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The Structure of the Skeletal Muscle
Calcium Channel

PETER RUTH, VEIT FLOCKERZI, MARTIN BIEL and
FRANZ HOFFMAN

Institut fur Physiologische Chemie, Medizinische Fakultdt, Universitét
des Saarlandes, Homburg/Saar, West Germany

1 Introduction

Voltage-activated Ca?* channels are classified into three types (T, N and
L), which differ in their pharmacological bchaviour and functional
significance (Nowycky et al., 1983). L-type channels arc sensitive to organic
drugs the Ca?* channel blockers (CaCB) which include the dihydropyridines
(1,4-DHPs), the phenylalkylamines (PAAs) and the benzothiazepines (BTZs)
(Hofmann ef al., 19387). In cardiac muscle, B-adrenoceptor agonists increase
the open state probability of this channel type cither by phosphorylation
of the channel or a channel associated protein via the catalytic subunit of
cAMP-dependent protein kinase (Trautwein et al., 1986), or by stabilizing
the open state via the a-subunit of the GTP binding protein G, (Yatani e
al., 1987). L-type channels occur in peripheral and central neurons, smooth
muscle, invertebrate skeletal muscle and heart. Their biological function in
vertebrate skeletal muscle has not been established unecquivocally, but
probably the channel has the same function as in cardiac muscle, i.c.
participating in the maintenance of an adequate amount of intracellular
Ca?* for muscle contraction (Ildefonse et al., 1985). However, the channel
protein may participate in skcletal muscle excitation contraction-coupling
not only as Ca?* channel but also as a voltage sensor (Berwe e/ al., 1987;
Lamb and Walsh, 1987; Rios and Brum, 1987). L-type Ca?* channels of
different tissues probably are not identical and will be divided up further

TON TRANSPORT Copyright © 1989 Academic Press Limited
ISBN 0.12.403985.5 All rights of reproduction in any form reserced
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148 P. Ruth et al.

as our knowledgec of their clectrophysiological and molccular propertics, their
functional significance and their modulation by hormones, ncurotransmitters
and drugs expands.

2 Structural composition of the purified skeletal muscle Ca?* channel

Most of the information on the structural composition of the L-type Ca*"
channel originates from studics with rabbit skeletal muscle. SDS-gel analysis
of the purified skeletal CaCB-receptor yiclds several stained bands with
apparent molccular weights of 165 kDa (), 55 kDa (B) and 32 kDa (y)
in a constant ratio of 1:1.7:1.4 (Sieber e/ al., 1987). A further protein
containing a 130-(a,) and 28-kDa (8) disulfide-linked peptide co-purifies
in variable amounts with the @,-, 8- and y-subunits of the CaCB-rcceptor.
The a,- and the y-peptides are heavily glycosylated, whereas the a)- and
B-subunit contain none or a low amount of carbohydrates (Takahashi e
al., 1987). The purified receptor binds all threc major classes of Ca?*
channel blockers (i.e. DHPs, PAAs and BTZs) in a stercospecific manner.
The photo-affinity analogues of the 1,4-DHPs and PAAs, azidopine and
LU 49888, label only the 165-kDa () subunit, indicating that this protein
carries the drug receptor sites for 1,4-DHPs and PAAs (Galizzi e/ al., 1986;
Sieber et al., 1987; Tanabe et al., 1987; Striessnig et al., 1986, 1987). The
constant stoichiometry of the 165-, 55- and 32-kDa protcins suggests that
these proteins arc constituents of the Ca?* channel. Further cvidence for
the existence of a functional complex with this composition comes from
studies with antibodics against the a;-subunit which precipitate the a-,
B- and y-subunits (Takahashi et al., 1987). Antibodies specific against the
a,- or B-subunits immunoprecipitates the a)- or B-subunits (Leung e/ al.,
1988). Furthermore, antibodies specific against the a;-, 8- and y-subunits
modulate the Ca?* current in vivo (Campbell e al., 1988; Morton el al.,
1988; Vilven et al., 1988). Attempts to isolate only the a;-subunit under
non-denaturing conditions have not been successful so far, suggesting that
the B- and +y-subunits stabilize the channel in a high-affinity CaCB binding
conformation. At present, it is not known whether or not the 130/28-kDa
protein belongs also to this structure (Leung e/ al., 1988) or is only a
contaminant,

3 Phosphorylation of the purified CaCB-receptor

The 165- and 55-kDa subunits of the purified CaCB-receptor arce
phosphorylated readily by cAMP-dependent protein kinase (Curtis and
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Table 1 Kinase-specific phosphopeptides of the skeletal muscle CaCB-receptor

Phosphopeptide number

Protein kinase 165 kDa 55 kDa
cAMP-kinase 1,10 7
cGMP-kinase 1,2 1,3
Protein kinase C none 7/8
Casein kinase I1 7,11 9,10

The purified receptor was phosphorylated by each kinase as described by Jahn et al., (1988).
The phosphorylated subunits were separated by SDS-gel electrophoresis. Individual gel pieces
containing the phosphorylated o,- or B-subunit were digested by trypsin over night. The
phosphopeptides were then separated by 2-D thin-layer chromatography. The number of the
kinase-specific phosphopeptide(s) is shown. Sce also Jahn et al. (1988).

Catterall, 1985; Flockerzi et al., 1986a,b) and other kinases in vilro
(Nastainczyk el al., 1987; O’Callahan et al., 1988; Jahn el al., 1988). The
a,-subunit is a good substrate for cAMP-kinase and cascin kinasc 11,
whereas the 35-kDa subunit is preferentially phosphorylated by protein
kinase C and ¢cGMP-dependent protein kinase. Two-dimensional peptide
maps vield 11 phosphopeptides from the 165-kDa subunit and 11 from
the 55-kDa subunit using these kinases (Jahn e al., 1988). With the
exception of protein kinase C, cach kinase apparently phosphorylates onc
or two peptides specifically in each subunit (Table 1). Protein kinase C
does not phosphorylate specifically a peptide in the 165-kDa peptide, but
modifics rapidly peptide 7/8 of the 55-kDa subunit. Neither the 32-kDa
nor the 130/28-kDa peptides are phosphorylated by the above-mentioned
kinascs. At physiological concentrations cAMP-dependent protein kinase
incorporates 1 mole phosphate per mole 165-kDa subunit within 10 min
(Curtis and Caucrall, 1985; Nastainczyk et al., 1987). This suggests that
the phosphorylation of this sitc may be functionally important. A
sccond site is phosphorylated during prolonged incubation. The rapidly
phosphorylated peptide was isolated and scquenced. The phosphorylated
amino acid was identified as Ser 687 of the deduced amino acid sequence
of the a,;-subunit (Rohrkasten el al., 1988). This scrine is located in the
cytoplasmic loop between transmembrane regions I and IIT (sce Fig. 1).
It is possible that in vivo cAMP-dependent phosphorylation of this serine
increases the open state probability of the Ca** channel.
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Hydropathy index

Extracellular
7 7/77/7ﬂ\
Plasma membrane

N M/

Intracellular

Extracellular

Plosma membrane
7

Intercellular

Fig. 1 Hydrophobicity profile and transmembrane topology of the skeletal muscle
Ja®* channel a;-subunit. The hydrophobicity profile of the a;-subunit according
to Tanabe et al. (1987). Positive indices represent hydrophobic amino acid regions.
The protein consists of four homologous domains (I, IT, TII, IV) each composed
of six membrane spanning helices (1, 2, 3, 4, 5, 6). Transmembrane regions are
based on their hydropathy value, polarity index and hydrophobic moment analysis
according to Chou and Fasman (1978). The homologous regions (I, II, 11, TV)
cach containing six transmembrane spirals are shown linearly. They are supposed
to form the ionic pore. The carboxy- and amino-termini are located at the
cytoplasmic site of the plasma membrane. The phosphorylation site of ¢cANIP-
dependent protein kinase, scrine residue 687, is indicated between domains I1 and

1.

4 Structure of the a;- and B-subunits of the skeletal muscle Ca2+
channel

Identification and cloning of the ;- subunit of the Ca?* channel from
skeletal muscle was a major step in Ca?' channel rescarch (Tanabe el al.,
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1987). The cloned rabbit skeletal muscle a@;-subunit has 29% homology
with the voltage-dependent Na* channel. It is assumed that four homologous
regions, cach consisting of five hvdrophobic a-helices (S1, S2, §3, S5 and
S6) and onc hydrophilic a-helix (S4), span the membrane and form the
Ca?" channel pore (Fig. 1). S4, which is present in cach transmembranc
region, is a positively charged helix that could act as a voltage sensor. A
homologous helix is found in other voltage-activated 1on channcls, i.c the
Na™* channel of ccl, flv and rat and the K* channel of various tissucs. The
positive charges of the S4 segment could respond to a change in the
membrane potential by a transmembrane shift of its positive charges, and
thereby affect the open/closed state of the channel.

The primary structure of the rabbit skeletal muscle B-subunit has been
deduced from the cloned ¢cDNA. The ¢cDNA has a length of 1.85 kilobase.
The deduced peptide consists of 524 amino acids with a A, of 38 kDa.
The primary structure of the B-subunit agrees with that of a peripheral
membrane protein. It contains four homologous a-helices (Iig. 2). Analysis
of the primary structure reveals two further apparently specific protein
kinasc C phosphorylation sites. This is interesting since the B-subunit is
preferentially phosphorylated by protein kinase C in witro. Furthermore,

Fig. 2 Predicted secondary structure of the B-subunit of the skeletal muscle Ca®*
channel. The secondary structure of the deduced amino acid sequence was predicted
by the method of Garnier e al. (1978). The B-subunit contains four hydrophilic
helical regions (shaded rods), each composed of 26-33 amino acids. The helices
arc joined by B-sheets (arrows) and coils. These secondary structures are interrupted
at three positions by helical structures with a length of 10-15 amino acids (open
rods). The in vitro phosphorylation sites are indicated by P. The site closer to the
amino terminus is the major in vitro phosphorylation site of cAMP-dependent protein
kinase.
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there is ample evidence that protein kinasc C alters L-type channel function
in vivo (Kaczmarck, 1987). In addition, the primary scquence contains a
site specific for cGMP-dependent protein kinase. This was expected from
the in vitro phosphorylation experiments (sce Table 1).

The biological significance of these primary structures remains to be
clucidated. Antibodics against the B-subunit enhance Ca®* currents through
L-type channcls and prevent the blocking action of nitrendipine (Vilven e
al., 1988), whereas antibodics against the y-subunit inhibit Ca** current
(Campbell et al., 1988). This suggests that the two smaller subunits of the
skeletal muscle Ca*?* channel are necessary for proper channel function.

The primary structurc of the y-subunit is not known. Howecver, the
primary structurc of the 130-kDa (a,) protein has been deduced from
cloned rabbit skeletal muscle cDNA (Ellis e/ al., 1988). The a, protcin has
the scquence of a hydrophilic protein and may contain up to three
transmembranc helices and cight extracellular N-glycosylation sites. This
predicted topography is in accordance with the finding that the purified
protein is heavily glycosylated. Hybridization studies show that the mRNA
for the a, protein is cxpressed in many tissucs, whercas the cDNA for the
skeletal muscle a;-subunit hybridizes only weakly or not at all to the
messenger RNA from other tissues (Ellis e/ a/., 1988). Although these data
arc not conclusive, they support the notion that the 130/28-kDa (a./d)
protcin may not be an essential part of the calcium channel.

5 Identification of L-type Ca%* channel proteins in other tissues

A Ca?" channel «,-subunit of a slightly larger size than that of rabbit
skeletal muscle has been identified in brain, smooth muscle and heart by
northern blot analysis of the respective mRNA (Table 2). This dilference
in size is supported by photo-affinity labelling of the high-affinity receptor
for CaCBs. Azidopine and LU 49888 identify a 195-kDa protein in a
partially purified preparation of the bovine cardiac muscle CaCB-receptor
(Schneider and Hofmann, 1988). An identically sized a-subunit is labelled
in hippocampus (Striessnig et al., 1988). These differences are not caused
by species differences, since a monoclonal antibody to the a;-subunit of
rabbit skelctal muscle recognizes the same subunit in the skeletal muscle
of guinca pig, hamster, rat, cow and pig, but does not bind to the bovine
heart subunit. This suggests that the differences arce real and reside in the
primary sequence of the a-subunits from different tissucs.
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Table 2 Size of the putative a-subunit of the Ca®* channel in other tissues

Size of putative a;-subunit

Tissue Species Protein (kDa) mRNA (kB)
Skeletal muscle rabbit 165 6.2
Heart cow 195 8.3
Lung cow — 8.2
Brain guinea pig 195 8.1

Membranes or a partially purified preparation of the CaCB-receptor were aflinity-labelled
with azidopine or LU 49888. The molecular weight was determined by SDS-gel electrophoresis.
The size of the mRNA was determined by hybridization with a probe derived from the cloned
o-subunit of the rabbit skeletal CaCB-receptor. For further detail see Sicber et al. (1987),
Schneider and Hofmann (1988) and Striessnig ef al. (1988).

6 Reconstitution of an L-type Ca2* channel from the skeletal muscle
CaCB-receptor

The purified dihydropyridine receptor from skeletal muscle has been
reconstituted into phospholipid vesicles which were fused with a phospholipid
bilayer (Flockerzi et al., 1986a; Hymel et al,, 1988; Ma and Coronado,
1988; Pelzer et al., 1988; Talvenhcimo el al., 1987). In agrecement with
whole-cell recording data, the reconstituted protein channel has a single-
channel conductance of about 20 pS (Flockerzi et al., 1986a; Pelzer el al.,
1988; Talvenheimo el al., 1987). Its open state probability (p;) is reduced
by the Ca?* channel blockers gallopamil and PN 200-110, and increcases
in the presence of the Ca?* channel agonist Bay K 8644. The p¢, is also
increased several fold by the addition of ATP-Mg and the catalytic subunit
of cAMP-dependent protein kinase (Flockerzi et al., 1986a; Hymel el al.,
1988; Pelzer el al., 1988). These results suggest that the reconstituted
channel has some propertics of the cardiac L-type Ca?* channel. Further
analysis of the single-channel kinetics showed that open and closed times
of the reconstituted channel arc about 10 times longer than that of an in
vivo cardiac muscle L-type channel (Pelzer e/ al., 1988), indicating that the
reconstituted channel has properties which differ from that of the cardiac
muscle channel. The slower channel kinctics of the purified receptor are
not caused by proteolysis of the receptor during purification. The same
kinetics were obtained when solubilized microsomal membranes were
reconstituted.
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Both preparations, the solubilized membranes and the purified receptor,
contain a sccond channel with a conductance around 10 pS (Ma and
Coronado, 1988; Pclzer el al., 1988; Talvenhcimo et al., 1987). The p, of
the channel showing the smaller conductance was not affected by
phosphorylation, Ca®* channcl blockers or agonists (Pelzer e/ al., 1988).
So far, an interconversion of a small non-regulated into a large regulated
conductance has not been observed (Pelzer el al., 1988). The two
conductances could be distinguished further by the voltage-dependence of
po- The small conductance showed a rcgular voltage dependence of its
opcen state probability, whereas the large conductance yielded a bell-shaped
dependency. p¢, was greatest at a membranc potential around 0 mV (Pelzer
el al., 1988). These differences in clectrophysiological parameters clearly
distinguish the two conductances.

7 Conclusions

The biochemical identity of these conductances is not clear at present.
Recent reconstitution experiments of the isolated a)-subunit suggest that
the 165-kDa subunit is the Ca®*-conducting unit (Pelzer ef al., 1988). This
conclusion is supported by experiments in which the cloned ¢cDNA of the
a;-subunit was expressed in embryonic muscle cells from dysgenic mice
(Tanabe et al., 1988). The dysgenic myotubes do not express the 6.5-kB
mRNA of the a;-subunit and are defective in EC-coupling. The intranuclear
injection and the expression of the cloned a,-subunit mRNA in myotubes
of dysgenic mice restores EC-coupling and a slow L-type Ca?* channcl in
thesce cells. Interestingly, the T-tubular voltage sensor and the Ca?* channel
is regained together with the expression of the a-subunit, suggesting that
both functions require the a;-subunit. These two functions may not depend
alone on the presence of the 165-kDa (a,)-subunit, but correct functioning
may require the presence of the other subunits. This conclusion is supported
also by the modulatory effect of B- (Vilven e al., 1988) and vy-(Campbell
el al., 1988) subunit-specific antibodics on Ca** current (scc above).
Furthermore, the survival of a Ca?* channecl reconstituted from T-tubular
membranes increases dramatically in the presence of activated G, (Yatani
el al., 1988). It is likely, thercfore, that the 165-kDa subunit contains the
Ca?"-conducting part of a L-type Ca*?* channcl, which requires in vive the
presence of other smaller subunits and G proteins for proper function.
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