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The Structure of the Skeletal Muscle 
Calcium Channel 

PETER RUTH, VEIT FLOCKERZI, MARTIN BIEL and 
FRANZ HOFFMAN 
Institut für Physiologische Chemie, Medizinische Fakultät, Universität 
des Saarlandes, Homburg/Saar, West Germany 

1 Introduction 

Voltage-activated C a 2 + channels are classified into three types ( Τ , Ν and 
L ) , which differ in their pharmacological behaviour and functional 
significance (Nowycky et αι., 1985). L-type channels are sensitive to organic 
drugs the C a 2 + channel blockers (CaCB) which include the dihydropyridines 
(1 ,4-DHPs) , the phenylalkylamines (PAAs) and the benzothiazepines (BTZs) 
(Hofmann et αι., I n cardiac muscle, ß - a d r e n o e e p t o r agonists increase 
the open state probabi l i ty of this channel type either by phosphorylation 
of the channel or a channel associated protein via the catalytic subunit of 
cAMP-dependent protein kinase (Trau twein et αι., 1986), or by stabilizing 
the open state via the α - s u b u n i t of the G T P b ind ing protein G s (Yatani et 
al., 1987). L-type channels occur in peripheral and central neurons, smooth 
muscle, invertebrate skeletal muscle and heart. The i r biological function in 
vertebrate skeletal muscle has not been established unequivocally, but 
probably the channel has the same function as in cardiac muscle, i.e. 
par t ic ipat ing in the maintenance of an adequate amount of intracellular 
C a 2 _ h for muscle contraction (Ildefonse et αι., 1985). However, the channel 
protein may participate in skeletal muscle excitation contraction-coupling 
not only as Ca2"1" channel but also as a voltage sensor (Berwc et aL, 1987; 
L a m b and Walsh , 1987; Rios and B r u m , 1987). L-type C a 2 + channels of 
different tissues probably are not identical and w i l l be divided up further 

ΪΟΝ T R A N S P O R T Copyright © 1989 Academic Press Limited 
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148 P. Ruth et al. 

as our knowledge of their electrophysiological and molecular properties, their 
functional significance and their modula t ion by hormones, neurotransmitters 
and drugs expands. 

2 Structural composition of the purified skeletal muscle C a 2 + channel 

Most o f the informat ion on the structural composition o f the L-type C a 2 1 

channel originates from studies w i t h rabbi t skeletal muscle. SDS-gcl analysis 
of the purified skeletal CaCB-receptor yields several stained bands wi th 
apparent molecular weights o f 165 kDa (ctj), 55 kDa (β) and 32 kDa (γ) 
in a constant ratio o f 1:1.7:1.4 (Sieber el al., 1987). A further protein 
containing a 130-(a 2 ) and 28-kDa (8) disulfide-linked peptide co-purifies 
in variable amounts w i t h the α,- , β- and γ - s u b u n i t s o f the CaCB-receptor. 
The a 2 - and the γ - p e p t i d e s are heavily glycosylated, whereas the a,- and 
/3-subunit contain none or a low amount of carbohydrates (Takahashi et 
αι., 1987). The purified receptor binds al l three major classes o f C a 2 + 

channel blockers (i.e. DHPs , PAAs and B T Z s ) in a stereospecific manner. 
The photo-affinity analogues of the 1,4-DHPs and PAAs, azidopinc and 
L U 49888, label only the 165-kDa (a , ) subunit , indicat ing that this protein 
carries the d rug receptor sites for 1,4-DHPs and PAAs (Galizzi et al., 1986; 
Sieber et αι., 1987; Tanabe et αι., 1987; Striessnig et al, 1986, 1987). The 
constant stoichiometry o f the 165-, 55- and 32-kDa proteins suggests that 
these proteins are constituents of the C a 2 + channel. Further evidence for 
the existence o f a functional complex w i t h this composition comes from 
studies w i t h antibodies against the a,-subunit which precipitate the a r , 
β- and γ - s u b u n i t s (Takahashi et al., 1987). Antibodies specific against the 
a,- or ß - s u b u n i t s immunoprecipitates the a r or /3-subunits (Leung el al., 
1988). Furthermore, antibodies specific against the a r , β- and γ - s u b u n i t s 
modulate the C a 2 + current in vivo (Campbell el al., 1988; M o r t o n et al., 
1988; V i l v e n el al., 1988). Attempts to isolate only the a,-subunit under 
non-denaturing conditions have not been successful so far, suggesting that 
the β- and γ - s u b u n i t s stabilize the channel in a high-affinity CaCB binding-
conformation. A t present, i t is not known whether or not the 130/28-kDa 
protein belongs also to this structure ('Leung el al., 1988) or is only a 
contaminant. 

3 Phosphorylation of the purified CaCB-receptor 

The 165- and 55-kDa subunits o f the purified CaCB-receptor are 
phosphorylated readily by cAMP-dependent protein kinase (Curtis and 
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Table 1 Kinase-specific phosphopeptides of the skeletal muscle CaCB-receptor 

Phosphopeptide number 

Protein kinase 165 kDa 55 kDa 

cAMP-kinase 
cGMP-kinase 
Protein kinase C 
Casein kinase I I 

none 
7,11 

1,10 
1,2 

7 
1,3 
7/8 
9,10 

T h e pu r i f i ed receptor was phosphory la t cd by each kinase as described by J a h n et al., (1988) . 
T h e phospho ry l a t ed subuni t s were separated by SDS-gcl electrophoresis. I n d i v i d u a l gel pieces 
c o n t a i n i n g the phosphory la t ed a,- or ß - s u b u n i t were digested by t ryps in over n igh t . T h e 
phosphopept ides were then separated by 2 -D th in - layer ch roma tog raphy . T h e n u m b e r o f the 
kinase-specific phosphopept ide(s ) is shown . See also J a h n et al. (1988) . 

Cat tcra l l , 1985; Flockerzi et al., 1986a,b) and other kinases in vitro 
(Nastainczyk et al., 1987; O 'Cal lahan et al., 1988; Jahn et al., 1988). The 
α , - s u b u n i t is a good substrate for cAMP-kinase and casein kinase I I , 
whereas the 55-kDa subunit is preferentially phosphorylated by protein 
kinase C and cGMP-dependcnt protein kinase. Two-dimensional peptide 
maps yield 11 phosphopeptides from the 165-kDa subunit and 11 from 
the 55-kDa subunit using these kinases (Jahn et al., 1988). W i t h the 
exception o f protein kinase C, each kinase apparently phosphorylates one 
or two peptides specifically in each subunit (Tabic 1). Protein kinase C 
does not phosphorylatc specifically a peptide in the 165-kDa peptide, but 
modifies rapidly peptide 7/8 of the 55-kDa subunit. Neither the 32-kDa 
nor the 130/28-kDa peptides arc phosphorylated by the above-mentioned 
kinases. A t physiological concentrations c A Μ P-d c pend en t protein kinase 
incorporates 1 mole phosphate per mole 165-kDa subunit w i t h i n 10 m i n 
(Curt is and Cat tcra l l , 1985; Nastainczyk et al., 1987). This suggests that 
the phosphorylat ion of this site may be functionally important . A 
second site is phosphorylated dur ing prolonged incubation. The rapidly 
phosphorylated peptide was isolated and sequenced. The phosphorylated 
amino acid was identified as Ser 687 of the deduced amino acid sequence 
of the Of j - subun i t ( R ö h r k a s t e n et al., 1988). This serine is located in the 
cytoplasmic loop between transmembrane regions I I and I I I (see Fig. 1). 
I t is possible that in vivo cAMP-dependcnt phosphorylation of this serine 
increases the open state probabi l i ty of the C a 2 + channel. 
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J , , II , in , . !Y_ 

Fig. 1 Hydrophobicity profile and transmembrane topology of the skeletal muscle 
Ca~+ channel a}-subunit. The hydrophobicity profile of the α j-subunit according 
to Tanabe et al. (1987). Positive indices represent hydrophobic amino acid regions. 
The protein consists of four homologous domains ( I , I I , I I I , I V ) each composed 
of six membrane spanning helices ( l , 2, 3, 4, 5, 6). Transmembrane regions are 
based on their hydropathy value, polarity index and hydrophobic moment analysis 
according to Chou and Fasman (1978). The homologous regions ( I , I I , I I I , I V ) 
each containing six transmembrane spirals are shown linearly. They are supposed 
to form the ionic pore. The carboxy- and amino-termini are located at the 
cytoplasmic site of the plasma membrane. The phosphorylation site of cAMP-
dependent protein kinase, serine residue 687, is indicated between domains I I and 
I I I . 

4 Structure of the α Ί - and β-subunits of the skeletal muscle C a 2 + 

channel 

Identification and cloning of the a,- subunit of the C a 2 + channel from 
skeletal muscle was a major step in Ca 2 * channel research (Tanabe el al., 
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1987). The cloned rabbit skeletal muscle a,-subunit has 29% homology 
wi th the voltage-dependent Na 1 channel. I t is assumed that four homologous 
regions, each consisting of five hydrophobic α-hel ices ( S I , S2, S3, S3 and 
S6) and one hydrophi l ic α-hclix (S4), span the membrane and form the 
C a 2 4 channel pore (Fig. 1). S4, which is present in each transmembrane 
region, is a positively charged helix that could act as a voltage sensor. A 
homologous helix is found in other voltage-activated ion channels, i.c the 
N a + channel o f eel, fly and rat and the Κ 1 channel of various tissues. The 
positive charges o f the S4 segment could respond to a change in the 
membrane potential by a transmembrane shift of its positive charges, and 
thereby affect the open/closed state of the channel. 

The p r imary structure of the rabbit skeletal muscle j3-subunit has been 
deduced from the cloned c D N A . The c D N A has a length of 1.85 kilobasc. 
The deduced peptide consists of 524 amino acids w i t h a Λ/ λ of 58 kDa. 
The p r imary structure of the /3-subunit agrees wi th that of a peripheral 
membrane protein. I t contains four homologous α-hel ices (Fig. 2). Analysis 
of the pr imary structure reveals two further apparently specific protein 
kinase C phosphorylat ion sites. This is interesting since the /3-subunit is 
preferentially phosphorylated by protein kinase C in vitro. Furthermore, 

Fig. 2 Predicted secondary structure of the /3-subunit of the skeletal muscle CaL > + 

channel. The secondary structure of the deduced amino acid sequence was predicted 
by the method of Gamier et at. (1978). The /3-subunit contains four hydrophilic 
helical regions (shaded rods), each composed of 26-33 amino acids. The helices 
are joined by /3-sheets (arrows) and coils. These secondary structures are interrupted 
at three positions by helical structures with a length of 10-15 amino acids (open 
rods). The in vitro phosphorylation sites are indicated by P. The site closer to the 
amino terminus is the major in vitro phosphorylation site of cAMP-depenclent protein 
kinase. 
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there is ample evidence that protein kinase C alters L-type channel function 
in vivo (Kaczmarek, 1987). I n addi t ion, the pr imary sequence contains a 
site specific for cGMP-depcndent protein kinase. This was expected from 
the in vitro phosphorylation experiments (see Table 1). 

The biological significance of these pr imary structures remains to be 
elucidated. Antibodies against the /3-subunit enhance C a 2 + currents through 
L-type channels and prevent the blocking action o f ni trendipine (V i lvcn el 
al., 1988), whereas antibodies against the γ - s u b u n i t inh ib i t C a 2 4 current 
(Campbell el αι., 1988). This suggests that the two smaller subunits of the 
skeletal muscle C a 2 + channel are necessary for proper channel function. 

The pr imary structure of the γ - s u b u n i t is not known. However, the 
pr imary structure o f the 130-kDa (a2) protein has been deduced from 
cloned rabbit skeletal muscle c D N A (Ellis el al., 1988). The a2 protein has 
the sequence o f a hydrophi l ic protein and may contain up to three 
transmembrane helices and eight extracellular N-glycosylation sites. This 
predicted topography is in accordance w i t h the finding that the purified 
protein is heavily glycosylated. Hybr id iza t ion studies show that the m R N A 
for the a2 protein is expressed in many tissues, whereas the c D N A for the 
skeletal muscle a,-subunit hybridizes only weakly or not at all to the 
messenger R N A from other tissues (Ellis el al., 1988). Al though these data 
are not conclusive, they support the notion that the 130/28-kDa (<W8) 
protein may not be an essential part of the calcium channel. 

5 Identification of L-type C a 2 + channel proteins in other tissues 

A C a 2 ' channel a,-subunit o f a slightly larger size than that o f rabbit 
skeletal muscle has been identified in brain, smooth muscle and heart by 
northern blot analysis of the respective m R N A (Table 2). This difference 
in size is supported by photo-affinity labell ing of the high-affinity receptor 
for CaCBs. Azidopinc and L U 49888 identify a 195-kDa protein in a 
part ial ly purified preparation of the bovine cardiac muscle CaCB-receptor 
(Schneider and Hofmann, 1988). A n identically sized α - subun i t is labelled 
in hippocampus (Striessnig et al., 1988). These differences are not caused 
by species differences, since a monoclonal antibody to the a!-subunit o f 
rabbit skeletal muscle recognizes the same subunit i n the skeletal muscle 
of guinea pig, hamster, rat, cow and pig, but docs not b ind to the bovine 
heart subunit. This suggests that the differences arc real and reside in the 
pr imary sequence of the α - s u b u n i t s from different tissues. 
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Table 2 Size of the putative α-subunit of the C a 2 + channel in other tissues 

Size of putative a{-subunit 

Tissue Species Protein (kDa) mRNA (kB) 

Skeletal muscle rabbit 165 
195 

6.2 
8.3 
8.2 
8.1 

Heart 
Lung 
Brain guinea pig 

cow 
cow 

195 

M e m b r a n e s or a p a r t i a l l y pur i f i ed p repa ra t ion o f the CaCB-recep to r were af f in i ty- labe l led 
w i t h az idopine or L U 49888. T h e molecu la r we igh t was de te rmined by SDS-gel electrophoresis. 
T h e size o f the m R N A was de te rmined by h y b r i d i z a t i o n w i t h a probe der ived f rom the cloned 
α , - subuni t o f the r abb i t skeletal CaCB-recep to r . For fur ther de ta i l see Sicher et at. (1987) , 
Schneider and H o f m a n n (1988) and Striessnig et at. (1988) . 

6 Reconstitution of an L-type C a 2 + channel from the skeletal muscle 
CaCB-receptor 

The purified d ihydropyr id ine receptor from skeletal muscle has been 
reconstituted into phospholipid vesicles which were fused w i t h a phospholipid 
bilayer (Flockerzi et al., 1986a; Hyme l el al., 1988; M a and Coronado, 
1988; Pelzer el al., 1988; Talvcnheimo el ai, 1987). I n agreement wi th 
whole-cell recording data, the reconstituted protein channel has a single-
channel conductance o f about 20 pS (Flockerzi el ai, 1986a; Pclzcr el al., 
1988; Talvenheimo el ai, 1987). Its open state probabi l i ty (/>o) is reduced 
by the C a 2 + channel blockers gal lopamil and PN 200-110, and increases 
in the presence of the C a 2 + channel agonist Bay Κ 8644. The pa is also 
increased several fold by the addi t ion of A T P - M g and the catalytic subunit 
of cAMP-dependcnt protein kinase (Flockerzi el al., 1986a; Hyme l el al., 
1988; Pelzer el ai, 1988). These results suggest that the reconstituted 
channel has some properties of the cardiac L-typc C a 2 1 channel. Further 
analysis o f the single-channel kinetics showed that open and closed times 
of the reconstituted channel are about 10 times longer than that of an in 
vivo cardiac muscle L-type channel (Pelzer el al., 1988), indicat ing that the 
reconstituted channel has properties which differ from that of the cardiac 
muscle channel. The slower channel kinetics of the purified receptor are 
not caused by proteolysis of the receptor dur ing purif icat ion. The same 
kinetics were obtained when solubilized microsomal membranes were 
reconstituted. 
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Both preparations, the solubilized membranes and the purified receptor, 
contain a second channel w i t h a conductance around 10 pS ( M a and 
Coronado, 1988; Pclzer el al., 1988; Talvcnheimo el al., 1987). The pa o f 
the channel showing the smaller conductance was not affected by 
phosphorylat ion, C a 2 + channel blockers or agonists (Pclzer el al., 1988). 
So far, an interconvcrsion of a small non-regulated into a large regulated 
conductance has not been observed (Pelzer el al., 1988). The two 
conductances could be distinguished further by the voltage-dependence of 
pa. The small conductance showed a regular voltage dependence of its 
open state probabi l i ty , whereas the large conductance yielded a bell-shaped 
dependency. pa was greatest at a membrane potential around 0 m V (Pelzer 
el al., 1988). These differences in electrophysiological parameters clearly 
dist inguish the two conductances. 

7 Conclusions 

T h e biochemical identi ty of these conductances is not clear at present. 
Recent reconstitution experiments of the isolated a}-subunit suggest that 
the 165-kDa subunit is the C a 2 4 - c o n d u c t i n g unit (Pelzer el al., 1988). This 
conclusion is supported by experiments in which the cloned c D N A of the 
« | - s u b u n i t was expressed in embryonic muscle cells from dysgenic mice 
(Tanabe el al., 1988). The dysgenic myotubes do not express the 6.5-kB 
m R N A of the a r s u b u n i t and are defective in EC-coupling. The intranuclear 
injection and the expression of the cloned aj-subunit m R N A in myotubes 
o f dysgenic mice restores EC-coupling and a slow L-type C a 2 + channel in 
these cells. Interestingly, the T- tubular voltage sensor and the C a 2 + channel 
is regained together w i t h the expression of the a r s u b u n i t , suggesting that 
both functions require the a,-subunit. These two functions may not depend 
alone on the presence of the 165-kDa (a , )-subunit, but correct functioning 
may require the presence of the other subunits. This conclusion is supported 
also by the modulatory effect of ß- (V i lvcn el al., 1988) and ^-(Campbel l 
el al., 1988) subunit-specific antibodies on C a 2 ' current (see above). 
Furthermore, the survival of a C a 2 + channel reconstituted from T- tubular 
membranes increases dramatically in the presence of activated G s (Yatani 
el al., 1988). I t is l ikely, therefore, that the 165-kDa subunit contains the 
C a 2 ' - c o n d u c t i n g part o f a L-type C a 2 + channel, which requires in vivo the 
presence of other smaller subunits and G proteins for proper function. 
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