T was shown in the thylakoid fraction of Lem-
na gibba /28/. Furthermore, from the incorporation of 1hC labelled COZ’
SkA and Tyr into PQ and «T, it could be conclouded that the HPP oxidation
takes place in the chloroplasts /16, 17/.

Biosynthesis of «-tocopherol and plastoquinone-9

The aromatic moiety of both derives from homogentisate /1/ which is for-
med by an oxydase system from HPP /28/.
=-Tocopherol biosynthesis: The only site of «T biosynthesis in spinach

chloroplasts is the envelope membrane /29, 30/. Homogentisate is solely
prenylated with phytyl-PP to form Me-6-PQH2 /30/. There is no stimulation
by other chloroplast fractions like thylakoid membranes or stroma /30/. The
prehyltransferase in spinach shows a strong specificity for phytyl»PP
(26 pmol/h mg envelope protein); GGPP is inactive in this system /30/. From
the possible positions isomers only Me-6-PQH2 is formed; Neither Me-5- nor
Me-3-PQH2 could be found /30/.Consequently,the pathway is strongly directed
at thisstep. A kinase which forms phytyl-PP from phytol plus ATP is loca-
lized in the stroma /30/. Phytol and its pyrophosphate arises by reduction
from GGPP /31/ which is synthesized by a recombinated system of epvelope
or thylakoid membranes plus stroma protein /32/.

The following methylation steps with SAM as methyl-group donor to form
ol from Me-6-PQH2 are also performed by enzyme systems localized in the
envelope membranes /29/ (see Fig. 3). The quinol is the substrate of the
methylation and not the quinone. Comparison of the methylation rates to
yield the corresponding dimethyl-compound shows that Me-6-PQH2 is not only
strongly preferred to its isomers Me-5- and Me-3-PQH2 but alsoto its chromanol
stage 8T (ratios are 100 : 10 : 5 : 5) /33/. Thus, the main product is
2,3-Me2-PQH2 which undergoes ringclosure to pT and further methylation by
SAM to oT. The chromanol stage is the prerequisite for the second methyl-
ation, no Me3-PQH2 occurs /33, 34/. pT is preferred to BT to yield of
(100 : 35) /33/. In marked contrast to the prenylation enzyme, the transfer-
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ase for the first methylation step exhibits a preference for Me-6-GGQH2
(2 nmol/h mg envelope protein) in comparison to Me-6-PQH2 (0.7 nmol mg
envelope protein) /29, 34/.

The ring closure of the dimethylprenylquinol to the corresponding chro-
manol (in this case 2.3 Mez-PQHz-—-yT) takes place only in intact chloro-
plasts /33, 34/ but not in isolated envelope membranes. The concentrations
of PQ-9 and oT in the envelope are: PQ 0.53 ug/mg envelope protein (7.1 x
107" 3 M) (soll, Douce unpbl).

Plastoquinone-9 biosynthesis: PQ-9 biosynthesis, both prenylation and

M), =T 1.03 ug/mg envelope protein (2.4 x 10~

methylation, is not only performed by the envelope membranes (1.2 pmol/h mg
protein and 10 pmol/h mg protein, respectively) but also at low rates by
the thylakoid membranes (0.013 pmol/h mg protein and 0.35 pmol/h mg protein,
respectively) /30/. However, if one takes into account the rate of thyla-
koid protein to that of envelope protein per mg chlorophyil, the yields in
total are not as différent as they are calculated on the basis of protein
itself. The sequence of reactions involved in PQ-9 biosynthesis is similar
to oT. Solanesyl=-PP (CMS) serves as prenyl compound in the prenylation re-
action to form Me—6-SQH2 with homogentisate. In the following steps Me-6-

SQH2 is methylated with SAM to yield PQ-9.

Shikimate pathway Prenyl-PP-synthesis

Tyr =s-p-Hydroxyphenylpyruvate Geranylgeranyl 'P';

(HPP) (GGPP
str
" ATP _
o+ Homogentisate Phyty]-PP-:;;Phyto] Solanesyl-PP
CH,—-COOH " - thy]
HO )
g ] H Me-6-Phytylquinol Me-6-Solanesylquinol
i Ta (Me-6-PQH,) (Me-6-SQH, )
* SAM env SAM env th!
HO Py
‘ 2,3-Me,-Phytylquinol Plastoquinol-9
; A 2(2,3-Me,PQH,) (PQH, )
HO l Cyclization str Stroma
;[;:[::¥\a p-Tocopherol (yT) env Envelope
SAM env thyl Thylakoids

HO '
R a-Tocopherol (aT)

Fig. 3. Biosynthesis of o and PQ in spinach chloroplasts /29, 30, 33, 34/



Schultz et al. 317

oH OH H
CO,H_co,i COH Phytyt Q Phytyl
CH,
[¢] OH OH OH ’
| [} in v

Fig. 4. Proposed scheme for the biosynthesis of phylloquinone in spinach

chloroplasts. | -o-succinylbencoic acid; Il - 1,4-dihydroxy-2-naphthoic
acid; 111 - 2-phytyl=1,4-naphthoquinol; IV - 2-methyl-3-phytyli-1,4-naph-
thoquinol

Phylloquinone biosynthesis

As mentioned above, biosynthesis of phylloquinone in plants could be detec
ted by feeding some substrates including SkA by the group of Threlfall /3,
L/. In studies on spinach chloroplast (Schultz and Ellerbrock, unpublished
data), 1,4-dihydroxy-2-naphthoateis prenylated by phytol plus ATP to form
2- phytylnaphthoquinol (60 pmol/h mg chlorophyll). (For the biosynthesis
of phytyl-PP by chloroplasts see /30/). The quinol is methylated by SAM to
yield phylloquinol (6 pmol/h mg chlorophyll). There is a strong specificity
of the sequence of both reactions. 2-Phytylnaphthoquinol is preferred to
its GG-and farnesyl- homologue. The site of prenylation is the envelope
membrane; thylakoid membranes as well as stroma protein seems to be inac-

+
tive. Both reactions need M92 (2.5 mM); 1light is not required.

CONCLUSIONS

The plastidic SkA pathway is involved in the biosynthesis of aromatic amino
acids as well as of prenylquinones of algae and higher plants (for distri-
bution /35/) but how it is combined with the generally occuring secon-

dary metabolism of aromatics in plants is not clear /36/.
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