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1 Introduction

Gravitation is both the most universal and less understood of all the fundamental forces.

Many decades of theoretical research lead to the idea that its profound nature may be

entirely different from the one of the other forces, which can be described by canonically

quantizing some classical field theories. Instead, the usual “classical” Einstein’s theory of

gravity, together with the notion of a “classical” space-time, seem to be emerging in a ther-

modynamic limit where the number of degrees of freedom of the underlying fundamental

quantum description becomes very large.

Serious arguments in favour of this point of view date back to papers by Bekenstein and

Hawking in the 70s (see e.g. [1–5] and references therein). Much stronger evidence comes

from explicit constructions in string theory in the context of Maldacena’s holographic

correspondence [6–8]. In this set-up, the classical, thermodynamic-like limit of gravity

is typically related to the ’t Hooft large N limit of gauge theories. However, even in

this context where the gravitational theory is in principle precisely defined in terms of an

ordinary quantum system, it is hard to understand how the classical bulk space-time and

gravity emerge. In particular, space-time locality and the Equivalence Principle remain to

a large extent mysterious. Any progress in this direction will undoubtedly have profound

and surprising consequences in our understanding of gravitation. Interesting trails have

been vigorously explored in recent years, in particular in black hole physics and in relation

with the holographic description of entanglement (see e.g. [9, 10] and references therein).

The aim of the present paper is to explain and study a simple but rather surprising

and profound relation in gravity which, as we shall argue, is directly related to the ther-

modynamic nature of the theory. The relation makes a link between two important but

seemingly unrelated objects. On the one hand, we have the on-shell Euclidean gravita-

tional action, denoted by S∗g . It has been known for a long time to play a central role in

the study of the thermodynamics of black holes [11] and, in holography, it is associated

with the generating functional of the boundary planar correlation functions [7, 8]. On the

other hand, we have the on-shell Euclidean action of probes of the background geometry,

denoted by S∗p. The probes can be, for example, charged particles or branes.

A special instance of the relation between S∗g and S∗p, whose general form will be pre-

sented in the next section, was first found in [12], by studying in details the construction of

probe D-brane actions from the field theory point of view.1 The relation was then further

explored in [21] from the point of view of the bulk gravitational theory, in the context of the

holographic correspondence, for a general class of asymptotically AdS space-times. In all

these cases, full consistency was found, by using in particular a non-trivial isoperimetric in-

equality (this will be reviewed in section 3). This isoperimetric inequality was also studied

thoroughly in an interesting recent paper [22], in a very wide range of backgrounds going

beyond the space-times considered in [21]. Consistency is found in all cases, which leads the

1The main goal of [12] was to explain how the holographic space-time can be explicitly seen to emerge

from gauge theory, using the notion of D-brane probes. See also [13–20] for related works. Some relevant

aspects of ref. [12] are briefly reviewed in appendix B.
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authors of [22] to propose that our relation2 should be considered to be a crucial requirement

in any gravitational theory; in the wording of [22], a “law of physics” coming from the math-

ematical consistency of the underlying theory. Related and extremely instructive results us-

ing probe branes in holographic set-ups have also appeared in the earlier literature [23–37].

One of the main point of the present paper will be to argue that, indeed, the relation

between S∗g and S∗p should be considered to be a basic property of any theory of gravitation,

its universality being tightly related to the thermodynamic nature of gravity.3 This uni-

versality goes far beyond the examples considered in [12, 21, 22]. In particular, it includes

cases with higher derivative corrections to the usual Einstein theory, and it also works in

asymptotically flat space-times. Explicit evidence will be provided below.

The plan of the paper is as follows.

In section 2, we derive the precise form of the general relation between S∗g and S∗p
using a simple argument. We then discuss the case of a probe charged particle in the

asymptotically flat Reissner-Nordström geometry. This allows to illustrate, in a very simple

example, the main basic features, including the important issue of the precise definition of

the probe action. We also treat the case of a D3-brane probe in the asymptotically flat

black D3-brane geometry, which is very similar.

In section 3, we focus on the case of probe branes in holographic set-ups. We first

show that, in many interesting cases, our general relation becomes a simple proportionality

between S∗g and S∗p, with a fixed proportionality factor depending on the particular brane

system under study. We then consider the standard near-horizon limit of the black D3-

brane system studied in section 2 and show that S∗g and S∗p are indeed proportional in

this limit. Using the string theoretic formulas relating the D3-brane tension and the five

dimensional Newton constant, we find that the proportionality factor precisely matches

the one predicted by our fundamental relation. The discussion of the near-horizon limit

also allows to illuminate some subtle and crucial issues, first discussed in [21], associated

with the precise definition of the probe brane action in asymptotically AdS spaces. We

then turn to the more general case of a (d − 1)-brane probing an asymptotically AdSd+1

space with an arbitrary boundary metric.4 For completeness, we briefly reproduce the

analysis in [21] showing that our relation between S∗g and S∗p follows from an interesting

isoperimetric inequality first derived in [41]. We also discuss the case of other D-brane

and M-brane systems, checking in particular that the proportionality factors between S∗g
and S∗p predicted by our relation always match the factor computed by using the string

theoretic formulas for the various brane tensions and Newton’s constants.

In section 4, we turn to an example for which higher derivative, α′-corrections to

the gravitational theory are taken into account. First, we show that the general relation

between S∗g and S∗p predicts a correction to the simple proportionality law used in section 3

2More precisely, the authors of [22] focus on the isoperimetric inequality, which is directly related to the

fundamental relation in some special instances, as explained in [21] (see also section 3).
3Except for extensions discussed in the conclusion section, we shall always consider gravity in the strict

thermodynamic (i.e. semi-classical) limit.
4More precisely, the Yamabe constant of the boundary metric must be non-negative. This technical

condition is required for the consistency of the boundary theory [38–40].
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when α′-corrections are included. We then check explicitly the validity of the resulting

formula for the case of the α′-corrected Schwarzschild-AdS5 background. This provides an

extremely non-trivial test of our ideas.

We have also included a conclusion section and several technical appendices comple-

menting the main text.

2 The fundamental relation and two examples

2.1 Derivation

The general philosophy, from which we start, is that any solution5 B in a well-defined

semi-classical gravitational theory corresponds to a state |B〉 in some thermodynamic limit

of an ordinary6 quantum mechanical system. This situation is of course realized in the

usual holographic correspondence, but, more generally, we assume that it should be valid

in any consistent formulation of gravitation. The correspondence means that there exists a

dictionary between the observables (Hermitian operators) of the ordinary quantum system,

averaged in the state |B〉, and the diffeomorphism invariant observables of the gravitational

theory, evaluated on the background B. Of course, this dictionary can be subtle and is

often only partially known, even in standard holographic set-ups.

For our purposes, the observable we focus on in the gravitational theory is the on-

shell Euclidean gravitational action S∗g , obtained by evaluating the gravitational action Sg

on the background B. The action Sg could be the usual Einstein-Hilbert plus Gibbons-

Hawking action, or any consistent generalization, involving for example supersymmetry

and/or higher derivative terms. The relevance of S∗g has been known for a long time [11].

Its precise definition requires some care, since its naive value is usually infinite due to

the non-compactness of space-time. In the holographic set-up, we use the holographic

renormalization procedure to make sense of it [42–47].

The correspondence between the gravitational theory and the ordinary quantum sys-

tem implies that S∗g coincides with some physical quantity in the quantum theory, when

the appropriate thermodynamic limit is taken. For example, when one considers a black

hole background, one has the famous relation

e−S
∗
g = Z (2.1)

relating S∗g to the partition function Z = tr e−βH of the underlying quantum mechanical

system, computed at a temperature T = 1/β coinciding with the Hawking temperature of

the black hole. The relation (2.1) allows to derive in a very neat way the thermodynamic

properties of black holes, in both asymptotically flat and asymptotically AdS space-times

(see e.g. [11, 48]). The free energy is F = TS∗g and the energy and entropy are obtained

by using the standard thermodynamic identities. Note that Z, or equivalently F , always

depends on T , but may also depend on a set of conserved charges. Since we always work

5In practice, we limit ourselves to static backgrounds in the present paper.
6Ordinary here means a standard non-mysterious quantum mechanical system with a well-defined Her-

mitian Hamiltonian H. In particular, this system is not a quantum version of classical gravity.
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in the thermodynamic limit, the distinction between the canonical and grand canonical

description is immaterial.

More generally, e−S
∗
g yields the generating functional Z of planar correlation functions

in the holographic dictionary [7, 8]. In this context, the quantum mechanical system is

typically a boundary CFT, obtained by taking the low energy limit of the worldvolume

dynamics of a stack of branes. For example, the maximally supersymmetric Yang-Mills

theory with gauge group U(N) is obtained from a stack of N D3-branes. The generating

functional Z thus depends on N , or more generally on a set of integers. These integers can

be treated in strict parallel with the ordinary conserved charges. Actually, in the string

theory constructions, they count the number of branes, which are ordinary charged objects.

We denote by Q one of the conserved charges. It is always taken to be very large

in microscopic units, in order to be in the thermodynamic limit. In the quantum me-

chanical system, we can compute Z(Q). In the gravitational description, we have a Eu-

clidean background space-time BQ. The gravitational action evaluated on this space-time

is S∗g(Q) = − lnZ(Q). Let us now imagine that we deform the system in such a way that Q

is changed to Q+q, with |q| � |Q|. We are going to assume that, at least in a wide variety

of cases, this small deformation has two natural descriptions in the gravitational theory:

i) An obvious description is simply to deform the background space-time from BQ to

BQ+q. This of course yields

− lnZ(Q+ q) = S∗g(Q+ q) = S∗g(Q) + q
∂S∗g
∂Q

(Q) , (2.2)

where, in the second equality, we have used the fact that the deformation is small.

ii) A second natural description is to keep the background BQ undeformed, but to add a

probe object (particle or brane) of charge q in BQ. The probe object has an action Sp,

typically the sum of a kinetic term and a coupling to the gauge potential associated

with the charge. The total action is Sg +Sp. We assume that the semi-classical limit

is still valid and thus, in this second description, we get

− lnZ(Q+ q) = S∗g(Q) + S∗p , (2.3)

where S∗p is the on-shell (minimal) value of the action Sp in the undeformed back-

ground BQ. To minimize Sp, all possible probe worldvolumes in the bulk must be

considered, without any particular boundary condition.7 The only geometrical con-

straint is that the worldvolume must span the time direction. Note that the fact

that the charged object is a probe implies that |S∗p| � |S∗g |, and the fact that the

semi-classical limit is valid implies that |S∗p| is still very large in microscopic units.8

7Note that this is very different from other contexts where one considers the minimization of brane

actions with specific boundary conditions at infinity, like for instance in the holographic computation of

Wilson loops. However, our ideas can also be applied in such set-ups, see section 5 for a brief discussion.
8In the cases where the gravitational theory is understood beyond the semi-classical limit, these assump-

tions can be waived, at least in principle.
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Comparing (2.2) and (2.3), we get our fundamental relation between the on-shell grav-

itational action and the on-shell action of a probe,

S∗p = q
∂S∗g
∂Q
· (2.4)

Several comments are here in order.

a) Clearly, the second point of view above, which yields (2.3), does not constitute a

rigorous proof. Such a proof may only be given in set-ups where the quantum me-

chanical system and the dictionary with the gravitational description are fully known.

However, we do expect its range of validity to be large, with only natural conditions

to be imposed on the charged probes (a typical condition is, for example, a BPS

bound |m| ≥ |q|, see below). The universality of (2.4) is rooted in the thermody-

namic nature of gravity, the fact that only a few macroscopic features, like the total

charge Q, determine the background.

b) Eq. (2.4) implies that terms of order O(q0), typically the kinetic terms, vanish in S∗p.

This is a simple but non-trivial requirement, that will turn out to be valid in all the ex-

amples studied below. Note that terms of order O(q2) in S∗p, if not altogether absent,

must be neglected since we are in the probe approximation. We can thus always write

S∗p = qA∗(Q) , (2.5)

where A∗ = ∂S∗g/∂Q does not depend on q.

c) The objects on the two sides of the equality (2.4) look very different. In particu-

lar the gravitational action is a bulk quantity whereas the probe action is computed

along a worldline or worldvolume. This makes the relation surprising and particularly

interesting. For example, for a black hole of charge Q, (2.4) and (2.5) yield

µ = TA∗ (2.6)

for the chemical potential of the black hole. This formula provides an entirely new and

rather simple way to obtain the chemical potential. More generally, in many cases

(see e.g. section 3), the full free energy (or gravitational action) can be obtained

straightforwardly from S∗p by integrating with respect to Q.

d) The cases where the probes are branes and the charge simply counts the number of

branes is particularly interesting and will be discussed at length in the following sec-

tions. In these cases, it is often possible to justify (2.4) using a slight modification of

Maldacena’s original argument for the AdS/CFT duality [6]. For example, consider

N D3-branes, N � 1. The Maldacena argument implies that a large number N � 1

of branes can be replaced by the AdS5 × S5 background without brane, the ratio

between the AdS scale and the five-dimensional Planck length being (L/`P)3 ∼ N2.

If we consider N + 1 branes instead of N , then the same argument can be repeated

either by considering all the N + 1 branes together, which yields again the AdS5×S5

– 6 –
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background without brane but now with a slightly modified ratio (L/`P)3 ∼ (N+1)2,

or by replacing only N branes by the AdS5 × S5 background with undeformed ra-

tio (L/`P)3 ∼ N2, the additional brane, moving in the background generated by all

the other branes, being kept explicitly. The equivalence of these two points of view

immediately yields (2.4) (this argument first appeared in [12]).

2.2 The Reissner-Nordström black hole

The set-up. Let us now illustrate the relation (2.4) in the case of the standard charged

black hole in four dimensions. The metric and electromagnetic field strength in the Eu-

clidean are

ds2 =
∆

r2
dt2 +

r2

∆
dr2 + r2dΩ2

2 , (2.7)

F = i
Q

r2
dt ∧ dr , (2.8)

where

∆ = r2 − 2Mr +Q2 = (r − r+)(r − r−) , (2.9)

r± = M ±
√
M2 −Q2 . (2.10)

The parameters M and Q correspond to the mass and the electric charge of the black hole,

respectively. They must satisfy the usual BPS condition |M | ≥ |Q|. The metric dΩ2
2 is the

standard round metric on the two-sphere of unit radius. The Euclidean geometry has the

usual shape of a cigar, smoothness at the tip of the cigar (which corresponds to the location

of the black hole horizon in the Minkowskian version of the geometry) being ensured by

the periodicity condition t ≡ t+ β on the Euclidean time coordinate, where

T =
1

β
=
r+ − r−

4πr2
+

(2.11)

is the Hawking temperature. Note that the full Euclidean geometry is spanned when

r+ ≤ r <∞. In particular, there is no “interior” of the black hole in Euclidean signature.

Let us now consider a particle of mass m and charge q probing the black hole back-

ground. Its Euclidean action is given by

Sp = m

∮
ds− iq

∮
A , (2.12)

where the integral is taken along an arbitrary worldline wrapping the time circle, ds is the

infinitesimal length (or Euclidean proper time) along the worldline and A a gauge potential

such that

F = dA . (2.13)

Our goal is to compute the chemical potential of the black hole from (2.4), or equiva-

lently (2.6). We thus have to find the minimal value of the action (2.12), over all worldlines

parameterized by β-periodic functions r(t), θ(t) and φ(t), if θ and φ are the usual spherical

angles over the S2 part of the geometry.

– 7 –
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The precise definition of the probe action. Before we discuss the minimization

problem itself, which will be elementary, we have to address a crucial question regarding

the precise definition of the probe action Sp. The subtlety comes from the fact that the

action (2.12) is expressed in terms of the gauge potential A, not in terms of the gauge in-

variant field strength. This is irrelevant for the equations of motion, or for the variations of

the action, which are expressed in terms of F only. However, our fundamental relation (2.4)

involves the actual value of the action. As we shall easily discover, to fix this value unam-

biguously, one must have a precise prescription to pick a particular gauge potential A.

To understand the problem, let us consider the family of gauge potentials

Ac = i

(
Q

r
+ c

)
dt , (2.14)

labeled by an arbitrary constant c.9 All these gauge potentials yield the correct field

strength (2.8), F = dAc. However, their contributions to the action (2.12) differ by an

additive constant depending on c,

− iq
∮
Ac = qQ

∫ β

0

dt

r(t)
+ qcβ . (2.15)

This undetermined constant10 qcβ of course crucially affects the minimal value of the

action. More generally, the field strength remains unchanged if one performs a gauge

transformation

A 7→ A+ ω , (2.16)

where ω is a priori an arbitrary closed one-form. The resulting ambiguity in the action is a

term iq
∮
ω which, by Stokes’ theorem, does not depend on the worldline. The ambiguity

associated with the general transformations (2.16) is thus again a worldline-independent

constant, which can change crucially the value of the minimum of the action.

One can think of two natural proposals to fix the above ambiguity. We are going to

discuss them both, including the incorrect prescription, since this is a very important point

that must be fully clarified.11

Incorrect proposal: impose that the gauge potential A entering the probe action (2.12)

must be globally well-defined.

This will clearly fix the ambiguity, at least in the Reissner-Nordström space-time we

consider presently, since a globally defined gauge transformation ω must be exact and thus

cannot change the action,
∮
ω = 0. If we consider the family of gauge potentials (2.14), they

are not globally defined for generic values of c, due to the singular nature of the angular

coordinate t at the tip of the cigar r = r+ (this is the same singularity that one encounters

for the one-form dθ at the origin of ordinary polar coordinates (ρ, θ)). Regularity of Ac at

r = r+ implies that c = −Q/r+, yielding the globally smooth gauge potential

Asmooth = iQ

(
1

r
− 1

r+

)
dt (2.17)

9This is nothing but the usual arbitrary constant one may add to the electrostatic potential.
10Constant here means that it does not depend on the worldline, but of course it may depend on the

other parameters in the problem, like the charge or the temperature.
11We also want to discuss the incorrect proposal because it has been suggested to us on several occasions.

– 8 –
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and the associated action Sp, smooth.

This proposal of global smoothness of the gauge potential might seem reasonable. For

example, the smooth gauge potential (2.17) is the one that must enter into the definition

of the Polyakov loop observable, since otherwise the loop would not be regular. However,

it is obvious that the probe action is perfectly well-defined and regular for all values of the

constant c in (2.14). No regularity condition can fix c in this case. The same is true for

the field strength,12 that enters the equations of motion derived from the action and which

is always globally well-defined.

Correct proposal: impose that the probe action goes to the usual action m
∮

ds for a

point particle of mass m in the asymptotically flat region of the geometry.

The action for a probe particle at a fixed position (r, θ, φ), computed with the gauge

potential (2.14), takes the form Sp = βV (r), where the “potential energy” Vc is given by

Vc(r) = m

√
1− 2M

r
+
Q

r2
+
qQ

r
+ cq . (2.18)

The condition we propose to fix c thus simply amounts to imposing that the potential

energy reduces to the rest mass of the particle when it is infinitely far from the black

hole. This is an extremely natural physical condition, we believe the only consistent and

meaningful condition one can impose in an asymptotically flat background. It implies that

c = 0 . (2.19)

The correct gauge potential that must be used to compute the action is thus singular at

r = r+.

The minimum of the action. Finding the minimum of the probe action is now very

simple. By denoting by ṙ = dr/dt, etc., one first notes that

Sp =

∫ β

0

[
m

√
∆

r2
+
r2

∆
ṙ2 + r2

(
θ̇2 + sin2 θ φ̇2

)
+
qQ

r

]
dt (2.20)

≥ S̃p =

∫ β

0
V0(r) dt . (2.21)

The minimum of the action S̃p is obtained for a worldline at a fixed position r minimizing

the potential V0. Since, for such a worldline, S̃p = Sp, this also yields the minimum of

Sp. Assuming that the probe satisfies the BPS bound m ≥ |q| (consistently with the BPS

bound M ≥ |Q| satisfied by the black hole itself), it is trivial to check from (2.18) that the

minimum of V0 is obtained for r = r+. The on-shell probe action is thus

S∗p = βV0(r+) = β
qQ

r+
· (2.22)

Our fundamental relations (2.4), (2.5), (2.6) thus yield the black hole chemical potential

µ =
Q

r+
· (2.23)

12One can easily check that it is proportional to the area form of the cigar at the horizon r = r+, which

is smooth thanks to the choice (2.11).
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This is indeed the well-known correct value!13

2.3 The asymptotically flat black D3-brane geometry

Let us now turn to another interesting example, the case of the asymptotically flat black

D3-brane solution in type IIB supergravity.14 The discussion is very similar to the case of

the Reissner-Nordström black hole, and thus we shall be briefer.

The metric and Ramond-Ramond five-form field strength in the Euclidean are [67]

ds2 =
f(ρ)dt2 + d~x2√

H(ρ)
+
√
H(ρ)

(
dρ2

f(ρ)
+ ρ2dΩ2

5

)
, (2.24)

F5 = 4iL4

√
1 +

ρ4
0

L4

[
dρ ∧ dx1 ∧ dx2 ∧ dx3 ∧ dt

ρ5H(ρ)2
+ iωS5

]
, (2.25)

where

H(ρ) = 1 +
L4

ρ4
, f(ρ) = 1− ρ4

0

ρ4
· (2.26)

The metrics d~x2 and ωS5 are the standard flat metric on R3 and volume form on S5

respectively. The Euclidean time t is periodic with period β = 1/T , where

β =
1

T
= πρ0

√
1 +

L4

ρ4
0

· (2.27)

The full geometry is spanned when ρ0 ≤ ρ < ∞. The total charge of the solution corre-

sponds to the number N of D3 branes sourcing the geometry and is given by the standard

formula

N =
−i

16πG10

1

τ3

∫
S5
?F5 =

πL4

`4sgs

√
1 +

ρ4
0

L4
, (2.28)

where G10, τ3, `s, gs are the ten-dimensional Newton constant, D3-brane tension, string

length and string coupling respectively, with the usual relations

G10 =
π2

2
g2

s `
8
s , (2.29)

τ3 =
1

2π`4sgs
· (2.30)

Let us consider a BPS D3-brane probing the above background. Its tension is given

by (2.30). Its Euclidean action is

Sp = τ3A− iτ3

∫
C4 , (2.31)

13For completeness, it is interesting to recall how µ is traditionally computed. One evaluates the on-shell

gravitational action S∗g (Einstein-Hilbert plus Gibbons-Hawking terms) and use (2.1) to get the free energy

F = (r+ +3r−)/4. One then takes the derivative of F with respect to Q at fixed T , using (2.10) and (2.11).

This non-trivially yields (2.23).
14We shall discuss the more general case of the α′-corrected Schwarzschild-AdS5 geometry in section 4.
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where the integral is taken along an arbitrary worldvolume spanned by (t, x1, x2, x3), C4 is

a Ramond-Ramond potential satisfying dC4 = F5 and A is the area of the worldvolume.15

As in the case of the charged particle in the Reissner-Nordström geometry, the action

of the probe brane is defined modulo the addition of an arbitrary worldvolume-independent

constant. This ambiguity can be understood by noting that all the gauge potentials in the

family

C4 = i

√
1 +

ρ4
0

L4

(
1

H(ρ)
+ c

)
dx1 ∧ dx2 ∧ dx3 ∧ dt+ · · · (2.32)

yield the correct field strength (2.25), for any value of the dimensionless constant c (the · · ·
represent terms that do not contribute to the probe action). The undetermined constant

is fixed along the lines of what we have done for the charged particle in the Reissner-

Nordström geometry. We look at a brane sitting at a given value of ρ in the asymptotically

flat region ρ→∞ and impose that its energy per unit spatial volume reduces to its tension

τ3 in this limit. This yields

c = − lim
ρ→∞

1

H(ρ)
= −1 . (2.33)

In particular, C4 is singular at the horizon ρ = ρ0. It is then straightforward to show that

the minimum of the action is obtained for a schrunken brane sitting at ρ = ρ0, yielding

S∗p = −βτ3V3

√
1 +

ρ4
0

L4

(
1

H(ρ0)
− 1

)
=

βτ3V3√
1 + ρ4

0/L
4
, (2.34)

where V3 =
∫

d3~x.16 Comparing with (2.5) and (2.6), with q = 1 in our case,17 we get the

chemical potential

µ =
τ3V3√

1 + ρ4
0/L

4
· (2.35)

This is the correct known value for the solution (2.24), (2.25).

3 Brane probes in holographic set-ups

We now turn to cases involving probe branes in asymptotically AdS backgrounds, follow-

ing [21]. Our goal is threefold:

i) For pedagogical purposes and completeness, repeat the main arguments already pre-

sented in [21];

ii) Explain in great details the correct prescription given in [21] to fix the ambiguity

in the probe actions in asymptotically AdS spaces. An important point will be to

illustrate, on the example of the black D3-brane, how the AdS prescription actually

follows from the flat space prescription after taking the near horizon limit;

15We orient the brane worldvolume as (t, x1, x2, x3). We could also use a non-BPS probe with action

τ̂A− iτ
∫
C4 and BPS bound τ̂ ≥ |τ | without changing the subsequent discussion in any important way.

16Of course, this volume is strictly infinite. One could work instead with the action per unit volume, etc.
17It is natural to normalize the Ramond-Ramond charge in such a way that it simply counts the number

of D3 branes.
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iii) Check the consistency of our fundamental relation for the D1/D5 system, M2 branes

and M5 branes, which was not done explicitly in [21].

3.1 Consequences of the fundamental relation

Let us start with the standard case of the N = 4 super Yang-Mills theory in four di-

mensions, with gauge group U(N),18 which describes the low energy (or near horizon)

dynamics of a stack of N D3-branes. The generating functional of correlation functions (or

the partition function) Z = e−S
∗
g has the standard ’t Hooft large N expansion

lnZ = −
∑
h≥0

N2−2hFh(λ) , (3.1)

where λ is the ’t Hooft coupling. For our purposes, the number of colors N is identified

with the total charge Q (also counting the number of branes), and the thermodynamic limit

corresponds to N →∞. Let us also take the λ→∞ limit, for which the usual gravitational

bulk description is valid, and let us note limλ→∞ F0(λ) = F0. In these limits, (3.1) greatly

simplifies to

S∗g = − lnZ = N2F0 , (3.2)

where F0 does not depend on N . More generally, for other kinds of brane systems discussed

in section 3.4 below, the N -dependence can take the slightly more general form

S∗g = − lnZ = NγF0 , (3.3)

with some positive exponent γ.

For all these cases, our fundamental relation (2.4) greatly simplifies [12], because

∂S∗g/∂Q = ∂S∗g/∂N is directly proportional to S∗g itself. For one probe brane, we get

S∗p =
γ

N
S∗g . (3.4)

This result is startling: the on-shell gravitational action and the on-shell probe action must

be directly proportional, with a coefficient of proportionality which is fixed in terms of the

scaling exponent governing the large N behaviour of the free energy. For example, γ = 2

for D3-branes.19

Remark: if we consider a probe anti-brane instead of a probe brane, eq. (3.4) is replaced

by S∗p = − γ
N S
∗
g .

3.2 The asymptotically AdS black D3-brane geometry

The set-up. Let us consider the geometry dual to the four dimensional N = 4 gauge

theory on flat space R3 at finite temperature T .20 It is obtained by taking the near-horizon

18Most of what we are going to say can actually be applied to any U(N) gauge theory [12].
19Other interesting consequences of the fact that the free energy scales with N2 has been recently

discussed in [49].
20Note that this example is a limiting case of the AdS-Schwarzschild geometry studied in [21].
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limit of the geometry discussed in section 2.3. Formally, this near-horizon limit amounts

to letting L→∞ in (2.24) and (2.25), which yields

ds2 =
ρ2

L2

(
f(ρ)dt2 + d~x2

)
+
L2

ρ2

dρ2

f(ρ)
+ L2dΩ2

5 , (3.5)

F5 =
4i

L4

(
ρ3dρ ∧ dx1 ∧ dx2 ∧ dx3 ∧ dt+ iL8ωS5

)
. (3.6)

The full geometry, which is spanned when ρ0 ≤ ρ < ∞, is of the form M × S5, the

cigar-shaped bulk manifold M = B2 × R3 being asymptotically AdS5, with a boundary

X = S1 × R3. It is useful to note that

F5 =
4i

L
ΩM − 4L4ωS5 , (3.7)

where ΩM is the volume form on M . The temperature and charge of the solution are given

by

T =
ρ0

πL2
, N =

πL4

`4sgs
· (3.8)

Fixing the ambiguity in the action from the near-horizon limit. As in section 2.3,

the probe action is given by (2.31) and depends on a choice of gauge potential C4. All the

potentials of the form

C4 = i

(
ρ4

L4
+ c̃

)
dx1 ∧ dx2 ∧ dx3 ∧ dt+ · · · (3.9)

satisfy dC4 = F5 but yield different values for the action, parameterized by the dimen-

sionless constant c̃. One thus faces again the problem of finding a prescription to fix this

ambiguity. From the discussion of sections 2.2 and 2.3, it is clear that imposing smoothness

of C4 at ρ = ρ0 does not make sense. Instead, one must use a condition at asymptotic

infinity ρ→∞.

Because the field strength does not vanish in this limit, the condition to be imposed in

an asymptotically AdS space may not seem as obvious as in the case of an asymptotically

flat space. A pedagogical way to guess the correct prescription is to use the following

strategy: first find the correct result by directly taking the near horizon limit of the cor-

rect asymptotically flat space solution; then analyse the result and interpret it directly in

asymptotically AdS space.

We thus start from (2.32) with c given by (2.33) and let L → ∞. Since the field

strength (3.6) is of order 1/L4, we keep all terms in C4 of order 1/L4 or larger. This yields

c̃ = − ρ4
0

2L4
− 1 . (3.10)

Plugging this result into the action for a brane sitting at a fixed value of ρ,21 we obtain

Sp = τ3βV3

[
ρ4

L4

(√
f(ρ)− 1

)
+

ρ4
0

2L4
+ 1

]
. (3.11)

21It is easy to check that the minimum of the action over all such worldvolumes coincides with the

minimum of the action over all worldvolumes spanned by t, x1, x2, x3.
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Let us examine this result when ρ→∞. First, the terms proportional to ρ4 cancel. This is

simply the usual BPS condition. More interestingly, the ρ0-dependent constant term is also

canceled, due to the particular ρ0-dependence in (3.10). There remains a constant term,

equal to τ3βV3, whose temperature dependence comes entirely from the overall space-time

volume βV3 of the brane. This is a very special term: a so-called counterterm, that can be

canceled by adding a cosmological constant to the brane action near the boundary.22

One is thus naturally led to the following condition to fix the ambiguity in the action:

impose that the probe action reduces to a counterterm action near the AdS boundary. The

mathematically precise condition will be stated in the next subsection. Let us note that

counterterms play a crucial role in the standard holographic dictionary, since they are

required to make the on-shell gravitational action finite [42–47]. In view of the relation (3.4)

between the on-shell gravitational action and the on-shell probe action that we want to

obtain, it is satisfactory to find that counterterms do play a role in the precise definition

of the probe action too.

These important points being understood, let us compute the minimal value of (3.11).

It is easy to check that it is obtained for ρ = ρ0. Using (2.30) and (3.8), which imply in

particular that

τ3 =
N

2π2L4
, (3.12)

we find

S∗p = −N
4
π2βV3T

4 +
N

2π2L4
βV3 . (3.13)

Our fundamental relation (3.4), with the correct value γ = 2 for D3-brane (corresponding

to lnZ ∼ N2 at large N), together with S∗g = βF , finally yields the free energy

F = −N
2

8
π2V3T

4 +
N2

4π2L4
V3 . (3.14)

The first term in the above equation matches precisely with the correct and well-known free

energy of the planar N = 4 super Yang-Mills theory at large ’t Hooft’s coupling, obtained by

computing S∗g by the standard methods. The second term corresponds to the contribution of

a cosmological constant in the super Yang-Mills theory. This term can always be canceled

by adding a local counterterm to the action and thus has no physical meaning.23

3.3 General asymptotically AdS spaces and the isoperimetric inequality

Following [21], we are now going to greatly generalize the above discussion and show that

the fundamental relation (3.4) is consistent in any relevant Einstein-Poincaré space.24 We

shall see that consistency is made possible by an interesting geometric property of these

spaces, a non-trivial isoperimetric inequality first derived in [41].

22We shall describe precisely the general form of these counterterms in section 3.3 below.
23In particular the precise numerical coefficient N2/(4π2) that we have found above by looking at the near

horizon limit of the asymptotically flat geometry does not have any physical meaning in the asymptotically

AdS set-up. It could be set to any number we wish.
24This is the so-called “pure gravity” case. See section 3.5 for a generalization including a non-trivial

dilaton and section 5 for a brief discussion of possible extensions of the isoperimetric inequality used below

for more general supergravity backgrounds.
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The set-up. We consider a general asymptotically AdS Euclidean bulk space M of di-

mension d+ 1, with d-dimensional boundary X = ∂M endowed with a conformal class of

metrics [ḡ].25 The bulk metric G satisfies the Einstein-Poincaré condition

Rµν = − d

L2
Gµν , (3.15)

where L is the scale of the asymptotic AdS space. The conformal class [ḡ] on X is chosen to

have a non-negative Yamabe invariant,26 but is otherwise arbitrary. We consider a (d−1)-

brane probing the geometry, whose worldvolume Σ ⊂ M is homologous to the boundary

X, see figure 1. Its Euclidean action is given by

Sp = τd−1A(Σ)− iτd−1

∫
Σ
Cd , (3.16)

where A(Σ) is the volume of the worldvolume for the induced metric on Σ and Cd is a

gauge potential to which the brane couples.27,28 The gauge potential satisfies

dCd = Fd+1 = i
d

L
ΩM , (3.17)

where ΩM is the volume form of M , generalizing (3.7).29

The ambiguity in Cd, coming from the integration of (3.17), produces the usual am-

biguity in the probe action. Since all brane worldvolumes we consider are homologous to

each other, this ambiguity is simply an overall worldvolume-independent constant in the

action. Up to this constant, that we denote by s, (3.17) and Stokes’ theorem imply that

Sp(Σ) = τd−1

(
A(Σ)− d

L
V (MΣ)

)
+ s , (3.18)

where V (MΣ) is the volume of bulk space enclosed by Σ, as depicted in figure 1.

Fixing the ambiguity in the action. The general prescription to fix the ambiguity in

the probe action in an arbitrary asymptotically AdS space follows from the discussion in

section 3.2: we impose that the probe action goes to a purely counterterm action near the

boundary of AdS.

25We choose the boundary X to be compact. Non-compact boundaries, as in the example X = S1 × R3

of section 3.2, can be obtained by taking the large volume limit of compact boundaries.
26The non-negativity of the Yamabe invariant is equivalent to the fact that the action for a conformally

coupled scalar on the boundary is bounded from below [38–40]. This condition is required for the stability of

the boundary CFT. Mathematically, it is equivalent to the following fact. By the Trudinger-Aubin-Schoen

theorem, there always exists a representative of the conformal class on the boundary having constant scalar

curvature. This scalar curvature must be non-negative.
27If worldvolume gauge fields are included, A(Σ) must be replaced by the more general Dirac-Born-Infeld

action. It is straightforward to show that this more general action is always greater than or equal to A(Σ).

Since we shall be interested in the on-shell, minimum value of the action only, this makes worldvolume

gauge fields irrelevant for our purposes.
28We can also use a non-BPS probe with action τ̂A− iτ

∫
Cd and BPS bound τ̂ ≥ |τ | without changing

the subsequent discussion in any important way.
29The second term in (3.7) is irrelevant for our purposes.
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Σ

ΜΣ

Figure 1. An arbitrary (d − 1)-brane embedded into the bulk asymptotically AdS space. The

brane worldvolume Σ encloses the volume V (MΣ) of bulk space, depicted in dark grey.

The precise implementation of this prescription is as follows. First, one uses Fefferman-

Graham coordinates near the boundary. In these coordinates, the bulk metric can be

written

G =
L2dr2 + g

r2
, (3.19)

where

g(r, z) = ḡ(z) + g(2)(z)r2 + · · · (3.20)

can be expanded near the boundary at r = 0 and we denote by z the coordinates on the

boundary. Next, we consider a brane worldvolume Σε given by r = ε and denote by gε the

induced metric on Σε. A counterterm action is an action of the form

Sc.t.(Σε) =

∫
Σε

ddz
√

det gε

(
cdL

−d + cd−2L
−d+2R[gε] + · · ·

)
, (3.21)

for which the coefficients cd, cd−2, etc., are dimensionless numbers that may depend on ε but

only on ε and may at worst diverge logarithmically when ε→ 0 (the power-like divergences

come from the factor
√

det gε in (3.21) and their general form is consistent with the standard

power-counting arguments). We have denoted by R[gε] the scalar curvature constructed

from the metric gε. The · · · represent similar but higher derivative local curvature terms

built from the metric gε, of dimension less than d. Our prescription to fix the constant s

in (3.18) is then to impose that

lim
ε→0

(
Sp(Σε)− Sc.t.(Σε)

)
= 0 , (3.22)

for some counterterm action Sc.t..
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Example: for pedagogical purposes, let us revisit the example of section 3.2. The radial

Fefferman-Graham coordinate r is related to the coordinate ρ used in (3.5) and (3.6) by

r2 =
2L2

ρ2 +
√
ρ4 − ρ4

0

· (3.23)

This yields the five-dimensional bulk metric

ds2 =
1

r2

[
L2dr2 +

(
1− ρ4

0r
4

4L4

)2

1 +
ρ4

0r
4

4L4

dt2 +

(
1 +

ρ4
0r

4

4L4

)
d~x2

]
. (3.24)

By evaluating (3.18) for a brane at fixed r, using (3.8) and (3.12), we get

Sp =
N

4
π2βV3T

4

(
1− 1

4
π4L4T 4r4

)
+ s . (3.25)

In particular,

Sp(Σε) =
N

4
π2βV3T

4 + s+O(ε4) . (3.26)

On the other hand, the induced metric on Σε, derived from (3.24), is flat. All its local cur-

vature invariants thus vanish. The most general counterterm action is then a cosmological

constant term, which takes the form

Sc.t. = c4(ε)L−4A(Σε) =
βV3

L4

c4(ε)

ε4
+O(ε4) . (3.27)

Note that a crucial point here is that c4 can only depend on ε, but not on other parameters

like the temperature. Comparing (3.26) and (3.27), we see that our prescription (3.22)

implies that

s = −N
4
π2βV3T

4 + c
βV3

L4
, (3.28)

for an arbitrary dimensionless numerical constant c. Moreover, (3.25) implies that S∗p = s,

since the maximal value of r4 defined by (3.23) is 4/(πLT )4. This is perfectly consistent

with the result of section 3.2.

The general case: the above calculation can be straightforwardly generalized to an

arbitrary asymptotically AdS geometry. First, let us note that, from dimensional analysis,

the brane tension τd−1 will always be of the form cdL
−d for some dimensionless numerical

constant cd. When evaluated on Σε, the area term τd−1A in the probe action is thus

automatically a counterterm. The condition (3.22) thus simply yields

s = lim
ε→0

(
d

L
τd−1V (MΣε) + Sc.t.(Σε)

)
, (3.29)

for some counterterm action Sc.t.. Let us note that, of course, limε→0 V (MΣε) is infinite, but

it is always possible to choose Sc.t.(Σε) to cancel the infinities, as implied by the standard

holographic renormalization procedure [42–47].
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The isoperimetric inequality. The last step is to compute the minimal value of the

probe action Sp. From (3.18) and (3.29), we find that

S∗p = τd−1 min
Σ

(
A(Σ)− d

L
V (MΣ)

)
+ lim
ε→0

(
d

L
τd−1V (MΣε) + Sc.t.(Σε)

)
, (3.30)

where the quantity A− d
LV must be minimized over all possible worldvolumes (i.e. embed-

ded hypersurfaces homologous to the boundary) in the bulk space. At first sight, this mini-

mization problem might seem intractable, but it turns out that the solution is actually very

simple and elegant. Indeed, there exists a so-called isoperimetric inequality, stating that

A(Σ) ≥ d

L
V (MΣ) (3.31)

for any embedded hypersurface Σ in any asymptotically AdS space with a non-negative

Yamabe invariant on the boundary. This inequality was first proven in [41]; a simpler proof

was also provided in [21]. It immediately implies that the minimum of A − d
LV is zero, a

value that can always be realized by considering a schrunken brane. Overall, we have thus

found that

S∗p = lim
ε→0

(
d

L
τd−1V (MΣε) + Sc.t.(Σε)

)
. (3.32)

Remark: if we consider a probe anti-brane instead of a probe brane, the functional that

we need to minimize is A(Σ) + d
LV (MΣ), whose minimum is trivially zero. The discussion

then proceeds along the line of the case of the probe brane, see also the remark at the end

of section 3.1.

Checking the fundamental identity. To check our fundamental identity (3.4), let

us first recall how the on-shell gravitational action is computed. The Einstein-Poincaré

condition (3.15) follows from the usual Einstein-Hilbert action with a suitable cosmological

constant term,

Sg = − 1

16πGd+1

∫
M

dd+1x
√

detG

(
R+

d(d− 1)

L2

)
. (3.33)

Computing R from (3.15) yields

S∗g =
d

8πGd+1L2
V (M) , (3.34)

where V (M) is the volume of space-time. Of course, this volume is infinite. The correct

definition of the on-shell gravitational action requires regularization and renormalization.

The procedure is standard [42–47]. One introduces the Fefferman-Graham coordinates and

replace the non-compact space-time M by the compact region Mε, defined to be the set

of points having r ≥ ε. This compact region is identical to the region MΣε considered

previously. The infinities in V (MΣε) when ε → 0 are then canceled by adding to the
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Einstein-Hilbert action a counterterm action of the form (3.21).30 This yields

S∗g = lim
ε→0

(
d

8πGd+1L2
V (MΣε) + Sc.t.(Σε)

)
. (3.35)

Comparing with (3.32), we see that the fundamental relation (3.4) is satisfied if and only

if [21]

γ = 8πNLGd+1τd−1 . (3.36)

So everything boils down to checking a seemingly mysterious but very simple numerical

relation between the bulk Newton constant Gd+1 and the brane charge τd−1!

Before we go on to check (3.36) explicitly in a variety of cases, let us emphasize how

two important puzzles with the fundamental relation (3.4) have been solved by the above

discussion.

The first puzzle concerns the holographic renormalization procedure. It is essential in

making the on-shell gravitational action finite and it also implies a certain ambiguity related

to the possibility of adding finite local counterterms. If the on-shell gravitational action is

to be identified with the on-shell probe action through (3.4), this important feature must

have a counterpart for the on-shell probe action. At first sight, this is rather mysterious.

The resolution of the puzzle comes from realizing that the probe action does suffer from an

ambiguity, coming from the choice of the gauge potential coupling to the brane. The way

to fix this ambiguity in asymptotically AdS spaces is to impose that the brane action goes

to a counterterm action near the boundary. This prescription actually fixes the ambiguity

only partially, since it is always possible to add finite local counterterms. The result is that

both S∗g and S∗p share the same properties relative to holographic renormalization. There

is no obstruction in making an identification like (3.4).

The second puzzle concerns the computation of the minimal value S∗p of the brane

action. Naively, this looks like a very complicated problem, strongly depending on the

details of the bulk geometry. But this difficulty is surmounted thanks to the remarkable

geometric property of AdS spaces coded in the isoperimetric inequality (3.31).

3.4 Examples of D-brane and M-brane systems

We have just shown that the fundamental relation (3.4) between the on-shell probe action

S∗p and the on-shell gravitational action S∗g is automatically satisfied provided the alge-

braic constraint (3.36) is valid. The values of the parameters involved in this relation are

independent of the details of the geometry and are thus given once and for all by the mi-

croscopic definition of the system. In this section, we verify the relation (3.36) for various

D-brane and M-brane systems, providing further non-trivial checks of our general frame-

work. Moreover, beyond verification purposes, they illustrate new interesting features that

were not present in the explicit example of section 3.2.

30Since the compact space MΣε has a boundary, one may note that in principle the Einstein-Hilbert term

must be supplemented by a boundary Gibbons-Hawking term in the gravitational action. However, a direct

calculation shows that this term always reduces to a pure counterterm when ε→ 0. This is a nice property

of the hypersurfaces MΣε which are defined by using the radial Fefferman-Graham coordinate.
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The geometries we consider are of the form M×K, where M is asymptotically AdSd+1

and K is a compact manifold, on which for simplicity all the fields are assumed to be

constant. The effective Newton constant Gd+1 on M is then given by

Gd+1 =
GN

e−2φVol(K)
, (3.37)

where φ = Φ − log gs is the dilaton and GN is the Newton constant of the original, non-

reduced theory. In our examples GN will be ten dimensional G10 or eleven dimensional G11

(in which case there is of course no dilaton, so we simply set φ = 0 in (3.37)) gravitational

constant. Explicit expressions in our conventions can be found in appendix A.

Our general analysis of section 3.3 remains valid for constant dilaton. The only differ-

ence is an additional factor of e−φ in the DBI term in (3.16), which now reads

τd−1e
−φA(Σ) . (3.38)

As a consequence, (3.36) becomes

γ = 8πNLGd+1e
−φτd−1 . (3.39)

Of course, for non-constant dilaton, the analysis must be adapted. A simple example with

non-constant dilaton will be considered in section 3.5.

D3 branes. In this case, recall from (3.8) that the charge is

N =
−i

16πG10

1

τ3

∫
S5
?F5 = 2π2L4τ3 =

πL4

gs`4s
, (3.40)

whereas the five-dimensional Newton constant is given by

G5 =
G10

L5Vol(S5)
=
πL3

2N2
· (3.41)

To check (3.39), we thus compute

8πNLG5τ3 = 8πNL× πL3

2N2
× N

2π2L4
= 2 , (3.42)

consistently with the correct value γ = 2 for the D3 branes. This is of course in line with

the special case studied in section 2.3.

D1 and D5 branes. We consider the standard near-horizon D1/D5 geometry [6], of

the form M × T4 × S3, where M is asymptotically AdS3 of radius L and S3 is the three-

sphere of radius L. In this case, we have two charges, associated with the numbers N1 and

N5 of D1 and D5 branes. Thus we have two versions of the relation (3.39) that we can

check, according to which type of probe brane we use. This also means that the on-shell

gravitational action S∗g can be obtained from (3.4) using either D1 or D5 probes.

On the one hand, let us note that, as is well-known, the free energy scales as N1N5

and thus the exponents entering (3.39) are

γD1 = γD5 = 1 . (3.43)
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On the other hand, the Newton constant and dilaton are determined in terms of the

compact factor of the geometry alone. For example, we can consider the vacuum AdS3 ×
T4 × S3 geometry, given by

ds2 =
L2

r2
dr2 +

r2

L2
(dt2 + dx2) + eφdzadza + L2dΩ2

3 , (3.44a)

F3 =
2L2

eφ
(
iωAdS3 + ωS3

)
. (3.44b)

We denote by ωAdS3 and ωS3 the volume forms on the spaces AdS3 and S3 of unit radii.

The dilaton fluctuation φ is constant. The torus coordinates za are periodic,

za ∼ za + 2πρ , (3.45)

where ρ is an arbitrary length scale. The charges are given by31

N1 =
−i

16πG10

1

τ1

∫
S7
?F3 = 2πL2τ5Vol(T4)e−φ =

L2

2πgs`6s
(2πρ)4eφ , (3.46)

N5 =
−i

16πG10

1

τ5

∫
S3
?F7 =

1

16πG10

1

τ5

∫
S3
F3 = 2πL2τ1e

−φ =
2πL2

gs`2s
e−φ , (3.47)

where we have used (2.29) and the values of the brane tensions

τ1 =
1

`2sgs
, τ5 =

1

(2π)2`6sgs
· (3.48)

The three-dimensional Newton constant is then

G3 =
G10

e−2φL3Vol(T4 × S3)
=

L

4N1N5
· (3.49)

We can now check (3.39). For a D1-brane probe, we find, using in particular (3.47)

and (3.48),

8πN1LG3e
−φτ1 = 8πN1L×

L

4N1N5
× N5

2πL2
= 1 , (3.50)

matching perfectly the value of γ for the D1-brane, see (3.43). For a D5-brane probe, the

tension τ1 appearing in (3.39) is of course the effective tension τ5Vol(T4) of the D5 wrapped

on T4. Using (3.46) and (3.48), this yields

8πN5LG3e
−φ(τ5Vol(T4)

)
= 8πN5L×

L

4N1N5
× N1

2πL2
= 1 , (3.51)

again matching perfectly the value of γ for the D5-brane given by (3.43).

31Compare with (2.28).
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M2 branes. The near horizon M2-brane geometry [6] is M × S7 where M is asymptoti-

cally AdS4 of radius L and S7 is the seven-sphere of radius 2L. For example, the vacuum

solution is

ds2 =
L2

r2
dr2 +

r2

L2

(
dt2 + d~x2

)
+ 4L2dΩ2

7 , F4 =
3i

L
ωAdS4 . (3.52)

The charge is computed as

N =
−i

16πG11

1

τM2

∫
S7
?F4 = 215/3π2L6τ2

M2 =
211/3π8/3L6

`611

, (3.53)

where we have used the standard formula for the M2-brane tension in terms of the eleven-

dimensional Planck length `11 = G
1/9
11 ,

τM2 =
π1/3

22/3`311

· (3.54)

Using (3.53), the four-dimensional Newton constant is

G4 =
`911

(2L)7Vol(S7)
=

3L2

23/2N3/2
· (3.55)

Using again (3.53), eq. (3.39) thus yields

8πNLG4τM2 = 8πNL× 3L2

23/2N3/2
× N1/2

215/6πL3
=

3

2
· (3.56)

Remarkably, this is consistent with the well-known N3/2 scaling of the free energy for the

M2 branes.

M5 branes. The near horizon M5-brane geometry [6] is M × S4 where M is asymptoti-

cally AdS7 of radius L and S4 is the four-sphere of radius L/2. For example, the vacuum

solution is

ds2 =
L2

r2
dr2 +

r2

L2

(
dt2 + d~x2

)
+
L2

4
dΩ2

4 , F7 =
6i

L
ωAdS7 . (3.57)

The charge is computed as

N =
−i

16πG11

1

τM5

∫
S4
?F7 =

√
π3τM5

2
L3 =

π4/3

25/3

L3

`311

, (3.58)

where we have used the standard formula for the M5-brane tension in terms of the eleven

dimensional Planck length `11 = G
1/9
11 ,

τM5 =
1

27/3π1/3`611

· (3.59)

Using (3.58), the seven-dimensional Newton constant is

G7 =
`911

(L/2)4Vol(S4)
=

3π2L5

16N3
· (3.60)

Using again (3.58), eq. (3.39) thus yields

8πNLG7τM5 = 8πNL× 3π2L5

16N3
× 2N2

π3L6
= 3 . (3.61)

This is in perfect agreement with the well-known N3 scaling of the free energy for the M5

branes.
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3.5 A simple example with a non-trivial dilaton

In this last subsection, we present a simple generalization for which we allow a non-constant

dilaton φ. We consider a ten-dimensional space-time of the form M × S5, where M is

asymptotically AdS5 with radius L and S5 is the five-sphere of radius L. Assuming that

the ten-dimensional supergravity fields remain constant on S5, the action for the fields on

M (and using for convenience the Einstein frame metric g) reads

S5 = − 1

16πG5

∫
M

d5x
√
g

(
R(g)− 2Λ− 1

2
|dφ|2g

)
, (3.62)

where the cosmological constant is Λ = −6/L2 and the five-dimensional Newton constant

is given by

G5 =
G10

Vol(S5
L)
· (3.63)

The equations of motion derived from (3.62) reads

R(g)µν =
1

2
∂µφ∂νφ−

4

L2
gµν , ∆gφ = 0 . (3.64)

The on-shell value of the gravitational action therefore has the same form as in (3.34),

namely

S∗5 =
1

2πG5L2
V (M) . (3.65)

On the other hand, the probe action for a D3 brane is as in (3.16), namely

Sp = τ3A(Σ)− iτ3

∫
Σ
C4 , (3.66)

where the area A(Σ) is computed using the metric induced on Σ from the Einstein frame

metric g and C4, as usual, is such that (3.7) holds.32

The discussion of section 3.3 can then be repeated straightforwardly. The important

point is that the equations of motion (3.64) implies that

Rµν +
4

L2
gµν =

1

2
∂µφ∂νφ ≥ 0 . (3.67)

As explained in [21], this condition ensures the validity of the isoperimetric inequality (3.31)

and thus, also using (3.42), of our fundamental relation (3.4).

4 Schwarzschild-AdS5 with α′-corrections

4.1 General consequences of the fundamental relation

Until now, we have verified the general formula (2.4) relating the on-shell probe action S∗p
to the on-shell supergravity action S∗g in the regime where the supergravity approximation

for the dual bulk description is reliable. In the holographic set-up coming from D3 branes

32Note that the dilaton does not appear explicitly in the D3-brane action in the Einstein frame.
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in superstring theory, this corresponds to the strong ’t Hooft coupling regime λ→∞. Our

fundamental relation is then equivalent to the simpler relation (3.4).

The goal of the present section is to take into account the first non-trivial α′ corrections

to supergravity or, equivalently, the first non-trivial corrections to the λ → ∞ limit, still

staying in the thermodynamic limit N →∞. Eq. (3.3) is then replaced by

S∗g = N2F0(λ) , (4.1)

where we keep explicitly the λ-dependence in F0. The fundamental relation (2.4) thus

yields
∂
(
N2F0(λ)

)
∂N

= S∗p . (4.2)

At this stage, it is important to recall that the ’t Hooft coupling λ depends itself on N via

the standard relation

λ = 4πgsN (4.3)

and thus (4.2) is equivalent to

S∗p = N
(
2F0(λ) + λF ′0(λ)

)
. (4.4)

This can be conveniently rewritten as

∂

∂λ

(
λ2S∗g

)
= NλS∗p . (4.5)

Equations (4.4) and (4.5) are highly non-trivial predictions in the theory at finite λ or,

equivalently, at finite α′. In particular, the actions S∗p and S∗g entering these equations

are the α′-corrected D-brane action and supergravity action, evaluated on the α′-corrected

supergravity background.

Remarks:

i) At large λ, we expect in general an expansion of the form F0(λ) = F0(∞)+O(1/
√
λ).

The correction term λF ′0(λ) in (4.4) is thus at most O(1/
√
λ) and, when λ→∞, we

find the relation S∗p = 2
N S
∗
g used in section 3.

ii) We are going to focus on the specific example of the α′-corrected Schwarzschild-AdS5

geometry. In this case, it turns out that the large λ expansion is of the form

S∗g(λ) = N2
(
F0,0 + λ−3/2F0,3/2 +O(λ−2)

)
,

S∗p(λ) = N
(
f0 + λ−3/2f3/2 +O(λ−2)

)
.

(4.6)

Equation (4.5) then yields f0 = 2F0,0, which is the relation that we have already

checked in section 3, together with the new constraint

f3/2 =
1

2
F0,3/2 . (4.7)

This is the relation that we are going to check below.

iii) At finite λ, the relation between S∗p and S∗g is no longer a simple proportionality,

but (4.5) can always be integrated to find the on-shell supergravity action S∗g(λ)

from the on-shell brane action S∗p(λ). To see this, one can, for example expand both

sides of (4.5) at small λ and check that the relation fixes the expansion to all orders.
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4.2 Schwarzschild-AdS5 to leading order

We start by briefly reviewing the analysis at leading order. This analysis was already

presented in [21] and also follows from the general discussion of section 3. All we want

here is to set-up the notations in a way convenient to the discussion of the α′ corrections.

In particular, we shall use a different coordinate system than in [21].

The leading order metric reads

ds2
0 =

L2

u2

du2

h(u, α0)
+
u2

a2

(
h(u, α0)dt2 + a2dΩ2

3

)
, (4.8)

where the function h(u, α0) is given by

h(u, α0) = 1 +
L2

u2

(
1 +

(α2
0 − 1)L2

4α2
0u

2

)
. (4.9)

The parameters in the problem are a, the radius of the three-sphere S3 on the boundary

and the inverse temperature β.33 One should thus see α0, 0 ≤ α0 ≤ 1, as being a function

of these two parameters, such that

β = πa
√

2α0(1− α0) . (4.10)

The range of the coordinate u is [uh,+∞[, where the “horizon” is at

uh =

√
1− α0

2α0
L . (4.11)

Finally, let us note that the physically relevant root of the equation (4.10) is given by

α0 =
1

2

(
1−

√
1− 2β2

π2a2

)
(4.12)

and corresponds to the large, stable Schwarzschild-AdS black hole.

Up to counter-terms, the free energy at leading order reads

F =
N2

16a

4α0 − 1

α2
0

· (4.13)

The D3 brane action for a world-volume of constant u is

Sp =
2π2βτ3u

4

a

(√
h(u, α0)− 1 +

u4
h

u4

)
+ s , (4.14)

where the constant s is fixed as usual by the condition that asymptotically close to the

boundary, Sp reduces to a counterterm, see section 3.3. Using this prescription, we find

that s is given by

s =
π2βτ3L

4

a

4α0 − 1

4α4
0

+ SCT · (4.15)

Using (3.12) for the value of the tension τ3, the minimum of Sp is

S∗p =
Nβ

8a

4α0 − 1

α2
0

+ SCT , (4.16)

consistently with (4.13) and S∗p = (2/N)S∗g .

33Of course, a is just a scale and we could set a = 1, but we find it convenient to keep a explicitly.
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4.3 On α′-corrections

4.3.1 Relevant α′-corrections to supergravity

The type IIB supergravity action is corrected in string theory by higher derivative terms.

The expansion parameter is α′/L2 ∼ (`s/L)2, where L is the typical length scale of the

background geometry. For us, L is the AdS5 scale and the expansion parameter is simply(
`s
L

)2

=
2π√
λ
· (4.17)

These corrections have been extensively studied in the literature [60, 63–66]. At leading

non-trivial order, it turns out that they are proportional `6s and take the form

Sg = Ssugra −
ζ(3)`6s

210π3G10

∫
d10x
√
g e−3φ/2W . (4.18)

In this formula, φ is the dilaton fluctuation, normalized such that its kinetic term is

1

16πG10

∫
d10x
√
g

1

2
gMN∂Mφ∂Nφ (4.19)

and gMN is the Einstein frame metric, which is related to the string frame metric GMN by

GMN = eφ/2gMN . (4.20)

Moreover, W is a scalar, commonly called the “R4-term,” constructed out of four powers of

the Riemann curvature tensor. We are interested in cases where the Einstein frame metric

is of the form

ds2
10 = ds2 + fdΩ2

5 , (4.21)

where ds2 is a metric on a five-manifold M and f is some function on M . In this case, W

can be expressed as [59, 60]

W = Cc1a1a2c2Cd1a1a2d2C
b1b2d1
c1 Cd2

b1b2c2
+

1

2
Cc1c2a1a2Cd1d2a1a2C

b1b2d1
c1 Cd2

b1b2c2
, (4.22)

where 1 ≤ a1, a2, b1, b2, c1, c2, d1, d2 ≤ 5 and Cabcd is the Weyl tensor for ds2. Additional

corrections to the supergravity action, involving in particular the Ramond-Ramond forms,

also exist, but do not affect our discussion (see [60, 61] and references therein).

4.3.2 The α′-corrected Schwarzschild-AdS5 geometry

The new action (4.18) yields the α′-corrected equations of motion for the metric g and

the dilaton φ. We are interested in the associated deformation of the Schwarzschild-AdS5

geometry (4.8). This problem was first studied in [62]. In terms of the conveniently defined

deformation parameter

η =
ζ(3)

26π2

`6s
L6

=
πζ(3)

8λ3/2
, (4.23)

and the differential form

ω =
1

a
u3du ∧ ωS3 ∧ dt , (4.24)
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the solution reads, to leading non-trivial order in η,

ds2 =
L2

u2

eA(u)du2

h(u, α)
+
u2

a2

(
h(u, α)eB(u)dt2 + a2eC(u)dΩ2

3

)
+ L2e−3C(u)/5dΩ2

5 , (4.25)

F5 = 4i
(
e
A(u)+B(u)

2
+3C(u)ω + iL4ωS5

)
. (4.26)

The functions A and B are given in terms of C by [62]

A(u) = C(u) +
5ηL4

4α2h(u, α)u4

[
−(α− 15)(1 + α)3

(α− 1)2

+
(α2 − 1)3

α4

L8

u8

(
9

2
+

4L2

u2
+

57

64

α2 − 1

α2

L4

u4

)]
,

(4.27)

B(u) = C(u) +
5ηL4

4α2h(u, α)u4

[
(α− 15)(1 + α)3

(α− 1)2

− (α2 − 1)3

α4

L8

u8

(
3

2
+
L2

u2
+

9

64

α2 − 1

α2

L4

u4

)]
.

(4.28)

Let us note that the combination

A(u) +B(u)− 2C(u) = −15η

4

(1− α2)3

α6

L12

u12
(4.29)

simplifies nicely. The function C itself is not known explicitly, but it satisfies the second

order differential equation(
u5

L3
h(u, α)C ′(u)

)′
− 32u3

L3
C(u)− 225η

256

(1− α2)4

α8

L13

u13
= 0 , (4.30)

where the prime denotes the derivative with respect to u. Imposing that the metric remains

AdS5 at large u, we find from this equation that

C(u) ∼
r→∞

c

u8
(4.31)

for some constant c. This is all what we shall need to know about C. An explicit expression

for the dilaton φ(u) can also be found in [62], but we won’t use it.

As in the undeformed case reviewed in 4.2, the parameters in the problem are the

radius a and the inverse temperature β. The generalization of (4.10) reads

β = aπ
√

2α(1− α)

(
1− 5(1 + α)3(3− 5α)

(1− α)3
η

)
, (4.32)

which fixes α as a function of a and β. Explicitly, the function α is given in terms of the

function α0 defined in (4.12) by

α = α0 +
5β2

π2a2

(1 + α0)3(3− 5α0)

(1− α0)3(1− 2α0)
η . (4.33)

Finally, the range of the coordinate u is [uh,+∞[, with

uh =

√
1− α

2α
L . (4.34)
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4.3.3 Relevant α′-corrections to the D3-brane action

The leading-order D3-brane action is given by (3.16) for d = 4 and is proportional to 1/α′2.

The first α′-corrections to this action have been studied in [58]. The leading correction is

O(1) and the next-to-leading order is O(α′2),

δSp = δSDBI + δSCS +O(α′2) , (4.35)

where

δSDBI =
1

16π2

∫
Re
[

log
(
ηD(τ)

)
tr
(
R∧ ?R− iR∧R

)]
, (4.36)

δSCS = −i
∫ (

C0 + C2

)
∧ Ω (4.37)

yield the deformations to the DBI and CS parts of the action respectively. We have denoted

by ηD the Dedekind function, by τ = (C0 + ie−φ)/λ the axion-dilaton field and by R a

two-form-valued matrix built using the pullback R of the Riemann tensor on the brane

worldvolume as

Rkl =
1

2
Rk

lijdx
i ∧ dxj . (4.38)

The quantity Ω is a sum of differential forms, that can be computed from the Dirac roof

genus. Since in the background we are studying, C0 = C2 = 0, its detailed form will not

be needed.

4.4 The α′-corrected on-shell actions

We are now ready to evaluate both the on-shell gravitational action and the on-shell probe

action, taking into account the α′ corrections, in order to check our fundamental for-

mula (4.4). The calculation for the on-shell gravitational action has already been done

long ago in [60, 62], so the new part that we present is really the evaluation of the probe

action. However, it is very interesting to explain both calculations in parallel. This will

highlight some crucial differences in the way the α′ corrections enter on both sides and un-

derline the very non-trivial nature of the final match of the results, consistently with (4.4).

4.4.1 The α′-corrected on-shell gravitational action

To evaluate S∗g , we plug the corrected geometry reviewed in 4.3.2 into (4.18). It is well-

known [59, 60] that, to leading non-trivial order in η, the supergravity action Ssugra eval-

uated on this corrected geometry matches with the supergravity action evaluated on the

undeformed geometry. The full α′ corrections to S∗g thus come from the evaluation of the R4

term (4.22). Since this term is already O(η), it is clear that we only need the undeformed

geometry to make the calculation. The details of the corrected background presented

in 4.3.2 thus turn out to be totally irrelevant here. Modulo the usual counterterms, this

yields [62, 68]

S∗g = β
N2

16a

4α0 − 1

α2
0

[
1 +

15η(1 + α0)4

(1− 4α0)(1− α0)2

]
+ Sc.t. , (4.39)
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where the function α0 is defined by (4.12). In the notation of (4.6), using (4.23) and (4.10),

we get

F0,0 =
β

16a

4α0 − 1

α2
0

, F0,3/2 = −15π5ζ(3)

32

a3

β3

(
1 + α0

)4
. (4.40)

4.4.2 The α′-corrected on-shell probe action

We now compute the minimum of the corrected probe action, which includes the

terms (4.35), in the deformed geometry (4.25), (4.26).

Let us first consider the correction terms (4.36) and (4.37). Since C0 = C2 = 0, (4.37)

clearly vanishes. As for (4.36), at leading non-trivial order in η, it is a priori enough to

evaluate it on the undeformed background at r = rh. By direct calculation, it turns out

that this term actually vanishes on this undeformed background for any fixed value of

r. The conclusion is that the full α′ corrections to S∗p come from the evaluation of the

undeformed probe action (3.16) on the deformed background.

Note that this is the exact opposite of what happened for the evaluation of the grav-

itational action S∗g . For S∗g , we needed the α′ corrections to the action evaluated on the

undeformed geometry and the deformed background played no rôle. Now, for S∗p, we see

that the α′ corrections to the action play no rôle, all the non-trivial contributions coming

from the deformed geometry presented in 4.3.2.

This being said, we can evaluate S∗p, following in details the prescription explained in

section 3.3.

Step 1: the first part of the discussion precisely mimics what we have done in 3.3. Since,

as we have just explained, the corrections δSDBI and δSSC to the probe action vanish in

the present example, the probe action can be written as

Sp(Σ) = τ3

(
A(Σ) + i

∫
MΣ

F5

)
+ s . (4.41)

This formula slightly generalizes (3.18), taking into account that (3.17) is no longer valid

when the α′ corrections are present. Moreover, it is not difficult to show that the minimum

value of the probe action will be obtained for a shrunken brane, as in section 3.3. This

can be understood by using the spherical symmetry of the metric and by considering

the potential felt by a brane at constant u, which is an infinitesimal perturbation of the

potential felt by the brane in the undeformed case.34 We thus obtain

S∗p = s . (4.42)

The constant s is fixed as usual. We introduce the worldvolume Σε, given by the

equation r = ε, where ε is a regularizing parameter and r the Fefferman-Graham coordinate.

This coordinate is such that the bulk metric (4.25) takes the form (3.19), (3.20) where,

presently, the boundary metric is

ḡ = dt2 + a2dΩ2
3 . (4.43)

34We have not tried to derive a generalization of the isoperimetric inequality (3.31) which would apply

in more general α′-corrected background, but it seems clear that such generalizations should exist.
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It is straightforward to express r in terms of the coordinate u in (4.25). We only need the

expansion near the boundary r = 0 and this yields

Σε : u = uε =
a

ε

[
1− L2ε2

4a2

+

(
(1− α2

0)L4

32a4α2
0

+
5π4L4

8β4

(1 + α0)3(3− 11α0 + 2α2
0)

1− 2α0
η

)
ε4 +O(ε6)

]
. (4.44)

We then require that Sp reduces to a counterterm action when evaluated on Σε. This yields

S∗p = lim
ε→0

(
−iτ3

∫
MΣε

F5 + Sc.t.(Σε)

)
. (4.45)

Step 2: we evaluate the integral −iτ3

∫
MΣε

F5, starting from (4.26) and (4.24), to leading

non-trivial order in η. The integrals over t and S3 are trivial. Using τ3 = N
2π2L4 , see (3.40),

we then get

− iτ3

∫
MΣε

F5 =
4Nβ

aL4

(
I1 + I2 + I3

)
, (4.46)

where the integrals over u are conveniently written as

I1 =

∫ uε

uh

u3du , (4.47)

I2 =
1

2

∫ uε

uh

(
A(u) +B(u)− 2C(u)

)
u3du , (4.48)

I3 = 4

∫ uε

uh

C(u)u3du . (4.49)

The integrals I1 and I2 can be immediately computed from the explicit expression (4.29),

recalling that α is given by (4.33) and that the bounds in the integrals are given by (4.34)

and (4.44). In the small ε limit, we get

I1 =
a4

4ε4
− a2L2

4ε2
+

L4

32α2
0

[
4α0 − 1− 15η(1 + α0)3(7α0 − 9)

(1− α0)2

]
+O(ε) , (4.50)

I2 = −15L4η

4

(1 + α0)3

(1− α0)α2
0

+O(ε) . (4.51)

In spite of the fact that the function C(u) is not known explicitly, we can still compute the

integral I3 by integrating the differential equation (4.30) from uh to uε and by using the

fall-off condition (4.31). This yields

I3 = −75L4η

128

(1 + α0)4

(α0 − 1)2α2
0

+O(ε) . (4.52)

Adding-up (4.50), (4.51) and (4.52) we get, up to the divergent terms in I1 which are

counterterms,

S∗p =
Nβ

8a

[
4α0 − 1

α2
0

− 15π4a4

β4

(
1 + α0

)4
η

]
. (4.53)
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Using the relation (4.23) between η and λ and comparing with the expansion of S∗p in (4.6),

we therefore obtain

f0 =
β

8a

4α0 − 1

α2
0

, f3/2 = −15π5ζ(3)

64

a3

β3

(
1 + α0

)4
. (4.54)

Comparing with (4.40), we see that the non-trivial prediction (4.7) of our fundamental

relation (4.5) is beautifully satisfied.

5 Conclusion

We have presented and studied in details a surprising relation (2.4) between on-shell grav-

itational actions and on-shell probe actions, which was first proposed in [12] and already

explored in [21, 22]. We have emphasized that this relation is deeply rooted into the ther-

modynamical nature of gravity and as such should be extremely general. We have tested

our ideas on several non-trivial examples, both in asymptotically flat and asymptotically

AdS space-times.

The explicit tests we have provided, in particular in section 4, are stringent. Let us

briefly recapitulate the main ingredients that came into them.

Even to leading order in α′, the match required several important consistency require-

ments, see [21] and section 3. Once the correct definition of the probe action was given,

and the isoperimetric inequality established, it was still necessary to understand how a

“surface” term like the probe action could match with a “bulk” term like the Einstein-

Hilbert action. This was possible thanks to Stokes’ theorem and the general relation (3.17)

between the Ramond-Ramond field strength and the volume form of the bulk space-time.

Finally, a precise numerical match between various combinations of string-theoretic quan-

tities, eq. (3.36), (3.42), (3.50), (3.51), (3.56), (3.61), had to be valid.

To the first non-trivial order in α′, new highly non-trivial ingredients were needed.

First, the fundamental formula no longer yields a simple proportionality between S∗g and

S∗p, but rather the differential relation (4.5). From this, one gets specific relations between

the coefficients in the large λ expansions of S∗g and S∗p, see eq. (4.6) and (4.7). Second,

the match requires a very precise link between the integral of the R4-terms (4.22) over

the undeformed space-time (which yields the α′ corrections to the on-shell gravitational

action) and the integral of F5, eq. (4.26), over the deformed space-time (which yields the

α′ corrections to the on-shell probe action). We were not able to find a simple direct proof

from gravitational field equations of this fact, similar to the argument at leading order

based on (3.17). We just checked that it works from direct evaluation of the integrals.

We believe that all this constitutes a very convincing check of the consistency of the

general arguments that underly our fundamental relation (2.4) and thus, in particular, of

the thermodynamic nature of gravity.

One can imagine many lines of future developments. Let us briefly mention three of

them.

In the strict thermodynamic limit where a purely classical description of gravity is

valid, a fundamental consistency requirement is the existence of the isoperimetric inequal-

ity (3.31). Our work suggests that a whole new class of isoperimetric inequalities should
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exist for more general backgrounds, in which the notions of area and volume are replaced

by the DBI and Chern-Simons terms in the brane probe action. Even more generally, these

inequalities should generalize to higher-derivative gravitational theories. In view of the

importance of isoperimetric inequalities in geometry, which is due, in particular, to their

deep link with spectral theory, a research along these lines could be very fruitful.

In view of the extreme generality of our arguments, it should be possible to derive and

check versions of our fundamental relation (2.4) in many different contexts. A particularly

interesting framework is provided by the “bubbling geometries” obtained in [69–74].35 For

instance, one can consider geometries dual to half-BPS Wilson loops of the N = 4 super

Yang-Mills theory in large representations of the gauge group SU(N), with Young tableaux

containing of the order of N2 boxes. The full back-reaction on the AdS5 × S5 geometry

must then be taken into account. The corresponding AdS2 × S2 × S4 × Σ solutions were

constructed in [72–74]. These solutions are parameterized by harmonic functions which

themselves encode the large Young tableau of the Wilson loop representation [75]. We can

then apply our fundamental relation (2.4), with Q identified with the total fundamental

string charge of the solutions, which equals the total number of boxes in the Young tableau.

From the known relation between D3 and D5 branes attached to the Wilson loop contour

and Wilson loop representations [76–78], (2.4) predicts the non-trivial equality between:

- on the one hand, the on-shell probe actions of a D3 brane or a D5 brane wrapping

AdS2 × S2 or AdS2 × S4 respectively, carrying q units of fundamental string charge

on AdS2 and attached to the circular Wilson loop contour on the AdS5 boundary;

- and on the other hand, the variation of the on-shell supergravity action for the

AdS2×S2×S4×Σ solution, when the fundamental string charge is varied by q units,

which corresponds to adding a row (for D3 branes) or a column (for D5 branes) with

q boxes to the Young tableau.

We believe that several other non-trivial illustrations of (2.4) could be found along similar

lines.

Finally, an ambitious but very interesting question is to go beyond the strict ther-

modynamic limit of gravity. This is required, for example, to study the higher-derivative

corrections of the M-brane backgrounds discussed in section 3.4, which are related to 1/N

corrections. To work at finite N , one clearly needs an understanding of the “microscopic”

definitions of the probe branes actions, along the lines of [12] (see appendix B). We believe

that deep and unexpected consistency requirements in quantum gravity may be uncovered

in this way.
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A Conventions

In this appendix we summarize all our conventions and give some useful formulas that are

used in the body of the paper, paying particular attention to all signs and factors of 2 and

π. We work exclusively in the Euclidean. Otherwise, we use the conventions of Polchinski’s

standard string theory textbook [79, 80].

The string length `s is related to α′ by

`2s = 2πα′ . (A.1)

For a (d + 1)-dimensional spacetime M with boundary ∂M , the Einstein-Hilbert action

SEH reads

SEH = − 1

16πGd+1

∫
M

dd+1x
√
G
(
R− 2Λ

)
. (A.2)

The Riemann curvature tensor is defined with the following sign convention:

Rµνρλ = ∂ρΓ
µ
λν − ∂λΓµρν + ΓµρκΓκλν − ΓµλκΓκρν , (A.3)

and the Ricci tensor is Rµν = Rλµλν . For asympotically AdS spacetime M , the cosmological

constant Λ is related to the AdS “radius” L by

L2 = −(D − 1)(D − 2)

2Λ
· (A.4)

The Dirac-Born-Infled action SDBI for a probe p-brane moving in M reads

SDBI = τp

∫
Σ

dp+1x e−φ
√

det
[
P(G+B) + `2sF

]
, (A.5)

where Σ is the (p + 1)-dimensional worldvolume of the brane and P is the pullback on

Σ. The field B is the Kalb-Ramond field, if any. F is the field-strength associated to

the worldvolume U(1) gauge potential A. φ is the dilaton fluctuation, and therefore τp is

proportional to g−1
s (see below for explicit formulas in superstring theory and in M-theory).

The Chern-Simons action for the p-brane (also called the Wess-Zumino term) reads

SCS = −iτp
∫

Σ

∑
k

P(Ck) ∧ eP(B)+`2sF . (A.6)

The factor of i comes from the Euclidean signature. The sum over k runs over all allowed

value in the given supergravity theory.

The ten-dimensional Newton constant G10 in superstring theory is

G10 =
π2

2
`8sg

2
s . (A.7)

– 33 –



J
H
E
P
0
8
(
2
0
1
6
)
0
4
7

The tension τp for a Dp-brane is given by

τp =
1

(2π)
p−1

2 `p+1
s gs

· (A.8)

The eleven-dimensional Newton constant G11 and the eleven-dimensional Planck length

`11 in M-theory are given by

G11 = `911 =

√
π5

2
g3

s `
9
s , `11 =

π5/18

21/18
g1/3

s `s . (A.9)

The M2- and M5-brane tensions are

τM2 =
1√

2π gs`3s
, τM5 =

1

(2π)2g2
s `

6
s

· (A.10)

B On D-brane probes in gauge theory

For completeness, we very briefly review the precise gauge theory framework, developed

in [12], which provides a solid conceptual background for the relation (4.2) in the context

of large N gauge theories. In particular, a gauge-theoretic proof of (2.4) is given and its

generalization to all orders in the 1/N expansion or even at finite N is discussed.

B.1 Generalities

Let us consider a U(N), or SU(N), gauge theory in p+1 space-time dimensions, for example

the four dimensional N = 4 super Yang-Mills theory or the pure Yang-Mills theory. It was

shown in [12, 50] that it is possible to define, purely in gauge-theoretic terms, what is meant

by the “microscopic” non-Abelian D-brane action AN,K for K Dp-branes in the presence

of N other Dp-branes. The fundamental property of the action AN,K , which has a U(K)

gauge symmetry, is to compute the ratio ZN+K/ZN of partition functions (or generating

functionals) of the original U(N + K) and U(N) gauge theories. Precisely, if we denote

collectively by Φ the field variables that enter in AN,K , and if we work in the Euclidean,

we have the path integral formula

ZN+K(λ)

ZN (λ)
=

∫
DΦD[ghosts]U(K) e

−AN,K(Φ)+sψ , (B.1)

where ghosts and a gauge-fixing term sψ have been introduced to take care of the U(K)

gauge symmetry. The action AN,K has several interesting properties, discussed in details

in [12]. Most notably:

(i) The set of fields Φ include scalar fields. These fields describe the motion of the

Dp-branes in an emergent space, transverse to the original p+ 1 dimensional space-

time, which is identified with the holographic geometry dual to the gauge theory

under consideration. This is true even when the gauge theory does not have any

elementary scalar field in the Lagrangian and provides a very effective approach to

derive the holographic description of gauge theories. For example, a holographic fifth

dimension is explicitly seen to emerge in this way in the pure Yang-Mills theory in

four dimensions [12].
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(ii) The action AN,K provides a precise tool to probe the holographic bulk dual locally.

The difficulty in defining local observables in the bulk is rigorously addressed in the

construction of the action AN,K , by mapping the non-gauge invariance of the local

coordinates to the non-standard equivariant gauge-fixing procedure which is crucially

needed to define AN,K [12, 51–57]. The full details of the bulk geometry, like the

metric or form-fields, can be read off from AN,K [13–20].

(iii) At large N and fixed K, which is the so-called probe limit, the action AN,K has an

expansion of the form

AN,K =
∑
k≥0

N1−kA
(k)
K , (B.2)

for actions A
(k)
K that are independent of N . In particular, the probe brane action is

proportional to N at large N , AN,K ' NA(0)
K .

B.2 The leading large N limit

The path integral formula (B.1) greatly simplifies in the large N limit [12]. To leading

order, its right-hand side can be straightforwardly evaluated via the saddle point approxi-

mation, since the action AN,K is proportional to N and the number of fields in the set Φ

is N -independent. If we denote by A∗K the on-shell value of the leading term A
(0)
K in the

expansion (B.2), we get∫
DΦD[ghosts]U(K) e

−AN,K(Φ)+sψ = e−NA
∗
K+O(1) . (B.3)

On the other hand, the large N , fixed K limit of the ratio of partition functions can be

obtained from the usual large N expansion (3.1). This yields

ZN+K

ZN
= e−2NKF0+O(1) . (B.4)

Comparing (B.3) and (B.4), we get

A∗K = 2KF0 . (B.5)

Since the planar free energy obviously does not depend on K, (B.5) implies a trivial relation

between the on-shell Abelian and non-Abelian D-brane actions,

A∗K = KA∗1 . (B.6)

For this reason, it is enough to concentrate on the Abelian case K = 1. Noting A1 =

A, (B.5) takes the form

A∗ = 2F0 . (B.7)

This relation, derived for any value of the ’t Hooft’s coupling λ, is equivalent to (4.2)

or (4.4). The apparent discrepancy comes from the fact that the definition of the probe

action given in [12] is designed in such a way that the formula (B.1) is valid at a fixed value

of the ’t Hooft’s coupling, whereas the natural string theory definition amounts to working

at fixed string or gauge coupling. This subtlety is fully clarified in B.4 below.
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B.3 On 1/N corrections

The relation (B.1) is valid for any finite N and K and thus can be used beyond the leading

large N approximation.

Let us expand both sides of eq. (B.1) in powers of 1/N . Using (3.1), the left hand side

yields

− ln
ZN+K

ZN
= 2NKF0 +K2F0 −

2K

N3
F2 +O

(
N−4

)
, (B.8)

whereas the right-hand side can be written

− ln

∫
DΦD[ghosts]U(K) e

−NA(0)
K −A

(1)
K −N

−1A
(2)
K −N

−2A
(3)
K −N

−3A
(4)
K +O(N−4)+sψ . (B.9)

Equating (B.8) and (B.9) yields some rather non-trivial constraints on the probe brane

path integral. The one-loop contribution computed with the action A
(0)
K , supplemented

with the on-shell value of A
(1)
K , must reproduce the genus zero contribution F0; contri-

butions at order N−1 and N−2, which involve up to three loops, must both cancel; the

contribution at order N−3 must reproduce the genus one term F2; etc. These properties

are direct consequences of (B.1) but constitute highly non-trivial predictions from the dual

gravitational perspective.

B.4 Two natural definitions of the probe action

The D-brane action AN,K is defined so that eq. (B.1) is satisfied [12]. On the left-hand

side of this equation, both ZN+K and ZN are evaluated at the same ’t Hooft’s coupling λ.

This implies that the gauge coupling constants g2 are not the same in the U(N +K) and

U(N) theories.

It is equally natural to work at fixed gauge coupling and define a different D-brane

action ÃN,K such that

ZN+K(g2)

ZN (g2)
=

∫
DΦD[ghosts]U(K) e

−ÃN,K(Φ)+sψ , (B.10)

where, now, the partition functions on the left-hand side are evaluated for the same gauge

coupling g2. The construction of [12] can be trivially adapted to this case. At leading order

in N , the two brane actions AN,K(Φ) and ÃN,K(Φ) simply differ by a Φ-independent, but

coupling-dependent, constant. If the action of the gauge theory is written in the usual

single-trace form

S =
1

g2

∫
dx trL , (B.11)

the precise relation reads

AN,K(Φ) = ÃN,K(Φ) +
K

λ

∫
dx
〈
trL

〉
pl.

+O
(
N0
)
, (B.12)

where 〈trL〉pl. is the planar expectation value of the Lagrangian. This expectation value

was always explicitly included in [12] and [50] (for example, it corresponds to the term in

〈SN (V )〉 in eq. (3.13) of [12], and similar terms in other equations).
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It is easy to check that the relation (B.12) ensures the consistency between (B.1)

and (B.10). Indeed, noting that a given gauge coupling g2 corresponds to the ’t Hooft’s

coupling λ and N
N+Kλ in the U(N + K) and U(N) gauge theories respectively, and using

the fact that
∂ lnZN
∂λ

=
N

λ2

∫
dx
〈
trL

〉
, (B.13)

we get, to leading order at large N ,

ln
ZN+K(g2)

ZN (g2)
= ln

ZN+K

(
λ
)

ZN
(

N
N+Kλ

) = ln
ZN+K(λ)

ZN (λ)
+
K

N
λ
∂ lnZN
∂λ

+O
(
N0
)

(B.14)

= ln
ZN+K(λ)

ZN (λ)
+
K

λ

∫
dx
〈
trL

〉
pl.

+O
(
N0
)
. (B.15)

Since, at large N , the path integral representations (B.10) and (B.1) show that the ratios

of partition functions can be evaluated in terms of the on-shell brane actions, (B.15) is

equivalent to

− Ã ∗N,K = −A ∗N,K +
K

λ

∫
dx
〈
trL

〉
pl.

+O
(
N0
)
, (B.16)

which follows from (B.12) by going on-shell.

In string theory, the gauge coupling constant is related to the string coupling constant,

and the most natural choice is to keep the string coupling fixed when branes are added.

The usual probe brane action in string theory is thus identified with the gauge theory action

ÃN,K . To leading order at large N , and in the Abelian case K = 1, we have noted this

action Sp in the main text,

ÃN,1 = Sp +O
(
N0
)
. (B.17)

We can now easily relate the on-shell value of the probe brane action to the planar

free energy F0. Combining (B.7) with (B.16) indeed yields

S∗p = 2NF0 +
1

λ

∫
dx
〈
trL

〉
pl.
. (B.18)

Since, in the planar limit, (B.13) is equivalent to

N
∂F0

∂λ
=

1

λ2

∫
dx
〈
trL

〉
pl.
, (B.19)

we see that (B.18) is equivalent to the fundamental relation (4.4).
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