Tetrahedron Letters No. 18, pp 1593 - 1596, 1978. @ Pergamon Press Ltd. Printed in Great Britain. 0040-4039/78/0429-1593. \$02.00/0.

STRICTOSIDINE, THE COMMON PRECURSOR FOR MONOTERPENOID INDOLE ALKALOIDS WITH 3 α and 3 ß CONFIGURATION

Martina Rueffer, Naotaka Nagakura and Meinhart H. Zenk^{*} (Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, D 4630 Bochum, W.-Germany

(Received in UK 20 February 1978; accepted for publication 17 March 1978)

Recently we reported that strictosidine $(\underline{1})$ is the key intermediate in the formation of the three classes (<u>Aspidosperma</u>, <u>Iboga</u>, <u>Corynanthe</u>) of monoterpenoid indole alkaloids in <u>Catharanthus roseus</u> and a variety of other plant species in cell culture using <u>in vivo</u> and <u>in vitro</u> techniques^{1,2}. These results were independently confirmed in Manchester^{3,4} and subsequently also Scott et al.⁵ were able to confirm the precursor role of (<u>1</u>) using <u>Catharanthus</u> material. All these results are in accord with reports on the biosynthesis of an alkaloid of taxonomically distant origin, camptothecin, for which strictosidine lactam⁶ was previously found to be a precursor, and recently⁷ also (<u>1</u>).

The key intermediate in the biosynthesis of the majority of monoterpenoid alkaloids is therefore (1) with 3 α (S) configuration, rather than vincoside (2) with 3 β (R) configuration as had previously been assumed⁸. However, a generalization of this precursor function of (1) may not be applicable to the alkaloid family with C-3 B stereochemistry, especially if one takes into consideration biomimetic experiments⁹, which were assumed to duplicate the in vivo process in respect that (1) is the precursor for 3 α alkaloids and (2) for 3 β . To test the biological validity of these experiments and to gain clarity as to the assumed² universal role of (1) as a general precursor for monoterpenoid indole alkaloids, labelled (1) and (2) were fed separately to two plant species known to contain both 3 α as well as 3 B alkaloids and belonging to taxonomically very different plant families: Rauwolfia canescens¹⁰ concaining α -yohimbine (3, 3 α -H) and reserviline (4, 3 β -H) and <u>Mitragyna</u> speciosa¹¹ containing mitragynine (5, 3 α -H) and speciociliatine (6, 3 B-H) To trace also the fate of the hydrogen atom at C-3, tritium label was introduced into this position in (1) as well as in (2). Synthesis of $[{}^{3}H/{}^{14}C]-(1)$ and (2) was achieved either by condensation of $[2-{}^{14}C]-$

tryptamine (7) with $[7-{}^{3}H]$ -secologanin¹² (8) in 1 M phosphate buffer, pH 4.0, and subsequent separation of the epimers¹², or by enzymatic condensation of (7) and (8) using strictosidine synthetase^{1,2}. To prove that the $[{}^{3}H]$ -label was in the desired position $[{}^{3}H/{}^{14}C = 7.17 : 1]-(1)$

4

was fed² to <u>C</u>. <u>roseus</u> seedlings. Ajmalicine was then isolated $[{}^{3}\text{H}/{}^{14}\text{C} = 7.08 : 1]$ and dehydrogenated with mercuric acetate¹³ to yield dehydroajmalicine which was then reduced with borohydride. The recovered ajmalicine $[{}^{3}\text{H}/{}^{14}\text{C} = 0.41 : 1]$ carried 5.7 % of the original $[{}^{3}\text{H}]$ -activity in agreement with the $[{}^{3}\text{H}]$ -label being located at C-3.

The essential experimental data and results from feeding experiments using (1) with 3 α (S) stereochemistry are shown in the following Table.

Experimental Plant	Alkaloid Investigated	3-H Stërec- chem.	¹⁴ C Incorp. (%)	3 _H / ¹⁴ C Ratio
R. canescens	a-Yohimbine (<u>3</u>)	α	0.70	7.37 : 1
(Apocynaceae)	Reserviline $(\underline{4})$	ß	0.34	0.10 : 1
<u>M. speciosa</u>	Mitragynine (5)	۵.	2.72	8.40 : 1
(<u>Rubiaceae</u>)	Speciociliatine (<u>6</u>)	ß	0. 5 3	0.10 : 1

 $[6-^{14}C, 3-^{3}H]-(1)$ [spec.act.: 18.49 x 10⁶ dpm ³H, 2.58 x 10⁶ dpm $^{14}C/\mu$ mole; $^{3}H/^{14}C = 7.17$: 1] was administered in aqueous solution (ca. 5 % EtOH) to apical cuttings, which were maintained at 28° C under light for 24 hrs. Isolation and purification of alkaloids followed standard procedures¹².

Parallel feeding experiments were performed with $[6^{-14}C, 3^{-3}H] - (2)$; no incorporation into $(\underline{3})$, $(\underline{4})$, $(\underline{5})$, $(\underline{6})$ or other alkaloids in these plants was observed (detection limit: < 0.001 %). These results demonstrate unequivocally that $(\underline{1})$ is the common biosynthetic precursor for alkaloids with 3 α as well as 3 β configuration. This is contrary to the chemical conversions in which $(\underline{1})$ is transformed to 3 α and $(\underline{2})$ to 3 β heteroyohimbine alkaloids⁹. This fact shows the limitations of biomimetic experiments with respect to in vivo processes. The biosynthetic conversion of $(\underline{1})$ to 3 β alkaloids proceeds with loss of hydrogen at C-3, while it is retained in the formation of the 3 α series. Thus it is unnecessary to assume special mechanisms^{14,15} in the inversion of these precursors which would allow retention of hydrogen at C-3. Furthermore, feeding of $[6-^{14}C]-(\underline{1})$ resulted in heavily labelled alkaloids of the following plant species: <u>Amsonia</u>, <u>Cinchona</u>, <u>Rhazia</u> <u>Stemmadenia</u>, <u>Uncaria</u> and <u>Vinca</u>; in no single case incorporation of (<u>2</u>) was observed¹². This proves that strictosidine (<u>1</u>) with 3 α (<u>S</u>) stereochemistry is the universal precursor for monoterpenoid indole alkaloids.

References and Notes

- (1) J. Stöckigt and M. H. Zenk, <u>FEBS</u> Letters, 79, 233 (1977).
- (2) J. Stöckigt and M. H. Zenk, <u>J.C.S. Chem. Comm.</u>, 646 (1977).
- (3) G. N. Smith personal communication.
- (4) R. T. Brown personal communication.
- (5) A. I. Scott, S. L. Lee, P. de Capite, M. G. Culver and
 C. R. Hutchinson, <u>Heterecycles</u>, in press.
- (6) C. R. Hutchinson, A. H. Heckendorf, P. E. Dadonna, E. Hagaman and E. Wenkert, <u>J. Am</u>. <u>Chem. Soc.</u>, <u>96</u>, 5609 (1974).
- (7) A. H. Heckendorf and C. R. Hutchinson, <u>Tetrahedron Letters</u>, 4153 (1977).
- (8) J. Staunton in: "The Alkaloids", Senior Reporter, J. E. Saxton, Specialist Periodical Reports, The Chemical Society, London, Vol. 2, p.1 (1972) and refs. therein.
- (9) R. T. Brown, J. Leonard and S. K. Sleigh, <u>J.C.S.Chem.Comm.</u>, 636 (1977).
- (10) A. Stoll, A. Hoffmann and R. Brunner, <u>Helv. Chim. Acta</u>, <u>38</u>, 270 (1955).
- (11) A. H. Beckett, E. J. Shellard, J. D. Phillipson and C. M. Lee, <u>Planta medica</u>, <u>14</u> 277 (1966).
- (12) N. Nagakura, M. Rueffer and M. H. Zenk, manuscript in preparation.
- (13) E. Wenkert and D. K. Roychaudhuri, J. Org. Chem., 21, 1315 (1956).
- (14) A. R. Battersby and K. H. Gibson, <u>J.C.S. Chem.Comm</u>., 902 (1971).
- (15) R. T. Brown, C. L. Chapple and R. Platt, J.C.S. Chem. Comm. 929 (1974).
- (16) This research was supported by the "Bundesminister für Forschung und Technologie, Bonn". We are grateful to Dr. J. D. Phillipson for the kind gift of samples of (5) and (6).