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Spectroscopic Properties of Polycyclic Aromatic Compounds: 
Examination of Nitromethane as a Selective Fluorescence 
Quenching Agent for Alternant Polycyclic Aromatic 
Nitrogen Hetero-Atom Derivatives 
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Nitromethane is examined as a selective fluorescence quenching agent 
for alternant polycyclic aromatic nitrogen hetero-atoms (PANHs) . F lu ­
orescence emission behavior is reported for 1-azapyrene, 2-azapyrene, 
4-azapyrene, 4-azachrysene, 12-azabenzo[a]pyrene, phenanthro[9, 
lOgjisoquinoline, phenanthro[2,3h]isoquinoline, phenanthro[3 ,2h]-
isoquino-line, 2-azabenz(a]anthracene, l -azabenz[a]anthracene, 
9-azabenz[a]anthracene, dibenzo[c,i]phenanthro[l,10,9,8anmlk]phe-
nanthridine, d iphenanthroI9 ,10 , ldef ;r ,10 ' ,9 'hi j )phthalazine, and 
benz[de]isoquino[l,8gh]quinoline dissolved in acetonitrile or aqueous-
acetonitrile solvent mixtures at various nitromethane concentrations. 
Results of these measurements show that nitromethane does quench 
fluorescence emission of ten of the solutes studied; however, phenanthro-
[2,3h]isoquinoline, 9-azabenz[a]anthracene, benz(de]isoquino[ 1,8gh|-
quinoline, and dibenzo(cJlphenanthro(l,10,9,8anmlk|phenanthridine are 
notable exceptions. 

Index Headings: Fluorescence; Spectroscopic techniques. 

I N T R O D U C T I O N 

Fluorescence spectroscopy is rapidly becoming an ex­
tremely versatile, sensitive experimental technique for 
identifying and quantifying numerous environmentally 
important polycyclic aromatic hydrocarbons ( P A H s ) and 
polycyclic aromatic nitrogen heterocycles ( P A N H s ) . 
P A H / P A N H identification and quantification in u n ­
known mixtures require accurate fluorescence emission 
intensity measurements and availability of a large spec­
t r a l data file for comparing the unknown's spectrum 
against P A H / P A N H standards. K a i m a n filtering and 
G a u s s i a n or other curve-fitting methods , 1 - 4 along with 
s e l e c t i v e p h o t o c h e m i c a l q u e n c h i n g agents s u c h as 
n i t r o m e t h a n e 5 - 9 and 1,2,4-trimethoxybenzene, 9 may be 
needed to uncouple overlapping spectra if more than one 
fluorescent species is present. T o prevent misidentifi-
cation, the data file should include both polar and non-
polar solvents, since electronic interactions between a 
solvent dipole and a n excited P A H / P A N H solute can 
lead to spectral distortions, wavelength shifts and/or i n ­
tensity ratio variations, as was the case with many of the 
p o l y c y c l i c aromatic compounds e x a m i n e d previous ­
l y . 1 0 - 2 1 

Solvent-induced fluorescence spectral changes can be 
rationalized qualitatively in a relatively straightforward 
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manner. E x c i t a t i o n promotes the P A H / P A N H solute 
from a ground state of low dipole moment to one of the 
vibrational levels of the first electronic excited state, 
S * , with an accompanying electron distribution in the 
surrounding solvent molecules. Insufficient t ime exists, 
however, for solvational-sphere molecules to physical ly 
reorient with the new P A H / P A N H dipole moment. R e ­
laxation from the vibrationally excited SI level to the 
excited S*0 level occurs whenever solvent molecules ro-
tationally reorient to a more stable dipole configuration 
during the excited state's lifetime. E m i s s i o n of the flu­
orescence photon returns both the P A H / P A N H molecule 
to the ground Sv state a n d solvational molecules to their 
init ial electronic configuration. Subsequent rotation of 
solvent molecules to the ground-state dipole orientation 
restores the system to its original state. T r a n s i t i o n prob­
abilities and energy separations between the different 
energy levels vary wi th each solute-solvent pair , a n d give 
rise to observed intensity ratio changes a n d emission 
wavelength s h i f t s . 2 2 , 2 3 

T h e emission spectrum of m a n y polycyclic aromatic 
compounds consists of several major vibronic bands l a ­
beled I , I I , etc., in progressive order. Previous measure­
m e n t s 1 0 - 2 1 revealed that pyrene, benzo[ghi]perylene, ova-
lene, coronene benzo[a]coronene, naphtho[2,3a]coronene, 
benzo[e]pyrene, naphtho [8, l ,2abc] coronene, dinaphtho-
[ 8 , l , 2 a b c ; 2 ' , r , 8 ' k l m ] c o r o n e n e , dibenzo[def ,p]chrysene, 
phenanthro[5,4,3,2efghi]perylene, benzo[rst]pentaphene, 
1- azabenz[a]anthracene, 2-azabenz[a]anthracene, 12-aza-
benz[a]pyrene, phenanthro[2,3h]isoquinoline, a n d p h e n -
anthro[3,2h]isoquinoline exhibit probe character as ev­
idenced by systematic variat ion of emission intensity 
ratios with solvent polarity. Interestingly, only 25 of the 
73 compounds studied to date behave i n this fashion. 
Various emission intensity ratios of perylene, dibenzo 
[bc,ef]coronene, benzo[a]pyrene, benzo[pqr]naphtho[8 , 
l ,2bcd]perylene, dibenzo[fg,ij]pentaphene, 1-azapyrene, 
2- azapyrene, 4-azapyrene, a n d several other P A H s / 
P A N H s remained essentially constant, irrespective of 
solvent polarity. 

Now that studies on P A H / P A N H probes are nearly 
complete, we have decided to redirect our experimental 
efforts to a comprehensive examination of selective flu­
orescence quenching agents. O n the basis of l imited 
fluorescence measurements for perylene, dibenzo[b ,k] -
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Ε 
F I G . 1. Molecular structures of P A N H solutes: ( A ) 1-azapyrene; (B) 
2-azapyrene; (C) 4-azapyrene; (D) 12-azabenz[a]pyrene; (E) phenan-
thro[9,10g]isoquinoline; ( F ) phenanthro[2,3h]isoquinoline; and ( G ) 
phenanthro[3,2h] isoquinoline. 

chrysene, dibenzo[h,rst]pentaphene, naphtho[1,2b]fluo-
ranthene, indeno[l ,2 ,3cd]pyrene, and 1 0 , l l - ( p e r i n a p h -
thylene)fluoranthene dissolved in a binary aqueous-
acetonitrile solvent mixture , Blümer and Z a n d e r 6 noted 
that nitromethane and nitrobenzene selectively quenched 
fluorescence emission of only the so-called " a l t e r n a n t " 
polycyclic aromatic hydrocarbons. E m i s s i o n intensities 
of the three nonalternant P A H s (e.g., naphtho[l,2b]fluo-
ranthene, indeno[l ,2,3cd]pyrene, and 10 , l l (perinaphthy-
lene)f luoranthene) were unaffected. T h e authors failed 
to investigate the hetero-atom analogs or methyl - sub­
stituted derivatives. F o r this reason, we report the effect 
that nitromethane has on the fluorescence emission of 
1-azapyrene ( 1 - A z P y ) , 2-azapyrene ( 2 - A z P y ) , 4-azapy­
rene (4 -AzPy) , 12-azabenzo[a]pyrene ( 1 2 - A z B P y ) , phen-
anthro[9,10g]isoquinoline (9 ,10 -PIQ) , phenanthro[2,3h]-
isoquinoline ( 2 , 3 - P I Q ) , phenanthro[3 ,2h] isoquinol ine 
( 3 , 2 - P I Q ) , 2-azabenz[a]anthracene ( 2 - A z B A ) , 9-azabenz-
[ a ] a n t h r a c e n e ( 9 - A z B A ) , l - a z a b e n z [ a ] a n t h r a c e n e (1-
A z B A ) , 4-azachrysene ( 4 - A z C h ) , dibenzo[c,i]phenanthro-
[l ,10,9,8anmlk]phenanthridine ( D B P P ) , diphenanthro[9, 
10 , ldef ; l ' ,10 ' ,9 'hi j ]phthalazine ( D P P ) , and benz[de]iso-
quino[l ,8gh]quinoline ( B I Q Q ) . T h e various molecular 
structures are depicted in F i g s . 1 a n d 2. T h e s e 14 solutes 
are classified as alternant P A N H s because every alter­
n a n t carbon a n d nitrogen atom i n the aromatic ring sys­
t e m can be " s t a r r e d . " Nonal ternant P A H s / P A N H s , on 
the other h a n d , would have at least one pair of adjacent 
starred a t o m s . 2 4 , 2 5 Also included is a discussion of both 
p r i m a r y and secondary inner-f i ltering artifacts associ­
ated wi th quenching determinations, and new experi ­
m e n t a l fluorescence results for D B P P , D P P , and B I Q Q 
dissolved in nonelectrolyte organic solvents of varying 
solvent polarity a n d acidity. 

M A T E R I A L S AND METHODS 
T h e various P A N H s were synthesized and purified by 

procedures described in the l i t e r a t u r e . 2 6 - 3 7 Stock solu­
tions were prepared by dissolving the solutes in dichlo-
romethane. S m a l l aliquots of the stock solutions were 
transferred into test tubes, allowed to evaporate, and 
di luted wi th the solvent of interest. F i n a l solute concen-

N 

F I G . 2. Molecular structures of P A N H solutes: ( H ) 9-azabenz[a] an-
thra cene; ( I ) l-azbenz[a]anthracene; ( J ) 2-azabenz[a]anthracene; ( K ) 
diphenanthro[9,10,ldef ;r ,10',9'hij]phthalazine; (L) benz[de]isoquino[l, 
8gh]quinoline; ( M ) dibenzo[c,i]phenanthro[ 1,10,9,8anmlk]phenanthri-
dine; and (N) 4-azachrysene. 

trations were sufficiently dilute to minimize inner-fi lter­
ing artifacts. Solvents were of H P L C , spectroquality, or 
A R grade, purchased commercially from either A l d r i c h 
or F i s h e r Scientific, and the resulting solutions were op­
tically dilute (absorbances c m - 1 <0.01) at all wave­
lengths investigated—except for the quenching study, 
where the nitromethane concentration was continually 
increased to allow examination of inner-filtering art i ­
facts. 

Absorption spectra were recorded on a B a u s c h and 
L o m b Spectronic 2000 and a H e w l e t t - P a c k a r d 8450A 
photodiode array spectrophotometer in the usual m a n ­
ner using a 1-cm quartz cuvette. T h e fluorescence spectra 
were run on a S h i m a d z u R F - 5 0 0 0 U spectrofluorometer 
with the detector set at high sensitivity. Solutions were 
excited at 332 n m ( 1 - A z P y ) , 338 n m ( 2 - A z P y ) , 331 n m 
( 4 - A z P y ) , 364 n m (12 -AzPy) , 300 n m (9 ,10 -PIQ) , 330 n m 
(3 ,2 -PIQ) , 300 n m ( 2 , 3 - P I Q ) , 300 n m ( 4 - A z C h ) , 340 n m 
( 1 - A z B A ) , 340 n m ( 2 - A z B A ) , 300 n m ( 9 - A z B A ) , 410 n m 
( B I Q Q ) , 350 n m ( D B P P ) , and 400 n m ( D P P ) in a quartz 
1-cm 2 cuvette. A l l fluorescence data were accumulated 
at 19°C, ambient room temperature, with excitation and 
emission slit width settings of 15 n m and 3 n m , respec­
tively. T h e P A N H fluorescence spectra, depicted in Figs. 
3-6, represent a single scan which was then solvent blank 
corrected and verified by repetitive measurements. 

DISCUSSION OF SOLVENT POLARITY AND 
PROTONATION R E S U L T S 

Representative fluorescence emission spectra of di -
b e n z o [ c , i ] p h e n a n t h r o [ l , 1 0 , 9 , 8 a n m l k ] p h e n a n t h r i d i n e , 
d i p h e n a n t h r o [ 9 , 1 0 , l d e f ; l ' , 1 0 ' , 9 ' h i j ] p h t h a l a z i n e , a n d 
benz[de] isoquino[ 1,8gh] quinoline dissolved in η-hex-
adecane, butyl acetate, dichloromethane, and dimethyl 
sulfoxide are depicted in Figs . 3 and 4. T h e four nonelec­
trolyte solvents were judiciously selected so as to encom­
pass the entire range of solvent polarity, from the non-
polar rc-hexadecane hydrocarbon to the moderately polar 
butyl acetate and dichloromethane solvents to the very 
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F I G . 3. Fluorescence emission spectra of diphenanthro[9,10,ldef;r,10', 
9'hij]phthalazine dissolved in [A( · )] rc-hexadecane; [B{ )] 
dichloromethane; [C( )] butyl acetate; and [D( · )] dimethyl 
sulfoxide. I n dimethyl sulfoxide major emission bands occur at about 
449 and 482 nm. 

polar dimethyl sulfoxide, which is the most polar solvent 
considered in the present investigation. E x a m i n a t i o n of 
the three figures reveals that these P A N H solutes fluo­
resce strongly and have several resolvable emission bands 
in the 390-540 n m spectral region. D P P initially ap­
peared to exhibit solvent polarity behavior as evidenced 
by a changing emission intensity ratio, but upon much 
closer examination it was noted that there existed no 
correlation between the observed ratios and solvent po­
larities. F o r example, I / I I band intensity ratios for 
n-hexadecane and acetonitrile were I / I I = 0.09 and I / I I = 
0.32, respectively, despite the fact that these two solvents 
are situated at opposite ends of the P A H solvent polarity 
s c a l e s . 1 0 - 2 1 3 8 Acetonitrile should behave similarly to d i ­
methyl sulfoxide, and as shown in F i g . 3, the two major 

4 5 0 500 5 5 0 6 0 0 

WAVELENGTH (nm) 
F I G . 5. Fluorescence emission spectra of benzo[de] isoquino[ l ,8gh]-
quinol ine dissolved in 2,2,2-trifluoroethanol at concentrations of HC10 4 

of (a) neat tri f luoroethanol ; (6) 1 pasteur pipet drop; (c) 3 pasteur pipet 
drops; and (d) 5, 6, 7, and 8 pasteur pipet drops of HC10 4 - t r i f luoroe -
thanol solution. Curves b and d are believed to correspond to the mono-
and diprotonated forms of B I Q Q , respectively. 

emission bands of D P P have approximately the same 
intensity in dimethyl sulfoxide. Not too m u c h signifi­
cance is placed on the smaller 0.09-0.40 D P P values. T o 
keep the larger second peak on scale, one is forced to 
work with a smal l first fluorescent signal. S m a l l changes 
or uncertainties in the emission intensity of a weak signal 
can lead to a relatively large change in the calculated 
ratio. E m i s s i o n intensity ratios for B I Q Q a n d D B P P re­
mained essentially constant in the fifteen solvents ex­
amined , irrespective of solvent polarity. E s t i m a t e d u n ­
certainties in the numerica l intensity ratios for B I Q Q 
and D B P P are believed to be circa ± 0 . 0 7 or less on the 
basis of replicate measurements for select solvents. T h e 
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F I G . 4. Fluorescence emission spectra of d ibenzo[c , i ]phenanthro-
[ l ,10,9,8anmlk]phenanthridine dissolved in [A ( )] n-hexadecane; 
[B( · )] d i c h l o r o m e t h a n e ; [C ( )] b u t y l acetate ; a n d 
[D ( · ) ]d imethyl sulfoxide. I n buty l acetate major emission 
bands occur at about 397, 420, and 446 n m . 

100 

4 5 0 500 550 6 0 0 

WAVELENGTH (nm) 
F I G . 6. Fluorescence emission spectra of the neutra l (A, in d i m e t h y l 
sulfoxide) and protonated (C, in HC10 4 - tr i f luoroethanol ) forms of d i -
phenanthro[9 ,10, ldef ; l ' ,10 ' ,9 'hi j ]phthalazine. Curve Β was recorded in 
tr i f luoroethanol , and shows only par t ia l protonation. Protonat ion of 
the nitrogen hetero-atom results i n loss of emission fine structure ac­
companied by a redshift i n emission wavelengths. 
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three P A N H s are thus labeled as nonprobe molecules in 
order to be consistent wi th our past classification 
s c h e m e . 1 0 2 1 

Polycycl ic aromatic nitrogen heterocycles are suscep­
tible to protonation, particularly in the more acidic en­
v i r o n m e n t s . 1 9 ' 2 0 ' 3 9 - 4 4 Protonation of the nitrogen lone elec­
tron pair by a hydrogen ion often results in the loss of 
emission fine structure accompanied by a sizeable red-
shift in emission wavelength(s) . Degree of protonation 
should be reflected by solvent acidity and P A N H basic­
ity. Figures 5 and 6 document that 2,2,2-trifluoroethanol 
only partial ly protonates B I Q Q , D P P , and D B P P (not 
shown) . B o t h the neutral (440-450 n m band in B I Q Q ; 
485-495 n m band in D P P ) a n d protonated (broader 510 -
550 n m bands) species are present in the B I Q Q and D P P 
spectra. Protonation is complete upon addition of per­
chloric acid. T h e smaller first emission bands disap­
peared, and in the case of B I Q Q , a new spectral emission 
b a n d appeared near 483 n m for the presumed diproton-
ated P A N H + 2 cation. T h e four spectra in F i g . 5 were 
obtained by titrating drop-sized amounts of a H C 1 0 4 -
trifluoroethanol solution into the original P A N H - t r i f l u o -
roethanol sample. Curve d corresponded to a constant 
spectra recorded after 5, 6, 7, a n d 8 drops of H C 1 0 4 -
trifluoroethanol solution. O n the basis of the fact that it 
was impossible to eliminate the 510-530 n m peak by 
adding H C 1 0 4 , we must conclude that the B I Q Q dication 
really does have two emission bands in its fluorescence 
spectra. A s expected, the protonation is completely re­
versible. Addit ion of sodium methoxide to a H C 1 0 4 - t r i -
fluoroethanol-PANH solution restored the original " u n -
p r o t o n a t e d " P A N H spectrum, though a slight loss in 
emission intensity was observed. D P P also possesses two 
nitrogen hetero-atoms along the external perimeter of 
the aromatic ring system; however, only a single broad 
b a n d was noted upon addition of H C 1 0 4 . I n all likelihood, 
the broad 510-550 n m b a n d belongs to the D P P mono-
cation. T h e second protonation step should be signifi­
cantly suppressed because it places "repel l ing positive 
charges " on two adjacent nitrogen atoms. 1,2,7,8-Tet-
raazacoronene (AzCo) is the sole multi-nitrogen poly­
cycl ic aromatic compound that we have attempted to 
s tudy thus far. Unfortunately , fluorescence signals for 
A z C o were m u c h too weak in m a n y of the solvents ex­
a m i n e d to permit accurate determination of emission 
wavelengths and intensity ratios, even after spectral av­
eraging of fifty repetitive s c a n s . 2 0 

DISCUSSION OF F L U O R E S C E N C E 
QUENCHING R E S U L T S 

F r o m a n analytical perspective, identification and 
quantification of unknown P A H / P A N H mixtures re­
quire accurate fluorescence emission intensity measure­
ments a n d availability of large spectral data file for com­
paring the unknown's spectrum against P A H / P A N H 
standards . Mixtures of environmental / industr ia l impor­
tance rarely contain a single component. T h e majority 
of mixtures commonly encountered contain isomeric or 
s tructural ly similar P A H s / P A N H s , w h i c h emit in ap­
proximately the same spectral regions. K a i m a n filtering 
a n d G a u s s i a n or other curve-fitting techniques theoret­
ical ly allow uncoupling of overlapped spectra. S u c h 

F I G . 7. Typica l cell configuration for right-angle fluorometry. Window 
parameters {x,y) and (u,u) are determined by masking apertures or 
some other l i m i t i n g aperture in emission and excitation beam, respec­
tively. 

methods become less reliable, however, as the number 
of mixture components increases. High-performance l i q ­
uid chromatographic ( H P L C ) separation prior to fluo-
rometric analysis affords a viable alternative, but again 
the method is extremely t ime-consuming whenever large 
numbers of isomeric P A H s / P A N H s are present. Blümer 
and Z a n d e r 6 recommended that nitromethane and/or n i ­
trobenzene could be added to an aqueous-acetonitrile 
(20:80 percent by volume) binary mobile phase to selec­
tively suppress fluorescence signals of alternant P A H s . 
E m i s s i o n intensities of nonalternant P A H s would remain 
unchanged. No attempt was made to study polycyclic 
aromatic hetero-atoms or methyl -substituted P A H s / 
P A N H s . 

Uti l izat ion of selective quenching agents can signifi­
cantly simplify observed emission spectra. T o prevent 
misidentification, experimentally determined spectra 
must be free of chemical and instrumental artifacts that 
might unexpectedly reduce emission intensities. Inner -
filtering is a major problem associated with obtaining 
correct fluorescence data, which assumes that the sample 
is optically dilute (A c m - 1 <0.01) at al l analytical wave­
lengths. Most commercial instruments employ right-an­
gle fluorometry, which reduces stray radiation by placing 
the emission detector at 90° with respect to the incoming 
excitation beam (see F i g . 7). Only fluorescence emission 
originating from the center interrogation zone of the 
sample cell is actually collected. Attenuation of the ex­
citation beam before reaching the region viewed by the 
fluorescence detection optics (pre-filter region) and 
through the interrogation volume element is denoted as 
primary inner-filtering. T h e correction factor, fprimt for 
primary inner-filtering is given by the following expres­
s i o n : 4 5 " 4 7 

/ P . 

2.303AQ/ - x) 

IQ-Ax _ IQ-Ay 
(1) 

where F c o r r and Fobs refer to the corrected and observed 
fluorescence emission signal, respectively, A is the ab-
sorbance per centimeter of pathlength at the excitation 
wavelength, and χ and y denote distances from the 
boundaries of the interrogation zone to the excitation 
plane, as shown in F i g . 7. E q u a t i o n 1 strictly applies to 
monochromatic light, which from an experimental stand-
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T A B L E I . Effect of nitromethane concentration on the fluorescence emission intensities of select alternant polycyclic aromatic nitrogen hetero-
atoms. 

P A N H solute Pobs* A c m - , b / c 

/ prim 

Pcorr 

2-Azapyrene 983.7 0.000 1.000 983.7 
(Emission: 376 nm) 58.3 0.196 1.253 73.1 

16.1 0.376 1.541 24.8 
1-Azapyrene 996.0 0.000 1.000 996.0 

(Emission: 369 nm) 275.1 0.138 1.172 332.5 
111.8 0.309 1.427 159.6 

53.7 0.470 1.717 92.2 
26.0 0.617 2.033 53.0 

4-Azapyrene 860.9 0.000 1.000 860.9 
(Emission: 371 nm) 101.1 0.218 1.285 129.9 

28.0 0.465 1.708 47.8 
4.2 0.700 2.237 9.3 

4-Azachrysene 326.3 d 0.000 1.000 326.3 
(Emission: 363 nm) 61.1 0.566 1.918 117.2 

12-Azabenzo[a]pyrene 207.6 0.000 1.000 207.6 
(Emission: 407 nm) 101.5 0.008 1.009 102.5 

61.6 0.042 1.050 64.7 
45.0 0.066 1.079 48.6 
31.8 0.096 1.117 35.5 
24.5 0.123 1.152 28.2 

1 - Azabenz [a] anthracene 697.0 0.000 1.000 697.0 
(Emission: 394 nm) 148.2 0.129 1.160 171.9 

66.8 0.272 1.368 91.3 
35.3 0.420 1.621 57.2 

Phenanthro[3,2h]isoquinoline 467.6 0.001 1.000 467.6 
(Emission: 392 nm) 243.4 0.207 1.269 308.9 

95.9 0.612 2.022 193.9 
58.0 0.844 2.639 153.2 

Benz[de] isoquino[ 1,8gh]quinoline 844.5 d 0.000 1.000 844.5 
(Emission: 439 nm) (5 drops) 887.7 0.000 1.000 887.7 

(10 drops) 873.2 0.000 1.000 873.2 
Dibenzo[c, i ]phenanthro[l ,10,9,8anmlk]phenanthridine 152.3d 0.000 1.000 152.3 

(Emission: 397 nm) (3 drops) 143.0 0.202 1.262 180.5 
(10 drops) 68.3 0.736 2.331 159.2 

Diphenanthro[9,10, ldef ; l ' ,10 ' ,9 'hi j ]phthalazine 254.7 e 0.020 1.023 260.6 
(Emission: 450 nm) (4 drops) 130.8 0.014 1.016 132.9 

(10 drops) 85.2 0.014 1.016 86.6 
Phenanthro[9,10g]isoquinoline 549.6 d 0.000 1.000 549.6 

(Emission: 382 nm) 201.4 0.539 1.859 374.4 
83.6 1.115 3.601 301.2 

9-Azabenzja] anthracene 174.8d 0.000 1.000 174.8 
(Emission: 396 nm) 94.4 0.524 1.827 172.5 

48.8 1.052 3.350 163.6 
2-Azabenz[a] anthracene 256.7 d 0.000 1.000 256.7 

(Emission: 389 nm) 149.2 0.127 1.158 172.7 
(3 drops) 66.8 0.398 1.581 105.5 

Phenanthro[2,3h]isoquinoline 307.9 d 0.000 1.000 307.9 
(Emission: 393 nm) 153.3 0.571 1.929 295.6 

83.1 1.136 3.688 306.6 
a After the i n i t i a l intensity reading, unless otherwise specified, each successive value corresponds to addi t ion of one pasteur p ipet drop of 

nitromethane to the P A N H dissolved in aqueous acetonitrile (20:80 by volume). 
b Absorbance of the solution measured at the excitation wavelength of the P A N H under investigation. 
c P r imary inner- f i l ter ing correction factors based upon χ = u = 0.45 cm and y = υ = 0.55 cm. 
d Solvent used was acetonitrile. 
e Solvent used was d imethy l sulfoxide. 

point is never achievable, even with the finest spectro-
fluorometers having small spectral bandpasses. Y a p p e r t 
a n d I n g l e 4 7 derived a more rigorous mathematical treat­
ment for non-monochromatic excitation and emission 
beams. 

P r i m a r y inner-filtering can often be ignored in P A H / 
P A N H solvent polarity experiments requiring determi­
nation of intensity ratios as the excitation wavelength 
remains constant (i.e., A in E q . 1 remains constant). 
E m i s s i o n intensities of both bands are thus affected by 

the same relative amount . Selective quenching studies 
are another matter, however, as absorption of the exci ­
tation beam by the quenching agent would reduce emis ­
sion intensities of every fluorophore having the given 
excitation wavelength. I n the case of nitromethane, i n ­
ner-filtering would reduce emission intensities of both 
alternant and nonalternant P A H s by the same relative 
amount. T o determine whether selective quenching r e ­
ally occurred, one m u s t mult ip ly observed emission i n ­
tensities, Fobs by the inner-f i ltering correction factor, fprim, 
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in order to eliminate the undesired effects from this 
chemical artifact. F a i l u r e to correct the observed inten­
sities may lead to erroneous conclusions concerning P A H / 
P A N H identification (alternant vs. nonalternant) , par ­
t icularly if excitation wavelengths of 300 n m or less are 
employed. M a n y P A H s / P A N H s have excitation wave­
lengths in the 300-320 n m spectral region, a n d a few 
drops of nitromethane (or nitrobenzene) give solutions 
of appreciable absorbances. 

Secondary inner-filtering results from absorption of 
large quantities of emitted fluorescence, and the correc­
tion factor, fsec,46 

_ Fcorr _ (v - u)(l/b)\nT 
I sec jpobs Τ — Τ 

Γ 1 at υ/b 1 at u/b 

contains the sample transmittance ( T ) across the entire 
cell pathlength (b) at the emission wavelength. T r a n s -
mittances at the two interrogation zone boundaries, Tatu/b 

and T a t u / 6 , are calculated from the measured absorb­
ances at the emission wavelength v i a the B e e r s - L a m b e r t 
law. Remember that v/b a n d u/b now serve as the new 
cell pathlengths. 

F o r P A H / P A N H solvent polarity determinations, sec­
ondary inner-filtering is a p r i m a r y concern if the solution 
preferentially absorbs one of the P A H / P A N H emission 
bands, thus leading to different transmittances (Τ values 
i n E q . 2) at the various emission wavelengths a n d erro­
neously low intensity ratios. Selective quenching exper­
iments are not generally affected by secondary inner-
filtering artifacts. P A H / P A N H emission bands appear 
in the 370-500 n m spectral region where nitromethane's 
absorbance is greatly d iminished . Readers are reminded 
that only a few drops of quenching agent are used in this 
type of experiment. 

T h e corrected fluorescence emission intensity is given 
by 

Fcorr = fprimfS€CF^ (3) 

assuming that primary a n d secondary inner-filtering are 
independent processes. A s a general rule of thumb, inner-
filtering corrections work well for fprim and fsec values less 
t h a n three. Calculation of each correction factor requires 
α priori knowledge of interrogation zone volume and 
dimensions. Realizing that most instrument manufac­
turers rarely supply information regarding sample com­
partment aperture slit widths , part icularly for the less 
expensive spectrofluorometers a n d fluorescence detec­
tors used in H P L C , we have elected to base fprim and 
fsec computations upon assumed values of χ = u = 0.45 
c m and y = υ = 0.55 c m . T h e s e particular values led to 
consistent Fcorr signals for quinine sulfate solutions, which 
were inner-filtered by differing concentrations of potas­
s ium dichromate . 4 8 

N u m e r i c a l values of the fluorescence emission inten­
sities (both F°bs and F c o r r ) and solution absorbances (A 
c m - 1 ) are summarized in T a b l e I for the 14 alternant 
P A N H solutes studied. C a r e f u l examination reveals that 
pobs foes decrease with increasing nitromethane concen­
tration, though not all of the intensity reduction is at­
tributed to fluorescence quenching. A significant fraction 
of the observed intensity reduction results from primary 
inner-fi ltering artifacts. T h i s is particularly true in the 
case of the four P A N H solutes ( 4 - A z C h , 9,10-PIQ, 2,3-

P I Q , and 9 - A z B A ) having an excitation wavelength of 
300 nm. Multiplication of the observed fluorescence i n ­
tensities of 2 ,3 -PIQ and 9 - A z B A by fprim increases the 
values of Fcorr « 300 and Fcorr « 168, respectively, which 
is approximately equal to the init ial emission intensities 
before addition of nitromethane. Similar conclusions can 
be drawn from the experimental data for B I Q Q and 
D B P P . T h e " a p p a r e n t " increase in F°bs for D B P P and 
B I Q Q , noted after addition of a few pasteur pipet drops 
of nitromethane, is l ikely the result of nitromethane re-
dissolving a very small amount of P A N H which was sti l l 
adsorbed onto the test tube or cuvette walls. Large poly­
cyclic aromatic compounds are not very soluble in water, 
and we have tried to eliminate any solubility artifacts by 
substituting acetonitrile for the aqueous-acetonitrile b i ­
nary solvent mixture recommended by Blümer and Z a n ­
der. 6 

Our experimental results clearly show that nitrometh­
ane does not quench the fluorescence emission of 2,3-
P I Q , 9 - A z B A , B I Q Q , and D B P P . A t the moment we are 
at a loss to explain why these particular four P A N H 
solutes are exceptions to the selective quenching obser­
vations previously noted by several research groups. 5 9 * 2 0 , 4 9 

Recal l that nitromethane is suppose to selectively quench 
the fluorescence emission of alternant P A H s as opposed 
to nonalternant P A H s . Polycycl ic aromatic nitrogen het­
ero-atoms can have their 7 r -orbitals and nonbonding Or­
bitals reversed, and this possibility might perhaps partly 
explain the unusual quenching behavior of 2 ,3-PIQ, 
9 - A z B A , B I Q Q , and D B P P . Addit ional measurements 
are currently underway to further study the effect of 
nitromethane, nitrobenzene, and 1,2,4-trimethoxyben-
zene on the fluorescence emission behavior of stil l more 
alternant and nonalternant P A H s , as well as alkylated 
polycyclic aromatic hydrocarbons, to determine to what 
extent previously reported quenching observations hold 
for substituted P A H s . 
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