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Motivic construction of cohomological invariants

Nikita Semenov�

Abstract. Let G be a group of type E8 over Q such that GR is a compact Lie group, let K be a
field of characteristic 0, and

q D hh�1;�1;�1;�1;�1ii

a 5-fold Pfister form. J.-P. Serre posed in a letter to M. Rost written on June 23, 1999 the
following problem: Is it true that GK is split if and only if qK is hyperbolic?

In the present article we construct a cohomological invariant of degree 5 for groups of
type E8 with trivial Rost invariant over any field k of characteristic 0, and putting k D Q answer
positively this question of Serre. Aside from that, we show that a variety which possesses a
special correspondence of Rost is a norm variety.
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1. Introduction

Let G be a group of type E8 over Q such that GR is a compact Lie group. Let
now K=Q be a field extension and q D hh�1;�1;�1;�1;�1ii a 5-fold Pfister form.
J.-P. Serre posed in a letter toM. Rost written on June 23, 1999 the following problem:

Is it true that GK is split if and only if qK is hyperbolic?

M. Rost replied on July 2, 1999 proving that if qK is hyperbolic, then GK is split
(see [11] for the proof). One of the goals of the present article is to give a positive
answer to Serre’s question (see Theorem 8.8).

Let us recall first some recent developments in the topics which are relevant for
the method of the proof of this result.

�The author gratefully acknowledges the support of the DFG (project GI706/1-1), MPIM Bonn, and
the Sonderforschungsbereich/Transregio 45 (Bonn-Essen-Mainz).
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1.1. Cohomological invariants. The study of cohomological invariants was initi-
ated by J.-P. Serre in the 1990s. Serre conjectured the existence of an invariant in
H 3
et .k;Q=Z.2// ofG-torsors, whereG is a simply connected simple algebraic group

over a field k. This invariant was constructed by M. Rost and is now called the Rost
invariant of G (see [16, 31.B and pp. 448–449]).

Nowadays there exist numerous constructions and estimations of cohomological
invariants for different classes of algebraic objects (see e.g. [8]). Nevertheless, the
most constructions of cohomological invariants rely on a specific construction of
the object under consideration. Unfortunately, for many groups, like E8, there is no
classification and no general construction so far.

1.2. Chow motives of twisted flag varieties. Another direction which we discuss
now is the theory of motives of twisted flag varieties. Typical examples of such
varieties are projective quadrics and Severi–Brauer varieties.

The study of twisted flag varietieswas initiated byRostwhen he provided amotivic
decomposition of a Pfister quadric used later in the proof of the Milnor conjecture
(see [27]). The motives of Severi–Brauer varieties were studied by Karpenko and the
motives of general quadrics by Izhboldin, Karpenko, Merkurjev, and Vishik.

A systematical theory of motives of general twisted flag varieties was developed
in a series of our articles with a culmination in [24] and [22] where the structure of
the motive of a generically split twisted flag variety was established. Moreover, in
some cases we provided an alternative construction of generalized Rost motives as
indecomposable direct summands of generically split varieties (see [24, §7]).

The technique developed in our articles does not use cohomological invariants of
algebraic groups and of twisted flag varieties at all, and our arguments do not rely on
specific constructions of algebraic groups.

1.3. The Bloch–Kato Conjecture. The Bloch–Kato conjecture (more precisely its
proof) provides a bridge between cohomological invariants and motives.

The Bloch–Kato conjecture says that for any n and any prime number p the norm
residue homomorphism

KMn .k/=p ! Hn
et .k; �

˝n
p /

fa1; : : : ; ang 7! .a1/ [ � � � [ .an/

between theMilnor K-theory and the Galois cohomology of a field k with char k ¤ p
is an isomorphism.

The case p D 2 of the Bloch–Kato conjecture is known as the Milnor conjecture.
The proof of the Bloch–Kato conjecture goes as follows. Given a pure symbol u

inHn
et .k; �

˝n
p /M. Rost constructs a splitting variety Xu for u with some additional

properties (If p D 2 one takes norm quadrics, for n D 2 one takes Severi–Brauer
varieties, for p D 3 the construction is based on the Merkurjev–Suslin varieties;
see [30] for an explicit construction for p D n D 3). Then V. Voevodsky using the
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category of his motives and symmetric powers splits off a certain direct summandMu

from the motive of Xu (see [42]). The motive Mu is called the generalized Rost
motive.

Later Rost was able to simplify Voevodsky’s construction and found the same
motive Mu staying inside the category of classical Chow motives (see [29]). His
main idea was to produce an algebraic cycle on Xu called a special correspondence
(see Definition 4.2), forget about the symbol u and use the special correspondence to
construct the motiveMu. This motive is used then to construct exact triangles in the
category of Voevodsky’s motives. These triangles essentially involve mixed motives,
in particular, deviate from the category of classical Chow motives, and are used
(among other results of Rost and Voevodsky) to finish the proof of the Bloch–Kato
conjecture.

The symbol u is a cohomological invariant of the variety Xu (see [42,
Theorem 6.19]). Aside from that, one can notice that the special correspondences
of Rost resemble the algebraic cycles that we construct in the proof of our motivic
decompositions (compare [29, Lemma 5.2] and [24, Lemma 5.7]).

Summarizing: The technique developed by Rost and Voevodsky in the proof of
the Bloch–Kato conjecture gives a way to produce algebraic cycles and motives out
of cohomological invariants of varieties.

1.4. Conclusion. The discussion in the above subsections leads to the following
conjecture. Namely, there should exist a way back from motives to cohomological
invariants. Notice that an evidence of this conjecture appears already in articles of
O. Izhboldin and A. Vishik [12] and [35], where the case of quadrics was treated.

In the present article we show in a constructive way that the varieties which
possess a special correspondence of Rost admit cohomological invariants.

This result has several unexpected applications in the theory of algebraic groups.
In the present article we use it to construct a cohomological invariant inH 5

et .k;Z=2/
for any group of type E8 whose Rost invariant is trivial. In turn, this invariant allows
us to give in the last section a positive answer to a question of Serre about compact
groups of type E8 mentioned above.

We remark that the construction of this invariant essentially relies on the motivic
decomposition of the respective variety of Borel subgroups. We compute this
decomposition in Section 8 using the J -invariant of algebraic groups (see [24])
and the classification of generically split twisted flag varieties (see [22] and [23]).

1.5. Leitfaden of the proof. Let us present a simplified scheme of the construction
of the degree 5 invariant for groups of type E8.

Let G be an anisotropic group of type E8 over a field k of characteristic 0 with
trivial Rost invariant and let X be the variety of Borel subgroups of G.

Using “compression” described in Section 7 we construct a smooth projective
variety eY over k of dimension 15 D 25�1 � 1 with no 0-cycles of odd degree and
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such that the direct summands of the motives ofX and eY supporting the 0-cycles are
isomorphic (see Definition 7.3).

Next we show in Lemma 8.5:
J -invariant of algebraic groups [22–24]

Direct summand of the motive of X (and hence of eY )
supporting the 0-cycles is binary

the Rost invariant ofG is zero

Finally, we show (Theorem 6.1):

Special correspondence (Rost) Algebraic cobordism
(Levine, Morel)

Rost motive (Prop. 5.2) and
computation of characteristic

numbers (Lemma 6.2)
�n�1-varieties (Vishik, Prop. 2.7)

A smooth projective variety eY over k of dimension 2n�1 � 1
with no 0-cycles of odd degree and with a binary motivic

summand supporting the 0-cycles possesses a cohomological
invariant u 2 Hn

et .k;Z=2/ such that for any field extension K=k
one has uK D 0 iff eY K has a 0-cycle of odd degree.

Milnor Conjecture (Voevodsky)

All this together gives an invariant u of degree 5 for E8.
We remark that the number 15 D dimeY has a combinatorial origin. Namely, it

is related to degrees of certain polynomial invariants of the Weyl group of type E8
(see [13]).

Let nowG be a group of type E8 overQ of compact type and letG0 be a split group
of type E8 over a field K of characteristic zero. Then u D .�1/5 2 H 5

et .Q;Z=2/
and one can show (see [11]):

PGL2.31/ � G0 �1 is a sum of 16 squares in K

GK splits .�1/5 D 0 2 H 5
et .K;Z=2/

Serre Quadratic form theory
(�)

Thus, the positive solution to Serre’s problem .�/ implies some classification
results about finite subgroups of algebraic groups over a field K. Moreover, instead
of 16 squares one can take any number of squares between 16 and 31 (see [25]). We
remark finally that one can write 31 in PGL2.31/ as 30 C 1, and 30 is the Coxeter
number for E8, see [33, Section 2.1, Example 5] for a general case.
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1.6. Structure of the article. In Section 2 we recall some results on algebraic co-
bordism of Levine–Morel and �n-varieties. We need them to prove a certain statement
about �n-varieties (Prop. 2.7) which appears as Conjecture 1 before Thm. 6.3 in [42].
The proof belongs to A. Vishik, and we represent it here with his kind permission. In
Sections 3 and 4 we recall basic properties of the category of motives of Voevodsky
and the Rost construction of special correspondences resp. Sections 5 and 6 are
devoted to the construction of cohomological invariants for varieties admitting a
special correspondence (Theorems 5.1 and 6.1). In Section 7we provide some general
results which allow to “compress” varieties. Finally, in Section 8 we construct an
invariant for groups of type E8 with trivial Rost invariant and solve Serre’s problem
(Theorem 8.8) finishing the proofs of all main results of the present article.

Acknowledgements. The first version of this article appeared on arXiv.org in May,
2009. I would like to thank sincerely Skip Garibaldi, Nikita Karpenko, Alexander
Merkurjev, Fabien Morel, Victor Petrov, Alexander Vishik, Kirill Zainoulline,
Maksim Zhykhovich, the anonymous referee, and especially Stefan Gille for
encouragement and for interesting discussions and remarks on the subject of the
article over a long period of time.

2. Algebraic cobordism and �n-varieties

2.1 (Lazard ring). Fix a primep and a field k with char k D 0. Consider the algebraic
cobordism�� of Levine–Morel (see [18]) and the Lazard ring L D �.Spec k/. This
is a graded ring additively generated by the cobordism classes of maps

ŒX� D ŒX ! Spec k� 2 L� dimX

where X is an irreducible smooth projective variety over k. It is known that this ring
is isomorphic to the polynomial ring with integer coefficients on a countable set of
variables.
2.2 (Characteristic numbers). Given a partition J D .l1; : : : ; lr/ of arbitrary length
r � 0 with l1 � l2 � � � � � lr > 0 one can associate with it a characteristic class

cJ .X/ 2 CHjJ j.X/
�
jJ j D

X
i�1

li

�
ofX as follows: LetPJ .x1; : : : ; xr/ be the smallest symmetric polynomial (i.e., with
a minimal number of non-zero coefficients) containing the monomial xl11 � � � x

lr
r . We

can express PJ as a polynomial on the standard symmetric functions �1; : : : ; �r as

PJ .x1; : : : ; xr/ D QJ .�1; : : : ; �r/

for some polynomialQJ .

http://arxiv.org/abs/0905.4384
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Let ci D ci .�TX / denote the i -th Chern class of the virtual normal bundle of X .
Then

cJ .X/ D QJ .c1; : : : ; cr/:

The degrees of the characteristic classes are called the characteristic numbers.
If J D .1; : : : ; 1/ (i times), cJ .X/ D ci .�TX / is the usual Chern class. We

denote bi.p�1/.X/ WD c.p�1;:::;p�1/.X/ (i times). In particular, if p D 2 then
bi .X/ D ci .�TX /. If J D .pn�1/, we write cJ .X/ D spn�1.X/. The class sd .X/
is called the d -th Milnor class of X (see [18, Section 4.4.4]).

The characteristic numbers satisfy different divisibility properties. Moreover,
there exist relations between different characteristic numbers (see e.g. [29, Section 9],
[20, Prop. 7.11]).
Definition 2.3 (�n-varieties). Let p be a fixed prime.

(I) A smooth projective variety X is called a �n-variety if dimX D pn � 1, all
characteristic numbers of X are divisible by p, and

deg sdimX .X/ ¤ 0 mod p2:

(II) A smooth projective variety X is called a ��n-variety if X is a �n-variety
and for all 0 � i � n there exists a �i -variety Yi and a morphism Yi ! X .

Example 2.4. A typical example of a �n-variety is a smooth projective hypersurfaceu
of degree p in Ppn (see [40, Proposition 3.6]).

The fact that all characteristic classes of u are divisible by p follows from the
divisibility of its characteristic numbers by deg hpn�1 D p, where h is a hyperplane
section of u.
Remark 2.5. The above definition of a �n-variety is more restrictive than the
definition which Voevodsky uses in his articles. Namely, he does not assume that all
characteristic numbers are divisible by p.

By [18, Lemma 4.4.19] one can extend the definition of characteristic numbers
to an additive map �d .Spec k/! Z, where d D degPJ .x1; : : : ; xr/. In particular,
one may speak about a �n-element in the Lazard ring, i.e., an element u in Lpn�1

with all characteristic numbers divisible by p and with deg spn�1.u/ ¤ 0 mod p2.
2.6 (Landweber–Novikov operations). Further on one can construct the Landweber–
Novikov operations on the cobordism ring ��.V / for a smooth quasi-projective
variety V . Given a partition J as above we write

SJL�N W�
�.V /! ��CjJ j.V /

for the operation which maps a cobordism class Œf WX ! V � 2 ��.V / to
f�.QJ .c

�
1 ; : : : ; c

�
r //, where c�i D c�i .�TX C f

�.TV // are the cobordism Chern
classes (see [36, Definition 2.12]).
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Since �� is a universal cohomology theory, there exists a canonical map

prW�� ! CH�

which turns out to be surjective. For a particular partition J D .p � 1; : : : ; p � 1/

(i times) denote S iL�N WD S
J
L�N . Then the following diagram commutes:

��.V /

S i
L�N

��

pr // CH�.V / // Ch�.V /

S i

��
��C.p�1/i .V /

pr // CH�C.p�1/i .V / // Ch�C.p�1/i .V /

where Ch� WD CH� =p and S i denotes the i -th Steenrod operation in the Chow
theory (see [3]). In particular, since S i jChm.V / D 0 for i > m, the image

pr ı S iL�N .�
m.V //

is divisible by p for such m. Moreover, the total operation SL�N WD
P
i S

i
L�N is a

ring homomorphism (see [18, 36, 44]).
For an integer n let I.p; n/ denote the ideal of L generated by the varieties of

dimension � pn � 1 with all characteristic numbers divisible by p. This is a prime
ideal invariant under the action of the Landweber–Novikov operations on L. By
definition I.p; n � 1/ � I.p; n/. Moreover, as an L-ideal I.p; n/ is generated by
I.p; n� 1/ and by any �n-variety. Besides, I.p; n� 1/ does not contain �n-varieties
(see [20, Section 11], [37, Section 3], and [17, Section 2]).

The following proposition seems to be known in algebraic topology. The existence
of Landweber–Novikov operations in the algebraic cobordism theory of Levine–
Morel allows to prove it in the context of algebraic geometry. This proposition
appears as Conjecture 1 before Thm. 6.3 in [42].
Proposition 2.7. A �n-variety is a ��n-variety.

Proof. (A. Vishik) It is well known that a smooth hypersurface of degree p in Ppn

is a �n-variety (see [40, Prop. 3.6] and Example 2.4). Denote its class in L as u.
There are the following exact sequences of vector bundles

0! Tu ! ��.TPpn /! ��.O.p//! 0

and 0! O! O.1/pnC1
! TPpn ! 0;

where Tu is the tangent bundle of u and �Wu ,! Ppn .
Therefore

c�.�Tu/ D
1C Œp�h

.1C h/p
nC1

;

where h is a hyperplane section of u and

Œp�h D hC� C � � � C� h D phC decomposable terms

is the sum with respect to the cobordism formal group law.
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A direct computation shows now that Sp
n�1

L�N .u/ modulo I.p; n � 2/ is a multiple of
the class of a hypersurface of degree p in Ppn�1 with a coefficient not divisible by p.
In particular, Sp

n�1

L�N .u/ is a �n�1-element.
Let now vn be a �n-element in L. Then y WD avn � u 2 I.p; n � 1/ for some

a 2 Z coprime to p. To conclude that vn is a �n�1-element, it suffices to show that
S
pn�1

L�N .y/ 2 I.p; n � 2/. We can write

y D vn�1xn�1 C vn�2xn�2 C � � � C v0x0

where vi is a �i -element and xi 2 L. Since the ideal I.p; n � 2/ is stable under the
Landweber–Novikov operations, we have that

S
pn�1

L�N .vn�2xn�2 C � � � C v0x0/ 2 I.p; n � 2/:

Moreover, S iL�N .vn�1/ 2 I.p; n � 2/ for all i > 0. Finally, we have the term

S0L�N .vn�1/S
pn�1

L�N .xn�1/ D vn�1S
pn�1

L�N .xn�1/:

But Sp
n�1

L�N .xn�1/ is divisible by p, since xn�1 2 L0 and this Landweber–Novikov
operation induces the Steenrod operation Spn�1 on the Chow group. Thus,

S
pn�1

L�N .y/ 2 I.p; n � 2/;

and we are done.

3. Category DM

The base field k is assumed to have characteristic zero, and all varieties are assumed
to be irreducible.

If A! B is a morphism in a triangulated category, then there exists a unique up
to isomorphism object C with an exact triangle of the form A! B ! C . We write
C D Cone.A! B/.
Definition 3.1. Let X be a smooth projective variety over k. As LC.X/ we denote
the standard simplicial scheme associated with X :

X   X �X
 
 
 
X �X �X � � �

In the present article we work in the category DM WD DMeff
� .k/ of effective

motives of V. Voevodsky over k with p-adic coefficients Zp , where p is a fixed prime
number (see [19,42,43]). In the same way we could work with Z.p/-coefficients, but
this would make the proofs of some statements (e.g. of Lemma 7.6) technically more
involved.
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It is known that there are functors from the category of smooth schemes over k
and from the category of smooth simplicial schemes over k to DM. Therefore we
can speak about the motives of smooth schemes and smooth simplicial schemes.

The category of classical Grothendieck’s Chow motives is a full subcategory
of DM closed under direct summands. Its objects are called pure motives. For an
integer b we set fbg WD .b/Œ2b�. For example, if M 2 DM, then M fbgŒ1� means
M.b/Œ2b C 1� andM fbg is a Tate twist ofM . We have an exact triangle:

Zp
p
�! Zp ! Z=p ! ZpŒ1�; (1)

where Zp is the motive of the base point. ForM 2 DM its motivic cohomology with
Z=p-coefficients is given by

Hd;c.M;Z=p/ D Hom.M;Z=p.c/Œd �/:

We list now some properties of the category DM.
Lemma 3.2 ([19, Cor. 19.2 and Thm. 5.1]). Let X be a smooth projective variety
over k. Then

Hom.X;Z=p.i/Œ2i �/ D CHi .X/˝ Z=p DW Chi .X/

is the Chow group of X . If X D Spec k, then additionally

Hom.X;Z=p.i/Œi �/ D KMi .k/=p

is the Milnor K-theory of k mod p.

We remark that these statements are given in [19] integrally. The mod-p version
follows from the integral version, from exact triangle (1) and from the facts that

Hom.X;Zp.i/Œ2i C 1�/ D 0 and Hom.Spec k;Zp.i/Œi C 1�/ D 0

for all i � 0 (see [19, Thm. 3.6 and Thm. 19.3]).
Lemma 3.3 ([35, Theorem 2.3.4], [40, App. B]). Let X and Y be smooth projective
irreducible varieties over k and let XX (resp. XY ) be the motive of LC.X/ (resp. of
LC.Y /). The natural morphism XX ! Spec k is an isomorphism if and only ifX has
a zero-cycle of degree coprime to p.

The motivesXX andXY are isomorphic if and only ifX has a zero-cycle of degree
coprime to p over k.Y / and Y has a zero-cycle of degree coprime to p over k.X/.

Lemma 3.4 ( [19, Thm. 3.6 and Thm. 19.3]). Let X be a smooth projective variety
over k. Then

Hom.X;Z=p.c/Œd �/ D 0

for d � c > dimX and for d > 2c. The same formula holds for motivic cohomology
with integral coefficients.
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We remark that again this mod-p version follows from the integral version given
in [19] and from exact triangle (1).

Lemma 3.5 (Cancellation; [41, Corollary 4.10]). Let A;B 2 DM. Then for all
i; j � 0, we have

Hom.A;B/ D Hom.A.i/Œj �; B.i/Œj �/:

Definition 3.6. A localizing subcategory of DM generated by an object A 2 DM is
a minimal triangulated subcategory closed under direct summands, arbitrary direct
sums, and containing A.

Lemma 3.7 ([40, Lemma 4.7], [35, Theorem 2.3.2]). Let X be a smooth projective
variety over k andM an object of the localizing subcategory of DM generated byX .
Denote as X the motive of LC.X/. Then

(I) the natural morphismM ˝ X !M is an isomorphism,

(II) and the natural homomorphism Hom.M;X / ! Hom.M;Zp/ is an
isomorphism.

InDM there is an action of theMilnor operations for smooth simplicial schemesU

Qi WHom.U;Z=p.r/Œs�/! Hom.U;Z=p.r C pi � 1/Œs C 2pi � 1�/:

In the same way there is an action of the Milnor operations on the reduced motivic
cohomology eH�0;�.U;Z=p/ for smooth pointed simplicial schemes U . They satisfy
the following properties:

Lemma 3.8 ([39, Section 13], [38, Theorem 3.17]). Let U be a smooth pointed
simplicial scheme u; v 2 eH�0;�.U;Z=p/. Then

(I) Q2
i D 0;

(II) QiQj CQjQi D 0;

(III) Qi .uv/ D Qi .u/v C uQi .v/ C
P
�nj 'j .u/ j .v/, where nj > 0,

'j and  j are some homogeneous cohomological operations of bide-
grees .�0;�/ with �0 > 2� � 0, and � is the class of �1 in
Hom.Spec k;Z=p.1/Œ1�/ D k�=k�p . (In particular, � D 0 if p is odd).

Thus, the following sequence is a complex:

eH��2piC1;�0�piC1.U;Z=p/
Qi
! eH�;�0.U;Z=p/ Qi

! eH�C2pi�1;�0Cpi�1.U;Z=p/:
(2)

Definition 3.9. The cohomology groups of complex (2) are calledMargolis motivic
cohomology groups and are denoted as eHM �;�0i .U /.
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The following lemma is of particular importance for us.
Lemma 3.10. Let X be a smooth projective variety over k, Y a �n-variety over k,
and let X be the motive of LC.X/. Denote as eX D Cone.X ! Spec k/ the cone of
the natural projection.

Assume that there exists a map Y ! X . Then for all 0 � i � n and all �;�0 2 Z

eHM �;�0i .eX / D 0:
Proof. The lemma immediately follows from [42, Lemma 4.3] and Proposition 2.7.

The following lemma immediately follows from exact triangle (1) and from the
fact that the complex Zp.c/ D 0 for c < 0.
Lemma 3.11. We have Hom.X ;Z=p.c/Œd �/ D 0 if c < 0. The same formula holds
with integral coefficients.

The following lemma follows from the proof of Sublemma 6.2 of [12].
Sublemma 6.2 in [12] is about quadrics, but the same proof works for any smooth
projective irreducible variety.
Lemma3.12 ([12, Proof of Sublemma 6.2]). LetX be a smooth projective irreducible
variety, let X be the motive of LC.X/, and �0 2 Hom.X ;X fbgŒ1�/ for some b. Let
� 2 Hom.X ;ZpfbgŒ1�/ be the image of �0 under the natural map of Lemma 3.7(II).

Then for all c; e the pull-back

.�0/�WHom.X ;Zp.c/Œe�/! Hom.X ;Zp.c C b/Œe C 2b C 1�/

coincides with the multiplication by �.

The next two lemmas follow from the (proven) Bloch–Kato Conjecture.
Lemma 3.13 ( [42, Lemma 6.6]). Let X be a smooth projective irreducible variety
over k, let X be the motive of LC.X/, and eX D Cone.X ! Spec k/.

Then eHd;c.eX ;Z=p/ D 0
for all d � c C 1.

Lemma 3.14 ( [29, Lemma 2.1]). Let X be a smooth projective irreducible variety
over k, n � 2, and let X be the motive of LC.X/. Then there is a natural exact
sequence:

0! Hn;n�1.X ;Z=p/! Hn
et .k; �

˝.n�1/
p /! Hn

et .k.X/; �
˝.n�1/
p /:

In particular, any element of Hn;n�1.X ;Z=p/ can be identified with an element
of the Galois cohomologyHn

et .k; �
˝.n�1/
p /.
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4. Rost’s construction

We assume that char k D 0 and k contains a primitive p-th root of unity �p .

Definition 4.1 (Norm varieties). Let u 2 Hn
et .k; �

˝n
p /. A smooth projective

irreducible variety X over k is called a norm variety for u if X is a �n�1-variety and
uk.X/ D 0.

Ifu is a pure symbol, i.e.,uD.a1/[� � �[.an/ for someai 2H 1
et .k; �p/'k

�=k�p ,
then it was shown by M. Rost that a norm variety for u exists. There is a general
conjecture that if X is a norm variety for u, then u is a pure symbol.

Definition 4.2 (Rost). Let n be a positive integer, p a prime, b D pn�1�1
p�1

, and X a
smooth projective geometrically irreducible variety over k of dimension pn�1 � 1.
Consider the complex

CHb.X/
��

0
���

1
�����! CHb.X �X/

��
0
���

1
C��

2
��������! CHb.X �X �X/

where �i is the i -th projection in the diagram

X   X �X
 
 
 
X �X �X:

Let � 2 CHb.X �X/. Define

c.�/ WD .�0/�.�
p�1/ 2 CH0.X/ D Z:

The cycle � is called a special correspondence of type .n; p/ for X if

.��0 � �
�
1 C �

�
2 /.�/ D 0

and c.�/ ¤ 0 mod p:

In this definition we assume thatX is geometrically irreducible, since we consider
products of varieties, likeX �X , which can be reducible, ifX is irreducible, but not
geometrically irreducible.

M. Rost showed that a variety X which possesses a special correspondence and
has no zero-cycles of degree coprime to p is a �n�1-variety (see [29, Section 9]). We
remark also that by [29, Lemma 5.2] one has �k.X/ D H � 1� 1�H for some cycle
H 2 CHb.Xk.X//.
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The following table gives some examples of norm varieties (cf. [28]). We refer
to [16] for notations.

p n symbol norm variety
2 any .a1/ [ � � � [ .an/ the projective quadric given by q D 0

where q D hha1; : : : ; an�1ii ? h�ani.
2 5 f5 the variety of singular trace zero lines

in a reduced Albert algebra with the
cohomological invariant f5; this variety
is a twisted form of F4=P4, where P4 is
a maximal parabolic subgroup of type 4
(enumeration of simple roots follows
Bourbaki).

any 2 .a/ [ .b/ Severi–Brauer variety SB.A/whereA D
hx; y j xp D a; yp D b; xy D �pyxi.

3 3 g3 the twisted form of a hyperplane section
of Gr.3; 6/ defined in [30]; this variety
is closely related to Albert algebras with
the Rost invariant g3.

5 3 h3 the variety is related to groups of
type E8 with the Rost invariant h3;
it can be constructed from projective
E8-homogeneous varieties using the
algorithm of Section 7.

any 3 .a/ [ .b/ [ .c/ any smooth compactification of the
Merkurjev–Suslin varietyMS.a; b; c/ D
f˛ 2 A j NrdA.˛/ D cg where A is as
above, and NrdA is its reduced norm.

3 4 .a/ [ .b/ [ .c/ [ .d/ any smooth compactification of the
variety f˛ 2 J j NJ .˛/ D dg where J
is the Albert algebra obtained from the
1st Tits construction out of A and c

with A as above, and NJ is the cubic
norm on J .

We recall now the construction of the special correspondences of Rost out of a
symbol. Let n � 2 be an integer, p a prime, u 2 Hn

et .k; �
˝.n�1/
p / an element in

the Galois cohomology of the field k, and X a geometrically irreducible smooth
projective variety such that uk.X/ D 0.

By Lemma 3.14 the element u can be identified with an element

ı 2 Hn;n�1.X ;Z=p/

of the motivic cohomology of the standard simplicial scheme X associated with X .
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Define now � D QQ0 ıQ1 ı � � � ıQn�2.ı/ 2 H 2bC1;b.X ;Z/, where Qi are the
Milnor operations, QQ0 is the integral valued Bockstein, and b D pn�1�1

p�1
.

Consider now the skeleton filtration on X . Let Y D Cone.X ! X / be the cone
of the natural map. Then there is another natural map .X �X/Œ1�! Y such that the
composition .X �X/Œ1�! Y ! XŒ1� equals �0 � �1.

Let Z D Cone..X �X/Œ1�! Y /. Then again there is a natural map

.X �X �X/Œ2�! Z

such that the composition

.X �X �X/Œ2�! Z ! .X �X/Œ2�

equals �0 � �1 C �2.
These exact triangles give the long exact sequences for motivic cohomology with

integral coefficients:

H 2b;b.X/! H 2bC1;b.Y /! H 2bC1;b.X /! H 2bC1;b.X/

and H 2bC1;b.Y /! H 2b;b.X �X/
˛
�! H 2bC2;b.Z/:

Notice now that

H 2b;b.X/ D CHb.X/; H 2bC1;b.X/ D 0; H 2b;b.X �X/ D CHb.X �X/

and there is a map

H 2bC2;b.Z/! H 2b;b.X �X �X/ D CHb.X �X �X/

such that the composition

CHb.X �X/
˛
�! H 2bC2;b.Z/! CHb.X �X �X/

equals ��0 � ��1 C ��2 .
Summarizing we have the following diagram:

CHb.X/

��
0
���

1 &&

// H 2bC1;b.Y / //

��

H 2bC1;b.X / // 0

CHb.X �X/ ˛ //

��
0
���

1
C��

2 ((

H 2bC2;b.Z/

��
CHb.X �X �X/
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Thus, the element � 2 H 2bC1;b.X / gives rise to an element � D �.�/ in the
homology of the complex

CHb.X/
��

0
���

1
�����! CHb.X �X/

��
0
���

1
C��

2
��������! CHb.X �X �X/:

If the element � (as a cycle in CHb.X �X/) satisfies additionally the condition

c.�/ ¤ 0 mod p;

then � turns out to be a special correspondence on X .

5. Norm varieties and special correspondences

We continue to assume that char k D 0 and k contains a primitive p-th root of unity.
The goal of this and of the next sections is to prove the following theorem:
Theorem 5.1. Let X be a smooth projective geometrically irreducible variety which
possesses a special correspondence of type .n; p/. Assume thatX has no zero-cycles
of degree coprime to p. Then there exists a unique up to non-zero scalar (functorial)
element 0 ¤ u 2 Hn

et .k; �
˝.n�1/
p / such that X is a norm variety for u.

For any field extension K=k the invariant uK D 0 iff XK has a zero-cycle of
degree coprime to p.

As in [29] we define I.X/ as the image of the degree map degWCH0.X/ ! Z,
where X is a smooth projective variety over k.
Proposition 5.2 (M. Rost). Let X be a smooth projective geometrically irreducible
variety which possesses a special correspondence � of type .n; p/. Assume I.X/�pZ
and set b D pn�1�1

p�1
. Then the motive of X considered with Z.p/-coefficients has

an indecomposable generically split (see Definition 7.4 below) direct summand R
constructed in [29] such that

R˝X '

p�1M
iD0

Xfbig:

This Proposition is proved in [29, Proposition 7.14]. The motive R is called a
generalized Rost motive. We outline Rost’s proof for reader’s convenience to make
the exposition more self-contained.

We write CH for the Chow group with Z.p/-coefficients. By Manin’s identity
principle (Yoneda lemma for motives) it suffices to construct a correspondence

� 2 Hom

 
p�1M
iD0

Xfbig; X ˝R

!
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such that for any smooth projective variety T over k

� ı �WHom

 
T;

p�1M
iD0

Xfbig

!
! Hom.T;X ˝R/

is an isomorphism. Notice that the composition with � equals the realization of
�T ˝ � .

Define

�i D .�X � 1/.1 � �
i / 2 Hom.Xfb.p � 1 � i/g; X ˝R/; i D 0; : : : ; p � 1;

and

� D

p�1X
iD0

�i :

Let Y D T �X and f WY ! X be the projection. For 0 � i � p � 1 let

'i WCHh.Y /! CHhCbi .Y �X/
˛ 7!��X .˛/ � .f � idX /�.�i /;

where �X WY �X ! Y is the projection,

ˆ D

p�1X
iD0

'i

and

 i WCHhCbi .Y �X/! CHh.Y /
ˇ 7! .�X /�.ˇ � .f � idX /�.�p�1�i //;

‰ D

p�1X
iD0

 i :

One verifies using projection formulas that the realization of �T ˝ � equals ˆ.
In [29, Proof of Proposition 7.14] Rost shows thatˆ is an isomorphism. Therefore �
is an isomorphism.

Observe also the following: Let X D Xk.X/ and R D Rk.X/. Then a
direct computation shows that over k.X/ (where R becomes

Lp�1
iD0 Z.p/fbig) the

constructed isomorphism
p�1M
iD0

Xfbig
�k.X/

���! X ˝R D

p�1M
iD0

Xfbig

is a lower triangular matrix with �X ’s up to invertible scalars on the diagonal, i.e.,
�k.X/WXfbig ! Xfbj g is zero for i > j , and equals �X up to an invertible scalar
for i D j . Moreover, Rost shows that R ' .X; c � �p�1/ mod p for some scalar c.
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The following lemma will not be used in the construction of a cohomological
invariant for groups of type E8 given in Section 8 below. This lemma was inspired
by [40, Proof of Thm. 4.4] and [35, Proof of Statement 1.1.1].
Lemma 5.3. Let X be a smooth projective geometrically irreducible variety which
possesses a special correspondence � of type .n; p/. Assume I.X/ � pZ and let R
be a direct summand of the motive ofX with Zp-coefficients given in Proposition 5.2.
Then there exists the following filtration of R consisting of exact triangles:

Rp�2fbg ! Rp�1 ! X
Rp�3fbg ! Rp�2 ! X

� � �

R0fbg ! R1 ! X
0! R0 ! X ;

where Rp�1 D R and X denotes the motive of LC.X/.

Proof. In this proof we write CH for Chow groups with Zp-coefficients. The proof
goes by induction.

First of all, notice that X lies in the localizing subcategory generated by X .
LetM be a motive in the localizing subcategory generated byX such that there is an
isomorphism

� W
M
i2I

Xfig
'
�!M ˝X

for some finite set I of non-negative integers. Denote X D X �k k.X/ and take an
isomorphism � D .�i /i2I WMk.X/ !

L
i2I Zpfig defined over k.X/. Notice that

the isomorphism � D .�i / is unique up to a sequence of invertible scalars, since
Hom.Zpfig;Zpfj g/ D Zp if i D j and is 0 otherwise.

Assume additionally that the composite morphismM
i2I

Xfig
�k.X/

���! .M ˝X/k.X/
�˝id

X
����!

M
i2I

Xfig

is a lower triangular matrix with isomorphisms on the diagonal.
Observe that these conditions are satisfied by the motive R D Rp�1 given

in the previous proposition. So, we can start induction with M D Rp�1 and
I D fbi; i D 0; : : : ; p � 1g.

Consider the skeleton filtration ofX . Let Y D Cone.X ! X / be the cone of the
canonical map X ! X induced by the structural map X ! Spec k. Then we have
the following exact triangle:

M ˝X !M ˝ X !M ˝ Y: (3)
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By Lemma 3.7(I)M ˝ X DM . Let now l be the smallest element in I .
The above triangle induces the long exact sequence

Hom.M ˝ Y;Zpflg/! Hom.M;Zpflg/! Hom.M ˝X;Zpflg/
! Hom..M ˝ Y /Œ�1�;Zpflg/:

(4)

The group Hom.M ˝ Y;Zpflg/ D 0 by [40, Prop. 8.1], since

Hom.V fl 0gŒj �;Zpflg/ D Hom.V Œj �;Zpfl � l 0g/ D 0

for any smooth projective variety V and any j > 0 and l 0 � l (see Lemma 3.4) and
since Y is an extension of X i Œi � 1�, i > 1.

Moreover, the same arguments applied to the exact triangle .X �X/Œ1�! Y ! Z,
where Z denotes the respective cone, show that we have an injection

Hom..M ˝ Y /Œ�1�;Zpflg/! Hom.M ˝X ˝X;Zpflg/

induced by the natural map .X ˝X/Œ1�! Y . Observe that the composition

.X ˝X/Œ1�! Y ! XŒ1�

is the difference of two projections �0 � �1 (see Section 4 and [35, p. 31]).
Since by induction hypothesisM ˝X '

L
i2I Xfig and since l is minimal, we

have Hom.M ˝X;Zpflg/ ' Hom.Xflg;Zpflg/ D Hom.X;Zp/ D CH0.X/.
We claim next that the image of the structural map prWX ! Spec k (as an element

ofHom.M˝X;Zpflg/) inHom..M˝Y /Œ�1�;Zpflg/ is trivial. Indeed, by the above
identifications the morphism Hom.M ˝ X;Zpflg/ ! Hom.M ˝ X ˝ X;Zpflg/
corresponds to the morphism CH0.X/ ! CH0.X � X/ given by ��0 � ��1 , which
sends pr D ŒX� to 0. Therefore, since sequence (4) is exact, we can find a preimage
ˇ 2 Hom.M;Zpflg/ of the structural map.

Lemma 3.7(II) gives us a mapM ! X flg. Define

M 0 D Cone.M ! X flg/Œ�1�

and consider the composite map

 WM 0 ˝X
˛˝idX
����!M ˝X

'
��!
��1

M
i2I

Xfig !
M
i2Inflg

Xfig

arising from the exact triangle .M 0
˛
�! M ! X flg/˝ X , where the last map in 

is the canonical projection. By our inductive assumptions on M one can see that
over k.X/ where the motives M and M 0 become sums of twisted Tate motives,
k.X/ is an isomorphism given by a lower triangular matrix with isomorphisms on
the diagonal. Therefore by [35, Theorem 2.3.5] we have an isomorphism

M 0 ˝X ˝X '
M
i2Inflg

X ˝Xfig:
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So, we can replaceX byX�X and apply induction. Notice that the motives of LC.X/
and of LC.X � X/ are isomorphic by Lemma 3.3, and  satisfies all the hypothesis
needed for the next inductive step.

Therefore by induction we can construct the motives

Mp�1 WD R;Mp�2;Mp�3; : : : ;M0;M�1

together with exact triangles

Ms�1 !Ms ! X fb.p � 1 � s/g; s D 0; : : : ; p � 1;

and such thatMs ˝X
p�s '

Lp�1
iDp�1�s X

p�sfbig for all s. In particular,

M�1 ˝X
pC1
D 0:

But then M�1 D M�1 ˝ X D 0. Finally, the existence of exact triangles as in
the statement of the lemma follows from the cancellation theorem (see Lemma 3.5)
with Rsfb.p � 1 � s/g 'Ms for all s. We are done.

Next we investigate the construction of Lemma 5.3 in more details.
Lemma 5.4. For i D 1; : : : ; p � 1 if c1 > c2 then

Hom.Ri .c1/Œd1�;Z=p.c2/Œd2�/ D 0:

The same formula holds for integral coefficients.

Proof. The statement follows from Lemma 5.3 and Lemma 3.11.

Lemma 5.5. Let X be a smooth projective irreducible variety over k and R a direct
summand of the motive of X with Zp-coefficients. Assume that I.X/ � pZ. Denote
by X the motive of the standard simplicial scheme associated with X . Assume that
one of the following two conditions hold:

I) The motive R arises from a special correspondence � of type .n; p/ (in
particular, in this case we assume that X is geometrically irreducible) or

II) p D 2 and the motive R has a filtration X fbg ! R! X for some b > 0.

Let K=k be a field extension. Then the group Hom.XK ;ZpfbgŒ1�/ is finite cyclic
of order 1 or p, and Hom.XK ;ZpfbgŒ1�/ D 0 iff XK has a zero-cycle of degree
coprime to p.

Proof. We write CH for Chow groups with Zp-coefficients. By functoriality of all
our constructions it suffices to prove the lemma for K D k.

In Case I of the present lemma we use notation from Lemma 5.3, in particular,
R D Rp�1. In Case II we set Rp�1 WD R, Rp�2 WD X , and Rp�3 WD 0.
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Consider Hom from the exact triangle Rp�2fbg ! Rp�1 ! X to Zpfbg. We
get the following long exact sequence:

Hom.Rp�1;Zpfbg/
f
�! Hom.Rp�2fbg;Zpfbg/

g
�! Hom.X Œ�1�;Zpfbg/! Hom.Rp�1Œ�1�;Zpfbg/:

Notice that Hom.Rp�1;Zpfbg/ D CHb.Rp�1/ (since Rp�1 is a pure motive),

Hom.Rp�2fbg;Zpfbg/ D Hom.Rp�2;Zp/ (Lemma 3.5);
Hom.X Œ�1�;Zpfbg/ D Hom.X ;ZpfbgŒ1�/;

and Hom.Rp�1Œ�1�;Zpfbg/ � Hom.XŒ�1�;Zpfbg/ D 0 (Lemma 3.4):

Assume that we are in Case I. It follows from the proof of Lemma 5.3 that the
homomorphism

Hom.Rp�2;Zp/! Hom.Rp�2 ˝X;Zp/ D CH0.X/

coming from exact sequence (4) (withM D Rp�2fbg) is an isomorphism. Thus, we
get the following commutative diagram with exact rows

Hom.Rp�1;Zpfbg/
f // Hom.Rp�2fbg;Zpfbg/

g //

D

��

Hom.X ;ZpfbgŒ1�/ // 0

CHb.Rp�1/
f // CHb.Xfbg/ g // Hom.X ;ZpfbgŒ1�/ // 0

We take now the extension of scalars from k to k.X/. We have the following
commutative diagram with exact rows

CHb.Rp�1/
f //

��

CH0.X/ g //

D

��

Hom.X ;ZpfbgŒ1�/ //

��

0

CHb..Rp�1/k.X//
fk.X/ // CH0.Xk.X// // 0

The morphism fk.X/ is surjective, since by Lemma 3.3 the motives Xk.X/ and
Spec k.X/ are isomorphic and hence by Lemma 3.4 Hom.Xk.X/;ZpfbgŒ1�/ D 0.

On the other hand, by [29] (see also [15, Lemma SC.3]) the image of the restriction
homomorphism

CHb.Rp�1/! CHb..Rp�1/k.X// D Zp
(the last equality is due to the fact thatRp�1 is isomorphic over k.X/ to˚p�1iD0Zpfbig)
contains pZp . In particular, the group Hom.X ;ZpfbgŒ1�/ has order 1 or p (and, in
particular, it is cyclic).
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If X has a zero-cycle of degree coprime to p, then by Lemma 3.3

Hom.X ;ZpfbgŒ1�/ D 0:

Conversely, if Hom.X ;ZpfbgŒ1�/ D 0, then the restriction homomorphism

CHb.Rp�1/! CHb..Rp�1/k.X//

is surjective and henceXk.X/ has a zero-cycle of degree coprime to p defined over k,
namely, the cycleHp�1, where the special correspondence �k.X/ D H � 1� 1�H
(see [29, Lemma 5.2]).

Assume now we are in Case II. Proceeding as in Case I we have a commutative
diagram with exact rows:

CHb.R/ //

��

Hom.X fbgŒ1�;Z2fbgŒ1�/ //

D

��

Hom.X ;Z2fbgŒ1�/ //

��

0

CHb.RF / // Z2 // 0

where F=k is a field extension over which X has a zero-cycle of odd degree.
If X has a zero-cycle of odd degree, then exactly as in Case I the group

Hom.X ;Z2fbgŒ1�/ D 0:

Conversely, if this group is zero, then the restriction homomorphism

CHb.R/! CHb.RF /

is surjective.
Let R D .X; �/. Since over F the motive RF is isomorphic to Z2 ˚ Z2fbg, the

projector �F equals to 1 � ptC x � y, where pt is a zero-cycle on XF of degree 1,
x 2 CHb.RF / and y 2 CHb.RF /. The cycle y is rational by [10, Lemma 3.5]
(applied to the transposed projector � t ) and the cycle x is rational by the above
considerations. Therefore XF has a zero-cycle x � y of degree 1, which is defined
over k.

Finally, by the proof of the next Lemma 5.6 (which does not use the present
lemma), the group Hom.X ;Z2fbgŒ1�/ is a 2-torsion group. Therefore, if this group
is non-trivial, then it has order 2. This implies the lemma.

Lemma 5.6. In the settings of Lemma 5.5 the natural homomorphism

Hom.X ;Zp.f /Œg�/! Hom.X ;Z=p.f /Œg�/

is injective for g > f .
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Proof. LetR D .X; �/. SinceR is a direct summand ofX , the 0-cycle .�0/�.� �� t /,
where �0WX2 ! X is the first projection, has degree p (sinceR is a sum of p twisted
Tate motives over an extension of the base field). In particular, there exists a finite
field extension K=k of degree pm with m coprime to p such that XK has a zero-
cycle of degree coprime to p. Therefore by Lemma 3.3 XK ' SpecK and hence
Hom.XK ;Zp.f /Œg�/ D 0 by Lemma 3.4.

By a transfer argument the composite map

Hom.X ;Zp.f /Œg�/
res
�! Hom.XK ;Zp.f /Œg�/

tr
�! Hom.X ;Zp.f /Œg�/

where the first map is the extension of scalars and the second map is the transfer map,
is the multiplication by pm. Therefore Hom.X ;Zp.f /Œg�/ is a p-torsion group.

The exact sequence

Hom.X ;Zp.f /Œg�/
�p
�! Hom.X ;Zp.f /Œg�/! Hom.X ;Z=p.f /Œg�/

implies now the statement of the lemma.

Lemma 5.7. In the settings of Lemma 5.5 the natural homomorphism

Hom.X ;ZpfbgŒ1�/! Hom.X ;Z=pfbgŒ1�/

is an isomorphism.

Proof. The injectivity of this homomorphism follows from Lemma 5.6. To prove
surjectivity it suffices to show that Hom.X ;ZpfbgŒ2�/ D 0.

We use notation from the proof of Lemma 5.5. Consider Hom from the exact
triangle Rp�2fbg ! Rp�1 ! X to ZpfbgŒ2�. We get the following long exact
sequence:

Hom.Rp�2.b/Œ2b C 1�;Zp.b/Œ2b C 2�/! Hom.X ;Zp.b/Œ2b C 2�/
! Hom.Rp�1;Zp.b/Œ2b C 2�/:

The last group of this sequence is zero by Lemma 3.4, since Rp�1 is a pure
motive. The first group of this sequence equals Hom.Rp�2;ZpŒ1�/ by cancellation.

Consider now Hom from the exact triangle Rp�3fbg ! Rp�2 ! X to ZpŒ1�.
We get the following exact sequence:

Hom.X ;ZpŒ1�/! Hom.Rp�2;ZpŒ1�/! Hom.Rp�3.b/Œ2b�;ZpŒ1�/:

The last group of this sequence is zero by Lemma 5.4. By [40, Cor. 6.9] and
[38, Prop. 2.7] the first group of this sequence is isomorphic to

H
1;0
et .X ;Zp/ ' H

1;0
et .k;Zp/ D 0:

Therefore Hom.Rp�2;ZpŒ1�/ D 0 and hence

Hom.X ;ZpfbgŒ2�/ D 0:
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Let eX D Cone.X ! Spec k/.
Lemma 5.8. In the settings of Lemma 5.5 assume additionally in Case II that
b > 2n�2 � 1. Define

� 2 Hom.X ;Z=pfbgŒ1�/ D eH 2bC2;b.eX ;Z=p/
as the image of a generator of the cyclic group Hom.X ;ZpfbgŒ1�/ under the natural
map Hom.X ;ZpfbgŒ1�/

'
�! Hom.X ;Z=pfbgŒ1�/. Then for all 0 � i � n � 2 we

haveQi .�/ D 0.

Proof. We use notation from the proof of Lemma 5.5.
The exact triangle Rp�1 ! X ! Rp�2fbgŒ1� gives the exact sequence

Hom.Rp�2fbgŒ1�;Z=p.b C pi � 1/Œ2b C 2pi �/
! Hom.X ;Z=p.b C pi � 1/Œ2b C 2pi �/

! Hom.Rp�1;Z=p.b C pi � 1/Œ2b C 2pi �/;

andQi .�/ 2 Hom.X ;Z=p.b C pi � 1/Œ2b C 2pi �/.
Since 2.b C pi � 1/ < 2b C 2pi and Rp�1 is a pure motive, the group

Hom.Rp�1;Z=p.b C pi � 1/Œ2b C 2pi �/ D 0

by Lemma 3.4.
Therefore in order to prove thatQi .�/ D 0, it suffices to show that the group

Hom.Rp�2fbgŒ1�;Z=p.b C pi � 1/Œ2b C 2pi �/
D Hom.Rp�2;Z=p.pi � 1/Œ2pi � 1�/ D 0:

The same exact triangle Rp�1 ! X ! Rp�2fbgŒ1� gives the exact sequence

Hom.Rp�2.b/Œ2b C 1�;Z=p.pi � 1/Œ2pi � 1�/
! Hom.X ;Z=p.pi � 1/Œ2pi � 1�/

! Hom.Rp�1;Z=p.pi � 1/Œ2pi � 1�/:

The first group in this sequence is zero by Lemma 5.4, since b > pi � 1 by our
assumptions. The last group is zero, since Rp�1 is a pure motive and

2pi � 1 > 2.pi � 1/:

Therefore Hom.X ;Z=p.pi � 1/Œ2pi � 1�/ D 0.
The exact triangle Rp�3fbg ! Rp�2 ! X gives the exact sequence

Hom.X ;Z=p.pi � 1/Œ2pi � 1�/! Hom.Rp�2;Z=p.pi � 1/Œ2pi � 1�/
! Hom.Rp�3fbg;Z=p.pi � 1/Œ2pi � 1�/:

The first and the last groups are zero byLemma5.4 and by the previous considerations.
The lemma is proved.
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The following lemma is due to V. Voevodsky. We reproduce its proof for reader’s
convenience to make the exposition more self-contained.

Lemma 5.9 ([42, Proof of Lemma 6.7]). In the settings of Lemma 5.8 assume
additionally in Case II that there exists a �n�1-variety Y and a morphism Y ! X .
Let ı 2 Hn;n�1.X ;Z=p/. IfQn�2 � � �Q1Q0.ı/ D 0, then ı D 0.

Proof. The exact triangle of pointed simplicial schemes

XC ! Spec kC ! eX
defines an isomorphism Hd;c.X ;Z=p/! eHdC1;c.eX ;Z=p/ for any d > c. Thus,
we can identify ı with its imageeı in eHnC1;n�1.eX ;Z=p/.

Assume thateı ¤ 0. Wewant to show thatQiQi�1 � � �Q0.eı/ ¤ 0 for all i � n�2.
Assume by induction that Qi�1 � � �Q0.eı/ ¤ 0. If QiQi�1 � � �Q0.eı/ D 0, then by
Lemma 3.10 and by Lemma 5.8 there exists v such thatQi .v/ D Qi�1 � � �Q0.eı/.

A straightforward computation shows that v 2 eHd;c.eX ;Z=p/ where
c D n � i � pi C 1C

pi � p

p � 1
and d D n � i C 2 � 2pi C 2 �

pi � p

p � 1

But d � c � 1. Therefore by Lemma 3.13 v D 0. Contradiction.

Lemma 5.10. Assume that p > 2. Then in the settings of Lemma 5.9 there exists an
element ı 2 Hom.X ;Z=p.n � 1/Œn�/ such that � D Qn�2 � � �Q1Q0.ı/.

Proof. As in the previous lemma it suffices to prove this identity in the reduced
motivic cohomology of eX . Let � 2 eH 2bC2;b.eX ;Z=p/ be the image of �.

Assume we have constructed a sequence of elements �n�2; �n�3; : : : ; �n�s for
some 2 � s < n such that �n�iC1 D Qn�i .�n�i / and

� D Qn�2Qn�3 � � �Qn�s.�n�s/:

For s D 2 such an element �n�2 with � D Qn�2.�n�2/ exists by Lemma 3.10,
sinceQn�2.�/ D 0 by Lemma 5.8.

We claim that there exists �n�s�1 satisfying the same conditions. To prove this it
suffices to show that v WD Qn�s�1.�n�s/ equals 0.

Consider

Qn�2Qn�3 � � �Qn�s.v/ D Qn�2Qn�3 � � �Qn�sQn�s�1.�n�s/

D ˙Qn�s�1.Qn�2Qn�3 � � �Qn�s.�n�s//

D ˙Qn�s�1.�/ D 0;

since 0 � n � s � 1 � n � 3.
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A straightforward computation shows that

�n�s 2 eH 2bCs�2�p
n�1�pn�s

p�1 C1;bCs�1�pn�1�pn�s

p�1 .eX ;Z=p/
and

v 2 eH 2bCs�2�p
n�1�pn�s

p�1 C2pn�s�1;bCs�2�pn�1�pn�s

p�1 Cpn�s�1

.eX ;Z=p/:
Let 2 � t � s. We claim that ifQn�t .Qn�t�1 � � �Qn�s.v// D 0, then

Qn�t�1 � � �Qn�s.v/ D 0:

Indeed, ifQn�t .Qn�t�1 � � �Qn�s.v// D 0, then there exists w such that

Qn�t .w/ D Qn�t�1 � � �Qn�s.v/:

A straightforward computation shows that w 2 eHd;c.eX ;Z=p/, where
c D

pn�t � 1

p � 1
� 1C pn�s�1 C t � pn�t

and d D 2 �
pn�t � 1

p � 1
C 2pn�s�1 C t � 2pn�t C 1:

Another straightforward computation shows that d � c C 1 if p > 2, and by
Lemma 3.13 w D 0. Therefore v D 0.

Proof of Theorem 5.1 for p > 2. The element ı constructed in Lemma 5.10 can be
identified with an element u 2 Hn

et .k; �
˝.n�1/
p / by Lemma 3.14. It remains to show

that for any field extension K=k

uK D 0 iff XK has a zero-cycle of degree coprime to p:

By construction uK D 0 iff ıK D 0. By Lemma 5.9 ıK D 0 iff �K D 0. By
Lemma 5.5 �K D 0 iff XK has a zero-cycle of degree coprime to p.

Finally, by Lemma 5.5 and by Lemma 5.7 the groupH 2bC1;b.X ;Z=p/ and hence
the groupHn;n�1.X ;Z=p/ is cyclic. This implies the uniqueness of u. The theorem
is proved.

6. Binary motives

In this section we investigate the structure of binary direct summands of smooth
projective varieties, i.e., of motives which over a field extension of the base field
become isomorphic to a direct sum of two twisted Tate motives. In this section we
assume that the characteristic of the base field k is 0.
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Theorem 6.1. Let X be a smooth projective irreducible variety over a field k of
characteristic 0 with no zero-cycles of odd degree. Denote by X the motive of the
standard simplicial scheme associated with X . Let M be a direct summand of X
such that we have an exact triangle

X fdg !M ! X
�0

�! X fdgŒ1� (5)

in the category DM with Z2-coefficients. Assume that one of the following two
conditions holds:

(a) dimX D d > 0 or

(b) there exists a �n�1-variety Y for some n � 2 and a morphism Y ! X , the
motive M fdimX � dg is a direct summand of X in the category of Chow
motives with Z2-coefficients, and 2n�2 � 1 < d < 2n�1.

Then

(I) d D 2n�1 � 1 for some n � 2 in case (a) and d D 2n�1 � 1 in case (b).

(II) There exists a (functorial) element u 2 Hn
et .k;Z=2/ such that for any field

extension K=k we have uK D 0 iff XK has a zero-cycle of odd degree.

One can notice that Rost’s proof [29, Proof of Theorem 9.1 and Lemma 9.10]
implies the following lemma. For reader’s convenience we sketch Rost’s proof below
to make the exposition more self-contained.

Lemma 6.2. Let X be a smooth projective irreducible variety over k of dimension
d > 0 with no zero-cycles of odd degree which possesses a cycle r 2 CHd .X � X/
such that over any field extension F=k over which X has a rational point, rF mod 2
is a projector and .XF ; rF / ' Z=2˚Z=2fdg in the category of Chow motives with
Z=2-coefficients. Then d D 2n�1 � 1 for some n and X is a �n�1-variety.

Proof. Let F be the function field ofX . By assumptions, the cycle rF mod 2 equals

H � 1C 1 �H 0;

whereH andH 0 are zero-cycles on XF of degree 1 mod 2. Substituting r by r t ı r
we can assume without loss of generality thatH 0 D H .

Set p D 2 and let S� (resp. S�) denote the homological (resp. cohomological)
Steenrod operations in the Chow theory modulo p (see [3]).

Then S�.˛/ D S�.˛/b�.X/, ˛ 2 Ch.X/, where b� is the (total) characteristic
class defined in section 2.2 for partition .p � 1; : : : ; p � 1/ (Since p D 2, we have
b�.X/ D c�.�TX /).
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One has bd .X/ D Sd .ŒX�/. By our assumptions the cycle r has the property

.�0/�.r/ D c.r/ŒX�

with c.r/ D 1 mod 2, where �0WX2 ! X is the first projection. Moreover, we have
S�.r/ D S

�.r/b�.X
2/.

We showfirst that deg bd .X/ ¤ 0modp2. To do this, it suffices to find an integral
representation of the cycle Sd .r/ with degree not divisible by 4 (see [29, Proof of
Thm. 9.1] for more details).

We have

Sd .r/ D

dX
iD0

S i .r/bd�i .X
2/: (6)

The last termSd .r/ D r2 mod 2 and deg r2 D 2c.r/2 is not divisible by 4. Therefore
it suffices to show that all other terms of this sum have integral representatives whose
degrees are divisible by 4.

For the first term of (6) we have

rF bd .X
2/ D H � bd .X/C bd .X/ �H:

This cycle has degree divisible by 4.
Let � be an integral representative of S i .r/. We want to show that

deg.�bd�i .X2// is divisible by 4. By dimension reasons S i .H/ D 0 for
1 � i � d � 1. Therefore S i .rF / D 0 for such i ’s. Thus, there exists a cycle 
over F such that �F D 2 . It remains to show that deg.bd�i .X2// is divisible
by 2.

We set X D X0 D X1 and write X2 D X0 �X1. We have

bd�i .X
2/ D

X
jCrDd�i

bj .X0/br.X1/:

By assumptions j C r D d � i > 0. Therefore r > 0 or j > 0. In the first case
deg.bj .X0/br.X1// D deg..�0/�.bj .X0/br.X1///. Therefore it suffices to show
that deg.˛F ˇ/ is divisible by 2 for all ˛ 2 CHr.X/, ˇ 2 CHd�r.XF /.

Let ' be a preimage of ˇ under the natural map

CHd�r.X2/! CHd�r.X � SpecF /:

Consider the cycle ! D r.˛ � 1/' 2 CH0.X2/.
One has!F D .H �1/.˛F �1/'F C.1�H/.˛F �1/'F D .1�H/.˛F �1/'F .

Therefore deg! D deg.˛F ˇ/ D .�0/�..˛F � 1/'F / D c.r/ deg.˛F ˇ/ is divisible
by 2, since X2 has no zero-cycles of odd degree.

The case j > 0 is similar.
Thus deg bd .X/ ¤ 0 mod p2. By [29, Lemma 9.10] dimX D 2n�1 � 1 for

some n. Finally, by [29, Lemma 9.13] X is a �n�1-variety.
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Now we return to the settings of Theorem 6.1. Define n as the unique number
such that 2n�2 � 1 < d < 2n�1. Denote by

� 2 Hom.X ;Z2.d/Œ2d C 1�/ D Hom.X ;Z=2.d/Œ2d C 1�/

(by Lemma 5.6) the pull-back of �0 under the map of Lemma 3.7(II). It follows from
Lemma 6.2 that condition (a) of Theorem 6.1 implies condition (b) with Y D X .

The following lemmas were proven by O. Izhboldin and A. Vishik in the case
when X is a quadric. Nevertheless their proofs are general and do not use any
specific of quadrics. We reproduce them below for reader’s convenience to make the
exposition more self-contained.
Lemma 6.3 ([12, Sublemma 6.3]). The map

Hom.X ;Z2.c/Œe�/! Hom.X ;Z2.c C d/Œe C 2d C 1�/ (7)

induced by the multiplication by � is surjective for e � c. The same holds for
cohomology with Z=2-coefficients.

Proof. Consider the morphism from the exact triangle

M ! X
�0

�! X .d/Œ2d C 1�

to Z2.d C c/Œ2d C e C 1�.
We get the long exact sequence

Hom.X .d/Œ2d C 1�;Z2.d C c/Œ2d C e C 1�/
�0�

��! Hom.X ;Z2.d C c/Œ2d C e C 1�/
! Hom.M;Z2.d C c/Œ2d C e C 1�/:

Notice that Hom.X .d/Œ2d C 1�;Z2.d C c/Œ2d C eC 1�/ D Hom.X ;Z2.c/Œe�/
and by Lemma 3.12 the map �0� coincides with the multiplication by �. Moreover,

Hom
�
M;Z2.d C c/Œ2d C e C 1�

�
D Hom

�
M fdimX � dg;

Z2..dimX � d/C d C c/Œ2.dimX � d/C 2d C e C 1�
�

D 0

by Lemma 3.4, sinceM fdimX � dg is a direct summand of X and

2.dimX � d/C 2d C e C 1 � ..dimX � d/C d C c/
D dimX C e � c C 1 > dimX:

Therefore the multiplication by � is surjective for e � c.
The case of Z=2-coefficients follows from the integral case and from exact

triangle (1).
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Let eX D Cone.X ! Spec k/.
Lemma6.4 ([12, Sublemma 6.6]). For every i D 0; 1; : : : ; n�2 theMilnor operation

Qi W eH e;c.eX ;Z=2/! eH eC2iC1�1;cC2i�1.eX ;Z=2/
is injective if e � c D d C 2C 2i .

Proof. Let v 2 eH e;c.eX ;Z=2/ withQi .v/ D 0. We want to show that then v D 0.
SinceQi .v/ D 0, by Lemma 3.10 there exists

t 2 eH e�2iC1C1;c�2iC1.eX ;Z=2/
such that v D Qi .t/.

On the other hand, the exact triangle of pointed simplicial schemeseX Œ�1� �
! XC ! Spec kC

induces with help of Lemma 3.4 an isomorphism

��WH e�2iC1;c�2iC1.X ;Z=2/! eH e�2iC1C1;c�2iC1.eX ;Z=2/:
Therefore there exists

w 2 Hom.X ;Z=2.c � 2i C 1/Œe � 2iC1�/

with ��.w/ D t . Moreover, by Lemma 6.3 there exists

u 2 Hom.X ;Z=2.c � 2i C 1 � d/Œe � 2iC1 � 2d � 1�/

which maps to w under the homomorphism (7).
By Lemma 3.8(III) we have

Qi .� � u/ D Qi .�/ � uC � �Qi .u/C
X

�nj 'j .�/ j .u/;

where � is the class of �1 in Hom.Spec k;Z=2.1/Œ1�/, nj > 0 and 'j ,  j are some
homogeneous cohomological operations of some bidegrees .�/Œ�0�with�0 > 2� � 0.

Since f WD e � 2iC1 � 2d � 1 D c � 2i C 1 � d by assumptions, Lemma 3.13
implies an isomorphism pr�WHom.Spec k;Z=2.f /Œf �/ ! Hom.X ;Z=2.f /Œf �/,
where prWX ! Spec k is the structural map. Therefore there exists

u0 2 Hom.Spec k;Z=2.f /Œf �/

with u D pr�.u0/.
On the other hand, since by Lemma 3.4 Hom.Spec k;Z=2.h/Œg�/ D 0 for all

g > h, we haveQi .u0/ D 0 and  j .u0/ D 0. Since the Milnor operations commute
with pull-backs, we also haveQi .u/ D 0 and  j .u/ D 0.

Summarizing we obtain:

v D Qi .t/ D Qi .�
�.w// D ��.Qi .w// D �

�.Qi .� � u// D �
�.Qi .�/ � u/ D 0;

where the last equality follows from Lemma 5.8.
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Lemma 6.5 ([12, Sublemma 6.7]). We have d D 2n�1 � 1 and Lemma 5.10
holds for p D 2, i.e., there exists ı 2 Hom.X ;Z=2.n � 1/Œn�/ such that
� D Qn�2 � � �Q1Q0.ı/.

Proof. Using Lemma 3.4 we can identify � with its image in the reduced motivic
cohomology eH 2dC2;d .eX ;Z=p/. We denote this image as � D ��1.

Assume by induction that we have constructed an element �m, �1 � m � n� 3,
such that � D Qm � � �Q1Q0.�m/. We want to show that there exists �mC1 with

�m D QmC1.�mC1/:

By Lemma 3.10 it suffices to show that v WD QmC1.�m/ D 0. We have

QmQm�1 � � �Q0.v/ D QmQm�1 � � �Q0QmC1.�m/

D QmC1QmQm�1 � � �Q0.�m/

D QmC1.�/ D 0

by Lemma 5.8.
A straightforward computation shows that for any 0 � t � m the element

Qt�1 � � �Q0.v/ 2 eH e;c.eX ;Z=2/
with e� c D d C 2C 2t . By Lemma 6.4Qt is injective on eH e;c.eX ;Z=2/ for such c
and e. Therefore the equalityQmQm�1 � � �Q0.v/ D 0 implies v D 0.

Thus, in this way we can construct an elementeı 2 eH 2d�2nCnC3;d�2n�1Cn.eX ;Z=2/
such that Qn�2 � � �Q1Q0.eı/ D � (recall that we identify � with its image ineH 2dC2;d .eX ;Z=2/). By the assumptions the variety X has no 0-cycles of odd
degree. Therefore by Lemma 5.5 � ¤ 0. Thereforeeı ¤ 0. On the other hand, if
d < 2n�1 � 1, then 2d � 2n C nC 2 � d � 2n�1 C n. Therefore by [40, Cor. 6.9]
and [38, Prop. 2.7] eH 2d�2nCnC3;d�2n�1Cn.eX ;Z=2/ D 0:
Hence d D 2n�1 � 1 and eı 2 eHnC1;n�1.eX ;Z=2/ and can be identified with an
element ı 2 Hom.X ;Z=2.n � 1/Œn�/.

Alternatively, in case (a) of Theorem 6.1 the claim that d D 2n�1 � 1 follows
from Lemma 6.2.

Proof of Theorem 6.1. The first part of the Theorem follows from Lemma 6.5.
The proof of the second assertion repeats word by word the proof of Theorem 5.1

given at the end of the previous sectionwith Lemma 5.10 replaced by Lemma 6.5.

Proof of Theorem 5.1 for p D 2. This is a particular case of Theorem 6.1, since
Lemma 5.3 gives us exact triangle (5).
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7. Compression of varieties and some supplementary results

The goal of this section is to provide a certain compression algorithm for smooth
projective varieties. We assume that char k D 0 and fix a prime p.
Lemma 7.1. Let X be a smooth projective irreducible variety and Y an irreducible
closed subvariety of X of minimal dimension such that Yk.X/ has a zero-cycle of
degree coprime to p.

Then there exists a smooth projective irreducible variety eY which is birational
to Y together with a morphism eY ! Y and such that eY k.X/ has a zero-cycle of
degree coprime to p.

Proof. Let U � Y be the open subvariety of smooth points in Y and V D Y nU the
singular locus. We claim that there is a zero-cycle of degree coprime to p supported
inUk.X/. Indeed, assume the contrary. Then all zero-cycles supported onUk.X/ have
degrees divisible by p. Since there exists a zero-cycle on Yk.X/ of degree coprime
to p, there is an irreducible component V 0 of V such that the variety V 0

k.X/
� Xk.X/

has a zero-cycle of degree coprime to p. Since dimV 0 < dimY and dimY is
minimal by our assumptions, we come to a contradiction.

Using the standard algorithm of resolution of singularities due to Hironaka we
can find a smooth projective variety eY birational to Y which contains U together
with a morphism eY ! Y identical on U . This eY has a zero-cycle of degree 1 mod p
over k.X/.

A smooth projective irreducible varietyX over k is called generically split, if the
motive of Xk.X/ is a finite direct sum of twisted Tate motives.
Corollary 7.2. Let X be a generically split smooth projective geometrically
irreducible k-variety. Let Y be a closed irreducible subvariety of X of minimal
dimension such that the class ŒYk.X/� in Ch.Xk.X// is non-zero. Then there exists
a smooth projective irreducible variety eY birational to Y together with a morphismeY ! Y and such that eY k.X/ has a zero-cycle of degree 1 mod p.

Proof. Since X is generically split, by [14, Remark 5.6] and [21, Prop. 1.5] there
exists a closed subvarietyZ � Xk.X/ such that ŒYk.X/� � ŒZ� has degree coprime to p.
Since the product Yk.X/ � Z in the Chow ring can be represented by a cycle on the
intersection Yk.X/ \ Z, the variety Yk.X/ \ Z � Yk.X/ has a zero-cycle of degree
coprime to p.

By Lemma 7.1 it suffices to show that Y has minimal dimension among all closed
irreducible subvarieties ofX such that Yk.X/ has a zero-cycle of degree coprime to p.

The proof of this claim copies the proof of [14, Theorem 5.8].
Let Y 0

in
,! X be a closed irreducible subvariety of X of minimal dimension

such that Y 0
k.X/

has a zero-cycle of degree coprime to p. It remains to show that
dimY 0 � dimY .
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For an arbitrary variety Z over k we write Ch.Z/ for Ch.Zk.X// and we write
Ch.Z/ for the image of the restriction map Ch.Z/! Ch.Z/.

It suffices to show that Chi .X/ is non-zero for some i � dimY 0. Notice that
exactly as in [14, Remark 5.6 et seq.] we have Ch0.X/ D Z=p. By [14, Corollary 5.4]
it suffices to show that the push-forward

.in � idX /�WCh.Y 0 �X/! Ch.X �X/

is non-zero.
Denote F D k.X/. By the assumptions there exists a p-coprime field

extension K=F such that k.Y 0/ ,! K. Let W be the closure of the image of
the morphismK ! Y 0 �X . Then the cycle .in� idX /�.ŒW �/ is non-zero, since for
the second projection �1WX2 ! X we have

.�1/�.in � idX /�.ŒW �/ D ŒK W k.X/� � 1 ¤ 0:

Definition 7.3. Let X be a smooth projective variety over k, let p be a prime, and
let R D .X; �/ be a direct summand of the motive of X with Z=p-coefficients. We
say that R supports 0-cycles of X , if Ch0.R/ ¤ 0.

Definition 7.4. Let X be a smooth projective irreducible variety over k. A motive
M D .X; �/ is called a generically split direct summand of X , ifMk.X/ is a direct
sum of twisted Tate motives over k.X/.

Lemma 7.5. Let X be a twisted flag variety over k of inner type and let p be a
prime number. Let R be an indecomposable generically split direct summand of the
motive ofX with Z=p-coefficients supporting 0-cycles. Let Y be a smooth projective
irreducible variety over k. Assume that X has a zero-cycle of degree 1 mod p
over k.Y / and Y has a zero-cycle of degree 1 mod p over k.X/. Then R is an
indecomposable direct summand of Y and R splits over k.Y /.

Proof. We denote by ptX (resp. ptY ) a zero-cycle of degree 1 mod p on X

over k.Y / (resp. on Y over k.X/). Since X has a zero-cycle of degree 1 mod p
over k.Y /, there exists by the localization sequence (generic point diagram) a cycle
'1 2 ChdimX .X � Y / such that '1WptX 7! ptY over k.Y /.

By symmetry there exists a cycle 1 2 ChdimY .Y �X/ such that 1WptY 7! ptX
over k.X/.

Let r be a projector defining R, i.e., R D .X; r/, and consider the cycles
'2 D '1 ı r and  2 D r ı  1.

Consider now End.Rk.X//. Since R is generically split summand of X , this is a
finite group. Therefore by the Fitting lemma some power, say m � 1, of the cycle
. 2 ı '2/k.X/ is an idempotent. The cycle . 2 ı '2/m 2 End.R/ and is non-zero,
since  2 ı '2WptX 7! ptX over k.X/. Therefore, since R is indecomposable, the
cycle . 2 ı '2/mk.X/ equals rk.X/.
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By [5, Section 8] Rost nilpotence holds forR, i.e., for any field extensionK=k the
kernel of the naturalmapEnd.R/! End.RK/ consists of nilpotent correspondences.
Therefore . 2 ı '2/m D r C n, where n is some nilpotent element in End.R/.
Since n is nilpotent, r C n is invertible and .r C n/�1 ı . 2 ı '2/m D r . Define now
 3 D .r Cn/

�1 ı 2 and '3 D '2 ı . 2 ı'2/m�1. Then  3 ı'3 D r , and therefore
'3 ı  3 is a projector on Y and .Y; '3 ı  3/ ' .X; r/ D R with mutually inverse
isomorphisms '3 and  3.

Over k.Y / the variety X has a zero-cycle of degree coprime to p. Let L be a
finite field extension of k.Y / of degree coprime to p such that XL has a rational
point. By [2, Thm. 21.20(ii)] the varietyXL is rational and, hence, the field extension
L.XL/=L is purely transcendental. Since the motiveR splits over k.X/, it also splits
over L.XL/ and, hence, over L. Therefore, since the degree ŒL W k.Y /� is coprime
to p, the motive R splits already over k.Y /.

Lemma 7.6. LetX be a twisted flag variety over a field k and letp be a prime number.
Assume that we are given a motivic decomposition of X with Z=p-coefficients of the
form

X '
M
i2I

Rfig

for some indecomposable motive R and some multiset I of non-negative indices
containing 0.

Then there is a motivic decomposition of X with Zp-coefficients of the form

X '
M
i2I

eRfig
where the motive eR is indecomposable and R ' eR mod p.

Proof. By [31, Theorem 4.3] there is a motivic decomposition of X with Zp-coeffi-
cients of the form

X '
M
i2I

eRi
such that for all i 2 I the motives eRi are indecomposable and Rfig ' eRi mod p.
LeteR denote one of the motiveseRj , j 2 I , such thatR ' eRj mod p. The proof thateRi ' eRfig for all i 2 I is similar to the proof of [31, Theorem 4.3], where instead
of lifting of projectors one applies the same procedure to lift the isomorphisms

.eRi mod p/ ' .eRfig mod p/:
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8. Serre’s question about E8

Let G be a simple linear algebraic group of inner type over k with char k D 0. We
briefly sketch the definitions of two invariants of G: the J -invariant and the Rost
invariant. See [24] and [16, §31] for formal definitions.
8.1 (J -invariant). Let p be a prime number and let R be a motive which is a finite
direct sum of twisted Tate motives. The polynomial

P.R; t/ D
X
i�0

ai t
i
2 ZŒt �;

where ai D dimChi .R/ is called the Poincaré polynomial of R mod p.
Informally speaking, the J -invariant of a simple group G is a discrete invariant

which measures the motivic decomposition of the variety of Borel subgroups of G.
Consider the motive of the variety of complete G-flags (variety of Borel

subgroups) with Z=p- or Z.p/-coefficients. It turns out that it is isomorphic to a
direct sum of shifted copies of the same indecomposable generically direct summand
R D Rp.G/ such that over any splitting fieldK ofG the Poincaré polynomial ofRK
equals

P.RK ; t / D

rY
iD1

tdip
ji
� 1

tdi � 1
(8)

for some given numbers r and d1 � d2 � � � � � dr which depend only on the
Dynkin type of G and some r-tuple .j1; : : : ; jr/ of non-negative integers (see [24,
Definition 4.5 and Theorem 4.9]).

The tuple Jp.G/ D .j1; : : : ; jr/ arising from this decomposition is called the
J -invariant ofG modulo p. We leave the problem of correctness of such a definition
aside and refer to [24] and [26, Section 3] for more details.

An important application of the J -invariant which is essentially used in the proof
of Serre’s problem described below is the classification of generically split twisted
flag varieties given in [22, Theorems 5.5 and 5.7] and [23, Thm. 3.3].

Notice also that formula (8) implies that the variety of Borel subgroups of G has
a binary direct summand if J2.G/ D .0; : : : ; 0; 1; 0; : : : ; 0/. In Lemma 8.5 we’ll
provide a concrete example.
Example 8.2. If G has type E8 and p D 2, then r D 4, d1 D 3, d2 D 5, d3 D 9,
and d4 D 15. Moreover, j4 D 0 or 1, and if j1 D 0 then j2 D j3 D 0 (see [24, §4,
Table]).
8.3 (Rost invariant). LetG be a simply connected simple algebraic group over k. The
Rost invariant ofG is an invariant ofG-torsors which takes values inH 3

et .k;Q=Z.2//.
Formally: consider the abelian group Inv3.G;Q=Z.2// of natural transformations

of functorsH 1
et .�; G/! H 3

et .�;Q=Z.2// defined on the category of field extensions
of k.
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It turns out that it is a finite cyclic group with a canonical generator called the Rost
invariant ofG. IfG is adjoint and simply connected, then one can identifyH 1

et .k;G/

with the (pointed) set of isomorphism classes of the twisted forms of G over k. In
particular, in this case one can associate with each twisted form of G an element in
H 3
et .k;Q=Z.2// (the Rost invariant). More generally, if G is a simple group with

trivial Tits algebras, then one may speak about its Rost invariant, see [9, Section 2].

Example 8.4. Let G be a group of type E8. It is known that it is adjoint and simply
connected, and the Rost invariant of G takes values in

H 3
et .k;Z=4/˚H

3
et .k;Z=3/˚H

3
et .k; �

˝2
5 /;

i.e., consists of a mod-4 (or mod-2), mod-3, and mod-5 component (see [8, §9–16
and App. A] and references there). Notice that 4 � 3 � 5 D 60 is the Dynkin index
of E8. If the group G splits over a field extension of degree coprime to l , then the
l-component of its Rost invariant is zero .l 2 Z/.

Lemma 8.5. Let G be a group of type E8 and X the variety of Borel subgroups
ofG. If the even component of the Rost invariant ofG is trivial, then the motive ofX
with Z=2- (or Z2-)coefficients is a direct sum of twisted copies of a motive R whose
Poincaré polynomial over any splitting field of G equals 1C t15 2 ZŒt �.

Proof. Since we are talking about the even component of the Rost invariant and about
the motives with Z=2-coefficients we may assume that the base field k does not have
any proper finite field extension of odd degree.

LetXi be the projectiveG-homogeneous variety of maximal parabolic subgroups
of G of type i , i D 1; : : : ; 8. If the Rost invariant of G is trivial, then so is the Rost
invariant ofGk.Xi / and of its semisimple anisotropic kernel. On the other hand, since
by the Tits classification [34] the semisimple anisotropic kernel of Gk.Xi / is of type
D7, E7, D6, E6, is simple of rank smaller than 6, or is trivial, the group Gk.Xi / must
be split (see e.g. [6, Theorem 0.5]). Thus, Xi is a generically split variety for all
i D 1; : : : ; 8.

The classification of generically split varieties of type E8 (see [22, Theo-
rem 5.7(7)]) and the classification of the J -invariants for groups of type E8 (see [24,
§4, Table] or Example 8.2) immediately imply that the J -invariant of G modulo 2
equals either J2.G/ D .0; 0; 0; 1/ or .0; 0; 0; 0/.

In the first case we are done by formula (8). In the second case the variety of
Borel subgroups is a direct sum of twisted Tate motives and the present lemma is
trivial.

Finally, by Lemma 7.6 one can lift a motivic decomposition of X with
Z=2-coefficients to a motivic decomposition of X with Z2-coefficients, and the
conclusion of the present lemma holds with Z2-coefficients as well.
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Lemma 8.6. In the notation of Lemma 8.5 let X be the motive of the standard
simplicial scheme associated with the variety X . Then for the motive R there is an
exact triangle of the form

X f15g ! R! X ! X f15gŒ1�:

Proof. The proof is the same as the proof of [40, Thm. 4.4] with Theorem 4.3 of [40]
replaced by Lemma 8.5 above (cf. Lemma 5.3). Notice that Theorem 4.4 in [40]
is formulated for norm quadrics, but the proof does not use any specific of norm
quadrics, only the existence of a binary direct summand.

Theorem 8.7. Let k be a field with char k D 0. Let G be a group of type E8 over k
whose even component of the Rost invariant is trivial. Then there exists a functorial
invariant u 2 H 5

et .k;Z=2/ of G such that for any field extension K=k the invariant
uK D 0 iff G splits over a field extension of K of odd degree.

Proof. Let X be the variety of Borel subgroups of G. It is generically split, since
over k.X/ the group G splits. By Lemma 8.5 the motive of X contains a binary
direct summand R which supports zero-cycles of X .

Without loss of generality we may assume that X has no zero-cycles of odd
degree over k. Consider the image Ch.X/ of the natural map Ch.X/! Ch.Xk.X//.
By [24, Proposition 6.1] and [14, Theorem 5.8]

minfi j Chi .X/ ¤ 0g D 15:

By Corollary 7.2 there exists a smooth projective irreducible variety eY of
dimension 15 birational to some closed subvariety Y of X together with a morphismeY ! Y ,! X such that eY k.X/ has a zero-cycle of odd degree. The converse
obviously holds, i.e., X

k.eY / has a zero-cycle of odd degree.
Therefore by Lemma 7.5 the variety eY has the same direct summand R. It

follows from Lemma 6.2 that eY is a �4-variety. We are done by Theorem 6.1 and
Lemma 8.6.

The next theorem gives a positive answer to Serre’s question described in the
Introduction.
Theorem 8.8. Let G be a group of type E8 over Q such that GR is a compact Lie
group, let K=Q be a field extension, and q D hh�1;�1;�1;�1;�1ii a 5-fold Pfister
form. If GK is split, then qK is hyperbolic.

Proof. The compact real group of type E8 has Rost invariant zero (see [7, 13.4]),
so we may speak of its invariant u 2 H 5

et .R;Z=2/ D f0; .�1/5g constructed in
Theorem 8.7.

If u D 0, then by Theorem 8.7 this compact group splits over a field extension
of odd degree. Since R has only one field extension of odd degree, we come to a
contradiction. Thus, u D .�1/5.
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Let nowG be a group of type E8 defined overQ that becomes compact E8 overR.
Set F D Q.

p
�1/. Then by [32, Ch. II, §4.4, Prop. 13] Hd

et .F;Z=pm.d � 1// D 0
for all prime numbers p, all m � 1 and all d � 3. By restriction–corestriction
argument, Hd

et .Q;Z=pm.d � 1// D 0 if p is odd, and Hd
et .Q;Z=2m.d � 1// is

2-torsion for all m � 1 and all d � 3.
Therefore by [8, App. A] the Rost invariant takes values in

H 3
et .Q;Q=Z.2// D H

3
et .Q;Z=2/:

Since Hd
et .F;Z=2/ D 0 for d � 3, [16, Cor. 30.12(1)] gives that the multiplication

by .�1/ is an injection from Hd
et .Q;Z=2/ ! HdC1

et .Q;Z=2/. It follows now
from [1, Satz 3] thatHd

et .Q;Z=2/ injects intoHd
et .R;Z=2/.

Therefore, G has Rost invariant zero over Q, and again we may speak of the
invariant u 2 H 5

et .Q;Z=2/ of the group G. But restriction identifies H 5
et .Q;Z=2/

withH 5
et .R;Z=2/. So u D .�1/5.

Finally, ifGK splits for some field extensionK=Q, then uK D 0 by Theorem 8.7.
We are done.
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