
ORIGINAL ARTICLE

Enhanced expression of BMP6 inhibits hepatic
fibrosis in non-alcoholic fatty liver disease
Stephanie Arndt,1 Eva Wacker,1 Christoph Dorn,2 Andreas Koch,2 Michael Saugspier,2

Wolfgang E Thasler,3 Arndt Hartmann,4 Anja Katrin Bosserhoff,1 Claus Hellerbrand2

▸ Additional material is
published online only. To view
please visit the journal online
(http://dx.doi.org/10.1136/
gutjnl-2014-306968).
1Institute of Pathology,
University Regensburg,
Regensburg, Germany
2Department of Internal
Medicine I, University Hospital
Regensburg, Regensburg,
Germany
3Grosshadern Tissue Bank and
Center for Liver Cell Research,
Department of Surgery,
Ludwig-Maximilians-University
Munich, Munich, Germany
4Institute of Pathology,
University Hospital Erlangen,
Erlangen, Germany

Correspondence to
Professor Claus Hellerbrand,
Department of Internal
Medicine I, University Hospital
Regensburg, Franz-Josef-
Strauss-Allee 11, Regensburg
D-93053, Germany;
claus.hellerbrand@ukr.de

AKB and CH are senior authors
contributed equally.

Received 7 February 2014
Revised 19 June 2014
Accepted 23 June 2014
Published Online First
10 July 2014

To cite: Arndt S, Wacker E,
Dorn C, et al. Gut
2015;64:973–981.

ABSTRACT
Objective Bone morphogenetic protein 6 (BMP6) has
been identified as crucial regulator of iron homeostasis.
However, its further role in liver pathology including
non-alcoholic fatty liver disease (NAFLD) and its
advanced form non-alcoholic steatohepatitis (NASH) is
elusive. The aim of this study was to investigate the
expression and function of BMP6 in chronic liver disease.
Design BMP6 was analysed in hepatic samples from
murine models of chronic liver injury and patients with
chronic liver diseases. Furthermore, a tissue microarray
comprising 110 human liver tissues with different degree
of steatosis and inflammation was assessed. BMP6-
deficient (BMP6−/−) and wild-type mice were compared
in two dietary NASH-models, that is, methionine choline-
deficient (MCD) and high-fat (HF) diets.
Results BMP6 was solely upregulated in NAFLD but
not in other murine liver injury models or diseased
human livers. In NAFLD, BMP6 expression correlated
with hepatic steatosis but not with inflammation or
hepatocellular damage. Also, in vitro cellular lipid
accumulation in primary human hepatocytes induced
increased BMP6 expression. MCD and HF diets caused
more hepatic inflammation and fibrosis in BMP6−/−

compared with wild-type mice. However, only in the
MCD and not in the HF diet model BMP6−/− mice
developed marked hepatic iron overload, suggesting that
further mechanisms are responsible for protective BMP6
effect. In vitro analysis revealed that recombinant BMP6
inhibited the activation of hepatic stellate cells (HSCs)
and reduced proinflammatory and profibrogenic gene
expression in already activated HSCs.
Conclusions Steatosis-induced upregulation of BMP6
in NAFLD is hepatoprotective. Induction of BMP6-
signalling may be a promising antifibrogenic strategy.

INTRODUCTION
Bone morphogenetic proteins (BMPs) are multifunc-
tional growth factors belonging to the transforming
growth factor β (TGF-β) superfamily. The BMP
family consists of more than 30 members. In
humans, 19 BMP members are under the designation
of BMPs, and according to their gene homology,
protein structure and functions, they are further sub-
divided into at least four subgroups: BMP2/4, BMP5/
6/7/8a/8b, BMP9/10 and BMP12/13/14.1

Although BMPs were initially identified as osteo-
genic factors present in demineralised bone capable
of inducing ectopic bone formation, it is now evident
that BMPs perform several other functions during
embryonic development as well as in adult tissue

regeneration and homeostasis. More recently, a role
for BMPs in different human diseases has started
being revealed. Similar to other TGF-β family
members, such as TGF-β1, both tumour suppressor
and tumour promoter activities have been described
for BMPs, depending on various factors such as the
dose and the type of the target cell.2

We found enhanced levels of several BMPs
(BMP4, 6, 7, 8, 9, 10, 11, 13 and 15) in hepatocel-
lular carcinoma (HCC) compared with normal liver
tissues3 and demonstrated that general BMP inhibi-
tion decreased the invasive phenotype of HCC
cells in vitro. In line with this, we confirmed
enhanced BMP4 expression and its correlation with
aggressive tumour growth in human HCC tissues.4

Most recently, Li et al5 identified that enhanced

Significance of this study

What is already known on this subject?
▸ BMP6 is a critical regulator of iron

homeostasis.
▸ Disruption of iron homeostasis is a putative

element inducing liver damage and fibrosis in
non-alcoholic fatty liver disease (NAFLD).

What are the new findings?
▸ Hepatic BMP6 expression is increased in murine

and human NAFLD but not in other chronic
liver diseases.

▸ Hepatocellular lipid accumulation induces
BMP6 expression in murine and human
hepatocytes.

▸ BMP6 protects from non-alcoholic
steatohepatitis (NASH) in two independent
mouse models.

▸ Effects on iron homeostasis are only partially
responsible for the hepatoprotective BMP6
effect in NAFLD in mice.

▸ BMP6 directly inhibits anti-inflammatory and
antifibrogenic effects on murine and human
hepatic stellate cells.

How might it impact on clinical practice in
the foreseeable future?
▸ Induction of BMP6 signalling appears as a

potential therapeutic option for the prevention
and treatment of NASH.

▸ BMP6 expression levels may have potential as
predictive markers for the progression of
NAFLD.
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BMP9 expression induces epithelial to mesenchymal transition
and herewith invasiveness of HCC cells in vitro. Besides HCC,
Nakatsuka et al6 reported transient expression of BMP2 and
BMP4 in acute liver injury. The same group demonstrated the
critical role of BMP signalling in the wound healing response in
acute liver injury using mice with conditional knockout of
Bmpr1a, a critical receptor for BMP2 and BMP4 signal
transduction.7

In chronic liver disease, TGF-β is well known to play a central
role in liver fibrosis, but surprisingly little is known about the
role of BMPs. Present studies focused on BMP7 and here, the
BMP signalling role in liver fibrosis appears controversial.8

Hepatic BMP7 expression is upregulated in adults with cirrhosis
and in children with biliary atresia, and elevated BMP7 concen-
tration in the serum was concomitant with the progression of
liver fibrosis.9 10 Contrary, administration of BMP7 inhibits pro-
gression of fibrosis in experimental models in mice and rats.11 12

BMP6 belongs to the same BMP subfamily as BMP5 and
BMP7. Several studies demonstrated that BMP6 plays a central
role in the control of iron homeostasis. Andriopoulos et al13

and Meynard et al14 identified BMP6 as an important endogen-
ous regulator of the expression of hepcidin, a protein that is
mainly expressed in hepatocytes and controls the iron entry into
the plasma. Both groups demonstrated that BMP6-deficient
mice develop massive iron overload, and in a previous study we
added essential and complementary information to these two
reports.15 Most importantly, we discovered that BMP6 is pro-
duced upon iron exposure predominantly in the small intes-
tine.15 Still, BMP6 is also expressed in liver cells,16 and
functional studies suggest a role for hepatocyte-derived BMP6
in the control of hepcidin expression levels.17 Notwithstanding
these significant observations, the role of BMP6 in liver path-
ology remained elusive.

The aim of this study was to study the expression and func-
tion of BMP6 in chronic liver diseases.

MATERIALS AND METHODS
Cells and cell culture
Primary murine and human hepatocytes, hepatic stellate cells
(HSCs) and Kupffer cells were isolated and cultured as
described.18 19 In vitro activation of HSCs was achieved by cell
culture on uncoated tissue culture dishes.18 For individual
experiments, cells were incubated with recombinant BMP6
(10, 50, 100 or 200 ng/mL) as indicated or with tumour necro-
sis factor-α (TNF-α, 10 ng/mL) (both from R&D Systems,
Wiesbaden-Nordenstadt, Germany). Furthermore, cellular lipid
accumulation in human and murine hepatocytes was induced by
incubation with free fatty acids applying an in vitro model that
we have recently described.20

Human tissues and tissue microarray
A tissue microarray (TMA) was constructed out of 110
paraffin-embedded human hepatic tissue specimens with different
degree of steatosis and inflammation.21 All cases were reviewed by
a surgical pathologist (AH). A modified histological non-alcoholic
fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)
score according to the recommendations of the Nonalcoholic
Steatohepatitis Clinical Research Network was used.22

In addition to formalin-fixed liver tissues for TMA construc-
tion, liver specimens of patients with NAFLD (n=12) and
patients with cirrhosis (n=15), and normal human liver tissues
(n=8), which had been immediately snap frozen after surgical
resection and stored at −80°C, had been available.

Human liver tissues were obtained and experimental proce-
dures were performed according to the guidelines of the charit-
able state controlled foundation Human Tissue and Cell
Research (HTCR), with the informed patients’ consent, and the
study was approved by the local ethics committee of the
University Regensburg.

Mice and murine models of hepatic steatosis, inflammation
and fibrosis
129Sv/Ev wild-type (wt) (BMP6+/+) and BMP6−/− mice on
129Sv/Ev inbred background were obtained from the Robertson
laboratory (Department of Molecular and Cellular Biology,
Harvard University, Cambridge, Massachusetts, USA).23 Male
wt and BMP6−/− were exposed to two different dietary NASH
models (n=5–6 per group): (i) feeding with a methionine
choline-deficient (MCD) diet for 5 weeks and (ii) feeding with a
high-fat (HF) diet containing 30% lard, 1.25% cholesterol and
0.5% sodium cholate for 12 weeks.24 Control animals were fed
for 5 and 12 weeks, respectively, with standard chow. All diets
were obtained from Sniff (Soest, Germany). All animals were
8 weeks of age at the start of the study and were maintained
under specific pathogen-free and controlled conditions (22°C,
55% humidity and 12 h day/night rhythm) and received human
care in compliance with the guidelines outlined in the Guide for
the Care and Use of Laboratory Animals. After the indicated
time periods, animals were sacrificed and liver tissues were
immediately snap-frozen and stored at −80°C or were formalin-
fixed for subsequent analysis. Furthermore, BMP6+/+ and
BMP6−/− mice were subjected to a model of carbon tetrachlor-
ide (CCl4)-induced liver injury as described.25 In addition, we
analysed liver tissues from wt mice that have been subjected to
bile duct ligation (BDL) or sham operation.25 26

(Immuno)histolochemical analysis
For immunohistochemistry (IH) and HE staining, standard
5 mm sections of formalin-fixed and paraffin-embedded tissue
blocks were used. Immunohistochemical staining was performed
using the following antibodies: anti-BMP6 (S-20) sc-27408 anti-
body (1:50; Santa Cruz Biotechnology) and anti-CD3 C7930
antibody (1:500; Sigma-Aldrich) as described.15 27 TUNEL
assay was performed on paraffin sections as described.28

Prussian blue staining with K4Fe(CN)6·3H2O and fast red coun-
terstaining were performed based on standard procedures as
described.15 Sirius red/fast green staining of formalin-fixed
tissues was performed as described previously.29 Quantification
of staining intensities was performed using image J software
(National Institutes of Health; http://www.imagej.softonic.de).
For analysis of the TMA, positivity for BMP6 or iron was
defined as detectable cytoplasmatic staining, whereas cases
designated as iron or BMP6 negative were devoid of staining.

Western blot
Protein extraction and western blot analysis were performed as
described27 applying antibodies against α-smooth muscle actin
(α-SMA) (ab5694 from Abcam, Cambridge, UK; 1:1000) or
ß-actin (MAB1501 from Merck Millipore, Billerica, Massachusetts,
USA; 1:500).

Quantification of cytokine and chemokine levels
TNF and MCP-1 levels in the supernatant of cells were mea-
sured by ELISA analysis using the TNF and MCP-1 DuoSet
ELISA Development kits from R&D Systems (Minneapolis,
Minnesota, USA) according to the manufacturer’s instructions.
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RNA isolation and quantitative real-time PCR
(qRT-PCR) analysis
Isolation of total cellular RNA from cultured cells and liver
tissues and reverse transcription were performed as described.15

Quantitative real-time PCR was done with specific sets of
primers (see online supplementary table) applying LightCycler
technology as described.4 All other mRNA expression analyses
were performed using QuantiTect Primer Assays according to
the manufacturer’s instructions (Qiagen, Hilden, Germany).
The amplification of cDNA derived from murine 18S RNA
(for: 50 AAA CGG CTA CCA CAT CCA AG; rev: 50 CCT CCA
ATG GAT CCT CGT TA) was used for normalisation.

Quantification of hepatic iron and triglyceride content
Hepatic lipids were extracted using the method of Bligh and
Dyer with slight modifications.20 Hepatic triglyceride levels
were quantified using the GPO-triglyceride kit (Sigma,
Deisenhofen, Germany) as described.20 Hepatic iron concentra-
tion was determined by atomic absorption spectrophotometry as
described.30

Statistical analyses
Results are expressed as mean±SE (range) or per cent.
Comparison between groups was made using the Student’s

unpaired t test. A p value <0.05 was considered statistically sig-
nificant. Contingency table analysis and the two-sided Fisher’s
exact test were used to study the statistical association between
clinicopathological and immunohistochemical variables. All cal-
culations were performed by using the GraphPad Prism
Software (GraphPad Software, Inc., San Diego, USA) or SPSS
(SPSS, Chicago, Illinois, USA).

RESULTS
BMP6 expression in NAFLD
First, we analysed hepatic BMP6 expression in different murine
models of chronic liver injury. After 2 weeks of BDL as well as
after 6 weeks of repeated carbon tetrachloride (CCl4) applica-
tion, BMP6 expression was not significantly altered compared
with sham-treated mice (figure 1A). In contrast, after feeding a
NASH-inducing HF diet or a NASH-inducing MCD diet,
BMP6 expression was significantly increased compared with
mice fed with control chow (ctr.) (figure 1B). Also, in liver
tissues of 12 patients with NAFLD, BMP6 mRNA expression
was significantly increased while in 15 cirrhotic human liver
tissues from patients with alcoholic liver disease and chronic
viral hepatitis B or C infection BMP6 expression was similar to
normal human liver tissues (n=8) (figure 1C).

Figure 1 BMP6 expression in non-alcoholic fatty liver disease (NAFLD). (A) Hepatic mRNA expression of BMP6 in different murine models of
chronic liver injury. (B) Hepatic mRNA expression of BMP6 in different murine models of NAFLD. (C) BMP6 mRNA expression in human liver
specimens with different diagnostic findings. (D) Representative images of immunohistochemical staining for BMP6 of normal human liver tissue
(ctr.) and liver tissues from NAFLD and cirrhotic (Ci) human livers. (E) BMP6 mRNA expression in hepatocytes in an in vitro model of cellular lipid
accumulation (*p<0.05).
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Immunohistochemical analysis of BMP6 protein expression
revealed hepatocytes as cellular source of hepatic BMP6 expres-
sion in human NAFLD livers with a distinct cytoplasmic staining
pattern (figure 1D). Next, we applied IH and TMA technology
to assess BMP6 expression in human liver tissues with different
degree of steatosis and inflammation.21 IH was informative in
110 cases. For descriptive data analysis, livers were separated
into tissues with positive and negative BMP6 immunosignal
(representative examples are depicted in online supplementary
figure S1). BMP6 immunoreactivity significantly correlated with
the degree of hepatic steatosis, while no association was found
with hepatic inflammation, ballooning of hepatocytes or
patients’ age and sex (table 1). Also, in an in vitro model of cel-
lular lipid accumulation,20 we observed a significant induction
of BMP6 expression in primary human and murine hepatocytes
(figure 1E and see online supplementary figure S2A). In con-
trast, stimulation with TNF-α, a proinflammatory cytokine that
plays a pivotal role in NAFLD development and progression,
did not affect BMP6 expression in primary human hepatocytes
(PHH) (see online supplementary figure S2B). Fitting to this
finding, there was no correlation between TNF-α and BMP6

expression in human NAFLD tissues (see online supplementary
figure S2C). In addition to BMP6, we found also increased
BMP2 and BMP4 in both NAFLD models (see online supple-
mentary figure S3A–D) but not in the in vitro model of hepato-
cellular steatosis (see online supplementary figure S3E,F). As
described in the introduction section, expression of BMP2 and
BMP4 has been reported in acute liver injury.6 Furthermore,
BMP2, but not BMP4 or BMP6, expression was found to be sig-
nificantly elevated in a model of chronic alcohol feeding in
mice.31 Together, these data indicate that increased hepatic
BMP6 expression in NAFLD results from hepatocellular lipid
accumulation independent of liver inflammation and injury.

Functional role of BMP6 in NAFLD
To get insight into the function of enhanced BMP6 expression in
NAFLD, we compared BMP6-deficient (BMP6−/−) mice23 and wt
mice in two different well-established dietary NASH models.32

First, we fed BMP6−/− and wt mice with a MCD diet or
control chow (ctr.) for 5 weeks. MCD-diet caused similar
mainly macrovesicular hepatic steatosis in BMP6−/− and wt mice
(figure 2A), and also hepatic triglyceride levels were similar in
MCD-fed BMP6−/− and wt mice (figure 2B). Also, the number
of apoptotic cells in the liver and serum transaminase levels did
not significantly differ between BMP6−/− and wt mice fed with
the MCD diet (figure 2C and see online supplementary figure
S4A). However, BMP6−/− mice showed higher hepatic expres-
sion of proinflammatory cytokines and chemokines (figure 2D
and see online supplementary figure S4B–D) and immune cell
infiltration (figure 2E) in response to MCD-feeding compared
with wt mice. Furthermore, α-SMA, a well-established marker
of HSC activation, was significantly higher expressed in the liver
of MCD-fed BMP6−/− mice compared with MCD-fed wt mice
(figure 2F). The activation of HSCs is one of the central patho-
physiological mechanisms of liver fibrogenesis.33 34 Fitting to
this, also hepatic expression of collagen α I(1) (Coll-I), the most
abundant extracellular matrix (ECM) protein of fibrotic liver
tissue, and TGF-ß1, a strong profibrogenic cytokine, was signifi-
cantly higher in MCD-fed BMP6−/− mice compared with
MCD-fed wt mice (figure 2G and see online supplementary
figure S4E). In line with this, sirius red/fast green staining
revealed pronounced ECM deposition in the liver of MCD-fed
BMP6−/− mice compared with wt mice (figure 2H).

As second model we applied a HF (30% lard) diet supple-
mented with cholesterol and cholate, which has been shown to
induce pathological changes closely resembling human
NASH.21 24 Feeding this HF diet for 12 weeks caused similar
hepatocellular ballooning and mainly microvesicular steatosis in
liver of BMP6−/− and wt mice (figure 3A). Also, hepatic trigly-
ceride levels, number of apoptotic cells in the liver and serum
transaminases were similar in HF diet-fed BMP6−/− and wt mice
(figure 3B, C and see online supplementary figure S5A). In con-
trast, proinflammatory gene expression and immune cell infiltra-
tion in response to feeding the HF diet was significantly higher
in livers of BMP6−/− compared with wt mice (figure 3D, E and
see online supplementary figure S5B–D). Within the feeding
time of 12 weeks, the HF diet caused a slight induction of
hepatic TGF-ß1 and Coll-αI(1) mRNA expression in wt mice
(see online supplementary figure S5E and figure 3G), and histo-
logical analysis did not show significant ECM deposition in wt
mice (figure 3H). In contrast, the HF diet induced a marked
increase of hepatic α-SMA expression as well as evident hepatic
fibrosis in BMP6−/− mice (figure 3F–H).

Table 1 BMP6 immunoreactivity (IR) in liver tissues of 110
patients with NAFLD and controls in relation to clinicopathological
characteristics

Variable

BMP6 IR

p
Value*Categorisation n

Per
cent Negative Positive

Age at diagnosis 0.831
<60 years 52 47.3 15 37
≥60 years 58 52.7 15 43

Gender 0.528
Female 57 51.8 14 43
Male 53 48.2 16 37

BMI class† 0.609
0 40 36.4 13 27
1 47 42.7 11 36
2 20 18.2 5 15
3 2 1.8 1 1
n.a. 1 0.9

Steatosis 0.031
<5% 44 40 18 26
5–33% 41 37.3 10 31
34–66% 20 18.2 2 18
67–100% 5 4.5 0 5

Inflammation 0.492
None 88 80 27 61
Mild 9 8.2 1 8
Middle 9 8.2 2 7

Strong 4 3.6 0 4
Ballooning 0.057

None 91 82.7 29 62
Rare 16 14.6 1 15
Frequent 3 2.7 0 3

Histological iron deposition 0.322
No 83 75.5 25 58
Yes 27 24.5 5 22

*Fisher’s exact test (two-sided); bold value representing p value <0.05.
†Class 0: <25 kg/m2; class 1: ≥25.0 and ≤29.9 kg/m2; class 2: >29.9 and
≤34.9 kg/m2; class 3 ≥35.0 kg/m2.
n.a., not available.

Hepatology

976 Arndt S, et al. Gut 2015;64:973–981. doi:10.1136/gutjnl-2014-306968

group.bmj.com on April 28, 2017 - Published by http://gut.bmj.com/Downloaded from 

http://gut.bmj.com/
http://group.bmj.com


In summary, these results suggest that BMP6 protects against
hepatic inflammation and fibrosis in mice fed with a
NASH-inducing diet.

To analyse whether this effect is only related to NAFLD
induced injury, we also applied the model of toxic liver injury
by CCl4

25 to BMP6−/− and wt mice. Also in this model, hepatic
expression of proinflammatory and profibrogenic genes was
higher in BMP6−/− mice compared with wt mice (see online
supplementary figure S6). Although only differences in MCP-1
and α-SMA expression reached the level of significance, these
data suggest that also in this model, BMP6 expression exhibits
anti-inflammatory and antifibrogenic effects. Still, together with
the missing induction of BMP6 upon liver injury not related to
NAFLD (figure 1), the observed mild difference between
BMP6−/− and wt mice in the CCl4 model suggests that the

hepatoprotective effect of the BMP6 pathway mainly plays a
role in fatty liver disease.

Mechanisms underlying the hepatoprotective
effect of BMP6 in NAFLD
In search for the mechanisms by which BMP6 exhibits anti-
inflammatory and antifibrogenic effects in NAFLD, we first
looked at hepatic iron deposition since BMP6 is a critical regula-
tor of hepcidin expression,13 14 and increasing data from experi-
mental and clinical studies indicate that iron sustains disease
activity and/or contributes to its progression in NAFLD.35 The
MCD model is known to enhance hepatic iron uptake,36 and as
shown in our previous study15 hepatic hepcidin expression was
significantly lower (figure 4A) while hepatocellular iron depos-
ition was markedly increased in BMP6−/− mice compared with

Figure 2 Effect of BMP6 deficiency in mice fed with a non-alcoholic steatohepatitis-inducing methionine choline-deficient (MCD) diet. (A) Hematoxylin/
eosin (H/E) staining of liver sections from wild-type mice (wt) and BMP6-deficient (BMP6−/−) mice after feeding a MCD diet for 5 weeks. (B) Hepatic
triglyceride levels in MCD-fed BMP6−/− and wt mice. (C) Representative images of TUNEL staining of hepatic tissue from MCD-fed BMP6−/− and wt mice
(left panel). Numbers of TUNEL positive cells were counted in three different fields per mouse (right panel). (D) Hepatic mRNA expression of tumour
necrosis factor-α (TNF-α) in response to MCD feeding compared with control animals (ctr.) fed with standard chow. (E) Analysis of hepatic immune cell
infiltration by CD3 immunohistochemical staining of livers of MCD-fed wt mice and BMP6−/− mice (left panel). Numbers of CD3 positive cells were
counted in three different fields per mouse (right panel). (F) Analysis of hepatic α-smooth muscle actin (α-SMA) protein expression by western blot
technique of liver cell lysates of control-fed and MCD-fed BMP6−/− and wt mice. β-Actin was used as loading control. (G) Hepatic expression of collagen
alpha I(1) (Coll-I) in response to MCD feeding compared with control animals. (H) Representative images of sirius red/fast green staining of liver sections
from wt and BMP6−/− mice after feeding MCD diet (left panel). Quantification of sirius red-positive areas using image analysis (right panel) (*p<0.05).
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wt control mice in response to MCD-diet feeding
(figure 4C, D). In contrast, hepatic hepcidin expression was
only slightly lower in BMP6−/− mice compared with wt control
mice fed with the NASH-inducing HF diet (figure 4B) and this
diet also did not lead to significant iron accumulation in
BMP6−/− mice compared with wt control mice (figure 4C, D).
These data indicate that at least in the HF diet model disruption
of iron metabolism is not the cause for increased hepatic injury
in BMP6−/− mice. Moreover, these findings further underscore
that the increased BMP6 expression observed in wt livers after
feeding the MCD or HF diets is caused by hepatic steatosis and
is not or only partially caused by increased iron deposition. In
line with this, Prussian blue staining of the human
NAFLD-TMA revealed more often visible iron deposition in
NAFLD (20/65; 30.8%) compared with non-steatotic liver
tissues (7/45; 15.6%; p=0.07) (see online supplementary figure

S7A). Representative examples of iron-positive and iron-negative
liver tissues are depicted in online supplementary figure S7B.
However, there was no correlation between iron deposition and
immunohistochemical BMP6 detection (table 1). Moreover,
feeding with NASH-inducing diets did not lead to significantly
different hepatic expression levels of other BMPs, such as
BMP2 or BMP4, which might be responsible for the observed
differences between BMP6−/− and wt control mice (see online
supplementary figure S8).

In further search for the BMP6 mechanisms of hepatic pro-
tection, we assessed the effects of BMP6 on Kupffer cells, the
liver-resident macrophages. Kupffer cells initiate and perpetuate
the inflammatory response by releasing inflammatory mediators
that contribute to inflammatory cell recruitment and develop-
ment of fibrosis in NAFLD.37 However, stimulation with recom-
binant BMP6 did not significantly affect MCP-1 and TNF-α

Figure 3 Effect of BMP6 deficiency in mice fed with a non-alcoholic steatohepatitis-inducing high-fat (HF) diet. (A) HE staining of liver sections
from wt mice (wt) and BMP6-deficient (BMP6−/−) mice after feeding a HF diet for 12 weeks. (B) Hepatic triglyceride levels in HF-fed BMP6−/− and
wt mice. (C) Representative images of TUNEL staining of hepatic tissue from HF diet-fed BMP6−/− and wt mice (left panel). Numbers of TUNEL
positive cells were counted in three different fields per mouse (right panel). (D) Hepatic mRNA expression of tumour necrosis factor-α (TNF-α) in
response to HF feeding compared with control animals (ctr.) fed with standard chow. (E) Analysis of hepatic immune cell infiltration by CD3
immunohistochemical staining of livers of HF diet-fed wt mice and BMP6−/− mice (left panel). Numbers of CD3 positive cells were counted in three
different fields per mouse (right panel). (F) Analysis of hepatic α-smooth muscle actin (α-SMA) protein expression by western blot technique of liver
cell lysates of control-fed and HF diet-fed BMP6−/− and wt mice. β-Actin was used as loading control. (G) Hepatic expression of collagen alpha I(1)
(Coll-I) in response to HF diet feeding compared with control animals. (H) Representative images of sirius red/fast green staining of liver sections
from wt and BMP6−/− mice after feeding HF diet (left panel). Quantification of sirius red-positive areas using image analysis (right panel) (*p<0.05).
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secretion of primary murine Kupffer cells in vitro (see online
supplementary figure S9). This suggests that Kupffer cells are
not the primary target cells by which BMP6 exerts its disease-
modulating and fibrosis-modulating effects.

Next, we analysed the effects of BMP6 on HSCs. First, we
aimed to analyse the effect of BMP6 on the in vitro activation
process of HSCs. Two days after isolation, primary human and
murine HSCs were exposed to different BMP6 doses for 3 days.

Figure 4 Mechanisms underlying the hepatoprotective effect of BMP6 in non-alcoholic fatty liver disease. (A) Hepatic hepcidin expression in
methionine choline-deficient (MCD) diet-fed and (B) high-fat (HF) diet-fed BMP6−/− and wt mice. (C) Hepatic iron levels in control-fed, MCD diet-fed
and HF diet-fed BMP6−/− and wt mice. (D) Prussian blue staining of liver sections from control-fed, MCD diet-fed and HF diet-fed BMP6−/− and wt
mice. (E) Expression of α-smooth muscle actin (α-SMA) mRNA (upper panel) and protein (lower panel) in activated primary murine hepatic stellate
cells (HSCs) after exposure to BMP6 in doses as indicated. (F) mRNA expression of collagen alpha I(1) (Coll-I) and MCP-1 in activated murine HSCs
after BMP6 stimulation. (G) Analysis of mRNA expression of type I and (H) type II BMP-receptors in human HSCs in vitro at different time points
after isolation (day 2, day 4, and day 10) (*p<0.05).
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Quantitative RT-PCR analysis revealed that BMP6 stimulation
dose-dependently reduced the expression α-SMA in murine and
human HSCs (figure 4E and see online supplementary figure
S10A). In contrast, in vitro activation of HSCs isolated from
BMP6−/− and wt control mice did not show significant differ-
ences in α-SMA and Coll-I expression (see online supplementary
figure S10B). Once they are activated, HSCs are characterised
by excessive expression of profibrogenic genes and ECM pro-
teins. Furthermore, activated HSCs significantly contribute to
the initiation and perpetuation of hepatic inflammation by (de
novo) expression of proinflammatory cytokines and chemo-
kines.38 Noteworthy, BMP6 stimulation of activated HSCs led
to a reduced expression of Coll-I as well as the chemokine
monocyte chemotactic protein-1 (MCP-1) in activated murine
and human HSCs (figure 4F and see online supplementary
figure S10C). Together, these results indicate that BMP6 inhibits
the activation process of HSCs and proinflammatory and profi-
brogenic gene expression of already activated HSCs. Fitting to
this was the expression pattern of type I (Alk2, Alk3, Alk6) and
type II (BMPRII, ActRIIA) BMP receptors known to mediate
BMP6 signal transduction39 during the in vitro activation course
of human HSCs. ALK2, ALK6, BMPRII and ActRIIA expression
was already detectable in quiescent HSCs (d2), and ALK2,
ALK6 and ActRIIA further increased during HSC activation
(d4, d10) (figure 4G, H). In contrast, no ALK3 expression was
detectable in quiescent or activated HSCs (data not shown),
which is in line with a previous study reporting that this type I
receptor is not expressed in the liver.40

DISCUSSION
The first aim of this study was to investigate the expression of
BMP6 in chronic liver diseases. Analysis of hepatic BMP6 expres-
sion in experimental murine models and patient samples revealed
an increase restricted to NAFLD but not in other chronic liver dis-
eases. NAFLD is characterised by increased uptake and accumula-
tion of lipids in hepatocytes. Simple hepatic steatosis may progress
to non-alcoholic steatohepatitis (NASH) with hepatic inflamma-
tion, hepatocellular injury and fibrosis.41 Our in vitro and in vivo
data strongly indicated that the increased BMP6 expression in
NAFLD was not related to hepatocellular injury or inflammation
but was caused by hepatocellular lipid accumulation. Previous
studies demonstrated that also chronic iron overload can lead to
increased hepatic BMP6 levels.42 Furthermore, several studies
suggest that iron homeostasis is disturbed in NAFLD,43 44 and
although conflicting results have been obtained, most studies
support the hypothesis that iron plays a role in hepatic lipogen-
esis.45 Still, systemic and hepatic iron levels are increased also in
other types of liver diseases but NAFLD, and we did not find a
correlation between BMP6 expression and histological evident
iron deposition in human NAFLD tissues. Together, these findings
indicate that iron is not the critical factor causing enhanced BMP6
levels in fatty livers. Further studies have to identify the underlying
mechanism of this phenomenon.

In the present study, we further aimed to determine the func-
tion of enhanced BMP6 expression in NAFLD. We observed that
genetic loss of BMP6 aggravated hepatic inflammation, and even
more, the development of hepatic fibrosis in experimental
NAFLD models. In vitro analysis revealed a significant inhibitory
effect of BMP6 on the activation of HSCs as well as proinflam-
matory and profibrogenic gene expression of already activated
HSCs. These findings suggest that the observed protective effect
of BMP6 in murine NAFLD models was at least in part mediated
via direct effects on HSCs. An antifibrotic effect of BMP6 has
also been described in a model of chronic renal injury.46

Different than in NAFLD, BMP6 was downregulated in diseased
kidneys of wt mice. Furthermore, BMP6-deficient mice showed a
significant increase of iron deposition in the kidney upon
injury.46 In our study, only in one model (ie, the MCD diet),
which is known to enhance hepatic iron uptake,36 hepatocellular
iron deposition was markedly increased in BMP6−/− mice com-
pared with wt control mice. Furthermore, we did not find a sig-
nificant correlation between histological iron deposition and
BMP6 expression in human NAFLD patients. These data suggest
that hepatic iron accumulation, which is considered a putative
element that interacts with oxygen radicals in inducing liver
damage and fibrosis,47 is not the main cause of enhanced hepatic
injury of BMP6-deficient mice in NAFLD models. Still, under
certain circumstances, defects of BMP6 signalling may further
aggravate NAFLD progression via effects on iron homeostasis.
Thus, one may speculate whether the role of BMP6 becomes
even more critical with aging. Also, in the present study, we may
have seen more pronounced effects of BMP6-deficiency in older
mice since BMP6−/− mice develop progressive hepatic iron
deposition with aging.15 However, young BMP6−/− mice show
no overt defects in the liver.23 It appears that BMP6 plays a
minor role in hepatic development, or that its functions are
covered in this context by functional redundancy from other
BMPs. In contrast, compensatory mechanisms are apparently not
sufficient to protect the adult animals during hepatic injury in
NAFLD. This is notable as, for example, BMP6 and BMP7 share
87% amino acid identity and signal via the type I receptors
activin-like kinase ALK2, ALK3 and ALK6,48 49 and activated
HSCs express high levels of these three, and other BMP receptors
and coreceptors (BMPRII, ActRIIA and Eng).10 50 51

The restricted increase of BMP6 in NAFLD but not in other
liver diseases and the mild differences between BMP6−/− and wt
mice in the toxic CCl4 model suggest the BMP6 pathway
mainly plays a role in NAFLD and that therapeutic efforts
should be mainly directed at this entity. Future studies have to
unravel whether the antifibrogenic effect of BMP6 is restricted
to NAFLD and to further investigate the therapeutic potential
of BMP6 in (other) models of chronic liver injury. Certainly,
caution will be necessary not only in the light of BMP6’s role in
iron homeostasis. However, more detailed insight into BMP6
signalling in HSCs may allow the development of a tailored
antifibrogenic therapeutic strategy for NAFLD and eventually
also other chronic liver diseases.
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