Ion Transport

Edited by

DAVID KEELING
Smith Kline & French Research Limited
Welwyn, Hertfordshire, UK

CHRIS BENHAM
Smith Kline & French Research Limited
Welwyn, Hertfordshire, UK

ACADEMIC PRESS

Harcourt Brace Jovanovich Publishers

London San Diego New York Berkeley
Boston Sydney Tokyo Toronto
Contributors

P.I. Aaronson Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK

M.H. Akabas Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA

Q. Al-Awqati Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA

R.W. Aldrich Department of Neurobiology, Stanford University School of Medicine, Stanford, Calif. 94305-5401, USA

D. Anderson CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA

D. Aures-Fischer CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA

E.A. Barnard MRC Molecular Neurobiology Unit, MRC Centre, Hills Road, Cambridge CB2 2QH, UK

L. Bianchini University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK

G. Belagi Allergan, Irvine, Calif., USA

C.D. Benham Smith Kline & French Research Limited, The Frythe, Welwyn, Herts AL5 9AR, UK

M. Biel Institut für Physiologische Chemie, Medizinische Fakultät, Universität des Saarlandes, D-6650 Homburg/Saar, West Germany

T.B. Bolton Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK
M.S. Brainard Department of Neurobiology, Stanford University School of Medicine, Stanford, Calif. 94305-5401, USA

M.G. Darlison MRC Molecular Neurobiology Unit, MRC Centre, Hills Road, Cambridge CB2 2QH, UK

A.C. Dolphin Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK

A. Edelman Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA

D.T. Edmonds The Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

J.C. Ellory University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK

V. Flockerzi Institut für Physiologische Chemie, Medizinische Fakultät, Universität des Saarlandes, D-6650 Homburg/Saar, West Germany

L. Gerlach Physiologisches Institut, Albert Ludwigs Universität Freiburg, Hermann Herder Strasse 3, D-7800 Freiburg, West Germany

R. Greger Physiologische Institut, Albert Ludwigs Universität Freiburg, Hermann Herder Strasse 3, D-7800 Freiburg, West Germany

A.C. Hall University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK

K. Hall CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA

S. Hering Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK

S.J. Hersey Emory University, Atlanta, Georgia, USA

P. Hess Department of Cellular and Molecular Physiology, Harvard Medical School, 25 Shattuck Street, Boston, Mass. 02115, USA

B. Hille Department of Physiology and Biophysics, SJ-40, Washington University, Seattle, Wash. 98195, USA

S.B. Hladky Department of Pharmacology, University of Cambridge, Cambridge CB2 2QD, UK

F. Hoffman Institut für Physiologische Chemie, Medizinische Fakultät, Universität des Saarlandes, D-6650 Homburg/Saar, West Germany
S.J.D. Karlish Department of Biochemistry, Weizmann Institute of Science, Rehovoth, Israel

K. Kunzelmann Physiologisches Institut, Albert Ludwigs Universität Freiburg, Hermann Herder Strasse 3, D-7800 Freiburg, West Germany

D.W. Landry Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA

D.E. Logothetis Department of Cardiology at Children’s Hospital, Harvard Medical School, Boston, Mass. 02115, USA

M.L. Mayer Unit of Neurophysiology and Biophysics, Building 36, Room 2A21, I.DN. NICHD, NIH, Bethesda, Md. 20892, USA

J. Marshall MRC Molecular Neurobiology Unit, MRC Centre, Hills Road, Cambridge CB2 2QH, UK

J.E. Merritt Smith Kline & French Research Limited, The Frythe, Welwyn, Herts AL5 9AR, UK

K. Munson CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA

R.K. Nakamoto Department of Human Genetics & Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Conn. 06510, USA

M.R. Plummer Department of Cellular and Molecular Physiology, Harvard Medical School, 25 Shattuck Street, Boston, Mass. 02115, USA

H. Porzig Department of Pharmacology, University of Berne, CH-3010, Berne, Switzerland

R. Rao Department of Human Genetics & Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Conn. 06510, USA

C. Redhead Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA

H. Reuter Department of Pharmacology, University of Berne, CH-3010 Berne, Switzerland

T.J. Rink Smith Kline & French Research Limited, The Frythe, Welwyn, Herts AL5 9AR, UK
P. Ruth Institut für Physiologisches Chemie, Medizinische Fakultät, Universität des Saarlandes, D-6650 Homburg/Saar, West Germany

G. Sachs CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA

D.B. Sattelle AFRC Unit of Insect Neurophysiology and Pharmacology, Department of Zoology, University of Cambridge, Cambridge CB2 3BJ, UK

R.H. Scott Department of Pharmacology, St George’s Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK

C.W. Slayman Department of Human Genetics & Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Conn. 06510, USA

C.K. Sole Department of Neurobiology, Stanford University School of Medicine, Stanford, Calif. 94305-5401, USA

W.N. Zagotta Department of Neurobiology, Stanford University School of Medicine, Stanford, Calif. 94305-5401, USA
Contents

Contributors ... v
Foreword ... ix
Introduction ... xvii

PART 1: P-type Cation Pumps

1 Extracytosolic Functional Domains of the H\(^{+}\),K\(^{+}\)-ATPase Complex
 G. Sachs, K. Manson, K. Hall, D. Aurel-Fischer, D. Anderson, V.
 Belagi and S.J. Hersey
 1 Introduction .. 3
 2 Results .. 6
 3 Discussion .. 13
 Acknowledgements 16
 References .. 17

2 The Mechanism of Cation Transport by the Na\(^{+}\),K\(^{+}\)-ATPase
 S.J.D. Karlish
 1 Introduction .. 19
 2 The transport mechanism 19
 3 Cation occlusion 21
 4 Cation selectivity 22
 5 Trans effects of Na\(^{+}\) 23
 6 Cation slippage fluxes 24
 7 Electrogenic potentials 25
 8 Effects of voltage on the pump 26
 9 The structure of the cation-binding sites 29
 10 Future directions 30
 Acknowledgements 31
 References .. 31
3 The Nucleotide-binding Site of the Plasma-membrane H⁺-ATPase of Neurospora crassa: A Comparison with other P-type ATPases 35
Rajini Rao, Robert K. Nakamoto and Carolyn W. Slayman

PART 2: Ion Channels and their Modulation

4 Voltage-gated Sodium Channels since 1952 57
Bertil Hille

5 Single Potassium Channels in Drosophila Nerve and Muscle 73
Richard W. Aldrich, Charles K. Solc, William N. Zagotta and Michael S. Brainard
6 Calcium Channels: Properties and Modulation 87
H. Reuter and H. Porzig

1 Introduction .. 87
2 Ca2+ channel selectivity 88
3 Ca2+ channel gating 88
4 Ca2+ channel modulation 90
Acknowledgements 94
References .. 94

7 Calcium Channels in Mammalian Sympathetic Neurons and PC12 Cells 97
Mark R. Plummer, Peter Hess and Diomedes E. Logothetis

1 Introduction .. 97
2 Results and discussion 98
Acknowledgements 113
References .. 114

8 Voltage-dependent Calcium Channels of Smooth Muscle Cells 117
T.B. Bolton, S. Hering and P.I. Aaronson

1 Introduction .. 117
2 Inward current 118
3 Conclusions ... 123
Acknowledgements 124
References .. 124

9 Modulation of Calcium and other Channels by G Proteins: Implications for the Control of Synaptic Transmission 127
Annette C. Dolphin and Roderick H. Scott

1 Introduction .. 127
2 Modulation of Ca2+ channels by G protein activation 128
3 Evidence for G proteins coupling to K+ channels 138
4 Role of G protein-coupled ion channels in the modulation of synaptic transmission .. 140
5 Conclusion ... 141
References .. 142

10 The Structure of the Skeletal Muscle Calcium Channel 147
Peter Ruth, Veit Flockerzi, Martin Biel and Franz Hoffman

1 Introduction .. 147
2 Structural composition of the purified skeletal muscle Ca2+ channel .. 148
3 Phosphorylation of the purified CaCB-receptor................................. 148
4 Structure of the \(\alpha \) - and \(\beta \)-subunits of the skeletal muscle \(\text{Ca}^{2+} \)
 channel.. 150
5 Identification of L-type \(\text{Ca}^{2+} \) channel proteins in other tissues 152
6 Reconstitution of an L-type \(\text{Ca}^{2+} \) channel from the skeletal
 muscle CaCB-receptor... 153
7 Conclusions.. 154
Acknowledgements... 154
References.. 155

11 Structural Characteristics of Cation and Anion Channels
 Directly Operated by Agonists.. 159

E.A. Barnard, M.G. Darlison, J. Marshall and D.B. Sattelle

1 Classes of receptor-operated channels.. 159
2 Ligand-operated ion channels.. 161
3 Vertebrate nicotinic acetylcholine receptors............................... 162
4 Homo-oligomeric forms of nicotinic receptors in insects.............. 166
5 GABA\textsubscript{A} and glycine receptors.................................... 171
6 The ion channel in the structure.. 174
7 Conclusions.. 175
Acknowledgements... 175
References.. 176

12 Activation and Desensitization of Glutamate Receptors in
 Mammalian CNS... 183

Mark L. Mayer

1 Introduction.. 183
2 Techniques used for rapid perfusion to limit desensitization...... 185
3 Responses to fast applications of excitatory amino acids............ 186
4 Glycine modulates desensitization at NMDA receptors.............. 188
5 Dose–response analysis for activation of NMDA and quisqualate
 receptors.. 189
6 Implications for synaptic transmission...................................... 191
Acknowledgements... 191
References.. 191

13 Receptor-mediated Calcium Entry.. 197

C.D. Benham, J.E. Merritt and T.J. Rink

1 Introduction.. 197
2 Electrophysiological approaches.. 199
3 Studies with fluorescent indicators of \([\text{Ca}^{2+}]\)......................... 203
4 Conclusion.. 210
Acknowledgements... 211
References.. 211
PART 3: Ions and Fluid Transport

14 Pathways for Cell Volume Regulation via Potassium and Chloride Loss
A.C. Hall, L. Bianchini and J.C. Ellory

1 Introduction: transport processes involved in RVD 217
2 Coupled KCl co-transport in hepatocytes 222
3 Anion dependence and kinetic properties of KCl co-transport in red cells 224
4 Specific inhibitors of KCl co-transport 226
5 Loss of KCl co-transport on “young” red cell maturation 228
6 Discussion 229
Acknowledgements 231
References 231

15 Epithelial Chloride Channels: Properties and Regulation
R. Greger, L. Gerlach and K. Kunzelmann

1 Introduction 237
2 Properties of epithelial Cl⁻ channels 238
3 Regulation of epithelial Cl⁻ channels 241
4 Conclusion 244
Acknowledgements 245
References 245

16 Purification and Reconstitution of the Epithelial Chloride Channel
Donald W. Landry, Myles H. Akabas, Christopher Redhead, Aleksander Edelman and Qais Al-Awqati

1 Introduction 249
2 Solubilization and affinity chromatography 250
3 Reconstitution 253
4 Discussion 257
Acknowledgements 258
References 258

PART 4: Models of Ion Permeation across Membranes

17 Models of Ion Permeation through Membranes
S.B. Hladky

1 Introduction 263
2 Molecular and Brownian dynamics 264
18 Topics Relating to the Modelling of Ion Channel Function 279

D.T. Edmonds

1 A threshold model of Na⁺ channel kinetics 279
2 A kinetic role for ionizable residues in channel proteins 286

References 291

Appendix: Abstracts of Posters 293

Index 375

Colour Plate Between pages 8 and 9
The Structure of the Skeletal Muscle Calcium Channel

PETER RUTH, VEIT FLOCKERZI, MARTIN BIEL and FRANZ HOFFMAN

Institut für Physiologische Chemie, Medizinische Fakultät, Universität des Saarlandes, Homburg/Saar, West Germany

1 Introduction

Voltage-activated Ca\(^{2+}\) channels are classified into three types (T, N and L), which differ in their pharmacological behaviour and functional significance (Nowycky et al., 1985). L-type channels are sensitive to organic drugs the Ca\(^{2+}\) channel blockers (CaCB) which include the dihydropyridines (1,4-DHPs), the phenylalkylamines (PAAs) and the benzothiazepines (BTZs) (Hofmann et al., 1987). In cardiac muscle, β-adrenoceptor agonists increase the open state probability of this channel type either by phosphorylation of the channel or a channel associated protein via the catalytic subunit of cAMP-dependent protein kinase (Trautwein et al., 1986), or by stabilizing the open state via the α-subunit of the GTP binding protein G\(_s\) (Yatani et al., 1987). L-type channels occur in peripheral and central neurons, smooth muscle, invertebrate skeletal muscle and heart. Their biological function in vertebrate skeletal muscle has not been established unequivocally, but probably the channel has the same function as in cardiac muscle, i.e. participating in the maintenance of an adequate amount of intracellular Ca\(^{2+}\) for muscle contraction (Ildefonse et al., 1985). However, the channel protein may participate in skeletal muscle excitation contraction-coupling not only as Ca\(^{2+}\) channel but also as a voltage sensor (Berwe et al., 1987; Lamb and Walsh, 1987; Rios and Brum, 1987). L-type Ca\(^{2+}\) channels of different tissues probably are not identical and will be divided up further.
as our knowledge of their electrophysiological and molecular properties, their functional significance and their modulation by hormones, neurotransmitters and drugs expands.

2 Structural composition of the purified skeletal muscle Ca\(^{2+}\) channel

Most of the information on the structural composition of the L-type Ca\(^{2+}\) channel originates from studies with rabbit skeletal muscle. SDS-gel analysis of the purified skeletal CaCB-receptor yields several stained bands with apparent molecular weights of 165 kDa (\(\alpha_1\)), 55 kDa (\(\beta\)) and 32 kDa (\(\gamma\)) in a constant ratio of 1:1.7:1.4 (Sieber et al., 1987). A further protein containing a 130-(\(\alpha_2\)) and 28-kDa (\(\delta\)) disulfide-linked peptide co-purifies in variable amounts with the \(\alpha_1\)-, \(\beta\)- and \(\gamma\)-subunits of the CaCB-receptor. The \(\alpha_2\)- and the \(\gamma\)-peptides are heavily glycosylated, whereas the \(\alpha_1\)- and \(\beta\)-subunit contain none or a low amount of carbohydrates (Takahashi et al., 1987). The purified receptor binds all three major classes of Ca\(^{2+}\) channel blockers (i.e. DHPs, PAAs and BTZs) in a stereospecific manner. The photo-affinity analogues of the 1,4-DHPs and PAAs, azidopinc and LU 49888, label only the 165-kDa (\(\alpha_1\)) subunit, indicating that this protein carries the drug receptor sites for 1,4-DHPs and PAAs (Galizzi et al., 1986; Sieber et al., 1987; Tanabe et al., 1987; Striessnig et al., 1986, 1987). The constant stoichiometry of the 165-, 55- and 32-kDa proteins suggests that these proteins are constituents of the Ca\(^{2+}\) channel. Further evidence for the existence of a functional complex with this composition comes from studies with antibodies against the \(\alpha_1\)-subunit which precipitate the \(\alpha_1\)-, \(\beta\)- and \(\gamma\)-subunits (Takahashi et al., 1987). Antibodies specific against the \(\alpha_1\)- or \(\beta\)-subunits immunoprecipitates the \(\alpha_1\)- or \(\beta\)-subunits (Leung et al., 1988). Furthermore, antibodies specific against the \(\alpha_1\)-, \(\beta\)- and \(\gamma\)-subunits modulate the Ca\(^{2+}\) current in vivo (Campbell et al., 1988; Morton et al., 1988; Vilven et al., 1988). Attempts to isolate only the \(\alpha_1\)-subunit under non-denaturing conditions have not been successful so far, suggesting that the \(\beta\)- and \(\gamma\)-subunits stabilize the channel in a high-affinity CaCB binding conformation. At present, it is not known whether or not the 130/28-kDa protein belongs also to this structure (Leung et al., 1988) or is only a contaminant.

3 Phosphorylation of the purified CaCB-receptor

The 165- and 55-kDa subunits of the purified CaCB-receptor are phosphorylated readily by cAMP-dependent protein kinase (Curtis and
Table 1 Kinase-specific phosphopeptides of the skeletal muscle CaCB-receptor

<table>
<thead>
<tr>
<th>Protein kinase</th>
<th>165 kDa</th>
<th>55 kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>cAMP-kinase</td>
<td>1,10</td>
<td>7</td>
</tr>
<tr>
<td>cGMP-kinase</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>Protein kinase C</td>
<td>none</td>
<td>7/8</td>
</tr>
<tr>
<td>Casein kinase II</td>
<td>7,11</td>
<td>9,10</td>
</tr>
</tbody>
</table>

The purified receptor was phosphorylated by each kinase as described by Jahn et al., (1988). The phosphorylated subunits were separated by SDS-gel electrophoresis. Individual gel pieces containing the phosphorylated α₁- or β-subunit were digested by trypsin over night. The phosphopeptides were then separated by 2-D thin-layer chromatography. The number of the kinase-specific phosphopeptide(s) is shown. See also Jahn et al. (1988).

Catterall, 1985; Flockerzi et al., 1986a,b) and other kinases in vitro (Nastainczyk et al., 1987; O'Callahan et al., 1988; Jahn et al., 1988). The α₁-subunit is a good substrate for cAMP-kinase and casein kinase II, whereas the 55-kDa subunit is preferentially phosphorylated by protein kinase C and cGMP-dependent protein kinase. Two-dimensional peptide maps yield 11 phosphopeptides from the 165-kDa subunit and 11 from the 55-kDa subunit using these kinases (Jahn et al., 1988). With the exception of protein kinase C, each kinase apparently phosphorylates one or two peptides specifically in each subunit (Table 1). Protein kinase C does not phosphorylate specifically a peptide in the 165-kDa peptide, but modifies rapidly peptide 7/8 of the 55-kDa subunit. Neither the 32-kDa nor the 130/28-kDa peptides are phosphorylated by the above-mentioned kinases. At physiological concentrations cAMP-dependent protein kinase incorporates 1 mole phosphate per mole 165-kDa subunit within 10 min (Curtis and Catterall, 1985; Nastainczyk et al., 1987). This suggests that the phosphorylation of this site may be functionally important. A second site is phosphorylated during prolonged incubation. The rapidly phosphorylated peptide was isolated and sequenced. The phosphorylated amino acid was identified as Ser 687 of the deduced amino acid sequence of the α₁-subunit (Röhrkasten et al., 1988). This serine is located in the cytoplasmic loop between transmembrane regions II and III (see Fig. 1). It is possible that in vivo cAMP-dependent phosphorylation of this serine increases the open state probability of the Ca²⁺ channel.
Fig. 1 Hydrophobicity profile and transmembrane topology of the skeletal muscle Ca\(^{2+}\) channel \(\alpha_1\)-subunit. The hydrophobicity profile of the \(\alpha_1\)-subunit according to Tanabe et al. (1987). Positive indices represent hydrophobic amino acid regions. The protein consists of four homologous domains (I, II, III, IV) each composed of six membrane spanning helices (1, 2, 3, 4, 5, 6). Transmembrane regions are based on their hydropathy value, polarity index and hydrophobic moment analysis according to Chou and Fasman (1978). The homologous regions (I, II, III, IV) each containing six transmembrane spirals are shown linearly. They are supposed to form the ionic pore. The carboxy- and amino-termini are located at the cytoplasmic site of the plasma membrane. The phosphorylation site of cAMP-dependent protein kinase, serine residue 687, is indicated between domains II and III.

4 Structure of the \(\alpha_1\)- and \(\beta\)-subunits of the skeletal muscle Ca\(^{2+}\) channel

Identification and cloning of the \(\alpha_1\)-subunit of the Ca\(^{2+}\) channel from skeletal muscle was a major step in Ca\(^{2+}\) channel research (Tanabe et al.,
1987). The cloned rabbit skeletal muscle α₁-subunit has 29% homology with the voltage-dependent Na⁺ channel. It is assumed that four homologous regions, each consisting of five hydrophobic α-helices (S1, S2, S3, S5, and S6) and one hydrophilic α-helix (S4), span the membrane and form the Ca²⁺ channel pore (Fig. 1). S4, which is present in each transmembrane region, is a positively charged helix that could act as a voltage sensor. A homologous helix is found in other voltage-activated ion channels, i.e. the Na⁺ channel of eel, fly and rat and the K⁺ channel of various tissues. The positive charges of the S4 segment could respond to a change in the membrane potential by a transmembrane shift of its positive charges, and thereby affect the open/closed state of the channel.

The primary structure of the rabbit skeletal muscle β-subunit has been deduced from the cloned cDNA. The cDNA has a length of 1.85 kilobase. The deduced peptide consists of 524 amino acids with a Mᵦ of 58 kDa. The primary structure of the β-subunit agrees with that of a peripheral membrane protein. It contains four homologous α-helices (Fig. 2). Analysis of the primary structure reveals two further apparently specific protein kinase C phosphorylation sites. This is interesting since the β-subunit is preferentially phosphorylated by protein kinase C in vitro. Furthermore,
there is ample evidence that protein kinase C alters L-type channel function in vivo (Kaczmarek, 1987). In addition, the primary sequence contains a site specific for cGMP-dependent protein kinase. This was expected from the in vitro phosphorylation experiments (see Table 1).

The biological significance of these primary structures remains to be elucidated. Antibodies against the β-subunit enhance Ca$^{2+}$ currents through L-type channels and prevent the blocking action of nitrendipine (Vilven et al., 1988), whereas antibodies against the γ-subunit inhibit Ca$^{2+}$ current (Campbell et al., 1988). This suggests that the two smaller subunits of the skeletal muscle Ca$^{2+}$ channel are necessary for proper channel function.

The primary structure of the γ-subunit is not known. However, the primary structure of the 130-kDa (α₂) protein has been deduced from cloned rabbit skeletal muscle cDNA (Ellis et al., 1988). The α₂ protein has the sequence of a hydrophilic protein and may contain up to three transmembrane helices and eight extracellular N-glycosylation sites. This predicted topography is in accordance with the finding that the purified protein is heavily glycosylated. Hybridization studies show that the mRNA for the α₂ protein is expressed in many tissues, whereas the cDNA for the skeletal muscle α₁-subunit hybridizes only weakly or not at all to the messenger RNA from other tissues (Ellis et al., 1988). Although these data are not conclusive, they support the notion that the 130/28-kDa (α₂/δ) protein may not be an essential part of the calcium channel.

5 Identification of L-type Ca$^{2+}$ channel proteins in other tissues

A Ca$^{2+}$ channel α₁-subunit of a slightly larger size than that of rabbit skeletal muscle has been identified in brain, smooth muscle and heart by northern blot analysis of the respective mRNA (Table 2). This difference in size is supported by photo-affinity labelling of the high-affinity receptor for CaCBs. Azidopine and LU 49888 identify a 195-kDa protein in a partially purified preparation of the bovine cardiac muscle CaCB-receptor (Schneider and Hofmann, 1988). An identically sized α-subunit is labelled in hippocampus (Striessnig et al., 1988). These differences are not caused by species differences, since a monoclonal antibody to the α₁-subunit of rabbit skeletal muscle recognizes the same subunit in the skeletal muscle of guinea pig, hamster, rat, cow and pig, but does not bind to the bovine heart subunit. This suggests that the differences are real and reside in the primary sequence of the α-subunits from different tissues.
Table 2 Size of the putative α-subunit of the Ca2+ channel in other tissues

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Species</th>
<th>Protein (kDa)</th>
<th>mRNA (kB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal muscle</td>
<td>rabbit</td>
<td>165</td>
<td>6.2</td>
</tr>
<tr>
<td>Heart</td>
<td>cow</td>
<td>195</td>
<td>8.3</td>
</tr>
<tr>
<td>Lung</td>
<td>cow</td>
<td>—</td>
<td>8.2</td>
</tr>
<tr>
<td>Brain</td>
<td>guinea pig</td>
<td>195</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Membranes or a partially purified preparation of the CaCB-receptor were affinity-labelled with azidopine or LU 49888. The molecular weight was determined by SDS-gel electrophoresis. The size of the mRNA was determined by hybridization with a probe derived from the cloned α,-subunit of the rabbit skeletal CaCB-receptor. For further detail see Sieber et al. (1987), Schneider and Hofmann (1988) and Striessnig et al. (1988).

6 Reconstitution of an L-type Ca2+ channel from the skeletal muscle CaCB-receptor

The purified dihydropyridine receptor from skeletal muscle has been reconstituted into phospholipid vesicles which were fused with a phospholipid bilayer (Flockerzi et al., 1986a; Hymel et al., 1988; Ma and Coronado, 1988; Pelzer et al., 1988; Talvenheimo et al., 1987). In agreement with whole-cell recording data, the reconstituted protein channel has a single-channel conductance of about 20 pS (Flockerzi et al., 1986a; Pelzer et al., 1988; Talvenheimo et al., 1987). Its open state probability (\(p_0\)) is reduced by the Ca2+ channel blockers gallopamil and PN 200-110, and increases in the presence of the Ca2+ channel agonist Bay K 8644. The \(p_0\) is also increased several fold by the addition of ATP-Mg and the catalytic subunit of cAMP-dependent protein kinase (Flockerzi et al., 1986a; Hymel et al., 1988; Pelzer et al., 1988). These results suggest that the reconstituted channel has some properties of the cardiac L-type Ca2+ channel. Further analysis of the single-channel kinetics showed that open and closed times of the reconstituted channel are about 10 times longer than that of an in vivo cardiac muscle L-type channel (Pelzer et al., 1988), indicating that the reconstituted channel has properties which differ from that of the cardiac muscle channel. The slower channel kinetics of the purified receptor are not caused by proteolysis of the receptor during purification. The same kinetics were obtained when solubilized microsomal membranes were reconstituted.
Both preparations, the solubilized membranes and the purified receptor, contain a second channel with a conductance around 10 pS (Ma and Coronado, 1988; Pelzer et al., 1988; Talvenheimo et al., 1987). The \(p_{\alpha} \) of the channel showing the smaller conductance was not affected by phosphorylation, Ca\(^{2+} \) channel blockers or agonists (Pelzer et al., 1988). So far, an interconversion of a small non-regulated into a large regulated conductance has not been observed (Pelzer et al., 1988). The two conductances could be distinguished further by the voltage-dependence of \(p_{\alpha} \). The small conductance showed a regular voltage dependence of its open state probability, whereas the large conductance yielded a bell-shaped dependency. \(p_{\alpha} \) was greatest at a membrane potential around 0 mV (Pelzer et al., 1988). These differences in electrophysiological parameters clearly distinguish the two conductances.

7 Conclusions

The biochemical identity of these conductances is not clear at present. Recent reconstitution experiments of the isolated \(\alpha_{1} \)-subunit suggest that the 165-kDa subunit is the Ca\(^{2+} \)-conducting unit (Pelzer et al., 1988). This conclusion is supported by experiments in which the cloned cDNA of the \(\alpha_{1} \)-subunit was expressed in embryonic muscle cells from dysgenic mice (Tanabe et al., 1988). The dysgenic myotubes do not express the 6.5-kB mRNA of the \(\alpha_{1} \)-subunit and are defective in EC-coupling. The intranuclear injection and the expression of the cloned \(\alpha_{1} \)-subunit mRNA in myotubes of dysgenic mice restores EC-coupling and a slow L-type Ca\(^{2+} \) channel in these cells. Interestingly, the T-tubular voltage sensor and the Ca\(^{2+} \) channel is regained together with the expression of the \(\alpha_{1} \)-subunit, suggesting that both functions require the \(\alpha_{1} \)-subunit. These two functions may not depend alone on the presence of the 165-kDa (\(\alpha_{1} \))-subunit, but correct functioning may require the presence of the other subunits. This conclusion is supported also by the modulatory effect of \(\beta- \) (Vilven et al., 1988) and \(\gamma- \) (Campbell et al., 1988) subunit-specific antibodies on Ca\(^{2+} \) current (see above). Furthermore, the survival of a Ca\(^{2+} \) channel reconstituted from T-tubular membranes increases dramatically in the presence of activated G\(_{s}\) (Yatani et al., 1988). It is likely, therefore, that the 165-kDa subunit contains the Ca\(^{2+} \)-conducting part of a L-type Ca\(^{2+} \) channel, which requires in vivo the presence of other smaller subunits and G proteins for proper function.

Acknowledgements

We thank Mrs Siepmann for her work on the figures. This work was supported by Fonds der Chemischen Industrie and Deutsche Forschungsgemeinschaft.
References

