
 decorates the LCV membrane, and a secondary antibody coupled 
to magnetic beads. The enriched LCVs were further separated by 
density gradient centrifugation. The proteome of purified LCVs 
analyzed by liquid chromatography coupled to tandem mass 
spectrometry (MS/MS) revealed more than 560 host proteins, 
including small GTPases, as well as protein or lipid kinases and 
phosphatases (Urwyler et al., 2009b).

Components of the LCV host cell proteome include several 
small GTPases of the secretory (Arf1, Rab1, Rab8) or endosomal 
(Rab7, Rab14) vesicle trafficking pathways (Urwyler et al., 2009b). 
Using GFP fusion proteins, the recruitment of the Rab GTPases 
to the LCV membrane was verified. While Rab8 and Rab14 have 
not been previously identified on LCVs, the proteome data con-
firmed earlier findings on LCV localization of Arf1 (Kagan and 
Roy, 2002), Rab1 (Derre and Isberg, 2004; Kagan et al., 2004), 
and Rab7 (Clemens et al., 2000). The proteome of isolated LCVs 
was also analyzed in another study that led to the identification 
of more than 150 host proteins. These include markers of the ER 
as well as the early and the late endosomal pathways, which are 
represented by the coatomer or the vacuolar H+-ATPase, respec-
tively (Shevchuk et al., 2009). In agreement with the notion that L. 
pneumophila modulates phagosome maturation in a sophisticated 
manner, the effector protein SidK has been shown to inhibit the 
vacuolar H+-ATPase, thereby preventing acidification of the LCV 
(Xu et al., 2010). Together, these studies indicate that LCVs com-
municate extensively not only with the early and late secretory 
pathway, but also with early and late steps of the endosomal vesicle 
trafficking pathway (Figure 1).

IntroductIon
The causative agent of Legionnaires´ pneumonia, Legionella pneu-
mophila, replicates intracellularly in free-living amoebae and mac-
rophages of the innate immune system. Within these phagocytic 
host cells, the bacteria employ a conserved mechanism to form 
a unique replication-permissive compartment, the “Legionella-
containing vacuole” (LCV). Thus, amoeba and in particular the 
genetically tractable social soil amoeba Dictyostelium discoideum, 
are valuable models to study the mechanism of LCV formation on 
a molecular and cellular level (Solomon and Isberg, 2000; Steinert 
and Heuner, 2005; Hilbi et al., 2007; Cosson and Soldati, 2008). 
Within macrophages and amoebae, LCVs avoid fusion with lyso-
somes, but associate with mitochondria and smooth vesicles and 
eventually fuse with the endoplasmic reticulum (ER; Horwitz, 1983; 
Lu and Clarke, 2005; Robinson and Roy, 2006). To accommodate 
the transfer between host cells and environmental niches, L. pneu-
mophila switches from a replicative to a transmissive growth phase, 
which involves a complex gene regulation network, including an 
apparent quorum sensing system (Molofsky and Swanson, 2004; 
Tiaden et al., 2010; Hilbi et al., 2011).

Intact LCVs from infected D. discoideum amoebae can be 
isolated and purified using a simple two-step protocol (Urwyler 
et al., 2010). To this end, D. discoideum producing the LCV and 
ER marker calnexin-GFP were infected with L. pneumophila flu-
orescently labeled with DsRed. Subsequently, LCVs in cell-free 
homogenates were isolated by immuno-magnetic separation using 
a primary antibody against the L. pneumophila “effector pro-
tein” SidC (Substrate of Icm/Dot transporter), which  specifically 
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The formation of LCVs is a robust and complex process that 
requires the bacterial Icm/Dot (Intracellular multiplication/
Defective for organelle trafficking) type IV secretion system (T4SS; 
Segal et al., 2005). More than 250 different effector proteins are 
translocated by the Icm/Dot T4SS into the host cell, where they 
subvert signal transduction and vesicle trafficking pathways by tar-
geting phosphoinositide (PI) metabolism, small GTPases, ubiqui-
tination, microtubuli-dependent trafficking or apoptotic pathways 
(Brüggemann et al., 2006; Isberg et al., 2009; Urwyler et al., 2009a; 
Weber et al., 2009b; Hubber and Roy, 2010). While some of the 
effector proteins target host factors or organelles in a distance from 
LCVs, many effectors decorate the LCV membrane, thereby directly 
modulating interactions of this compartment with host vesicles or 
organelles. In this review, we summarize the current knowledge 
about how L. pneumophila subverts the host cell’s PI metabolism 
to form LCVs and replicate intracellularly.

EukaryotIc PI mEtabolIsm and Its subvErsIon by 
IntracEllular PathogEns
Phosphoinositide glycerolipids play a pivotal role in the regulation 
of eukaryotic membrane dynamics, cytoskeleton architecture, and 
signal transduction (De Matteis and Godi, 2004; Di Paolo and De 
Camilli, 2006; Michell, 2008). The phosphatidylinositol (PtdIns) 
moiety of these lipids contains glycerol, which is esterified with two 
fatty acids (usually arachidonic acid and stearic acid) and a myo-
inositol 1-phosphate head group. The inositol carbohydrate head 
group of PI lipids is oriented to the cytoplasmic side of membranes 

and can be hydrolyzed by PI-specific phospholipase C or reversibly 
phosphorylated/dephosphorylated at the 3, 4, and/or 5 positions 
by PI kinases or phosphatases, respectively. The resulting mono- 
or poly-phosphorylated PIs, jointly with activated small GTPases, 
recruit distinct effector proteins to specific organelles and thereby 
co-define the identity and integrity of subcellular compartments 
as well as cellular membrane dynamics (Shin and Nakayama, 2004; 
Behnia and Munro, 2005). PtdIns-3-phosphate (PtdIns(3)P) or 
PtdIns-4-phosphate (PtdIns(4)P), e.g., represent “signposts” of 
endosomal and secretory trafficking pathways, respectively, and 
recruit specific effector proteins to membranes involved in these 
trafficking routes.

In accordance with the importance of PIs for membrane traf-
ficking of eukaryotes, several intracellular bacteria, such as Listeria, 
Shigella, Salmonella, Brucella, and Mycobacterium spp., exploit PI 
metabolism to infect host cells, establish a replicative niche and 
subvert host cell signaling (Pizarro-Cerda and Cossart, 2004; Hilbi, 
2006; Weber et al., 2009b). The subversion of PI metabolism by vac-
uolar pathogens has been studied in some detail in Mycobacterium 
tuberculosis, the causative agent of the chronic pulmonary disease 
tuberculosis. The pathogen grows in “Mycobacterium-containing 
vacuoles” (MCVs), which accumulate the small GTPase Rab5 but 
not Rab7 and exclude the acidifying vacuolar H+-ATPase as well 
as lysosomal hydrolases (Russell et al., 2002).

Mycobacterium tuberculosis adopts a dual strategy involving 
lipid toxins and PI-metabolizing enzymes to keep the levels of 
PtdIns(3)P on MCVs low, thus arresting the bactericidal endo-

FIgure 1 | Legionella pneumophila PI-binding effector proteins and 
LCV formation. L. pneumophila employs the Icm/Dot T4SS to form a 
replication-permissive LCV that communicates with secretory as well as 
with endocytic vesicle trafficking pathways and eventually fuses with the 
ER. Several effector proteins anchor to the LCV membrane through 

PtdIns(4)P or PtdIns(3)P and promote the interaction with the ER and 
ER-derived vesicles (SidC), catalyze GEF activity of the small GTPase Rab1 
(SidM, LidA), or bind PI-metabolizing enzymes such as the 5-phosphatase 
OCRL1 (LpnE). The Icm/Dot substrate RalF is an Arf1 GEF that might 
indirectly recruit PI4KIIIβ.
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P-binding domain was termed “P4C” (PtdIns(4)P-binding domain 
of SidC) and shows no homology with eukaryotic PI recognition 
folds, such as the PH (pleckstrin homology), PX (phagocyte oxidase 
homology), FYVE (Fab1-YotB-Vac1-EEA1), ENTH/ANTH (epsin/
AP180 N-terminal homology), FERM (band 4.1-ezrin-radixin-
moesin) or KR (lysine/arginine) domains (Downes et al., 2005; 
Varnai and Balla, 2006; Lemmon, 2008).

Deletion of sidC and the adjacent gene sdcA from the L. pneu-
mophila genome does not impair intracellular replication of the 
bacteria (Luo and Isberg, 2004; Ragaz et al., 2008). Furthermore, in 
absence of sidC and sdcA the acquisition of Rab1 or the endosomal 
marker p80 is not altered; yet, only 20% of LCVs acquire the ER 
markers calnexin-GFP and GFP-HDEL, indicating that the interac-
tion of LCVs with the ER is severely impaired upon deletion of these 
genes (Ragaz et al., 2008). The finding that reduced ER acquisition 
does not impair intracellular replication of the ∆sidC-sdcA strain 
was unexpected, since defective ER acquisition of LCVs due to a 
dominant negative form of the small GTPase Sar1 (Kagan and 
Roy, 2002) or due to the lack of the Icm/Dot substrate SidJ (Liu 
and Luo, 2007) did inhibit intracellular growth of L. pneumophila.

The ER acquisition phenotype of L. pneumophila lacking 
sidC and sdcA is complemented by either sidC or sdcA, and the 
amount of calnexin-GFP and SidC on LCVs is directly propor-
tional. Biochemical experiments revealed that SidC and a 70-kDa 
N-terminal fragment incubated with lysates of macrophages or D. 
discoideum bind ER and secretory vesicles (containing calnexin, 
protein disulfide isomerase and Rab1), but neither lysosomes 
(containing LAMP-1or “common antigen-1”) nor Golgi fragments 
(containing giantin). Thus, the N-terminal part of SidC promotes 
the communication of LCVs with ER-derived vesicles, while the 
C-terminal part harbors the Icm/Dot translocation determinant 
and the PtdIns(4)P-binding domain P4C (Figure 1).

SidC and in particular the 20-kDa PtdIns(4)P-binding frag-
ment P4C are stable and can be produced with high yields in 
E. coli as GST fusion proteins (Weber et al., 2006b; Ragaz et al., 
2008). Moreover, P4C can be ectopically produced in D. discoideum, 
and the probe labels the PtdIns(4)P-positive LCV membrane in 
amoebae infected with L. pneumophila. Similarly, P4C might be a 

cytic pathway. The glycosylated PI analogue lipoarabinomannan 
(LAM) and its precursor PtdIns mannoside (PIM) are traffick-
ing toxins (Chua et al., 2004). LAM inhibits a calmodulin kinase 
II-dependent activation of the class III PtdIns 3-kinase (PI3K) 
hVps34 (Vergne et al., 2003) and thereby reduces PtdIns(3)P on 
MCVs and prevents the delivery of the vacuolar H+-ATPase as well 
as acidic hydrolases (Fratti et al., 2003). Conversely, PIM promotes 
the homotypic fusion of phagosomes with early endosomes in a 
PI3K-independent manner, thus allowing continuous communica-
tion between MCVs and endosomes, despite the trafficking block 
imposed by the depletion of PtdIns(3)P (Chua et al., 2004; Vergne 
et al., 2004). To further reduce PtdIns(3)P on MCVs, M. tuberculosis 
secretes the PI phosphatases SapM (Vergne et al., 2005) and MptpB 
(Beresford et al., 2007).

The role of bacterial PI-binding effector proteins, LCV PIs and 
host PI-modulating enzymes for LCV formation and intracellular 
replication of L. pneumophila will be discussed in the following 
sections.

thE Icm/dot substratE sidc bInds PtdIns(4)P and 
PromotEs lcv-Er fusIon
The L. pneumophila protein SidC was identified as an Icm/Dot 
substrate by a Cre/loxP-based protein translocation assay, using 
Icm/Dot-mediated conjugative transport between a donor and a 
recipient bacterium (Luo and Isberg, 2004). Immuno-fluorescence 
studies further showed that SidC is translocated to the cytoplasmic 
side of the vacuole, where the protein decorates the LCV membrane.

The amount of SidC bound to the LCV membrane depends on 
the presence or absence of PI3Ks in D. discoideum (Weber et al., 
2006b), and therefore, we tested in vitro, whether purified GST-SidC 
fusion protein directly binds PIs. Indeed, purified SidC and its para-
logue SdcA (72% identity) were found to selectively bind PtdIns(4)
P in protein–lipid overlay assays (Figure 2), as well as in phospholi-
pid vesicle pull down experiments (Weber et al., 2006b). In contrast, 
the Icm/Dot substrate SidD did not bind to any PIs or other lipids. 
Further analysis of the PtdIns(4)P-binding domain of SidC revealed 
that a 20-kDa fragment near the C-terminus was sufficient to selec-
tively bind the PI (Ragaz et al., 2008; Figure 2). The PtdIns(4)

FIgure 2 | Protein-lipid overlay of L. pneumophila PI-binding effector 
proteins. GST fusion proteins (200 nM) of SidC, SidCP4C, SidM, LidA, 
LpnE, and RalF were affinity purified, and binding to different synthetic 
di-hexadecanoyl-PI lipids (100 pmol) immobilized on nitrocellulose membranes 
was analyzed by a protein–lipid overlay assay using an anti GST antibody. Left 

lanes: lysophosphatidic acid (LPA), lysophosphocholine (LPC), 
phosphatidylinositol (PtdIns), PtdIns phosphate (PI(n)P), 
phosphatidylethanolamine (PE), phosphatidylcholine (PC). Right lanes: 
sphingosine-1-phosphate (S1P), PtdIns phosphate (PI(n)P), phosphatidic acid 
(PA), phosphatidylserine (PS).
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might  prolong the  activation of several Rab GTPases on the LCV 
membrane.  Rab1-AMP does not bind eukaryotic Rab1 effectors 
anymore, but still interacts with a SidM auxiliary protein: the L. 
pneumophila Rab1 effector LidA (Müller et al., 2010).

LidA (Lowered viability in the presence of dotA) is an Icm/
Dot substrate that decorates LCVs and promotes the recruitment 
of early secretory vesicles to LCVs (Conover et al., 2003; Derre 
and Isberg, 2005). In biochemical experiments LidA was found 
to interact with several small Rab GTPases (Rab1, Rab6, Rab8) 
and to support the GEF activity of SidM by binding to GDI-free 
Rab1 (Machner and Isberg, 2006). In turn, wild-type and constitu-
tively active Rab8 also interact with LidA in L. pneumophila lysates 
(Urwyler et al., 2009a). LidA represents another effector that local-
izes to the LCV membrane by interacting with distinct PIs, since it 
binds to PtdIns(4)P and, with an apparently slightly lower affinity, 
also to PtdIns(3)P (Brombacher et al., 2009; Figure 2).

Lastly, the Icm/Dot-translocated effector protein RalF does not 
bind to any PIs or other lipids (Brombacher et al., 2009; Figure 2). 
RalF (Recruitment of Arf1 to the Legionella phagosome) was the 
first Icm/Dot substrate identified and characterized as an Arf1-
specific GEF, which is required to recruit Arf1 to the LCV membrane 
(Nagai et al., 2002; Figure 1). Upon deletion of ralF from the L. 
pneumophila chromosome the small GTPase Arf1 does not localize 
to LCVs anymore, yet intracellular replication of the bacteria is not 
impaired. Taken together, these results indicate that two classes of 
Icm/Dot-translocated L. pneumophila GEFs localize to LCV mem-
branes, one of which by binding to PIs.

thE vIrulEncE factor lpnE bInds PtdIns(3)P and ocrl1
LpnE (Legionella pneumophila entry) is a Sel1 repeat protein of 
the tetratricopeptide-repeat family (Newton et al., 2006). The lpnE 
gene was found to be specific for L. pneumophila in a subtractive 
genomic hybridization screen by comparing L. pneumophila to non-
virulent L. micdadei. In agreement with a function for LpnE as a 
virulence factor, an L. pneumophila lpnE deletion mutant strain is 
impaired for infection of Acanthamoeba castellanii amoebae, entry 
into human macrophage-like cells, intracellular trafficking, and 
virulence in the A/J mouse strain (Newton et al., 2007). While LpnE 
is secreted into L. pneumophila culture supernatants, the mecha-
nism remains unclear, since neither the Icm/Dot T4SS nor the Lsp 
T2SS seems to be involved.

Purified recombinant LpnE selectively binds PtdIns(3)P (Weber 
et al., 2009a; Figure 2), indicating that the Sel1 repeat protein rep-
resents another PI-binding virulence factor of L. pneumophila. 
Moreover, LpnE interacts with the N-terminus of the human 
enzyme OCRL1 (OCRL1

1–236
) heterologously produced in D. 

 discoideum, and conversely, purified GST-OCRL1
1–236

 binds LpnE 
in L. pneumophila lysates. OCRL1 (Oculocerebrorenal syndrome 
of Lowe 1) and its Dictyostelium homologue Dd5P4 (D. discoideum 
5-phosphatase 4) are PI-metabolizing enzymes implicated in intra-
cellular replication of L. pneumophila (see below).

In summary, the studies discussed above indicate that L. pneu-
mophila exploits the mono-phosphorylated host PIs PtdIns(4)
P and PtdIns(3)P to anchor the effector proteins SidC, SidM, 
LidA, and LpnE to the LCV membrane. The PI-binding effec-
tors then interfere with host vesicle trafficking and signal 
 transduction (Figure 1).

 suitable PtdIns(4)P probe in other eukaryotic cells, including yeast, 
Drosophila melanogaster and mammalian cells. Taken together, the 
purified or heterologously produced SidC and P4C proteins are 
useful as prokaryotic PtdIns(4)P-binding probes in biochemical 
and cell biological experiments.

thE rab1 gEf sidm Is a major PtdIns(4)P-bIndIng 
EffEctor ProtEIn
To address the question, whether L. pneumophila proteins other 
than SidC also bind to PIs, bacterial lysates were incubated with aga-
rose beads coated either with one of the seven naturally occurring 
mono- or poly-phosphorylated PIs or with PtdIns. The eluate from 
washed beads was separated by SDS-PAGE, and a single protein 
binding predominantly and specifically to PtdIns(4)P was identified 
by MS as the effector protein SidM (also termed DrrA; Brombacher 
et al., 2009). Further analysis showed that SidM is indeed a major 
L. pneumophila PtdIns(4)P-binding protein (Figure 2), which 
competes with SidC for binding to this PI on LCVs. The PtdIns(4)
P-binding domain of SidM comprises a 12-kDa fragment that was 
termed “P4M” (PtdIns(4)P-binding of SidM) and is not related to 
other prokaryotic or eukaryotic PI-binding domains. The high-
resolution structure of a SidM fragment including the P4M domain 
revealed that the effector protein employs a novel fold to bind 
PtdIns(4)P with an unprecedented high affinity in the nanomo-
lar range (Schoebel et al., 2010). Compared to full length SidM, 
the affinity of the 12-kDa P4M domain for PtdIns(4)P is reduced 
(Brombacher et al., 2009), and therefore, the 20-kDa P4C domain, 
which retains its PI-binding affinity, appears to be the superior 
PtdIns(4)P probe.

SidM is an Icm/Dot substrate and shows activity as a Rab1 gua-
nine nucleotide exchange factor (GEF), thus activating and recruit-
ing this small GTPase to LCVs (Machner and Isberg, 2006; Murata 
et al., 2006). The finding that the GEF SidM binds to PtdIns(4)P 
represents a novel link between the modulation of host GTPases 
and the exploitation of PIs by pathogenic bacteria (Figure 1). SidM 
has been suggested to also have activity as a Rab GDP dissocia-
tion inhibitor (GDI) displacement factor (GDF), which removes 
GDI from Rab1-GDP, thus allowing access of the GEF domain to 
the small GTPase (Ingmundson et al., 2007; Machner and Isberg, 
2007). However, the GDF activity turned out to be intrinsic to the 
GEF activity, rather than a distinct activity (Schoebel et al., 2009).

The membrane cycle of Rab1 is closed by the Icm/Dot substrate 
LepB, which is a Rab1 GTPase activating protein (GAP) that inac-
tivates and removes Rab1 from membranes (Ingmundson et al., 
2007). LepB and another L. pneumophila protein with weak homol-
ogy to SNAREs and tethering proteins termed LepA have originally 
been proposed to promote the non-lytic egress of the bacteria from 
amoebae via a novel pathway, leading to bacteria-filled respirable 
vesicles (Chen et al., 2004, 2007).

Interestingly, SidM also catalyzes the “AMPylation” (adenos-
ine mono-phosphorylation) of Rab1 at an N-terminal tyrosine 
residue (Müller et al., 2010). AMPylation of Rab1 “constitutively 
activates” the small GTPase, since the covalent modification barely 
affects the GEF activity of SidM but impairs the GAP activity of 
LepB. In addition to Rab1, SidM AMPylates several other Rab 
GTPases, including Rab8 and Rab14 (Müller et al., 2010), which 
are also recruited to LCVs (Urwyler et al., 2009b). Thus, SidM 

Hilbi et al. Host phosphoinositides and Legionella trafficking

Frontiers in Microbiology | Cellular and Infection Microbiology  April 2011 | Volume 2 | Article 91 | 4

http://www.frontiersin.org/cellular_and_infection_microbiology/
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


specific for PI4KIIIβ, since depletion of the isoenzymes PI4KIIIα or 
PI4KIIα did not reduce the amount of LCV-bound SidC. PI4KIIIβ 
forms PtdIns(4)P in the TGN upon recruitment by the activated 
small GTPase Arf1 (Godi et al., 1999). Yet, it is currently unknown, 
whether PI4KIIIβ also localizes to LCVs. Together, these findings 
suggest that OCRL1/Dd5P4 as well as PI4KIIIβ are implicated in 
LCV formation and likely catalyze the production of PtdIns(4)P 
on the LCV membrane (Figure 1).

 PI3Ks represent another class of PI-metabolizing enzymes that 
play important roles for vesicle trafficking and signal transduction 
in eukaryotic cells. D. discoideum deletion mutants and pharma-
cological inhibitors revealed that the uptake of icm/dot mutant L. 
pneumophila depends on PI3Ks. In contrast, the efficient uptake 
of wild-type L. pneumophila by D. discoideum (Hilbi et al., 2001; 
Weber et al., 2006a,b) or by human macrophage-like HL-60 cells 
(Khelef et al., 2001) is barely affected by PI3Ks, indicating that 
Icm/Dot-proficient bacteria might bypass PI3Ks during entry. 
In another study, the uptake of L. pneumophila was reported to 
require PI3Ks (Tachado et al., 2008). Yet, this work used murine 
J774A.1 macrophage-like cells, which do not support intracellular 
growth of L. pneumophila. Thus, the formation of a replication-
permissive vacuole by L. pneumophila might depend on bypassing 
PI3K signaling.

 Upon deletion or inhibition of PI3Ks in D. discoideum, L. pneu-
mophila replicates more efficiently within the amoebae, and icm/
dot mutant bacteria are killed less effectively, in agreement with 
the well-established role for PI3Ks in the bactericidal endocytic 
pathway (Weber et al., 2006b). Recent studies confirmed that L. 
pneumophila interferes with the PI-sensitive fusion of LCVs with 
acidic vacuoles and indicated that the inhibition of intracellular 
replication by PI3Ks is restricted to early steps in the infection 
(Peracino et al., 2010). Notably, the stimulation of intracellular 
replication of L. pneumophila by pharmacological “PI3K inhibitors” 

host PIs and PI-mEtabolIzIng EnzymEs InvolvEd In lcv 
formatIon
Since the Icm/Dot substrates SidC, SidM, and LidA are present 
on the LCV membrane and bind to PtdIns(4)P in vitro, this PI is 
expected to be a lipid component of LCVs and enriched on this com-
partment. Indeed, PtdIns(4)P was identified on LCV membranes by 
using either an anti-PtdIns(4)P antibody, or purified GST fusion 
proteins of the eukaryotic PH

FAPP1
 domain (specifically binding 

PtdIns(4)P) or prokaryotic SidC as a probe (Weber et al., 2006b).
The mammalian enzyme OCRL1 and D. discoideum Dd5P4 

are homologous inositol-polyphosphate 5-phosphatases, which 
hydrolyze PtdIns(4,5)P

2
 to yield PtdIns(4)P. GFP fusion proteins of 

OCRL1 or Dd5P4 localize to LCVs via their N-termini (OCRL1
1–236

, 
Dd5P4

1–132
) in D. discoideum, and OCRL1 accumulates on LCVs 

in RAW 264.7 macrophages (Weber et al., 2009a; Figure 1). In D. 
discoideum lacking Dd5P4 the amount of SidC on LCVs is reduced, 
suggesting that in absence of Dd5P4 less PtdIns(4)P is produced 
on the LCV membrane, and consequently, less SidC binds to this 
compartment. Interestingly, two to three orders of magnitude more 
L. pneumophila are released from D. discoideum lacking Dd5P4, and 
therefore, the bacteria grow intracellularly much more efficiently 
in absence of this inositol-polyphosphate 5-phosphatase. It is cur-
rently unknown, how Dd5P4 restricts intracellular growth of L. 
pneumophila. However, since the mammalian homologue OCRL1 
promotes retrograde trafficking from endosomes to the trans-Golgi 
network (TGN; Johannes and Popoff, 2008), a functional retrograde 
vesicle trafficking pathway might play a role.

A host PI-metabolizing enzyme termed PtdIns 4-kinase IIIβ 
(PI4KIIIβ) is likely also involved in the production of PtdIns(4)P 
on LCVs. Depletion of PI4KIIIβ by RNA interference in Drosophila 
melanogaster Kc167 phagocytes, which are permissive for intracel-
lular growth of L. pneumophila, significantly reduced the amount of 
SidC on LCV membranes (Brombacher et al., 2009). The effect was 

FIgure 3 | Modulation of the LCV PI pattern by L. pneumophila effectors. 
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