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1 Introduction and summary

One of the most frequently considered extensions of the Standard Model (SM) of Particle

Physics is supersymmetry. This hypothetical symmetry assigns to each observed particle

a supersymmetric partner which has identical properties except that their spins differ by

1/2, i.e. it relates bosons to fermions and vice versa. One of the main goals of the LHC

accelerator at CERN is to observe these superpartners. So far, there have been no hints

for the existence of such states.
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One may wonder about the consequences for string theory if supersymmetry will not

be found at the LHC or possible future accelerators. In light of the often stated claim

that string theory predicts supersymmetry, this seems to be a doomsday scenario for string

theory. However, the statement that string theory requires target space supersymmetry is

simply false: as had been realized, essentially during the time that string theory was first

considered as a unified framework of all particles and interactions, it is possible to construct

consistent string theories without space-time supersymmetry. Minimal requirements for a

consistent theory are modular invariance and the absence of anomalies and tachyons. A

prime example of a non-supersymmetric string theory is the SO(16)×SO(16) string [1–3].

In the past decades various authors have considered non-supersymmetric string con-

structions [4–7]. Torus compactifications with Wilson lines of the SO(16)×SO(16) theory

have been studied in ref. [8, 9]. In addition, using a covariant lattice approach four-

dimensional non-supersymmetric models were constructed by [10, 11]. Compactification

on (a)symmetric orbifolds [2, 12–14] of the non-supersymmetric SO(16)×SO(16) have been

inspected in the papers [15–18]. Non-supersymmetric compactifications of the heterotic

string have also been investigated using the free-fermionic string description [19–21] see e.g.

the works [22–26]. Also in non-heterotic string context tachyon-free non-supersymmetric

models have been constructed, for example in type-I [27–29], as type-II orientifolds [30–40]

or rational conformal field theories [41, 42].

Last year various new investigations of the phenomenological potential of non-

supersymmetric compactifications of the heterotic string have appeared. In [43, 44] some

of the authors of the current paper considered orbifold and smooth Calabi-Yau compactifi-

cations of the non-supersymmetric SO(16)×SO(16) string. It was argued that Calabi-Yau

compactification of the SO(16)×SO(16) theory has particular phenomenological potential,

since tachyons can be avoided to leading orders in the α′ and gs expansions. Moreover,

it was shown that it is possible to obtain many tachyon-free orbifold models with spectra

quite close to the Standard Model (SM).

Also certain half-flat geometries can be considered as non-supersymmetric backgrounds

for the heterotic string [45]. In addition, semi-realistic models were constructed in the

free-fermionic context in [46, 47], which implement the idea of having models that inter-

polate between supersymmetric and non-supersymmetric string constructions [22, 48–50].

For such models it is possible to compute more detailed phenomenological quantities like

threshold corrections [51, 52].

Of course low-scale supersymmetry has been a very popular theory for physics beyond

the SM for many years since it provides a solution to the hierarchy problem, helps with

gauge coupling unification, and provides a natural dark matter candidate. While there

are potential solutions known for the last two points (gauge coupling unification could

be achived via Kaluza-Klein threshold corrections and string theory predicts many extra

(hidden sector) particles which might serve as dark matter), a natural solution to the

hierarchy problem in theories without supersymmetry is currently not known to the

authors. This problem will have to be tackled in the future not only by string theory but

by any theory beyond the SM if low-energy supersymmetry is not found. Even if it is

found, current exclusion limits already point at a small hierarchy between the electroweak
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Figure 1. This figure depicts the relation between the three heterotic string theories in ten dimen-

sions.

and the SUSY breaking scale that needs to be explained. These questions are, however,

beyond the scope of this paper.

In this paper we lay out more theoretical methods to perform investigations of smooth

compactifications of the non-supersymmetric SO(16)×SO(16) string. In order to do so, we

often make use of the fact that the non-supersymmetric heterotic SO(16)×SO(16) string is

closely related to the supersymmetric heterotic E8×E8 and SO(32) strings: it is well-known

that upon compactification on a circle with appropriate Wilson lines both supersymmet-

ric heterotic strings become T-dual to each other. Moreover, the non-supersymmetric

SO(16)×SO(16) theory can be obtained by supersymmetry-breaking twists acting on ei-

ther the E8×E8 or the SO(32) theories. These relations between the three heterotic theories

in ten dimensions are indicated in figure 1. Interestingly, the full low energy spectrum of

the SO(16)×SO(16) theory can be obtained by simple orbifold projections and interpreted

as the combined untwisted sectors of the E8×E8 and the SO(32) strings. As can be inferred

from table 1, the gravitational and gauge sectors can be obtained from either route. On the

other hand, the chiral fermions in the spinor representation of the SO(16) factors come from

the untwisted sector of the E8×E8 string, while the chiral fermions in the bi-fundamental

of SO(16)×SO(16) are part of its twisted sector w.r.t. the supersymmetry-breaking twist.

In contrast, for the SO(32) theory the roles of untwisted and twisted chiral matter are

precisely interchanged.

Next we investigate the effective four-dimensional theories that arise when we com-

pactify one of the heterotic strings on Calabi-Yau geometries with (line) bundles. When

we start from the non-supersymmetric SO(16)×SO(16) theory, there seems to be no need

to consider string backgrounds that would themselves preserve some amount of supersym-

metry. However, there are various reasons why insisting on Calabi-Yau geometries with

holomorphic stable vector bundles is convenient:

From a worldsheet point of view, having a complex manifold with a holomorphic vector

bundle means that one has an enhanced global U(1)R symmetry so that the worldsheet

theory has (2,0) supersymmetry. This U(1)R symmetry is non-anomalous precisely if the

manifold is Calabi-Yau, see [53, 54]. Notice that, to leading order, these arguments do not

depend on the global boundary conditions on the worldsheet, i.e. the spin-structures and

hence they apply to each of the three heterotic theories.

Also from the target space Effective Field Theory (EFT) perspective, there are good

reasons to consider supersymmetry-preserving compactifications of the SO(16)×SO(16)

– 3 –
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Theory Sector Bosons Fermions

supersymmetric

E8×E8

gravity metric, B-field, dilaton gravitinos, dilatinos

gauge (248,1)+(1,248) gauge fields (248,1)+(1,248) gauginos

supersymmetric

SO(32)

gravity metric, B-field, dilaton gravitinos, dilatinos

gauge 496 gauge fields 496 gauginos

non-

supersymmetric

SO(16)×SO(16)

gravity metric, B-field, dilaton

gauge (120,1) + (1,120) gauge fields

matter
(128,1)+(1,128) spinors

(16,16) co-spinors

Table 1. This table gives the bosonic and fermionic spectra of the three consistent heterotic string

theories with gauge groups E8×E8, SO(32) and SO(16)×SO(16).

string. As stated above, it was shown in [43, 44] that such compactifications avoid tachyons

to leading order in gs and α′. Moreover, the bosonic parts of the three heterotic ten-

dimensional theories are identical up to their gauge groups. Consequently, the reduction of

either of these theories on the same background leads to essentially identical EFTs in four

dimensions. This means that the effective potential of SO(16)×SO(16) compactifications,

relevant to characterize the physical vacuum, is characterized by the same quantities as

compactifications of its supersymmetric cousins, at least to leading order. This shows that

stable supersymmetric backgrounds (solutions to F- and D-term conditions at tree-level)

also represent solutions to the field equations of the non-supersymmetric SO(16)×SO(16)

theory. Also it turns out to be fruitful to employ concepts like the super- and Kähler

potential to characterize its four-dimensional EFT.

All this suggests that many methods developed for Calabi-Yau compactifications can

be used to obtain results for compactifications of the non-supersymmetric SO(16)×SO(16)

theory as well. The supersymmetric heterotic theories [55–57], and in particular the E8×E8

theory with non-Abelian bundles [58–60] or line bundles on orbifold resolutions [61–63]

and Complete Intersection Calabi-Yau manifolds (CICYs) [64, 65], have been well-studied

since the seminal paper [66]. (A technical side result that we derive in appendix B is how

to translate the line bundle parameterization used in [64, 65] to the line bundle vector

language of [61–63] following [67].) For the non-supersymmetric SO(16)×SO(16) there are

in principle three ways to get access to the effective theory in four dimensions as depicted

in figure 2.

The most direct route is indicated in the middle: one starts with the effective

ten-dimensional non-supersymmetric SO(16)×SO(16) theory and compactifies it on a

supersymmetry-preserving background. However, given that the supersymmetry-breaking

twists do not act on the internal geometry at all, we can alternatively first compactify

either of the supersymmetric theories on the same smooth background, and subsequently

apply the supersymmetry-breaking twists. In other words figure 2 displays three alterna-

tive routes to obtain the compactifications of the SO(16)×SO(16) theory. This means that
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4D non-supersymmetric

10D supersymmetric

4D supersymmetric

strings

strings

SO(32)

SO(32)

Compactification Compactification

Compactification

Figure 2. This double commutative diagram sketches the different routes that can be taken to

determine the four-dimensional effective theory by compactification of the SO(16)×SO(16) theory

on Calabi-Yau manifolds with holomorphic (line) bundles.

the spectrum of gauge fields and charged scalars obtained in Calabi-Yau compactifications

of the SO(16)×SO(16) can be verified by compactifying either the E8×E8 or SO(32) theory

on the same background and subsequently applying the supersymmetry-breaking projec-

tions. Since the fermions of the SO(16)×SO(16) theory are both twisted and untwisted

w.r.t. either supersymmetric string, one needs both the E8×E8 and SO(32) compactification

routes to determine the full charged chiral spectrum in four dimensions. As a consequence,

many properties of compactifications of the non-supersymmetric SO(16)×SO(16) theory

are closely related to results obtained in the past for compactifications of both supersym-

metric heterotic strings.

This applies in particular to the Green-Schwarz anomaly cancellation mechanism. It

is well-known that the Green-Schwarz mechanism is very important to obtain consistent

string constructions both in ten and four dimensions since it ensures the cancellation of

reducible anomalies. Moreover, it determines the couplings between model-dependent and

independent axions and the gauge fields. For the Calabi-Yau compactifications of the

supersymmetric heterotic theories these couplings were worked out in detail in [55–57].

In this paper we investigate the Green-Schwarz mechanism for smooth Calabi-Yau com-

pactifications of the SO(16)×SO(16) string with line bundles. Using this we can perform

model independent checks of anomaly cancellation for the chiral fermionic four-dimensional

spectra obtained from these compactifications.

In this work we not only want to lay out the general framework of smooth compactifi-

cations of the non-supersymmetric SO(16)×SO(16) string, but we also want to show that

it has true SM-like model building potential, as has been recently established for orbifold

– 5 –
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compactifications and free-fermionic constructions, as mentioned above. We argue that

it is possible to obtain SM-like models from the standard embedding if the Calabi-Yau

geometry admits at least an order four Wilson line. In addition, we present a particular

SM-like model obtained on the smooth CICY with number 7862 (sometimes referred to as

the tetra quadric) in the database [68–70] with line bundles. We construct a six generation

non-supersymmetric SU(5) GUT, which upon using a freely acting Wilson line becomes a

three generation SM-like model. In a follow-up work we will present some extensive model

scans on various smooth geometries and the search for SM-like models. However, from our

current analysis we can make one interesting observation concerning the Higgs sector of

such compactifications: as we will explain in this paper, we can either have a single Higgs

doublet together with a color triplet partner or we have at least one pair of vector-like

Higgs-doublets.

Phenomenological model building on smooth compactifications of the E8×E8 super-

gravity often makes use of the possibility of having five-branes. NS5-branes give an ad-

ditional degree of freedom in model constructions since one does not have to satisfy the

Bianchi identities strictly but only modulo effective curve classes. Effectiveness of these

curves is crucial in order to guarantee that the same type of supersymmetry is preserved by

the perturbative compactification and the non-perturbative NS5-brane sector. Contrary to

the E8×E8 theory, NS5-branes in the SO(32) context modify the spectrum charged under

the perturbative gauge group. As far as we are aware five-branes in the non-supersymmetric

SO(16)×SO(16) context have not been studied systematically in the literature. To gain

some intuition for the possible properties of NS5-branes we take inspiration from the dia-

gram in figure 2.

Since the fermions are the prime contributors to the anomalies, and since it is known

which kind of NS5-branes the two supersymmetric heterotic theories require, we make an

educated guess for the spectra on five-branes in the SO(16)×SO(16) theory: we take the

spectra on the NS5-branes of the E8×E8 or SO(32) theories and extend the supersymmetry-

breaking twist to them. We find that this choice is essentially unique if we require that all

irreducible gauge and gravitational anomalies cancel. If we want in addition to cancel all

reducible anomalies via a generalized Green-Schwarz mechanism, e.g. involving scalars and

tensors on the five-branes, we find (within the ansatz that we made for these couplings) that

we can only achieve this with no NS5-branes or with a configuration with one E8×E8-like

and one SO(32)-like NS5-brane.

2 Ten-dimensional heterotic strings

Conventionally, consistent string theories are characterized as string constructions that

have low energy spectra which are free of anomalies and tachyons and have a modular

invariant one-loop partition function. In ten dimensions there are three consistent heterotic

string theories in this sense: the two that are most commonly studied, the E8×E8 and

SO(32) theories, are supersymmetric in target space. The third theory with gauge group

SO(16)×SO(16) is non-supersymmetric. It is common to distinguish the three heterotic

theories by their ten-dimensional gauge group, as will be done here as well.

– 6 –
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2.1 Effective ten-dimensional heterotic actions

Since we only concentrate on smooth compactifications, it is for most purposes sufficient

to only consider the massless bosonic and fermionic spectrum in ten dimensions, which we

give in table 1 for the three heterotic theories. Their effective target space descriptions are

very similar. In the string frame their bosonic action is given by

S10D =
1

2κ210

∫
d10x

√
− detGe−2Φ

{
R(ω+) + 4 ∂MΦ∂MΦ− 1

2

∣∣H3

∣∣2 − α′

4
tr
∣∣F2

∣∣2
}
, (2.1)

where κ210 = 1
2(2π)

7(α′)4, Φ is the dilaton and GMN the ten-dimensional metric. Its

curvature scalar R(ω+) involves the spin-connection with torsion ω+ = ω+ 1
2 H. F2 denotes

the non-Abelian gauge field strength. The field strength of the Kalb-Ramond field reads

H3 = dB2 −
α′

4
X3 , dX3 = X4 = trF 2

2 − trR2(ω+)
2 . (2.2)

Here tr denotes the trace in the fundamental1 (vector) representation of an SO(N) group.

Since the adjoint representation of E8 is its fundamental we use trF 2
2 = 1

30TrF
2
2 . In cases

where we need to distinguish the two gauge factors of the E8×E8 or SO(16)×SO(16) we

denote their field strengths etc. by F2 = (F ′
2, F

′′
2 ), e.g.: trF

2
2 = trF ′2

2 + trF ′′2
2 . With the

trace Tr we denote the trace over all charged Majorana-Weyl fermions. If we wish to make

this more explicit, we denote by TrE8×E8
and TrSO(32) the trace in the adjoint of E8×E8 or

SO(32) theories, respectively. While for the non-supersymmetric SO(16)×SO(16) we have

Tr
✘

✘✘SUSYF
p
2 =

[
tr(128,1) + tr(1,128) − tr(16,16)

]
(F p

2 ) , Tr
✘
✘✘SUSYF

2
2 = 0 , (2.3)

keeping track of the relative chiralities of the fermions. The latter equation follows for

SO(16) from tr128F
2
2 = 16trF 2. Moreover, since SO(16)×SO(16) is a subgroup of both

E8×E8 and SO(32), we can compare traces in both supersymmetric theories with the

non-supersymmetric one, provided that we restrict F2 to the adjoint of SO(16)×SO(16).

By considering the branching rules of the adjoints of E8×E8 and SO(32) into irreducible

representations of SO(16)×SO(16), we find that

Tr
✘

✘✘SUSYF
p
2 = TrE8×E8

F p
2 − TrSO(32)F

p
2 . (2.4)

Anomaly cancellation requires the so-called Green-Schwarz mechanism [71, 72] which

involves the term

SGS =
1

24(2π)5α′

∫
B2X8 , (2.5)

1We follow a convention where we call the lowest-dimensional irreducible representation of a Lie alge-

bra the “fundamental” representation, even for groups other than SU(N). Details concerning our trace

conventions can be found in appendix A.
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in the normalization established in [57]. The polynomial X8 is given by (see e.g. [73])

XE8×E8

8 =
1

24
TrF 4

2 − 1

7200
(TrF 2

2 )
2 − 1

240
TrF 2

2 trR2
2 +

1

8
trR4

2 +
1

32
(trR2

2)
2 , (2.6a)

X
SO(32)
8 = − 1

24
TrF 4

2 +
1

7200
(TrF 2

2 )
2 +

1

240
TrF 2

2 trR2
2 −

1

8
trR4

2 −
1

32
(trR2

2)
2 , (2.6b)

X✘
✘✘SUSY

8 =
1

24
TrF 4

2 , (2.6c)

for the supersymmetric E8×E8, SO(32), and non-supersymmetric SO(16)×SO(16) theo-

ries, respectively. Note that in the non-supersymmetric theory the curvature two-form

R2 does not appear, hence in this theory the pure (irreducible and reducible) and mixed

gravitational anomalies all cancel automatically. Here we have chosen the chiralities of the

gravitino, dilatino and gauginos in the E8×E8 and SO(32) precisely opposite to each other;

this accounts for the relative sign between the X8’s of both supersymmetric theories. With

this convention, one obtains the relation

X✘
✘✘SUSY

8 = XE8×E8

8 +X
SO(32)
8 (2.7)

between the three eight-forms X8 for the three heterotic theories. This result arises by

making use of the identity (2.4) and that the quadratic trace (2.3) vanishes.

2.2 Heterotic lattices

The three string theories contain both massless states and states at arbitrary high mass

levels, which can be efficiently encoded in lattices. In table 2 we give the full lattices on

which the three heterotic theories are constructed. In particular, this displays the root

lattice of the gauge group to which their sixteen-component roots α = (αI) = (α1, . . . , α16)

belong. The lattices of the E8×E8 and SO(32) theories show that these theories are super-

symmetric at every mass level separately, while the SO(16)×SO(16) is not supersymmetric

at any mass level.

In ten dimensions the overall notion of positive chirality is of course just a convention.

We have chosen the spinorial lattices of E8×E8 and SO(32) such that their chiralities are

compatible with the non-supersymmetric twists to the SO(16)×SO(16) theory as we discuss

above. In particular, we take the gauginos Ψ+ = Ψ(α0/2,...,α3/2) in the E8×E8 theory to

have positive chirality, i.e. the product of the signs α0 · . . . ·α3 = +1, while the gauginos of

the SO(32) theory are taken to be co-spinors Ψ− = Ψ(α0/2,...,α3/2) with α0 · . . . · α3 = −1.

2.3 Non-supersymmetric twists

The three heterotic theories are closely related on the level of their respective worldsheet

theories. For example, the partition function of the E8×E8 and SO(16)×SO(16) theories

are identical up to some different choices of GSO phases. It is well-known that the E8×E8

and SO(32) theories are T-dual when compactified on a circle with appropriately chosen

Wilson lines. Moreover, the SO(16)×SO(16) can be obtained from either the E8×E8 or

SO(32) theory by supersymmetry-breaking twists:

– 8 –
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Lattices in heterotic string theories

N=1, E8×E8 N=1, SO(32) N=0, SO(16)×SO(16) ⊃ massless states

V4 ⊗ R8 ⊗ R8
V4 ⊗ R16

V4 ⊗ R8 ⊗ R8 (1,120) + (120,1)

V4 ⊗ S8 ⊗ S8 V4 ⊗ S8 ⊗ S8 10D gauge fields

V4 ⊗ S8 ⊗ R8
V4 ⊗ C16

R4 ⊗ C8 ⊗ V8
–

V4 ⊗ R8 ⊗ S8 R4 ⊗ V8 ⊗ C8

S4 ⊗ R8 ⊗ R8
C4 ⊗ R16

S4 ⊗ S8 ⊗ R8 (1,128) + (128,1)

S4 ⊗ S8 ⊗ S8 S4 ⊗ R8 ⊗ S8 10D spinors

S4 ⊗ S8 ⊗ R8
C4 ⊗ C16

C4 ⊗ V8 ⊗ V8 (16,16)

S4 ⊗ R8 ⊗ S8 C4 ⊗ C8 ⊗ C8 10D co-spinors

Table 2. The different lattices that occur in the eight (or four) different sectors of the supersym-

metric E8×E8, SO(32) and the non-symmetric SO(16)×SO(16) heterotic string theories. V, R, S

and C refer to the vector, root, spinor and co-spinor lattices, respectively. Their subscripts indicate

the dimension of these lattices. Consequently, the first lattices in the tensor products classify the

states as space-time bosons (V, R) and fermions (S, C), respectively, while the remainders corre-

spond to the various gauge representation lattices. We have chosen the chiralities of the spinorial

lattices of E8×E8 and SO(32) such that they are compatible with those of the SO(16)×SO(16)

theory.

I. A Z2 orbifolding of the E8×E8 string with twist v0 = (0, 13) and gauge shift

V0 = (1, 07)
(
-1, 07

)
:

AA
M → AA

M , AX
M → −AX

M , ΨA
+ → −ΨA

+ , ΨX
+ → ΨX

+ . (2.8a)

II. A Z2 orbifolding of the SO(32) string with twist v0 = (0, 13) and gauge shift

V ′
0 = (1, 07)

(
-12 ,

1
2

7)
:

AA
M → AA

M , AY
M → −AY

M , ΨA
− → −ΨA

− , ΨY
− → ΨY

− . (2.8b)

The gauge fields AA
M of the SO(16)×SO(16) theory, labeled by A, are part of the untwisted

sector in either case. The additional fermionic matter states can partially be interpreted as

untwisted and partially as twisted states: in the non-supersymmetric orbifold of the E8×E8

the (128,1) + (1,128) spinor states ΨX
+ , labeled by X, are untwisted while (16,16) co-

spinor ΨY
−, labeled by Y , are twisted. For the non-supersymmetric orbifold of the SO(32)

this assignment is precisely the other way around. All these relations between the three

ten-dimensional heterotic string theories are schematically indicated in figure 1.

The actions of the non-supersymmetric twists can be elegantly represented on the ten-

dimensional vector multiplets using N=1 four-dimensional superspace language [74, 75].

One decomposes the gauge fields as AM = (Aµ, Aa, Aa) with four-dimensional and com-

plexified six-dimensional indices µ = 0, . . . 4, a, a = 1, 2, 3 (suppressing the gauge index for

now). Their components are contained in vector superfields V and chiral superfields Za

such that

1
2 [Dα̇, Dα]V

∣∣ = σµ
α̇αAµ , Za

∣∣ = Aa . (2.9)
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where | denotes setting all Grassmann variables θ to zero. The ten-dimensional gaugino

components Ψ± are then represented as

Ψ(
α
2 ,

α
2

3
) : Wα

∣∣ = λα , Ψ(
α
2 ,

α
2 , -α2

2
) : 1√

2
DαZa

∣∣ = ψaα , (2.10a)

Ψ(
α
2 , -α2

3
) : Wα

∣∣ = λα , Ψ(
α
2 , -α2 ,

α
2

2
) : 1√

2
DαZa

∣∣ = ψaα , (2.10b)

for E8×E8 and SO(32), respectively. Here Wα = −1
4 D

2
(e−V Dαe

V ) is the super field

strength of the four-dimensional superspace and the underline denotes permutation of the

entries. The actions (2.8a) and (2.8b) of the non-supersymmetric twists of the E8×E8 and

SO(32) theories on these superfields are given by

I. The Z2 twist of the E8×E8 gauge multiplets:

(θα, θ̄α̇) → −(θα, θ̄α̇) , VA→ VA , VX→ −VX , ZA
a → ZA

a , ZX
a → −ZX

a . (2.11a)

II. The Z2 twist of the SO(32) gauge multiplets:

(θα, θ̄α̇) → −(θα, θ̄α̇) , VA→VA , VY → −VY , ZA
a → ZA

a , ZY
a →−ZY

a . (2.11b)

The simultaneous reflection of all Grassmann variables ensures that the SO(16)×SO(16)

gaugino components are all projected out by this non-supersymmetric twist. Consequently,

if we want to use four-dimensional N=1 superfields to represent the non-supersymmetric

SO(16)×SO(16) theory, we have the following lowest non-vanishing components,

1
2 [Dα̇, Dα]VA

∣∣ = σµ
α̇αA

A
µ , ZA

a

∣∣ = AA
a , (2.12a)

WX
α

∣∣ = λX
α , DαZ

X
a

∣∣ = ψX
αa , W Y

α

∣∣ = λY
α , DαZ

Y
a

∣∣ = ψY
αa , (2.12b)

of the superfields, VA, ZA
a , Z

X
a , and ZY

a defined above. In addition, the SO(16)×SO(16)

adjoint vector and chiral multiplets, VA and ZA
a , may contain non-vanishing auxiliary fields,

DA and FA
a , respectively. Just as in the supersymmetric theories, using their algebraic

equations of motion these auxiliary components can be expressed in terms of the dynamical

fields in the theory. In other words in the non-supersymmetric theory the superfields define

very convenient short-hand notations.

3 Smooth backgrounds

When one starts from a non-supersymmetric theory, there seems to be no reason to consider

backgrounds that would preserve supersymmetry by themselves. However, as was pointed

out in [43] it may be very convenient to consider such backgrounds as there are more

computational tools available.

We focus primarily on line bundle backgrounds, which only satisfy the Bianchi iden-

tities in cohomology. This means that one is not really working on a smooth Calabi-Yau

manifold, but rather on a more complicated torsion manifold. The corrections to the BPS

equations, the so-called Strominger system [67, 76–82], give the next-to-leading correc-

tions in the α′-expansion. Given that we only work to leading order in α′, we will ignore

complications due to torsion in the following.

– 10 –



J
H
E
P
1
0
(
2
0
1
5
)
1
6
6

3.1 Calabi-Yau manifolds

A very crude characterization of a Calabi-Yau manifold is given by its Hodge numbers

h11 and h21 which count the number of independent closed (1,1)- and (2,1)-forms or their

corresponding hyper-surfaces.

Topological data. In more detail, any Calabi-Yau manifold X contains a set of complex

codimension one hypersurfaces called divisors. A large class of so-called toric Calabi-Yau

spaces are constructed as hypersurfaces in some toric ambient space. Toric divisors of this

ambient space are defined by simply setting one of the homogeneous coordinates to zero,

i.e. Da := {za = 0}. In general these divisors are dependent, which means that there are

various linear equivalence relations among them. We denote a basis of h11 independent

elements constructed out of the divisors Da by {Di}, and a basis of h11 curves by {Ci}. In
this work we mostly focus on so-called “favorable” Calabi-Yau spaces for which this basis

of divisors descends from the hyperplane classes of the projective ambient space.

In terms of the aforementioned basis of divisors we have the triple intersection numbers

and the second Chern classes evaluated on the Di,

κijk =

∫
D̂iD̂jD̂k , c2i =

∫

Di

c2 = −
∫

Di

1

2
tr
(R
2π

)2
. (3.1)

Here the curvature two-form R is SU(3)-valued, so that the trace is evaluated in the

fundamental of this holonomy group. In the first expression the closed but not exact

(1,1)-forms associated to the divisors Di are denoted by D̂i; similarly we denote by Ĉi

the (2,2)-forms associated to the curves Ci. In fact, we may take them to be harmonic.

Moreover, it is in principle always possible to construct an integral basis of curves and

divisors, {Ci} and {Di}, such that
∫

Ci

D̂j =

∫

Di

Ĉj = δij . (3.2)

Finally, we denote the independent (2,1) two-forms by ω̂p with p = 1, . . . , h21.

Classical volumes. The Kähler form J can be expanded in the D̂i basis as

J = ai D̂i , (3.3)

in terms of the h11 Kähler moduli ai. The fundamental form J is used to determine the

volumes of any curve C, divisor D and the manifold X itself:

Vol(C) =

∫

C
J , Vol(D) = 1

2

∫

D
J2 , Vol(X) = 1

6

∫

X
J3 . (3.4)

In the integral basis (3.2) we know that all the moduli satisfy ai > 0 in the Kähler

cone to guarantee that all curves Ci are effective, i.e. have positive volume. In fact, we

work in the large volume approximation where volumes are much larger than the string

scale such that we can reliably neglect higher order α′-corrections. The volumes of curves,

divisors and X read

Vol(Ci) = ai , Vol(Di) =
1
2 κijk ajak , Vol(X) = 1

6 κijk aiajak . (3.5)

Consequently, one has Vol(X) = 1
3 Vol(Ci)Vol(Di).
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Complete intersection Calabi-Yau manifolds. Manifolds known as Complete Inter-

section Calabi-Yau (CICY) manifolds are described in terms of intersecting hypersurfaces

in projective ambient spaces. All smooth CICYs have been classified in [68] and are avail-

able online [69]. Their discrete symmetries have been classified in [70]. Here we focus on

the subclass of favorable CICYs, which means that all CICY divisors can be pulled back

from the hyperplane divisors of the projective ambient spaces ⊗aP
ka . Consequently, a runs

from 1 to h11. CICYs can be described most easily in terms of their configuration matrix

Γ = (ΓaA). Each row, labeled by a, corresponds to one ambient space P
ka factor and each

column, labeled by A, corresponds to one polynomial that defines a hypersurface in the

ambient space. Thus, an entry ΓaA specifies the scaling of the Ath polynomial under the

projective scale factor of the ath projective ambient space factor. Since each polynomial

imposes one constraint, we find that A runs from 1 to
∑

a ka − 3 for a CY 3-fold. The first

Chern class of a CICY vanishes if

∑

A

ΓaA = ka + 1 . (3.6)

In this way, the ambient space follows uniquely from the configuration matrix.

For the calculation of the intersection numbers κijk and the total Chern class of CICY

manifolds we used the methods introduced in [83]:

κijk =
∏

e

1

ke!

∂ke

∂Dke
e

[
∏

A

(∑

a

ΓaADa

)
c(X)DiDjDk

]

D=0

,

c(X) =

∏

a

(
1 +Da

)ka+1

∏

B

(
1+

∑

b

ΓbBDb

) , (3.7)

where A,B = 1, . . . ,
∑

a ka − 3 and a, b, . . . = 1, . . . , h11.

Free quotients. Next, we consider a discrete, freely acting symmetry group Γ of finite

order |Γ| that acts on the coordinates of X as z → gz. In this work we will assume that Γ

consists of a single ZN factor only. Since Γ is assumed to act freely, the quotient

X̃ = X/Γ (3.8)

is again a smooth, but not simply-connected, Calabi-Yau manifold.

We consider cases in which the action of the discrete group Γ can be described in terms

of the action on the ambient space coordinates. In order to be able to mod out such an

action, one has of course to ensure that the Calabi-Yau geometry admits such a symmetry.

For example, this poses constraints on the ambient space and the polynomials whose inter-

sections define the CICY. This typically means that some complex structure deformations,

counted by h21, are frozen. There are essential three ways in which Γ can act [70]:
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1. homogeneous coordinates obtain phases,

2. homogeneous coordinates within each P
N factor are permuted,

3. or complete P
N factors are permuted among each other.

In the first case the ambient space divisors Da = {za = 0} are invariant. The second type

of action permutes them among each other, but the corresponding divisor class remains

invariant. Hence, if one had chosen it as one of the divisor basis elements Di, then it

remains inert. In contrast, in the third case one has to form invariant linear combinations

of divisors {Di} of X. This means that in the third case h11 is reduced as well.

3.2 Line bundles on Calabi-Yaus

For the gauge background F we make the simple ansatz that the vector bundle V is given

by a sum of line bundles (see e.g. [61, 62])

F
2π

= D̂iHi , Hi = V I
i HI , (3.9)

which are embedded in the Cartan subalgebra of the ten-dimensional gauge group G. This
Abelian gauge background is invariant under unbroken gauge transformation. It is char-

acterized by a set of bundle vectors Vi = (V I
i ), one for each divisor (1,1)-form D̂i. The

Cartan generators, HI , I = 1, . . . , 16, are assumed to be normalized such that2

tr(HIHJ) = δIJ . (3.10)

Consequently, tr(HiHj) = Vi · Vj , where · is the standard (euclidean) inner product of

two vectors with sixteen components. The unbroken subgroup H of the ten-dimensional

gauge group G is generated by this Cartan subalgebra augmented with the creation and

annihilation operators associated with the roots α that are perpendicular to all line bundle

vectors, Vi · α = 0, for all i = 1, . . . , h11. For the E8×E8 and SO(16)×SO(16) theories

we decompose these bundle vectors w.r.t. observable and hidden gauge group factors as

Vi = (V ′
i , V

′′
i ) and similarly for other quantities where applicable.

Any line bundle background is subject to a number of consistency conditions, which

we list in the following:

Flux quantization. The bundle vectors are subject to flux quantization conditions,

which ensure that ∫

C

F
2π

, (3.11)

evaluated on any state |p〉 in the full string spectrum, is integral for all curves C.

If {Dk} is an integral basis of divisors satisfying (3.2), this amounts to requiring that

all line bundle vectors lie on the lattices

ΛE8×E8
= (R8 ⊕ S8)⊗ (R8 ⊕ S8) , ΛSO(32) = R16 ⊕ S16 , (3.12)

2The trace itself is normalized as the trace over the fundamental representation of SU-groups.
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in the cases of the E8×E8 or SO(32) heterotic string, respectively. The flux quantization in

the non-supersymmetric SO(16)×SO(16) theory requires the bundle vectors to lie on the

lattice

Λ
✘

✘✘SUSY = R8 ⊗R8 , (3.13)

which is contained in both E8×E8 and SO(32) lattices. Consequently, any allowed set of

bundle vectors of the SO(16)×SO(16) theory also represents an admissible set for either of

the supersymmetric heterotic theories.

Bianchi identities. The Bianchi identities for the B-field constitute further consistency

conditions on the line bundle gauge background:

tr
( F
2π

)2
− tr

(R
2π

)2
= Ni Ĉi (3.14)

in cohomology, i.e. when integrated over any divisor D of X. In the integral basis (3.2)

we can interpret Ni as the five-brane charge associated to the five-brane wrapping the

curve Ci:

Ni = N ′
i +N ′′

i , N ′
i = κijk V

′
j · V ′

k + c2i , N ′′
i = κijk V

′′
j · V ′′

k + c2i , (3.15a)

for the E8×E8 or SO(16)×SO(16) theories and

Ni = κijk Vj · Vk + 2 c2i , (3.15b)

for the SO(32) theory, respectively. When all Ni ≥ 0 the configuration of five-branes pre-

serves the same four-dimensional supersymmetry as the perturbative sector of the E8×E8 or

SO(32) theory. For the E8×E8 theory, the non-perturbative NS5-brane spectrum involves

only a number of tensor multiplets, and hence does not modify the spectrum charged under

the perturbative unbroken gauge group H. In contrast, for the SO(32) theory there are

additional matter multiplets in bi-fundamental representations of the unbroken subgroup

H and the non-perturbative groups Sp(2Ñ). To the best of our knowledge, it is unknown

which additional non-perturbative charged states need to be added to the SO(16)×SO(16)

theory; we will present a suggestion for this in section 8.

Donaldson-Uhlenbeck-Yau equations. An additional requirement on the line bundle

is that the DUY equations,

1
2

∫
J2 F

2π
= Vol(Di)V

I
i = 0 , (3.16)

can be satisfied. At first this seems to impose a condition on the moduli only, encoded in

the volumes of the divisors Di, but in fact it leads to stringent restrictions on the possible

line bundle vectors. This comes about because one has to ensure that the zero-vector can

be obtained from a linear combination of the V I
i with positive coefficients only.

We have not included the one-loop correction terms [55, 84] for the following reasons:

first of all it is often possible to absorb this one-loop correction by appropriately shifting

the volumes of the divisors. Only when one has an embedding in both E8 gauge group
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factors, it is not generically possible to do so. Second, the form of this correction is not

known for the compactification of the non-supersymmetric SO(16)×SO(16) theory. More

importantly, we expect other effects to be generated at one-loop order (e.g. appearance of

tachyons) in the non-supersymmetric theory. Hence, for that reason also, our analysis will

focus on the weak coupling limit of the theory, where such corrections can be neglected.

Note that the DUY equations are homogeneous at tree level, such that at this order one

can always go to a large volume point in moduli space.

Equivariant line bundles. By accompanying the action of the freely acting symmetry

Γ, which was used to obtain the non-simply-connected Calabi-Yau X̃ = X/Γ from the

Calabi-Yau X, with an action on the gauge degrees of freedom,

A(z) → A(g z) = Wg A(z)W
−1
g , (3.17)

we can induce a further gauge symmetry breaking: H → H̃. In practice, such a freely

acting Wilson line Wg induces a non-local gauge symmetry breaking, typically chosen such

that a GUT subgroup of H in the upstairs description is broken down to the SM group

in the downstairs picture. However, before we divide out a freely acting symmetry in a

heterotic theory, we need to make sure that the bundle is equivariant under (i.e. compatible

with) the action:

F(z) → F(g z) = Wg F(z)W−1
g , (3.18)

for all g ∈ Γ. We assume that the generator of the freely acting symmetry can be

diagonalized simultaneously with the line bundle flux, therefore it may be written as

Wg = exp (2πiW IHI).

In the part on free quotients in subsection 3.1 we consider three possible Γ-actions on

the geometry. As each of the basis divisors Dk is invariant under the first two actions listed

there, the line bundles constructed in the upstairs picture are automatically invariant. For

the third type of freely acting symmetry, which permutes various PN factors, a simple way

to ensure equivariance is to require that the corresponding gauge vectors are identical. As

this reduces the number of independent line bundle vectors, this tightens the constraints on

having large volume solutions to the DUY equations and satisfying the Bianchi identities

without NS5-branes.

4 Spectra of smooth Calabi-Yau compactifications

In this section we discuss methods to compute the massless spectrum of smooth compact-

ifications of the two supersymmetric heterotic string theories and the non-supersymmetric

SO(16)×SO(16) theory.

4.1 Massless charged chiral 4D spectrum

For many applications it is sufficient to compute only the charged chiral spectrum. To

this end it is convenient to use the multiplicity operator N (X), see e.g. [61, 63, 85, 86],
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that counts the number of chiral states. It was obtained in [61] by integrating the ten-

dimensional anomaly polynomial I12|R over the internal Calabi-Yau manifold:

I6|R(X) =

∫

X
I12|R =

1

2(2π)2
trR

[
N (X)

(
1

6
F 3
2 − 1

48
(trR2

2)F2

)]
. (4.1)

Here R is the representation which the ten-dimensional states are transforming in, R2 is

the four-dimensional curvature two-form and F2 is the gauge field strength of the unbroken

gauge group H in four dimensions. Consequently, the multiplicity operator,

N (X) =
1

(2π)3

∫

X

{
1

6
F3
2 − 1

24
tr(R2

2)F2

}
=

1

6
κijk HiHjHk +

1

12
c2iHi , (4.2)

can be evaluated on each of the weights p of the appropriate representations given in table 1

using that Hi(p) = Vi · p.
The multiplicity operator was obtained in the context of the supersymmetric heterotic

E8×E8 string (and of course applies to the SO(32) case in a straightforward way). In

ref. [43] it was argued that this formula can also be employed for the non-supersymmetric

SO(16)×SO(16) theory: to determine both the chiral fermionic and bosonic spectra one

has to suitably choose the representations R and keep track of the ten-dimensional chi-

rality. To compute the number of complex scalars we take for R the adjoint represen-

tation of SO(16)×SO(16), while for chiral fermions in four dimensions we take states in

the spinor representation of either of the two SO(16)s, or states in the bi-fundamental

(16,16). Because of the opposite ten-dimensional chirality, the latter states transform

in charge conjugate representations as compared to the states resulting from the spinor

representations.

The multiplicity operator can also be evaluated on the free quotient X̃ = X/Γ: the

downstairs multiplicity of any chiral state in the upstairs spectrum is simply given by

N (X̃) = N (X/Γ) =
1

|Γ| N (X) . (4.3)

This can be seen as follows: by writing X =
⋃

g X̃
g, where X̃g denotes the image of X̃ ⊃ X

under g ∈ Γ, we can decompose the integral in (4.1) in |Γ| pieces. Using the fact that Γ

acts freely on the geometry and equivariantly on the bundle, we see that this gives |Γ| equal
contributions.

4.2 Dirac and Hirzebruch-Riemann-Roch indices

To give additional motivation for using this formula to compute the spectra for both

fermions and bosons, we resort to the following index theorems:

• The net spectrum of chiral fermions is determined by the Dirac index [87]

indDirac(X,V) =
∫

X
ch(V) Â(X) , (4.4)

where ch is the Chern character of the bundle and Â the roof-genus.
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• Similarly, the net spectrum of complex bosons is characterized by the Hirzebruch-

Riemann-Roch index theorem [65, 87, 88]

indHRR(X,V) =
∫

X
ch(V) Td(X) , (4.5)

which involves the Todd class Td instead of the Â class.

Using the splitting principle, a vector bundle V can be represented as V = ⊕jLj where

Lj are line bundles. Since these are one-dimensional, they are characterized completely in

terms of their first Chern class. Letting xj = c1(Lj), we can express the Chern class, the

Chern character, the Todd class, and the Â class as the products

c(V) =
∏

j

(1 + xj) , ch(V) =
∑

j

exj ,

Td(V) =
∏

j

xj
1− e−xj

, Â(V) =
∏

j

xj/2

sinh(xj/2)
, (4.6)

respectively. Expanding the Todd and Â classes to third order in terms of the Chern

classes,

Td(X) = 1 +
1

2
c1(X) +

1

12

(
c21(X) + c2(X)

)
+

1

24
c1(X) c2(X) , (4.7a)

Â(X) = 1− 1

24
c21(X) +

1

12
c2(X) , (4.7b)

with c1(X) =
∑

j xj , c2(X) =
∑

i>j xixj , shows that the indices (4.4) and (4.5) agree when

the compactification manifold has vanishing first Chern class c1(X) = 0. Furthermore,

these indices reproduce the multiplicities determined by the multiplicity operator (4.2)

evaluated on the appropriate weights.

4.3 Beyond the chiral spectrum

While the multiplicity operator (4.2) gives us the net chiral multiplicity of the charged

states, determining the number of truly vector-like pairs is more difficult. In general one

would have to compute individual dimensions of cohomology groups of appropriate wedge

products of the line bundles, rather than just their alternating sum which appears in the

indices. Determining the full spectrum provides a strong cross-check on the chiral spectrum

determined by the multiplicity operator. Moreover, knowing the full spectrum is important

in order to be able to check whether there are exotics in the spectrum that are vector-like

with respect to all line bundle charges. For example, if we want to investigate whether we

have the exact fermionic spectrum of the MSSM without exotics, we need to show that we

have exactly 3 |Γ| 10-plets and no 10-plets on the SU(5) GUT level, where |Γ| is the order

of the discrete Wilson line.

In order to compute the full spectrum via cohomology group dimensions we make use

of the Mathematica package cohomcalg [89, 90]. The idea behind this code is the following:

the spectrum of a line bundle background on a CICY can be determined by computing
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the ambient space vector bundle cohomology and subsequently restricting it to the Calabi-

Yau via the so-called Koszul sequence. This is an exact sequence for a hypersurface in

codimension r twisted by the bundle V

0 → V ⊗
r∧
N∗ → V ⊗

r−1∧
N∗ → . . . → V ⊗

1∧
N∗ → V → V|X → 0 , (4.8)

where N∗ is the dual normal bundle of the CICY, i.e. of the intersection locus of the hy-

persurface equations. We are interested in the last part V|X . By introducing auxiliary

sheaves we can break this exact sequence into several short exact sequences. These give

rise to long exact sequences in cohomology. We can compute the dimension of these coho-

mologies in the ambient space. Due to the exactness of (4.8), this allows us to determine

the cohomology of the V|X part we are interested in but which we cannot compute directly.

Exactness implies that the alternating sum of the dimension of the cohomology groups add

up to zero. Thus in cases where “enough” ambient space cohomology groups are trivial, i.e.

when no more than three consecutive positions in the Koszul are non-zero, the dimensions

of the cohomology groups follow uniquely. In cases where more consecutive positions are

non-vanishing, all we know is that their alternating sum equals zero. Due to this, the

cohomcalg-package does not determine the dimensions of the cohomology groups uniquely

in such cases. In order to resolve the ambiguity one has to construct explicitly the maps

between the cohomology groups and work out their kernels and images.

Higgs doublet pairs in supersymmetric 4D effective theories. The determination

of the full spectrum is in particular relevant to determine the Higgs sector. Let us first

consider Calabi-Yau compactifications of one of the supersymmetric heterotic strings. In

addition to having at least the 3 |Γ| 5-plets, which contain the left-handed SM quarks and

leptons, we need at least one pair of 5− 5-plets which contain a SM Higgs candidate. (As

is well-known in the MSSM one needs a pair of Higgs doublets in order to cancel anomalies

induced by the Higgsinos.) Note that such Higgs candidate pairs of 5 − 5-plets need to

behave very differently under the freely acting symmetry Γ than the 5 that contain the

left-handed quarks and leptons: from the latter we want to retain the full 5-plets since their

triplets correspond to the down-type quarks; merely their multiplicity should be reduce by

|Γ|. In contrast, 5 − 5-plet pairs have to become split multiplets, such that the Higgs

doublets survive while the triplets are projected out by the Wilson line. This means that

for the remaining vector-like Higgs pair the overall multiplicity stays zero.

Higgs doublet(s) in non-supersymmetric 4D effective theories. In non-

supersymmetric four-dimensional theories it is no problem to have just a single Higgs,

since it is a scalar and thus does not produce any anomalies. However, from our previ-

ous discussion we infer that it is impossible to obtain just a single Higgs doublet: as all

chiral representations have a multiplicity which is divisible by |Γ|, we need to start with

the lowest possible number, i.e. |Γ|, of additional 5-plets that can host the SM Higgs, in

order to keep exactly one Higgs doublet in the downstairs spectrum. However, after di-

viding out the freely acting Wilson line we will then obtain one doublet and one triplet as

the surviving 5-plet is merely branched. Alternatively, as in the supersymmetric case, we
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could start with a vector-like pair (such that the combined multiplicity is zero) and then

divide by the freely acting symmetry such that the triplets are projected out. But then we

have a pair of Higgs doublets rather than a single one. Consequently, we either have only

one Higgs together with its color triplet partner or we have at least one pair of vector-like

Higgs doublets.

Note that the situation is different for orbifold compactifications of the SO(16)×SO(16)

theory: indeed, in [43] various orbifold models with a single Higgs doublet were obtained.

This statement is not in conflict with our previous observations on smooth manifolds: the

orbifold gauge shift and discrete Wilson lines in these orbifold models were constructed

such that they break the gauge group directly to the SM group. In other words no freely

acting symmetry was needed to break an intermediate GUT group down to the SM, but it

is precisely such a freely acting symmetry that lead us to the conclusion above.

5 Effective theories in four dimensions

For the compactifications of the supersymmetric E8×E8 and SO(32) theories we can use

the familiar N=1 superspace formalism involving the Kähler potential, superpotential and

the gauge kinetic functions, to fully characterize the resulting effective theories in four

dimensions. Moreover, as long as we neglect α′ and gs corrections we may even use this

language to efficiently describe the effective theory of Calabi-Yau compactifications of the

non-supersymmetric SO(16)×SO(16) string as well. However, in this case we use these

functions as convenient short hands to describe specific bosonic and fermionic terms of the

action. When we go beyond the leading order, this formalism breaks down since loops

involving bosons and fermions are not identical anymore. However, as long as we consider

Green-Schwarz interactions, that are directly related to anomaly cancellation, we can still

trustworthily compute the corresponding axion couplings as in supersymmetric theories.

5.1 Effective four-dimensional N=1 actions for E8×E8 and SO(32) compacti-

fications

Below we give the Kähler potential K, superpotential WB and gauge kinetic function f

which characterize the compactification of the supersymmetric heterotic string theories.

We review how these functions can be (partially) inferred from dimensional reductions of

various terms in the ten-dimensional action (2.1), cf. [91–94]. We expand the Kalb-Ramond

two-form and the gauge fields as

Φ = ϕ0 + ϕ , B2 = b2 + ℓ2s βi D̂i , A1 = A1 + a1 (5.1)

where ℓ2s = (2π)2α′ denotes the string length. The four-dimensional dilaton is denoted by

ϕ and the constant background value of the ten-dimensional dilaton by ϕ0. In addition,

A1 defines the gauge background with field strength F2, and a1 the four-dimensional gauge

field one-forms with field strengths F2. The Kalb-Ramond two-form can be expanded in

terms of harmonic (1, 1)-forms dual to the divisors Di. The fields βi, appearing in this

expansion, are called model-dependent axions; the model-independent axion β0 is dual to
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the four-dimensional two-form b2:

e−4(ϕ+γ0) ∗4 db2 = dβ0 , Gµν = e2(ϕ+ϕ0) gµν , (5.2)

using the four-dimensional Einstein metric gµν , obtained from a four-dimensional Weyl

rescaling, to define the Hodge dual ∗4. The four-dimensional Planck scale can be read off

from the factor in front of the Einstein-Hilbert term to be

M2
P

8π
=

1

κ24
=

1

κ210

∫
1
6J

3 , e4γ0 = e2ϕ0 = ℓ−6
s

∫
1
6J

3 . (5.3)

The constants γ0, ϕ0 are fixed such that the kinetic terms of gauge fields and their couplings

to the model-independent axion β0, obtained from the Green-Schwarz term (2.5) involving

b2, can be written as

SYM =
1

4

∫
d4d2θ tr

[
SW 2

]
+ c.c. , (5.4)

provided that the defining components of the chiral and vector superfields contain

S
∣∣ ⊃ 1

2π

[
e−2ϕ + i β0

]
1
2

[
Dα̇, Dα

]
V
∣∣ ⊃ σµ

α̇α aµ . (5.5)

This is compatible with the kinetic terms of the dilaton ϕ and the axion β0 that arise

from the Kähler potential given by

K =− κ−2
4 ln

[
S+ S − 1

(2π)2
QIVI

]
− κ−2

4 ln

∫

X

1
6 J 3

− κ−2
4 ln

∫

X
ΩΩ−Kmm Zme2 q·VZm . (5.6)

The introduction of the vector multiplets VI in the first term is fixed by determining

the gauge connection for the model-independent axion that arise from the Green-Schwarz

term (2.5) after using the dualization (5.2). The charges, QI , in

QI F I
2 =

1

24

1

(2π)3

∫
X2,6 , (5.7)

depend strongly on the theory under consideration and are evaluated below. In addition,

we have introduced the notation,

J = −1
2

(
Ti + T i −

1

(2π)2
QI

i VI

)
D̂i , Ω = Up ω̂p , (5.8)

such that J | = J/(2π ℓ2s) gives the Kähler form J . The (2,1)-forms ω̂p were defined be-

low (3.2).

Here we have defined the chiral superfields

Ti

∣∣ ⊃ 1

2π

[
− ai

ℓ2s
+ i βi

]
, Up| ⊃

1

2π
up , (5.9)
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that involve the Kähler and complex structure moduli, respectively. The second term

in (5.6) is determined by the kinetic terms of the model-dependent axions βi using [95]
∫

X
D̂i ∧ ∗D̂j =

1

4Vol(X)

(∫

X
J2 D̂i

)(∫

X
J2 D̂j

)
−
∫

X
J D̂iD̂j , (5.10)

where Vol(X) is given in (3.4). The dependence on the four-dimensional dilaton ϕ dropped

out via the Weyl rescaling (5.2).

The coupling to the vector multiplets VI is determined by collecting the terms pro-

portional to D̂i in the expansion of H3 using the line bundle gauge flux (3.9) and (5.1).

Using

H3 ⊃ 2π ℓ2s D̂i

[
d
βi
2π

− 1

(2π)2
V I
i aI1

]
, (5.11)

we find

QI
i = V I

i (5.12)

for the charge of βi/2π, i.e. for the imaginary part of Ti. The final term in (5.6) involves

the massless chiral superfields, Zm| = zm, with charge matrix q. Even in Calabi-Yau

compactifications of supersymmetric string theories the detailed Kähler potential, encoded

in Kmm in (5.6), is difficult to determine unless one is on special backgrounds such as

orbifolds or uses the standard embedding.

By reducing the kinetic terms of the ten-dimensional gauge fields and the cross-terms

in the kinetic terms of the Kalb-Ramond field, one can extract the moduli-dependent part

of the gauge kinetic function

SYM ⊃ 1

4

∫
Im(Ti)

{
tr

[
∆f ′

i F
′ 2
2 +∆f ′′

i F ′′ 2
2

]
+∆f IJ

i F I
2F

J
2

}
. (5.13)

The gauge kinetic function coefficients ∆fi are determined by a reduction of the Green-

Schwarz term (2.5),

SGS ⊃ 1

24(2π)3

∫
βiDiX4,4

=
1

4

∫
βi
2π

{
tr

[
∆f ′

i F
′ 2
2 +∆f ′′

i F ′′ 2
2

]
+∆fJK

i F J
2 F

K
2 +∆i trR

2
}
. (5.14)

These charges and coefficients determine the factorization of the anomaly polynomial in

four dimensions,

4 I6 = QIF I
2

{
trF 2

2 − trR2
2

}
+QI

iF
I
2

{
tr

[
∆f ′

i F
′ 2
2 +∆f ′′

i F ′′ 2
2

]
+∆fJK

i F J
2 F

K
2

+∆i trR
2
2

}
. (5.15)

Here I6 is the four-dimensional anomaly polynomial computed directly using the multiplic-

ity operator. Given the prefactor 1/4 in (5.14), we have a normalization factor 4 in the

anomaly factorization formula.

The explicit expressions for the charges, QI
i , Q

I , and the coefficients, δGS, ∆fi, are

theory-dependent:
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Supersymmetric E8×E8 theory:

QI′

i =V ′I
i , QI′′

i =V ′′I
i , (5.16a)

QI′ = 1
6V

′I
i

(
N ′

i− 1
2N

′′
i

)
, QI′′ = 1

6 V
′′I
i

(
N ′′

i − 1
2 N

′
i

)
, (5.16b)

∆f ′
i=

1
6

(
N ′

i − 1
2 N

′′
i

)
, ∆f ′′

i =
1
6

(
N ′′

i − 1
2 N

′
i

)
, (5.16c)

∆fJ ′K′

i = 2
3 κijk V

′J
j V ′K

k , ∆fJ ′′K′′

i = 2
3κijk V

′′J
j V ′′K

k , ∆fJ ′K′′

i =−1
3κijkV

′J
j V ′′K

k , (5.16d)

∆i=− 1
24

(
κijk Vj · Vk + c2i

)
. (5.16e)

Supersymmetric SO(32) theory:

−QI
i = V I

i , −QI = 1
6 κijk tr(HiHjHkHI) +

1
12 c2i V

I
i , (5.17a)

−∆fi = κijk Hj Hk +
1
12 c2i , (5.17b)

−∆i = − 1
24

(
κijk Vj · Vk + c2i

)
. (5.17c)

5.2 Elements of the effective SO(16)×SO(16) theory in four dimensions

At leading order in gs and α′ we may still employ the N=1 superspace formalism to char-

acterized the bosonic and fermionic fields obtained from a Calabi-Yau compactification

of the non-supersymmetric SO(16)×SO(16) theory. The superfields now only include the

bosonic or fermionic components present in the non-supersymmetric theories. Therefore,

we briefly indicate the non-vanishing dynamical components of the relevant superfields.

This approach is similar to the spurion superfield formalism to encode soft supersymmetry

breaking.

Tree level superfield action for bosonic fields. In detail we define the following

superfields to describe bosonic moduli and matter scalar fields:

S
∣∣ = 1

2π

[
e−2ϕ + i β0

]
, Ti

∣∣ = 1

2π

[
− ai

ℓ2s
+ i βi

]
, Up| =

1

2π
up , Zm| = zm ,

(5.18)

as in e.g. (5.5) and (5.9) with auxiliary field components but without fermionic components.

Similarly the vector multiplet V does not have any fermionic component:

1
2

[
Dα̇, Dα

]
V
∣∣ = σµ

α̇α aµ , (5.19)

as in (5.5). The tree-level action for the scalar moduli and matter fields is obtained from

the bosonic Kähler potential

Kbos = −κ−2
4 ln

[
S + S

]
− κ−2

4 ln

∫

X

1
6 J 3 − κ−2

4 ln

∫

X
ΩΩ−Kmm

bos Zme2 q·VZm , (5.20)

with

J = −1
2

(
Ti + T i

)
D̂i . (5.21)

The tree-level gauge kinetic action is given by the familiar expression

SYM =
1

4

∫
d4d2θ tr

[
SW 2

]
+ c.c. . (5.22)
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Tree level superfield action for the fermionic fields. In addition, the compactifi-

cation leads to a set of chiral fermions ψf . We also collect them in chiral superfields Zf ,

such that their only non-vanishing component is given by

1√
2
DαZf | = ψf α . (5.23)

The tree-level kinetic terms of the chiral fermions ψf can be encoded in the fermionic

Kähler potential

Kferm = Kff

ferm Zfe
2 q·VZf . (5.24)

As for the bosonic matter fields the form of this Kähler potential is difficult to obtain for

general compactifications.

One-loop induced anomalous axion-gauge couplings. We expect that at the one-

loop level one encounters corrections that do not respect the relations that rely on su-

persymmetry. However, the axion couplings that result directly from the Green-Schwarz

mechanism in ten dimensions by reduction can still be computed without further difficulties.

These couplings are very important as they provide us with detailed anomaly cancellation

checks on the fermionic spectra, as in the case of compactifications of the supersymmetric

theories.

The coupling of the axions β0 and βi to the four-dimensional gauge fields is determined

by the reduction of the various terms in the ten-dimensional Green-Schwarz action. The

anomalous gauge transformations of the axions yield

δβ0 = QI αI , δβi = QI
i αI , (5.25)

where αI are the Abelian gauge parameters, such that δAI µ = −(2π) ∂µαI . The charges

QI are defined as in (5.7) and (5.12). By evaluating the integrals in the SO(16)×SO(16)

case we find

QI′

i = V ′I
i , QI′′

i = V ′′I
i , (5.26a)

QI′ = 1
6 κijk

[
V ′I
i

(
V ′
j · V ′

k − 1
2 V

′′
j · V ′′

k

)
− tr(H ′

iH
′
jH

′
kH

′
I)
]
, (5.26b)

QI′′ = 1
6 κijk

[
V ′′I
i

(
V ′′
j · V ′′

k − 1
2 V

′
j · V ′

k

)
− tr(H ′′

i H
′′
j H

′′
kH

′′
I )
]

The anomalous gauge transformations of the axions lead to a mixing of the axions with the

longitudinal parts of the gauge fields and thereby result in massive U(1)s. The anomalous

couplings of the axions take the form

SGS
axions ⊃

1

2π

∫
β0

{
trF ′ 2

2 +trF ′′ 2
2

}
+βi

{
tr
[
∆f ′

i F
′ 2
2 +∆f ′′

i F ′′ 2
2

]
+∆f IJ

i F I
2F

J
2

+∆i tr(R
2
2)
}
. (5.27)

The coefficients ∆fi are determined from the reduction of the Green-Schwarz term (2.5),

SGS ⊃ 1

24(2π)3

∫
βiDiX4,4 , (5.28)
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and are given by

∆f ′
i =κijk

(
1
6 V

′
j · V ′

k − 1
12 V

′′
j · V ′′

k −H ′
jH

′
k

)
, (5.29a)

∆f ′′
i =κijk

(
1
6 V

′′
j · V ′′

k − 1
12 V

′
j · V ′

k −H ′′
j H

′′
k

)
,

∆fJ ′K′

i = 2
3 κijk V

′J
j V ′K

k , ∆fJ ′′K′′

i = 2
3 κijk V

′′J
j V ′′K

k , ∆fJ ′K′′

i =−1
3 κijk V

′J
j V ′′K

k , (5.29b)

∆i = 0 . (5.29c)

6 Example of a smooth SM-like model

In this section we discuss an example to illustrate that it is possible to construct semi-

realistic models by compactifying the non-supersymmetric SO(16)×SO(16) theory on

smooth Calabi-Yau manifolds. Concretely we consider a line bundle model on the tetra-

quadric, i.e. on the CICY 7862 geometry. The relevant topological data for this manifold,

i.e. the intersection numbers and second Chern classes, are given by

κijk = 2 , c2i = 24 , (6.1)

for mutually distinct i, j, k between 1 and 4. On this geometry we can construct a six

generation non-supersymmetric SU(5) GUT theory by choosing the four line bundle vectors

that define the gauge bundle according to (3.9) as

V1 =
(
-1, 1, 2, -1, -1, -1, 2, 1 )( -1, 0, -1, 0, 0, 0, 0, 0

)
,

V2 =
(
0, -1, -1, 0, 0, 0, 0, 0 )( 1, 0, 0, -1, 0, 0, -1, 1

)
,

V3 =
(
0, 1, 1, 0, 0, 0, -2, 0 )( 0, 0, -1, 2, 1, 0, 2, -2

)
,

V4 =
(
1, 0, -1, 1, 1, 1, 0, -1 )( -1, 0, 2, 0, -1, 0, 0, 0

)
.

(6.2)

As explained below (3.10) these sixteen-component vectors are split into two eight-

component pieces that define the embedding of the gauge background into the Cartan

subalgebra of the first and second SO(16) factor, respectively. Using the methods outlined

in appendix B, they can be converted into the other basis.3

The resulting observable and hidden gauge groups are Gobs = SU(5) and Ghid =

SU(3)×SU(2)×SU(2), respectively. This model satisfies the tree-level DUY equations deep

inside the Kähler cone: indeed, if we take the volumes of the four divisors to be related,

Vol(D1) =
1
2 Vol(D2) = Vol(D3) = Vol(D4) , (6.3)

the tree-level DUY equations are satisfied.

The full spectrum of a non-supersymmetric six generation SU(5) GUT model with

this line bundle background on the geometry at hand is given in table 3. It contains the

3Note however that the results of appendix B cannot be applied directly since the matching there is

performed for the E8×E8 theory and the embedding for the visible sector SU(5) differs from (B.3) by a

Weyl reflection.
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Massless chiral fermions Massless complex bosons
ob

se
rv
ab

le

ch
ir
al 8(10;1,1,1) + 2(10;1,1,1)

+24(5;1,1,1) + 18(5;1,1,1)
16(5;1,1,1)

n
on

-
ch
ir
al

— —

h
id
d
en ch
ir
al 24(1;3,1,1)+20(1;3,1,1)+2(1;3,2,1)

+34(1;1,2,1)+28(1;1,1,2)+150(1;1,1,1)

16(1;3,1,1)+12(1;3,1,1)+2(1;3,2,2)

+4(1;1,2,2)+80(1;1,1,1)

n
on

-
ch
ir
al

— 5(1;3,1,1) + 5(1;3,1,1)

Table 3. This table gives the full charged spectrum of a six generation non-supersymmetric SU(5)

GUT theory on the geometry CICY 7862. The final rows in the observable and hidden sectors

displays vector-like states which are not detected by the multiplicity operator. In fact the charged

chiral and full spectrum are identical up to the five 3–3 pairs in the final row.

chiral spectrum computed using the multiplicity operator evaluated on the various ten-

dimensional states. This model contains vector-like fermionic and bosonic exotics at the

chiral level. The last rows in the observable and hidden sectors display the additional

non-chiral states that can only be determined by cohomology methods reviewed in subsec-

tion 4.3. We see that the number of states that the multiplicity operator misses is very

small in this concrete example.

By a freely acting Z2 Wilson line the model becomes a three generation SM-like theory.

The Wilson line,

W =
(

1
2 , 0, 0, 1

2 , 0, 0, 0, 0 )( 0, 0, 0, 0, 0, 0, 0, 0
)
, (6.4)

breaks the observable gauge group to Gobs = SU(2)×SU(3)×U(1)Y . Table 4 gives the full

spectrum in the downstairs description. Again, the final rows in the observable and hidden

sectors give the non-chiral states which the multiplicity operator does not see. We recognize

that this model is only SM-like and not a true SM candidate: its spectrum contains eight

scalar Higgs doublets, which are all accompanied by scalar color triplets.

7 Smooth SM-like models from the standard embedding

As observed in [18] and [43] the standard embedding for the SO(16)×SO(16) string on any

Calabi-Yau X yields an SO(10) GUT-like theory. In particular, we have a net number

of h21 − h11 = 1
2χ(X) fermionic 16-plet generations, where χ(X) is the Euler number of

the underlying Calabi-Yau manifold X. Via a Wilson line associated to a freely acting

symmetry Γ there is the possibility to break SO(10) down to the SM gauge group with

an additional U(1)B-L factor (since a breaking with such discrete Abelian symmetries is

always rank-preserving [96]) and reduce the number of chiral generations to three. For this
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Massless chiral fermions Massless complex bosons
ob

se
rv
ab

le

ch
ir
al 4(3,2;1,1,1) + (3,2;1,1,1) + 21(1,2;1,1,1)

+16(3,1;1,1,1) + 10(3,1;1,1,1)
8(3,1;1,1,1) + 8(1,2;1,1,1)

n
on

-
ch
ir
al

— —

h
id
d
en ch
ir
al 12(1;3,1,1)+10( 1;3,1,1)+17(1,1;1,2,1)

+(1;3,2,1)+14(1;1,1,2)+80(1;1,1,1)

(1;3,2,2)+8(1;3,1,1)+6(1;3,1,1)

+2(1;1,2,2)+40(1;1,1,1)

n
on

-
ch
ir
al

— 2(1;3,1,1) + 2(1;3,1,1)

Table 4. This table gives the full charged spectrum of an illustrative non-supersymmetric SM-like

model on the geometry CICY 7862. In this model the doublet-triplet splitting problem in the scalar

Higgs sector is not resolved.

reason we have to look for a smooth manifold X that satisfies

1
2χ(X/Γ) =

χ(X)

2|Γ| =
h21 − h11

|Γ|
!
= 3 , (7.1)

for one of its given freely acting symmetries Γ.

In order to break SO(10) down to Gobs =SU(3)×SU(2)×U(1)Y ×U(1)B-L, we need at

least a freely acting Abelian Γ = ZN symmetry with N ≥ 4. To see this, we have depicted

the extended Dynkin diagram of the GUT group SO(10) in figure 3. Here −α0 = θ denotes

the highest root θ = ai α
i . The Coxeter labels (or marks) ai for the five simple roots of

SO(10) are given inside the nodes; for α0 we define a0 = 1. To determine the unbroken

SO(10) simple roots, when modding out an ZN Wilson line, we use Dynkin’s procedure,

as explained in [97] to find the unbroken roots:

N = s0 + s1 + 2(s2 + s3) + s4 + s5 , (7.2)

where 0 ≤ si ≤ N for all i = 0, . . . , 5 . If si 6= 0 the corresponding simple root (and

any Weyl reflected root) is broken. Using equation (7.2) we readily compute the lowest

order N we need to trigger symmetry breaking down to the gauge group GSM and find the

bound N ≥ 4 .

Going through the list of classified CICYs and their freely acting symmetries [68, 70],

we find two CICYs with property (7.1): CICY 7246 and CICY 7300. Both geometries have

h11 = 8, h21 = 44 and can support a Z12 Wilson line. If we allow for an additional “hidden”

SU(2) symmetry, i.e. obtain the downstairs gauge group Gobs×SU(2) , then following (7.2)

for the extended Dynkin diagram in figure 3 we can relax the condition for the order of

the Wilson line to N ≥ 3 . In the aforementioned list [68, 70] there is only one additional

geometry satisfying (7.1) with N = 3: CICY 536 .
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1

Figure 3. This figure shows the extended Dynkin diagram of SO(10). For the five simple roots

and the extended root the Coxeter labels are given inside the nodes. A breaking to SU(3)×SU(2)

is suggested with the colored roots being projected out. All other possible breaking patterns can

be obtained by automorphisms of the extended diagram.

8 Heterotic five-branes in the SO(16)×SO(16) theory

One may consider the heterotic string in a background of NS5-branes. The properties

of NS5-branes strongly depends on the heterotic theory in question: for the SO(32) and

E8×E8 their properties have been discussed in the literature, see e.g. [88], while for the

SO(16)×SO(16) they are unknown as far as we know.

To establish the properties of NS5-branes within the non-supersymmetric heterotic

string, we will make use of the observation that the perturbative spectrum of the theory

can be obtained by non-supersymmetric projections of the SO(32) and E8×E8 string. As

noted above, the full massless spectrum of the SO(16)×SO(16) involves both untwisted

and twisted states, if one starts either from the SO(32) or E8×E8 theory. However, twisted

states in one construction are untwisted in the other and vice versa. Hence, by combining

the simple orbifold projections within both theories, one has access to the full massless

spectrum. Because of this we hope that we can assume the same in the presence of NS5-

branes: hence we will assume that all NS5-brane states in the SO(16)×SO(16) theory can

be understood from the supersymmetry-breaking twist acting on the NS5-branes in the

SO(32) and E8×E8 theories. Their anomaly contributions were discussed in detail in [88];

to determine the SO(16)×SO(16) NS5-branes we take inspiration from that discussion.

The action of this twist is not completely determined by its action on the perturbative

parts of these theories. However, as we will see, anomaly cancellation essentially fixes a

unique choice.

Perturbative anomaly contributions. To explain this in detail, we consider a com-

pactification of the SO(16)×SO(16) theory on a smooth K3 with line bundles. The K3 can

be characterized by divisorsDi with intersection κij = DiDj and c1(K3) = 0, c2(K3) = 24.

The perturbative anomaly in six dimensions takes the form

I
(full) pert
8 =

∫
Ipert12 =

∫
− 1

24

(
X4,0X4,4 +X2,2X6,2 +X0,4X8,0

)
, (8.1)

where the reductions of X4 and X8 read

X4,0 = trF ′ 2
2 + trF ′′ 2

2 − trR2
2 , X2,2 = 2trF ′

2F ′
2 + 2trF ′′

2 F ′′
2 ,

X0,4 = 2(trF ′ 2
2 + trF ′′ 2

2 − trR2
2) (8.2)

– 27 –



J
H
E
P
1
0
(
2
0
1
5
)
1
6
6

and

X4,4 =− 6trF ′ 2
2 F ′ 2

2 − 6trF ′′ 2
2 F ′′ 2

2 + trF ′ 2
2 trF ′ 2

2 + trF ′′ 2
2 trF ′′ 2

2

+ 4 (trF ′
2F ′

2)
2 + 4 (trF ′′

2 F ′′
2 )

2+

− 1
2 trF

′ 2
2 trF ′′ 2

2 − 1
2 trF

′′ 2
2 trF ′ 2

2 − 4 tr(F ′
2F ′

2) tr(F
′′
2 F ′′

2 ) , (8.3a)

X6,2 =− 4trF ′
2F

′ 3
2 − 4trF ′′

2F
′′ 3
2 + 2 tr(F ′

2F ′
2)trF

′ 2
2 + 2 tr(F ′′

2 F ′′
2 )trF

′′ 2
2 +

− tr(F ′
2F ′

2)trF
′′ 2
2 − tr(F ′′

2 F ′′
2 )trF

′ 2
2 , (8.3b)

X8,0 =− trF ′ 4
2 − trF ′′ 4

2 + 1
4 (trF

′ 2
2 )2 + 1

4 (trF
′′ 2
2 )2 − 1

4 trF
′ 2
2 trF ′′ 2

2 . (8.3c)

The first two contributions in (8.1) are automatically cancelled by the reduction of the

perturbative Green-Schwarz mechanism (2.5); therefore we will not consider those contri-

butions further here. For the third and final contribution this is not the case, since the

integrated Bianchi identity, the integral over X0,4, defines the five-brane charge

N =
1

2

∫
X0,4 =

∫
(trF ′ 2

2 + trF ′′ 2
2 − trR2

2) = κij Vi · Vj + 48 . (8.4)

We see that for N 6= 0 the perturbative part of the SO(16)×SO(16) suffers from irre-

ducible anomalies of SO(16) or appropriate subgroups thereof, but not from an irreducible

gravitational anomaly:

Ipert8 = −2N

24

{
− trF ′ 4

2 − trF ′′ 4
2 + 1

4 (trF
′ 2
2 )2 + 1

4 (trF
′′ 2
2 )2 − 1

4 trF
′ 2
2 trF ′′ 2

2

}
. (8.5)

(Here we only give the anomaly contributions that are not cancelled by the reduction

of the ten-dimensional Green-Schwarz mechanism.) This means that the NS5-branes

in the SO(16)×SO(16) theory have to cancel these irreducible gauge anomalies, but

their irreducible gravitational and non-perturbative gauge anomalies all have to vanish

independently.

SO(32) NS5-brane anomaly contributions. Next, we briefly discuss the spectra on

Ñ coinciding NS5-branes in the SO(32) theory, cf. table 5. To figure out how the non-

supersymmetric twist acts on the NS5-brane spectrum, we first recall that the action on

the SO(32) gauge fields can be represented as

AM → USOAM UT
SO , where USO =

(
1116 0

0 −1116

)
. (8.6)

We extend the non-supersymmetric twist on the SO(32) NS5-brane fields

V → USp VUT
Sp , H → USOHUT

Sp , C → USp CUT
Sp , with USp =

(
11
2Ñ ′

0

0 −11
2Ñ ′′

)
, (8.7)

such that Ñ ′+Ñ ′′ = Ñ . The choice of the supersymmetry-breaking twist on the NS5-brane

states is a priori not unique even up to similarity transformations. In particular, there may
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SO(32) NS5-branes

Sp(2Ñ) 6D Bi-fundamental Anti-symmetric

vector multiplet half-hypermultiplets hypermultiplets

V ([2Ñ ]+2 )+ H (32; 2Ñ)− C ([2Ñ ]−2 )−

Sp(2Ñ ′)× Sp(2Ñ ′′) (16′; 2Ñ ′′) + (16′′; 2Ñ ′) (2Ñ ′, 2Ñ ′′)

gauge fields scalars scalars

(2Ñ ′, 2Ñ ′′)+ 1
2(16

′; 2Ñ ′)− + 1
2(16

′′; 2Ñ ′′)− ([2Ñ ′]−2 )− + ([2Ñ ′′]−2 )−

gauginos half-hyperinos hyperinos

Table 5. The top part of this table gives the matter spectra on Ñ coinciding NS5-branes in the

heterotic SO(32) theory. The notation [2Ñ ]±
2

denotes the totally symmetric/anti-symmetric rank-

two tensor of Sp(2Ñ). The subscript ± on the various representations indicates the six-dimensional

chirality of the corresponding fermions. (We use the same convention for the perturbative theories

in which the chiralities of E8×E8 and SO(32) are taken to be opposite.) The bottom part of the

table displays the remaining states after the non-supersymmetric projection has been performed.

be an additional minus sign in the transformation of the anti-symmetric hypermultiplet C.

However, as we are then not able to cancel the irreducible Sp(2Ñ ′) and Sp(2Ñ ′′) anomalies,

we disregard such possibilities.

The bosonic and fermionic states that survive this supersymmetry-breaking twist (8.7)

are given in the last two rows of table 5. The fermionic part of the spectrum produces an

anomaly

ISONS5
8 =

Ñ ′′ − Ñ ′

12

(
trF̃ ′ 4

2 − trF̃ ′′ 4
2

)

−15(Ñ ′ + Ñ ′′) + 2(Ñ ′ − Ñ ′′)2

128

(
1

45
trR4

2 +
1

36
(trR2

2)
2

)

+
1

96
trR2

2

(
Ñ ′

trF ′ 2
2 +Ñ ′′

trF ′′ 2
2 +(2 Ñ ′−2 Ñ ′′+6)trF̃ ′ 2

2 +(2 Ñ ′′−2 Ñ ′+6)trF̃ ′′ 2
2

)

−Ñ ′

24
trF ′ 4

2 − Ñ ′′

24
trF ′′ 4

2 − 1

8
(trF̃ ′ 2

2 )2 − 1

8
(trF̃ ′′ 2

2 )2 +
1

4
trF̃ ′ 2

2 trF̃ ′′ 2
2

−1

8
trF ′ 2

2 trF̃ ′ 2
2 − 1

8
trF ′′ 2

2 trF̃ ′′ 2
2 . (8.8)

Here F̃ ′
2, F̃ ′′

2 denote the gauge field strengths of the Sp(2Ñ ′), Sp(2Ñ ′′) groups and tr is

the trace in the fundamental of Sp-groups. The overall sign of the anomaly contributions is

fixed by the following consideration: in our convention the ten-dimensional chirality of the

SO(32) theory is opposite to that of the E8×E8 theory. We require that the NS5-branes

coming from the SO(32) theory preserve the supersymmetry realized in the compactification

of the SO(32) theory.
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The anomaly polynomial contains irreducible anomalies of (various subgroups of)

SO(16)′×SO(16)′′, Sp(2Ñ ′) and Sp(2Ñ ′′) and irreducible gravitational anomalies. The

irreducible Sp(2Ñ ′) and Sp(2Ñ ′′) anomalies drop out and the irreducible anomalies of (sub-

groups of) SO(16)′×SO(16)′′ cancel those due to the last term in (8.1) (inserting (8.3c))

provided that we choose

Ñ ′ = Ñ ′′ = 2N . (8.9)

For this choice the irreducible gravitational anomaly remains. It is remarkable that the

irreducible parts of those SO(16)×SO(16) anomalies in (8.8) which are independent of

Ñ ′, Ñ ′′ cancel among themselves.

E8×E8 NS5-brane anomaly contributions. We see that the non-supersymmetric

projection of the SO(32) NS5-branes leads to an irreducible gravitational anomaly. To

cancel this anomaly we can use the E8×E8 NS5-branes that support six-dimensional tensor

multiplets Ts and hypermultiplets Hs, s = 1, . . . , ñ. The tensor multiplets include anti-

self-dual tensors. The scalars in the hypermultiplets parameterize the positions of the

NS5-branes on the K3 [98].

As for the SO(32) NS5-branes, we have to decide how the tensor- and hypermultiplet

components transform under the supersymmetry-breaking twist. We take:

Ts′ → Ts′ , Ts′′ → −Ts′′ , Hs′′ → Hs′′ , Hs′ → −Hs′ , (8.10)

with s′ = 1, . . . , ñ′ and s′′ = 1, . . . , ñ′′, such that ñ′ + ñ′′ = ñ. The surviving spectrum is

given in the bottom part of table 6. The resulting gravitational anomaly reads

IE8×E8 NS5
8 =

ñ′

128

(
28

45
trR4

2 −
8

36
(trR2

2)
2

)
+

ñ′ + ñ′′

128

(
1

45
trR4

2 +
1

36
(trR2

2)
2

)
. (8.11)

The first contribution comes from the surviving anti-self-dual tensor fields and the second

from the surviving hyperinos and tensorinos. Consequently, if we take

ñ′′ = 60N − 29 ñ′ , (8.12)

we see that all irreducible gravitational anomalies are cancelled.

Factorization. The remaining reducible anomalies read

Ired8 =
2N

96

[
trF ′ 2

trF ′′ 2− (trF ′ 2)2− (trF ′′ 2)2+trR2
2

(
trF ′ 2 + trF ′′ 2)]− ñ′

128
(trR2

2)
2

− 1

8
trF ′ 2

trF̃ ′ 2 − 1

8
trF ′′ 2

trF̃ ′′ 2 +
1

16
trR2

2

(
trF̃ ′ 2 + trF̃ ′′ 2

)
(8.13)

− 1

8
(trF̃ ′ 2)2 − 1

8
(trF̃ ′′ 2)2 +

1

4
trF̃ ′ 2

trF̃ ′′ 2 .

This expression is symmetric under the simultaneous exchange of F ′ 2
2 ↔ F ′′ 2

2 and

F̃ ′ 2
2 ↔ F̃ ′′ 2

2 . Consequently, the anomaly canceling diagrams need to have the same

symmetry.
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E8×E8 NS5-branes

Tensor multiplets Hypermultiplets

Ts Hs , s = 1, . . . , ñ

ñ′ anti-self-dual tensors ñ′′ complex scalars

ñ′′ (tensorinos)+ ñ′ (hyperinos)+

Table 6. The top part of this table gives the matter spectra on ñ coinciding NS5-branes in

the E8×E8 theory. The bottom part of the table displays the remaining states after the non-

supersymmetric projection has been performed.

The field strength of the anti-symmetric tensors Bs
2 are denoted by Hs

3 = dBs
2+CS3,

such that

dHs
3 =

α′

8

{
a (trF ′ 2

2 − trF ′′ 2
2 ) + ã (trF̃ ′ 2

2 − trF̃ ′′ 2
2 )

}
. (8.14)

Here a, ã are constants to be determined below from anomaly factorization. The relevant

part of the six-dimensional NS5-brane action including Green-Schwarz-like Chern-Simons

interactions can be represented as

S =
ñ′∑

s=1

∫ {
− π

ℓ4s
Hs

3 ∧ ∗Hs
3 +

c

24(2π)ℓ2s
Bs

2

(
trF ′ 2

2 − trF ′′ 2
2

)
(8.15)

+
1

24(2π)ℓ2s
B2

(
b (trF ′ 2

2 + trF ′′ 2
2 ) + b̃ (trF̃ ′ 2

2 + trF̃ ′′ 2
2 )− bR trR2

2

)}
,

where b, b̃, bR, c are further constants. This leads to the following anomaly contributions:

I
(1)
8 =

1

96

[
trF ′ 2+trF ′′ 2−trR′ 2

]

[
b (trF ′ 2

2 +trF ′′ 2
2 )+b̃ (trF̃ ′ 2

2 + trF̃ ′′ 2
2 )− bR trR2

2

]
, (8.16a)

I
(2)
8 =

ñ′

128

[
a (trF ′ 2

2 − trF ′′ 2
2 ) + ã (trF̃ ′ 2

2 − trF̃ ′′ 2
2 )

]2
, (8.16b)

I
(3)
8 =

ñ′c
192

[
a (trF ′ 2

2 − trF ′′ 2
2 ) + ã (trF̃ ′ 2

2 − trF̃ ′′ 2
2 )

][
trF ′ 2

2 − trF ′′ 2
2

]
. (8.16c)

These contributions respect the same permutation symmetries as we observed in (8.13).

The factor ñ′ in the second and third contribution arises because there are ñ′ tensors Bs
2

which mediate the anomaly cancellation. They cancel exactly when the coefficients are

chosen as

ñ′ = 2N , b = 1
2 N , b̃ = 6 , bR = 3

2 N ,

a = ±1∓
√
1− 2N√
2N

, ã =
4√
2N

, c = 3

√
1− 2N√
2N

. (8.17)
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Note that there are two more solutions obtained from inverting the signs of (a, ã, c) simul-

taneously which is due to the parameterization in (8.16c). All solutions have ñ′ = 2N ,

which means that, using (8.9) and (8.12), Ñ ′ = Ñ ′′ = ñ′ = ñ′′, i.e. the number of the

NS5-branes from SO(32) and E8×E8 match.

To summarize we find the rather surprising result that (8.17) has only one genuine

solution which has

Ñ ′ = Ñ ′′ = ñ′ = ñ′′ = 1 , and N = 1/2 , (8.18)

i.e. a single NS5-brane. This result has been obtained under the following assumptions:

i) We can understand all NS5-brane properties by studying the untwisted sector of the

supersymmetry-breaking twist of the supersymmetric E8×E8 and SO(32) theory com-

bined.

ii) The SO(32) and E8×E8 NS5-branes preserve the same supersymmetry as present in

the perturbative sector of SO(32) and E8×E8 theories, respectively.

iii) We have ignored the possibility of having states that stretch between the E8×E8 and

SO(32)-type NS5-branes.

iv) We have made a restrictive ansatz (8.15) for the generalized Green-Schwarz couplings

on the NS5-branes.

It would be important to provide either further evidence for this result or to find potential

problems and/or generalizations of our arguments. Moreover, we wonder whether we should

interpret the five-branes in the SO(16)×SO(16) string as one or two types of NS5-branes.

Even more important is the question whether these five-branes could become an additional

source for tachyons.
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A Traces

A representation R = {|p〉} is characterized by a set of vectors |p〉 corresponding to the

weights p ∈ WR = {p}. We identify a representation module R with its weight system WR

for notational convenience and write WR = R. Some representations and their weights

are indicated for SU and SO-groups in tables 7 and 8, respectively. The dimension of a

representation R is denoted by |R|.
The generators TA of a group G are labeled by A. We take the same Cartan generators,

denoted by HI , in all three heterotic theories. Their eigenvalues are the components of the

weights,

HI |p〉 = pI |p〉 . (A.1)

The remaining generators are denoted by Eα where α are the roots of the group, i.e. the

weights in the adjoint representation.

The trace of an operator AG over a representation R is defined as

trR(AG) =
∑

p∈R
〈p|AG|p〉 . (A.2)

The subscript G indicates that one is performing the trace of an operator which is a function

of objects that are functions of algebra elements associated to the group G. The character

of an operator AG over a representation R is defined as

chR(AG) = trR
(
eAG

)
. (A.3)

Characters are compatible with direct sums and tensor products in the sense that

chr⊕R(AG) = chr(A) + chR(AG) , chr⊗R(AG) = chr(AG) chR(AG) . (A.4)

Consequently, for anti-symmetric tensor products one has:

ch[R]−
2

(AG) =
1
2

(
chR(AG)

2 − chR(2AG)
)
, (A.5a)

ch[R]−
3

(AG) =
1
6

(
chR(AG)

3 − 3 chR(AG) chR(2AG) + 2 chR(3AG)
)
, (A.5b)

We denote by

tr(ASU) = trN(ASU) (A.6)

the trace as if it is the trace over the fundamental representation of an SU group, i.e. the

vector representation N of the SU(N) group. Similarly, we define for the trace over the

fundamental (vector) representations 2N of SO(2N) and Sp(2N),

tr(ASO) = tr2N(ASO) , tr(ASp) = tr2N(ASp) , (A.7)

For SO- and Sp-groups this means that

tr(ASU) = tr2N(ASU) = 2 trN(ASU) = 2 tr(ASU) , (A.8)
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SU(N) representations

Name R Weights p |R| ℓ(R)

Vector F = N
(
1, 0N−1

)
N 1

Adjoint Ad
(
±12, 0N−2

)
N2 − 1 2N

Rank-2 tensor [N]−2
(
12, 0N−2

)
1
2N(N − 1) N − 2

Rank-3 tensor [N]−3
(
13, 0N−3

)
1
6N(N − 1)(N − 2) 1

2(N − 2)(N − 3)
...

...
...

...
...

Table 7. Some representations of SU(N) and their weights are indicated.

SO(2N) representations

Name R Weights p |R| ℓ(R)

Vector 2N
(
±1, 0N−1

)
2N 2

Adjoint Ad
(
±12, 0N−2

)
N(2N − 1) 4(N − 1)

Spinor± 2N−1
±

(
± 1

2

N)
2N−1 2N−3

#(−) = even/odd

Table 8. Some representations of SO(2N) and their weights are indicated.

since we have the branching 2N → N + N when we consider A†
SU = ASU in the SU(N)

subalgebra of the SO(2N) algebra. We often write traces of objects valued in a certain

algebra as traced over another representation associated to a different algebra. In this

case this should be understood as defining some useful notation, not literally as the trace

written (as that would not necessarily make sense). For example, the l.h.s. of

tr(ASO) = trN(ASO) :=
1

2
tr2N(ASO) , (A.9)

does not make sense because the smallest representation of SO(2N) is 2N and not the

fundamental representation N of the SU(N) group. Hence, here the l.h.s. is defined as the

r.h.s. including the normalization factor 1/2. Similar one often uses the trace of the adjoint

of E8 written as the trace over the fundamental of SO(16):

tr(AE8
) = tr16(AE8

) :=
1

30
tr248(AE8

) . (A.10)

We reserve the notation Tr to denote the trace over the full fermionic spectrum. For the

supersymmetric E8×E8 and SO(32) theories, this is then the trace in the adjoint of the

respective gauge group.

The quadratic Casimir operator of the algebra is given by

CG =
∑

A

(TATA)G . (A.11)
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Denoting the eigenvalue of this Casimir evaluated on a representation R by C(R), we have

C(R) |R| =
∑

A

trR(TATA)G . (A.12)

This means that

trN(TATB)SU = δAB , trN(C) = |Ad| . (A.13)

The index ℓ(R) of a representation R of a given group G is defined as

trR(TATB) = ℓ(R) trN(TATB) . (A.14)

By setting B = A and summing over A, we obtain the trace (A.13) on the right-hand side.

Because of the weights of the spinor representation 2N−1
+ , it branches into a sum of even

rank anti-symmetric tensor representations [N]−
2k
. Using this one can determine the index

of the spinor representation if the indices of the anti-symmetric tensor representations of

the SU group are known. The resulting values for some representations indices of SU and

SO-groups can be found in tables 7 and 8.

For quadratic traces of two Cartan generators in the fundamental representations of

the SU and SO groups we find:

trN(HI HJ) = δIJ , tr2N(HI HJ) = 2 δIJ , (A.15)

respectively, and similarly for quartic traces:

trN(HI HJ HK HL) = δIJKL , tr2N(HI HJ HK HL) = 2 δIJKL , (A.16)

where δIJKL = 1 when all indices are equal and zero otherwise. We should stress that

these trace identities only hold when traced over Cartan generators as stated here; generic

quartic traces are more complicated.

B Line bundle description as S(U(1)n+1) bundles

The authors of some of the literature on line bundles on Calabi-Yau manifolds [64, 65, 99]

use a different parameterization for the embedding of the structure group of the vector

bundle into the primordial gauge group. We briefly review this parameterization in order to

facilitate contact with our description. A vector bundle V with structure group S(U(1)n+1)

can be obtained as a direct sum of line bundles

V =
n+1⊕

a=1

O(k
(a)
1 , . . . , k

(a)
h11

) , (B.1)

labeled by nh11 integers k
(a)
i . This leads to a gauge flux that can be represented as

F
2π

= k
(a)
i DiH(a) , (B.2)

where H(a) are the n+ 1 U(1) generators of the Cartan of U(n+1). In particular, k(a) can

be identified with the charge of the a-th 10-plet. Here we have expanded the first Chern

classes c1(O(k
(a)
1 , . . . k

(a)
h11

) = k
(a)
i D̂i associated to the divisors Di. In order to ensure that

we have an S(U(1)n+1) and not a U(1)n+1 structure group we require that c1(V) = 0, i.e.

the corresponding gauge flux is traceless: k
(n+1)
i = −k

(1)
i − . . .− k

(n)
i .
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B.1 A line bundle vector representation of S(U(1)5) bundles

In the literature mostly S(U(1)5)⊃E8 bundles are discussed. To translate such bundle

backgrounds into the language used in this work we observe the following: the E8 gauge

group will contain an unbroken SU(5) group if we choose4 (up to overall permutations)

Vi = (a5i , bi, ci, di) , (B.3)

provided that the coefficients ai 6= 0, bi, ci, di are sufficiently generic, i.e. no entries are

equal or opposite and the sums of all entries mod two does not vanish. Using this choice,

all unbroken SU(5) roots, ( -1, 1, 03, 03)(08), are vectorial. In the non-supersymmetric case,

this ansatz leads to the breaking of one of the SO(16) factors to SU(5).

To identify the integers k
(a)
i with the quantities appearing in the parameterization

Vi given in (B.3) we compare the value of the charges of the 10-plets of SU(5) in both

descriptions. The motivation to use the 10-plets for this matching is given by the branching

the adjoint of E8

248 → (24,1) + (1,24) + (10,5) + (10,5) + (5,10) + (5,10) (B.4)

under E8 → SU(5) × SU(5). Hence we see the that U(1)5 charges under the gauge fluxes

supported on the divisor D̂i of the 5-components are simply ki(a). Using this we obtain the

following relation between the U(1) bundle charges in both languages:

10-plets Vi-charges ki-charges(
-12

3
, 12

2
, -12 ,

1
2 ,

1
2

)
−ai

2 − bi
2 + ci

2 + di
2 k

(1)
i(

-12
3
, 12

2
, 1

2 , -
1
2 ,

1
2

)
−ai

2 + bi
2 − ci

2 + di
2 k

(2)
i(

-12
3
, 12

2
, 1

2 ,
1
2 , -

1
2

)
−ai

2 + bi
2 + ci

2 − di
2 k

(3)
i(

-12
3
, 12

2
, -12 , -

1
2 , -

1
2

)
−ai

2 − bi
2 − ci

2 − di
2 k

(4)
i

(12, 03, 03) 2 ai k
(5)
i

Note that this identification automatically builds in the constraint on the sum,
∑

a k
(a)
i = 0.

Solving for the quantities in (B.3) we find

ai = −1
2

(
k
(1)
i + k

(2)
i + k

(3)
i + k

(4)
i

)
, bi = −1

2

(
k
(1)
i − k

(2)
i − k

(3)
i + k

(4)
i

)
,

ci = −1
2

(
-k

(1)
i + k

(2)
i − k

(3)
i + k

(4)
i

)
, di = −1

2

(
-k

(1)
i − k

(2)
i + k

(3)
i + k

(4)
i

)
.

(B.5)

This shows in particular that when the sum of k
(1)
i + . . .+k

(4)
i is even (odd), we obtain the

vectorial (spinorial) E8 weights. These identifications should be read modulo permutations.

B.2 A line bundle vector representation of S(U(1)6) bundles

Similarly we can identify other line bundle backgrounds in both descriptions. As an example

we consider S(U(1)6) bundles with five independent bundle entries ki(a), a = 1, . . . , 5. In

this case the unbroken gauge group is generically SU(4), hence we consider the branching

248 → (15,1) + (1,45) + (4,16) + (4,16) + (6,10) (B.6)

4Other parameterizations corresponding to different embeddings in the E8 are also possible.

– 36 –



J
H
E
P
1
0
(
2
0
1
5
)
1
6
6

of E8 → SU(4) × SO(10). The anti-symmetric tensor 6 can now be used to identify the

translation uniquely. It is paired with the 10-plet, which branches as 10 → 5 + 5 under

SO(10) → U(5). Hence the five entries ki(a) can be identified with the U(1) charges of the

five components of the 5-plet in this branching. To realize this using the bundle vectors

employed in this work, we take (up to overall permutations)

Vi = (a4i , bi, ci, di, ei) . (B.7)

Matching the 6-plet charges, we find:

6-plets Vi-charges ki-charges(
-12

2
, 12

2
, 1

2 ,
1
2 ,

1
2 ,

1
2

)
bi
2 + ci

2 + di
2 + ei

2 k
(1)
i(

-12
2
, 12

2
, -12 , -

1
2 ,

1
2 ,

1
2

)
− bi

2 − ci
2 + di

2 + ei
2 k

(2)
i(

-12
2
, 12

2
, -12 ,

1
2 , -

1
2 ,

1
2

)
− bi

2 + ci
2 − di

2 + ei
2 k

(3)
i(

-12
2
, 12

2
, -12 ,

1
2 ,

1
2 , -

1
2

)
− bi

2 + ci
2 + di

2 − ei
2 k

(4)
i

( -12, 02, 04) −2 ai k
(5)
i
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