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Abstract. For understanding water and solute transport pro-
cesses, knowledge about the respective hydraulic properties
is necessary. Commonly, hydraulic parameters are estimated
via pedo-transfer functions using soil texture data to avoid
cost-intensive measurements of hydraulic parameters in the
laboratory. Therefore, current soil texture information is only
available at a coarse spatial resolution of 250 to 1000 m.

Here, a method is presented to derive high-resolution
(15 m) spatial topsoil texture patterns for the meso-scale At-
tert catchment (Luxembourg, 288km?) from 28 images of
ASTER (advanced spaceborne thermal emission and reflec-
tion radiometer) thermal remote sensing. A principle compo-
nent analysis of the images reveals the most dominant ther-
mal patterns (principle components, PCs) that are related to
212 fractional soil texture samples. Within a multiple lin-
ear regression framework, distributed soil texture informa-
tion is estimated and related uncertainties are assessed. An
overall root mean squared error (RMSE) of 12.7 percent-
age points (pp) lies well within and even below the range
of recent studies on soil texture estimation, while requiring
sparser sample setups and a less diverse set of basic spatial
input.

This approach will improve the generation of spatially dis-
tributed topsoil maps, particularly for hydrologic modeling
purposes, and will expand the usage of thermal remote sens-
ing products.

1 Introduction

The prediction of (sub-)surface water and solute transport
processes, from the plot to the basin scale, heavily rely on
spatial information of soil hydraulic properties (SHPs). How-
ever, the measurement of SHPs in the field or in the lab is
very time-consuming and expensive with regard to equip-
ment and labor costs (Durner and Lipsius, 2005). To reduce
experimental efforts and cost, SHPs are often estimated via
so-called pedo-transfer functions from other soil properties
available that are easier and cheaper; examples of relevant
properties are soil texture, bulk density or organic carbon
content (Pachepsky and Rawls, 2004).

Standard soil texture information, from country to global
levels, is available from a variety of sources. They vary in
resolution, method of production and quality. Exemplary soil
texture sources on country to global level are JRC (2015),
FAO (2015), ISRIC (2015), USDA (2015) or AAFC (2010).
The spatial resolutions of these products differ between
250 and 1000 m. The product quality is defined by usually
sparse sample data and additional spatial information rang-
ing from topography, landform observations, remote sensing
products or expert knowledge. Furthermore, applied interpo-
lation techniques and landscape evolution models, as well
as pattern estimation methods, control the quality of derived
spatial soil texture products. In general, texture information
has a coarse spatial resolution and partly consist only of qual-
itative information; thus, this information is characterized by
large uncertainties that are hard to quantify.
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Figure 1. The position of the Attert catchment with superimposed elevation data. The gauge Bissen, Luxembourg, defines the catchment

boundaries.

However, many current applications, e.g., land surface
models, heavily rely on high-resolution products in the range
of 100m and less (precision farming: 10-50 m, e.g., Selige
et al. (2006), or Sadler et al. (1998); flood forecasting: 50—
100 m, e.g., de Roo et al. (2003), or Reed et al. (2007)). Any
quantification of uncertainties with regard to map informa-
tion is missing most of the time, but would be essential in
order to evaluate the quality and reliability of model predic-
tions.

This study uses thermal remote sensing (RS) data in com-
bination with plot measurements to generate spatially dis-
tributed soil texture maps. Physical relations between sur-
face temperature, thermal radiation, soil water content and
soil texture have been widely demonstrated in studies to
determine soil texture characterizations (diurnal tempera-
ture range: Wang et al., 2015; multispectral data: Ahmed
and Igbal, 2014; partial regressions with thermal spectra:
Dhawale et al., 2015). If time series of thermal RS data are
available, the concept of thermal inertia is applicable to gain
information on soil texture. Thermal inertia is the spatially
varying tendency of the land surface to resist changes in tem-
perature forced by energy input. Responsible for these spa-
tial differences in inertia are patterns of thermal conductivity,
density and specific heat capacity of the land surface mate-
rial (Rees and Rees, 2013; Minacapilli et al., 2012). However,
thermal observations of land surface are nonlinear integrals
over all three dimensions in space of the occurring materials
(Hall et al., 1995; Betts et al., 1996). These integrals consider
spatial averaging, as well as thermal emission and propaga-
tion from subsurface thermal sources up to vegetation. Pa-
rameters that influence the surface temperature are incoming
radiation, land use, albedo and available water content. Espe-
cially the latter is strongly controlled by soil texture, which
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subsequently should influence the thermal inertia signature
as given by the temporal patterns of surface temperature.

In a previous investigation, Miiller et al. (2014) utilized
principal component analysis (PCA) for a statistical extrac-
tion of dominant patterns within an ASTER (advanced space-
borne thermal emission and reflection radiometer) thermal
infrared (TIR) time series. The produced principal compo-
nents (PCs) are independent and will be used here to derive
stable patterns that are related to soil texture classes. A multi-
linear regression estimator (MLRE) is used in this context.
The MLRE is able to establish and estimate a functional rela-
tionship between the PCs and the fractional texture informa-
tion from multiple soil texture samples within a catchment.
The resulting spatially high-resolution soil texture maps are
analyzed for their plausibility, estimator robustness and un-
certainty.

The rest of the manuscript is organized as follows: Sect. 2
introduces the test site, the implemented and auxiliary data,
as well as methods applied and developed. Section 3 shows
and discusses the results of the estimator setups and its cross-
validation (CV). Finally, Sect. 4 reviews main findings and
gives overall conclusions.

2 Data and methods
2.1 Test site

The research area for this case study is the Attert catchment
(mid-western Luxembourg, Fig. 1), the target site of the Ger-
man DFG research project CAOS (Catchments as Organ-
ised Systems) (CAOS, 2015; see also Zehe et al., 2014). The
catchment has a size of 288 km? for the gauge in Bissen and
stretches from 222 to 535 m above sea level. Collated in for-
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Figure 2. Corine land cover (upper left panel), geology data (upper right panel) and agriculturally relevant soil information (bottom left
panel) of the Attert catchment. The sites of the two sample sets are marked for KIT (Karlsruhe Institute of Technology; red circles) and
BOKU/LMU (University of Natural Resources and Life Sciences/Ludwig-Maximilians-Universitit; blue diamonds).

mer studies (Miiller et al., 2014), a spatial data set containing
land cover, geology, elevation data and qualitative agricul-
tural soil information is available (see Fig. 2). A schist mas-
sif in the north and sandstone lifts in the far south embrace
the undulating central marl area (SGL, 2003). The dominant
land use is agriculture (65.4 %), followed by forests (29.7 %)
and settlements and other sealed areas (4.8 %) (Corine land
cover; EEA, 1995). The monthly mean temperature ranges
from 0°C in January to 18 °C in July (1971-2000); the cli-
mate is pluvial oceanic.

The existing agricultural soil map (1 : 100 000; SPP, 1969;
Fig. 2, bottom panel) lacks quantitative descriptions but give
hints of spatial patterns of soil texture and its systematic dis-
tribution: silt explicitly occurs in four out of the six existent
soil classes in the area; clay soils are observed in the north-
west and sandy soils occur in the southeast. Thus, relations
between geology and soil can be observed, particularly for
schists and clay in the northwestern region, and sandstone
and sand in the southeastern region.

2.2 Soil data

In all, 212 soil samples were taken within the first 15cm
of the topsoil mineral horizon during different fieldwork ac-
tivities throughout the Luxembourg part of the Attert catch-
ment (Fig. 2, lower panel). Project members from KIT (Karl-
sruhe Institute of Technology) took 125 out of these sam-
ples as undisturbed ring samples of 250 mL volume for
various hydro-pedologic analyses and as reference samples
for runoff-modeling purposes. The other 87 samples were
taken by project members from BOKU/LMU (University
of Natural Resources and Life Sciences, Vienna/Ludwig-
Maximilians-Universitit, Munich) from 30 sites in an at-
tempt to close spatial and systematic gaps between the exist-
ing sample plots as disturbed ring samples of 250 mL volume
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for measuring soil texture. The latter sites were chosen based
on agricultural soil classes, geology and land use informa-
tion trying to cover the full spectrum of different classes and
the full catchment extent. These sites were sampled multiple
times within a radius of 1 m to achieve information on lo-
cal uncertainty. The texture samples were analyzed based on
sieving and sedimentation analysis after ISO 11277 (2009) in
two different laboratories at the KIT and LMU. Due to slight
differences in standards with regard to removal of organic
compounds and the use of suspension aids, the data were lin-
early homogenized by analyzing eight samples in both lab-
oratories and correcting the small biases with linear models
for the three fractions.

The resulting texture distribution is given in Fig. 3. The
samples are visualized within the classification system of
the USDA. The sampled textures consist of merely high silt
fractions (mainly 40—60 %), lower clay fractions (mainly 20—
40 %) and a wide range of sand fractions (0-80 %). The dom-
inant soil types are silty clay loam (SiClLo), loam (Lo) and
clay loam (CILo).

Data from sites with multiple measurements (up to three
samples per site) are not aggregated and, hence, include local
uncertainties within a radius of 0.5 m for soil texture. From
the multiple sampled sites, an average local standard devia-
tion of the samples of 4.9 pp for clay fractions can be found;
for silt and sand variations are slightly higher with 7.8 pp and
8.7 pp, respectively (overall: 7.1 pp). It is noticeable that the
local standard deviation is half the size of the deviation of the
full sample data set with 8.5 pp for clay, 14.2 pp for silt and
18.9 pp for sand (overall: 16.7 pp).

Hydrol. Earth Syst. Sci., 20, 3765-3775, 2016
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Figure 3. The categorical distribution of the homogenized soil sam-
ples by KIT (red circles) and BOKU/LMU (blue diamonds) is noted
within the USDA classification scheme. The symbols are semi-
transparent to better visualize accumulations. Data from both lab-
oratories overlap properly. Additionally, the estimated probability
density is shown in dark green as contours for quantiles of the the-
oretical distribution of observable soil textures. The 0.95 contour
delimits the area, 95 % of the textures are lying within; the 0.75 con-
tour defines 75 % of the textures.

2.3 Remote sensing data and deduction of principle
components

We used the ASTER instrument on board of the TERRA
satellite (Fujisada, 1995) in the course of this study. The
satellite has a sun-synchronous orbit, with a repetition rate
from 4 to 16 days, passing the catchment at 11:40 CET.
As described in Miiller et al. (2014), channel 13 (10.25-
10.95 um) is used exclusively, as thermal signals in this
wavelength are least altered by absorption in the atmosphere.
The remote sensing time series then is processed for reaching
15m resolution geo-referenced top-of-atmosphere (TOA)
temperatures (see Miiller et al. (2014), for details). The used
ASTER data set consists of 28 snow and rather cloud free
images from the period January 2001 to June 2012 (Fig. 4,
lower panel). Figure 4 illustrates four exemplary TOA tem-
perature images from the time series with representative pat-
terns for each season (Fig. 4a-1 to a-4) and the available dates
(Fig. 4b). Winter is under-represented with two images, as
images with snow cover but no cloud cover are rare. Half of
the images (15) are from spring months; summer and autumn
are represented by six and five images, respectively. Based
on optical data, it was found that the largest fraction of bare
soil in the area is found in late spring, late summer and early
autumn (15 images are covering these situations).
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Based on the 28 TOA temperature time series data,
PCs (PC1-PC28) are calculated as described in Miiller et
al. (2014). The components of a PCA are orthogonal and rep-
resent linear-independent spatial patterns. They are ranked
by the proportion of explained variance in the original tem-
perature pattern time series, which gives information on their
dominance and stability within the whole time series. The
PCs do not contain specific information about spatial auto-
correlation of the patterns but inherit the interior organization
from the thermal time series.

Miiller et al. (2014) could show some relation between the
most dominant PCs and observable patterns of land use or ge-
ology. The first five most dominant PCs are illustrated exem-
plarily in Fig. 5; it can be observed that with increasing num-
bering, the explained variance and pattern immanent gradi-
ents of component values decrease. PC1 and PC2 show sim-
ilarities to the Corine land cover pattern and geology pattern
(Fig. 2), comprehensively described by Miiller et al. (2014).
To avoid any influence from highly modified surfaces where
no influence of soil texture on the TOA temperature can be
expected, artificially covered areas (Fig. 2, upper left panel,
in red) are cut out from the PCs based on Corine land cover
data.

2.4 Multiple linear regression estimator

The relationship between soil texture data of the collected
soil samples and PCs derived from time series of TIR data is
analyzed by multiple linear regression. Three main steps are
executed to provide soil texture maps, individually for each
particle size fraction. First, an automatically parameterized
Box—Cox transformation (BCT) is performed to the particle
size fraction data in order to guarantee normality of the resid-
uals (Box and Cox, 1964; Sakia, 1992; Osborne, 2010; Chun
and Griffith, 2013). Then, PCs are chosen based on their sig-
nificance level (p values from F tests) for the multiple lin-
ear regression (MLR). At last, the results of the MLRE are
restricted to values between 0 and 100 % for each particle
size fraction with a sigmoidal capping function on top of the
MLR.
Overall, the MLR is set up by

% = Po+ BiPCl + BoPC2+--- + B,PCn + e, ey

with the PCs PC1 ... PCn, the corresponding regression co-
efficients Bp., and residuals € to estimate the soil texture
fraction x,. For an unbiased estimation of By _,, the resid-
uals € have to be normally distributed N (0, o) (Chun and
Griffith, 2013).

The BCT is applied by
xt—1
X, = 270, @)
In(x), A=0

where x is the soil data before transformation, x’ after trans-
formation and X is a parameter estimated from the data or
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error distribution to achieve normality. An optimal A is esti-
mated by an iterative Monte Carlo procedure allowing X to
range between [—5, 5] with an accuracy of 0.01 to guarantee
finding a global minimum. Tests for normality of the residu-
als are executed subsequently.

To restrict the MLR predictions to the natural limits of
0-100 % share of a fraction, sigmoidal capping functions
(Franklin, 2013) are used. A sigmoidal function generally is
differentiable, with a non-negative (S) or non-positive (Z)
first derivative, one minimum and one maximum. The pre-
sented approach uses the following implementation:

e (222 ’ if x >
sigx) =L+ (U~ L)- e \Ty o WX =5P

L, else

3

where L and U are the lower and upper limits (here: 0 and
100 %), sp is the position of the start of the positive gradient
and s/ adapts the steepness of this gradient. These two gra-
dient parameters are optimized for reducing the root mean
square error between corrected regression estimator and sam-
ple data as much as possible.

2.5 Cross-validation

CV is a common strategy for the evaluation of model per-
formance and the quantification of uncertainties (Arlot and
Celisse, 2010). CV schemes can differ in the size of training
and validation subsamples. Here, four different CV schemes
are applied to analyze potential changes in the uncertainty
level resulting from different sample sizes: First, a simple
leave-one-out (LOO) strategy was applied, where all but one
sample point are included for model identification, and the
remaining data points are used for model evaluation. This
procedure is repeated so that each point (n =212) is left
out once, and model performance in form of the root mean
squared error (RMSE) between measurement and prediction
can be calculated.

Three further CV variants are applied to analyze the ef-
fect of sample size reduction on the prediction performance.
For this, the sample size is divided into 10%- (CV10),
20 %- (CV20) and 50 %-sized (CV50) validation subsets
with respectively 90-, 80- and 50 %-sized training subsets.
The random process of validation—set—generation is repeated
n =212 times in order to have an equal number of evalua-
tions for all CV variants. The performance of the MLRE pre-
diction during validation is again evaluated using the RMSE
for each particle class.

www.hydrol-earth-syst-sci.net/20/3765/2016/

3769

3 Results
3.1 Sample data and soil texture maps

First, F tests were performed to evaluate the MLRE model
performance with regard to the number of different PCs con-
sidered as regressors, as well as to all possible combinations
of PCs (for a given number of regressors). The p value of the
F tests represents the probability of the (soil texture) data
given the null hypothesis (Hp) that all regression coefficients
are zero. Low p values are taken as an overall indication for
the “relevance” of the MLRE. Results showed that significant
p values (< 0.05) occurred most often when the first five PCs
were incorporated, whereby a number of three PCs out of the
first five components performed best. Lowest p values for
sand are assessed with a MLR based on PC1, PC2 and PC3;
for silt, the most adequate combination is PC2, PC4 and PC5
and for the determination of clay PC2, PC3 and PC4 are used
(given the full data set).

The results of the MLRE are illustrated in Fig. 6. Up-
per panels show the distribution contours of the 95 % (red)
and 75 % quantiles (blue) for the estimation of different par-
ticle fractions, while the lower panels show the respective
distribution of residuals. Sand and clay show higher Pear-
son correlation coefficients (r > 0.5), while silt is showing a
lower value (r = 0.36). The optimal A values for the BCT in-
dicate almost normally distributed residuals for clay, while
for silt, the error distribution is skewed left, and for sand
the distribution is skewed right. The overall RMSE for the
three texture fraction estimators is 12.7 pp, partitioned into
16.2 pp for sand, 13.0 pp for silt and 7.1 pp for clay. Hence,
the MLR shows a well-defined relation for clay, while sand
shows good correlations with few extreme outliers. For silt
the system shows low correlations with a smaller variation of
errors (compare Wang et al., 2015).

The MLRE calibrated with the complete field sample set is
then used to calculate fully distributed texture maps. Figure 7
shows the resulting soil texture maps. Each texture fraction
is modeled separately with the aforementioned PC combi-
nation. Finally, the three texture fractions are translated into
USDA soil types, which are then mapped back into the catch-
ment (Fig. 7, lower right panel). A comparison of predicted
and observed texture data shows a large overlap between both
(Fig. 7, lower left panel).

The distribution of soil texture conforms to the distribution
of the soil characteristics displayed in the available qualita-
tive agricultural soil maps (Fig. 2). Clay is dominant in the
north, rather sandy soils can be found in the south and mainly
silty soils prevail in the remaining parts of the catchment.
Further analysis of the soil texture distribution reveals rela-
tions to topographic structures, different land cover types and
geology (Figs. 1 and 2). The distribution of different modeled
soil textures change along slopes from top (fine) to bottom
(coarse) or between riparian (sandy) and agricultural (silty)
areas. Clay soil mainly appears in schist areas.

Hydrol. Earth Syst. Sci., 20, 3765-3775, 2016
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3.2 Cross-validation results

Figure 8 shows the spatial patterns of pixel-based standard
deviation of the resulting 212 maps of soil texture fraction.
For each different CV variant as well as for all 212 CV runs,
an F test-based selection for the choice of PCs as described
in 3.1 has been performed. The mean texture fraction results
from the CV runs, e.g., CV50 (Fig. 8), agree with the overall
result and differences in absolute texture fraction are small
when compared to results illustrated in Fig. 7. The patterns
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of valley structures and bedrock distribution can be observed
here as well.

Statistical indices allow further analysis of the similari-
ties. The spatial average of the coefficient of variation (c.o0.v.;
|o/u|) between all model results, i.e., from CV schemes and
the full data set, shows values of below of 0.1 for all texture
fractions and underlines the visual impression of small devi-
ations. Supported by the constant RMSE values throughout
different variants of the CVs (sand: ~ 16.6 pp, silt: ~ 13.4 pp,
clay: ~7.2 pp; compare Table 1), MLRESs indicate a stable

www.hydrol-earth-syst-sci.net/20/3765/2016/
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Table 1. Root mean square error (RMSE) values for the sample data
from the different cross-validation (CV) variants by particle size
and overall. The results are noted in percentage points (pp). The
different CV variants (LOO, CV10, CV20 and CV50) show simi-
lar values for the RMSEs between sample and estimated fractions
sand, silt and clay within the 212 subsets for the CVS (column 2-
4). Additionally, the approximately constant overall RMSE for all
fractions and samples within the CVs’ subsets is noted (column 5).

RMSE per particle size (pp) Overall
CcvV Sand Silt Clay RMSE (pp)
LOO 1658 13.37 7.18 10.80
CVI0 16.64 1342 7.25 10.87
CV20 16.56 13.30 7.11 10.80
CVs50 16.89 13.54 7.34 11.00

behavior in the estimation of spatial texture fraction. The
overall RMSE for the different CVs is around 10.9 pp and
hence a little lower than for the full data set (12.7 pp). How-
ever, silt and sand fractions are higher by ca. 0.5 pp and clay
by ca. 0.15 pp.

These values indicate higher uncertainties for silt and sand
fractions. This uncertainty is attributed to a higher variation
in distribution characteristics within the sample data sets that
is increased by decreasing the number of used samples. An-
other possible source for this high uncertainty is the small
thermal gradient within the range of widely different silt frac-
tions at common surface temperatures (Farouki, 1982). This
gradient is most sensitive to a low number of measurements.

In contrast to the stable mean results, textural standard de-
viation in Fig. 9 varies more. Clay fraction maps show least
deviation, whereas the highest deviation is observed in least-
sampled sandstone areas in the southeast of the catchment
and the lower lands near the gauge. CV-based uncertainties
occur as expected: maximum standard deviations rise with
increasing size of the validation data sets, and therefore less
calibration data.

Exceptional high deviations are highly localized through-
out the subsets and show areas of higher uncertainty for the
estimated texture classes. These outliers are stable, spatially
and throughout the CV variants. These deviation hot spots
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can occur due to soils being out of the range of sampled soil
types or specific land cover.

However, the automatically optimized choice of PCs for
the regression estimators is quite constant throughout the
sample data subsets in the different CV variants. For all three
texture classes, PC2 is used by 100 % of the estimator setups,
the pattern that resembles geology. The main variation within
the texture fractions is then added for

1. sand by using PC3 (99 % of the setups) and PC1 (65 %),

2. silt by using PC4 (81 % of the setups) and PCS5 (54 %)
or PC1 (47 %),

3. clay by using PC3 (100 % of the setups) and PC4
(84 %),

with the number of different variants increasing with the size
of the validation data. This also hints at a slight inconsistency
within the measured data. Nonetheless, the overall estimator
choice seems to be relatively uniform, especially for clay and
sand fractions.

4 Discussion and conclusion

This study investigates the potential of estimating distributed
soil texture fractions with time series of thermal remote sens-
ing data. Elementary thermal patterns (PCs) are extracted
from the time series with PCA and are used as inputs in
a MLR model framework to estimate soil texture fractions.
The MLRE model is calibrated and evaluated against a set
of 212 measured soil texture data using four different CV
variants. After calibration, it is applied for the generation of
soil texture and soil type maps based on the distributed PCs
information.

The MLRE prediction uncertainties expressed as overall
RMSE when using the full data set for calibration is 12.7 pp
(sand-silt—clay: 16.2—13.0-7.1 pp) and does not change sig-
nificantly with in different CV variants. Given local measure-
ment uncertainties of 7.1 pp for all fractions (sand—silt—clay:
8.7-7.8-4.9 pp), the model induced uncertainty component
might be in the range of 3-8 pp, varying for the different
fractions. The stability of RMSE and choice of PCs reveal
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Figure 9. Spatial patterns of standard deviations for the different CV variants (rows) of soil texture fractions (columns) calculated from the
estimators for the 212 different randomly selected data sets. Hotspots of high uncertainty (5 pp and above; exemplary spots are circled on all
12 maps) can only be observed with CV50 subsets and within sand and silt fractions.

the reliability of this simple estimator setup, a distinct rela-
tion between the basic patterns, observed with thermal re-
mote sensing, and the soil texture samples.

A review of different approaches presented in the liter-
ature, often using more complex methods or input data,
reveals similar or even higher uncertainties. For example,
McBratney et al. (2000) list RMSE for clay content based on
85 samples within an only 42 ha and less heterogeneous area.
They test different estimator types in their work: 7.6-8.2 pp
for interpolation methods and 6.2-8.9 pp for regression tech-
niques (regression trees to neural networks) with combina-
tions of ancillary information (terrain data, yield data and
electromagnetic measurements) with a resolution of 200 m.
The here presented MLRE based on PCs achieves similar
uncertainty values for clay while using less complex meth-
ods and input in a more complex terrain. Wang et al. (2015)
reach uncertainties of 10.7-15.5 pp for sand and 4.6-6.5 pp
for clay, using a regression model on diurnal temperature
range data from a derived land surface remote sensing prod-
uct with a rather inapplicable coarse resolution of 1 km for
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a catchment of 5130 km? with 62 soil samples. The product
resulting from the MLRE approach is of higher resolution
while providing similar deviations. Modeling soil texture in-
versely (40 m) from soil moisture, measured with a passive
microwave radiometer, performed by Santanello et al. (2007)
for a watershed of 148 km?, leads to RMSE values of 12—
28 pp for sand, 14-25 pp for silt and 0-8 pp for clay frac-
tions. This inversion requires a complex model (Noah land
surface model; Noah-LSM, 2015); however, it results in a
much larger range of uncertainty. Overall, the herein pre-
sented estimator method requires the least temporal resolu-
tion of remote sensing data and least amount of additional
data, notably none, with a simple regression method. Further-
more, the density of required measurements is low compared
to the mentioned studies.

Our study also demonstrates that extracted PCs from time
series of thermal images contain the necessary spatial infor-
mation to delineate distributed soil texture information. The
different CV variants show that an appropriate uncertainty
range can be obtained with around 100 training samples for
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roughly 300km? with a target resolution of 15m. Analyz-
ing the deviation maps for the different CV variants (Fig. 8)
reveals hotspots of diverging relations between sample data
and PCs. These maps can be used to further reduce uncer-
tainty by localizing effective additional sample locations.

A different option, but presumably equally suitable, than
using PCs is the direct delineation of thermal inertia maps
from hydraulic soil properties for given time steps and soil
moisture states, as shown in Murray and Verhoef (2007). This
option requires the description of the same (amount of) spa-
tially distributed soil hydraulic properties as used in pedo-
transfer functions and, therefore, does not simplify data col-
lection.

The presented approach works well within the current res-
olution of 15m and with a sparse temporal resolution, but
should also work for different setups of spatial and tempo-
ral resolution, with a reasonable minimum variation in the
time series. Hence, this approach is possible to handle many
applications within hill slope, catchment, and up to continen-
tal extent with comparably small sampling effort and definite
uncertainties.

The presented data can help to improve the generation of
topsoil maps, especially without the need of proper soil gene-
sis descriptions. These maps then can be utilized for medium-
scale catchment setups of eco-hydrological models, espe-
cially within (near) ungauged basins. The basic thermal re-
mote sensing time series can also be obtained from other sen-
sors with different resolutions, such as Landsat (60—100 m)
or MODIS (1 km). Only few measurements are necessary as
long as the spatial extent of the thermal remote sensing data
and taken samples cover the statistical distribution of catch-
ment characteristics.

Further applications of this PCA-based MLRE to assess
spatial distributions of bulk density, topsoil organic matter,
vegetation density or even fraction of absorbed photosyn-
thetic active radiation will be subject to further research. In
addition, feasibility studies on the utilization of different re-
mote sensing time series, ranging from microwave or visible
imagery to mixed databases and comparison to model output
are issues of ongoing studies.

5 Data availability

Original ASTER Level 1A data are freely available through
the Reverb|Echo data base service (http://reverb.echo.nasa.
gov/reverb/) from NASA’s Earth Observing System Data and
Information System (EOSDIS). The in situ soil texture data,
auxiliary data, and results can be made available on request
by contacting the authors or the CAOS project (http://www.
caos-project.de/).
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