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1 Introduction

A major obstacle to the construction of superstring field theories has been formulating
an action for the Ramond sector. The last few months have seen remarkable progress on
this problem. In [1] a complete action for open superstring field theory was formulated
by restricting the off-shell state space of the Ramond field so as to reproduce the correct

LA closely related

integration over the fermionic modulus in the Ramond propagator.
approach has recently been developed by Sen [10, 11], which has a somewhat simpler
worldsheet realization at the cost of introducing spurious free fields.

We are now in a position to complete the construction of all classical superstring
field theories. The construction of [1] was realized by extending the Neveu-Schwarz (NS)
open superstring field theory of Berkovits [12, 13] to include the Ramond (R) sector. The
Berkovits theory gives an elegant Wess-Zumino-Witten-like (WZW-like) action for the NS
sector in the large Hilbert space [14] and is a suitable starting point for the study of tachyon
condensation and classical solutions [15-22]. However, the question of recent interest is how

to construct other superstring field theories and how to quantize them. In this capacity

!The construction of [1] is based on a very old idea for formulating the free action for the Ramond string
field [2-8], which with the proper understanding is equivalent to the formulation of Witten [9]. However,
the construction of [1] gives the first consistent nonlinear extension of this free action.



the Berkovits formulation is not ideal, since it does not immediately generalize to type 11
closed superstrings,? and, despite some attempts [29-34], it is not known how to properly
define the gauge-fixed path integral.

For this reason, in this paper we turn our attention to a different form of open string
field theory which uses the small Hilbert space and realizes a cyclic Ay, structure. The con-
struction of superstring field theories based on A, and L, algebras is attractive since all
forms of superstring field theory can in principle be described in this language [35-38, 11].
In addition, the definition of the gauge-fixed path integral is straightforward thanks to
the close relation between homotopy algebras, Batalin-Vilkovisky quantization, and the
Feynman-graph decomposition of moduli spaces of Riemann surfaces (or their supergeo-
metrical extension®) [41-43].

Our construction of open superstring field theory extends the NS open superstring
field theory of [36] to include the Ramond sector, and the interactions are built from
Witten’s open string star product dressed with picture changing insertions. Part of the
work for constructing this theory was done in [38], which gives classical equations of motion
describing the interactions between the NS and R sectors. Our task is to modify the
equations of motion so that they can be derived from an action. This requires, specifically,
that the equations of motion realize a cyclic Ay, structure, where the notion of cyclicity
is provided by the inner products defining the NS and R kinetic terms. Interestingly, the
action we find for the Ramond sector turns out to be identical to that of [1] after the
appropriate translation of NS degrees of freedom [44—46].

This paper is organized as follows. In section 2 we review the formulation of the
Ramond sector kinetic term used in [1] and the NS and Ramond equations of motion
described in [38]. In section 3 we construct an action by requiring compatibility of the
equations of motion with the bilinear form defining the Ramond sector kinetic term. First
we describe the picture changing insertion which plays a central role in defining the vertices.
Then we give an explicit discussion of the 2-string product, generalize to the higher string
products, and provide a proof that the resulting A, structure is cyclic. We also describe
how the construction can be translated into the formulation of the Ramond kinetic term
used by Sen [10, 11]. In section 4 we relate our construction to the WZW-based formulation
developed by Kunitomo and one of the authors [1]. We end with some concluding remarks.

Note added. While this paper was in preparation, we were informed of independent
work by Konopka and Sachs addressing the same problem. Their work should appear
concurrently [47]. See also [48] for related discussion.

2Some attempts to provide a WZW-like formulation of closed type II superstring field theory are de-
scribed in [23, 24]. For heterotic string field theory a WZW-like formulation in the large Hilbert space is
well established [25], and its extension to the Ramond sector would be interesting to consider [26-28].

3The manner in which picture changing operators in the vertices implement integration over odd moduli
has not yet been made fully explicit, though the computation of the four-point amplitude in [39] has given
some preliminary insight. However, it follows from the computation of the S-matrix [40] that the tree-
level actions and equations of motion constructed so far correctly integrate over the supermoduli spaces of
punctured disks and spheres.



2 Background

In this section we review the Ramond kinetic term [1] and equations of motion [38]. To
describe compositions of string products and their interrelations in an efficient manner,
we will make extensive use of the coalgebra formalism. The coalgebra formalism expresses
string products in terms of coderivations or cohomomorphisms acting on the tensor algebra
generated from the open string state space H:

TH=H" & H o H*?> & H® @ ... . (2.1)

Coderivations will be denoted in boldface, and cohomomorphisms with a “hat” and in
boldface. String fields can be described by group-like elements of the tensor algebra. The
coalgebra formalism works efficiently if we use a shifted grading of the open string field
called degree. The degree of a string field A is defined to be its Grassmann parity €(A)
plus one:

deg(A) =€(A)+1 mod Zs. (2.2)

For a detailed description of all the relevant definitions, formulas, and the notational con-
ventions, see [45].
2.1 Ramond kinetic term

Let us start by summarizing what is needed to have a consistent open string field theory
kinetic term from the perspective of an action realizing a cyclic Ay structure. We need
three things:

(A) A state space H, perhaps a subspace of the full CFT state space, which is closed
under the action of the BRST operator (). The BRST cohomology at ghost number
1 computed in H reproduces the appropriate spectrum of open string states.

(B) A symplectic form w on the state space H. This is a linear map from two copies of
the state space into complex numbers,

w:H®OH—C, (2.3)
which is graded antisymmetric,
w(A, B) = —(-1)eWdePy (B, 4), (2.4)

and nondegenerate. We sometimes write the symplectic form as (w|, and write
w(A,B) = (w|A ® B. We assume that w is nonzero only when acting on states
whose ghost number adds up to 3.

(C) The BRST operator must be cyclic with respect to the symplectic form w:
w(QA, B) = —(=1)*8Ww(4,QB). (2.5)

Equivalently
W(Q®I+I®Q) =0, (2.6)

where I is the identity operator on the state space.



If these three criteria are met, a string field theory kinetic term can be written as

1
S = J0(¥,QU), (2.7)
where ¥ is a degree even and ghost number 1 dynamical string field in H. Variation of
the action produces the expected equations of motion Q¥ = 0, and the action has the
linearized gauge invariance

U =T+ QA, (2.8)

where A € H is degree odd and carries ghost number 0.

Let us see how this story applies to the NS and R sectors of the open superstring. We
consider the RNS formulation of the open superstring, described by a ¢ = 15 matter bound-
ary superconformal field theory tensored with the ¢ = —15 ghost boundary superconformal
field theory b, c, 3,7. The v system may be bosonized to the £, 7, e? system [14]. We will
write the eta zero mode 79 as 7. The state space of the open superstring is the direct sum
of an NS component Hyg and a Ramond component Hg:

H = Hns ® Hr. (2.9)

We use H to denote the combined state space. Formulating the NS kinetic term requires
a subspace of Hyg consisting of states at picture —1 and in the small Hilbert space. The
BRST operator preserves this subspace, and has the correct cohomology at ghost number
1. The symplectic form can be defined by the small Hilbert space BPZ inner product (up
to a sign from the shifted grading):*

ws(A, B) = (—1)%8A) (4 B)g, (2.10)

where the subscript S denotes the small Hilbert space. Furthermore, the BRST operator
is cyclic with respect to wg. Since conditions (A), (B) and (C) are met, we can write the
NS kinetic term as

1
S = in(‘I/NSa QUNs), (2.11)

where the dynamical NS string field Ung € Hns is in the small Hilbert space (n¥ng = 0),
is degree even, and carries ghost number 1 and picture —1. Though it is not needed
to formulate the NS kinetic term, it will be useful to consider the large Hilbert space
symplectic form wy, defined in terms of the large Hilbert space BPZ inner product by

wr(A, B) = (—1)%s) (4 B);, (2.12)

where the subscript L denotes the large Hilbert space.

“The elementary correlator in the small Hilbert space will be normalized as (c8cd?ce™2?(0))s = —2 x
Zmatter where Z™aeT i5 the disk partition function in the matter boundary conformal field theory. In the
large Hilbert space the elementary correlator will be normalized as (€cOcd?ce™2?(0))r, = 2 x Z™*™T with
the opposite sign.



Now let us describe the Ramond kinetic term. The major technical problem in this
respect is defining an appropriate symplectic form. For this purpose we introduce two
picture changing operators:

X = —6(80)Go + &' (Bo)bo, (2.13)
Y= —005'(70), (2.14)

where Gy is the zero mode of the supercurrent. The operator X is degree even and carries
ghost number 0 and picture 1, and Y is degree even and carries ghost number 0 and picture
—1. Since these operators depend on 87 zero modes, they only act on states in the Ramond
sector. Moreover, it is clear that X should not act on states which are annihilated by B
and Y should not act on states which are annihilated by ~g. For this reason we will always
assume that X and Y act on states in the small Hilbert space at the following pictures:

X : small Hilbert space, picture —3/2,
Y : small Hilbert space, picture —1/2. (2.15)

In particular, all pictures besides picture —3/2 either contain states annihilated by [y or
are BPZ conjugate to pictures containing states annihilated by fy. Similarly, all pictures
besides picture —1/2 either contain states annihilated by vy or are BPZ conjugate to
pictures containing states annihilated by 7. Assuming X and Y act on the appropriate
picture as above, they satisfy

XYX =X, YY=Y, [Q,X]=0, (2.16)
and are BPZ even:
(WX RT=(wsI®X, (wslYRI= (ws|I®Y. (2.17)

Note that (2.16) implies that the operator XY is a projector:

(XY)? = XY. (2.18)
This projector selects a subspace
Hiprieted C Hy (2.19)
of Ramond states which satisfy
XYA = A, A ¢ Histricted, (2.20)

We will call this the restricted space. To ensure that the action of XY is well defined, we
will assume that the restricted space only contains states in the small Hilbert space and
at picture —1/2. We claim that the restricted space allows for the definition of a Ramond
kinetic term, and to see it, we check conditions (A), (B) and (C). First note that the
restricted space is preserved by the action of the BRST operator:

XYQA = XYQXYA = XYXQYA = XQYA = QXYA = QA, A e pesticted (9 97)



Moreover, the cohomology of @ computed in Higstricted

reproduces the correct physical
spectrum [49]. Therefore condition (A) is met. Next, we define a symplectic form on
/Hﬁestricted by

ws(YA, B), A, B ¢ Histricted, (2.22)

Graded antisymmetry follows from the fact that Y is BPZ even and the fact that wg is
graded antisymmetric. Nondegeneracy follows from the fact that YA = 0 implies A = 0
upon operating with X, and wg is nondegenerate on the subspace of Ramond states at
pictures —1/2 and —3/2. Therefore condition (B) is met. Finally, we have

ws(YA,QB) = ws

:wS

44, QXYB)

44, XQYB)

XYA,QYB)

A,QYB)

= —(—1)%5Wug(YQA, B), A, B € Hjtricted, (2.23)

:wS

~ o~ N

so condition (C) is met. Therefore, we can write a free action for the Ramond string field as

S— %wS(H\PR, QUR), (2.24)

where the dynamical Ramond string field Wy is in the small Hilbert space (nUr = 0), is
degree even, carries ghost number 1 and picture —1/2, and satisfies XYUr = Ug.
We can package the dynamical NS and R string fields together into a string field:

U = Uyg + Ug. (2.25)
We call this the “composite string field”. It is an element of the state space
ﬁrestricted — Hf\?gtricted D Hﬁastricted (2.26)

which we call the “composite restricted space”. In the NS sector, the space HrNegtriCted
consists of states in the small Hilbert space at picture —1. In the Ramond sector, the space
’HrResmCted is defined as above. We define a “composite symplectic form”

o ﬁrestricted ® ﬁrestricted NYq (227)

by
(@] = (wslol + (wsl2[¥ @ T, (2.28)

where, following notation to be introduced in a moment, (wg|o| is nonzero only when
contracting two NS states, and (wg|2| is nonzero only when contracting two Ramond states.
From the above discussion, it is clear that the composite restricted space together with the
composite symplectic form satisfy conditions (A), (B) and (C), so we can write the kinetic
term as

S = %a(@, QU), (2.29)

which describes the free propagation of both the NS and R states.



2.2 Ramond equations of motion

Now that we have a free action for the NS and R sectors, our task will be to add interactions.
The structure of interactions at the level of the equations of motion was described in [38].
It is helpful to review this before considering the action.
The equations of motion are characterized by a sequence of degree odd multi-string
products:
My=Q, My, Ms, My, .... (2.30)

We call these “composite products” since they encapsulate the multiplication of both NS
and R states. We require three properties:

(I) The composite products satisfy the relations of an A, algebra. Equivalently, if MnH
is the coderivation corresponding to M,y +1, the sum

M =M, + M, +M;+ M, +... (2.31)
defines a nilpotent coderivation on the tensor algebra:®

[M, M] = 0. (2.32)

(IT) The composite products are defined in the small Hilbert space. Equivalently, the
coderivation M commutes with the coderivation 1 representing the eta zero mode:

M, M] = 0. (2.33)

(ITI) The composite products carry the required ghost and picture number so that the
equations of motion,

0= QU + My(¥, W) + My(¥, ¥, W) + ..., (2.34)

have an NS component at ghost number 2 and picture —1, and a Ramond component
at ghost number 2 and picture —1/2.

When we write the equations of motion, the dynamical Ramond string field does not have
to be in the restricted space. Formulating the equations of motion in the restricted space
is closely related to constructing the action, and will be described later. However, we still
assume that Uy is in the small Hilbert space, is degree even, and carries ghost number 1
and picture —1/2.

We will construct the composite products by placing picture changing insertions on
Witten’s associative star product:

ma(A, B) = (—1)%W 4 « B, (2.35)

SCommutators of multi-string products are always graded with respect to degree [36]. Commutators of
string fields, computed with the open string star product, are graded with respect to Grassmann parity.
When taking commutators of operators (or equivalently commutators of 1-string products) the degree and
Grassmann gradings are equivalent.



The generalization to other forms of open string multiplication (for example, the star
product with “stubs” [37, 38]) is closely related to the generalization to heterotic and type
IT superstring field theories, and will be left for future work. The BRST operator, the eta
zero mode, and the star product satisfy

OZ[Q;Q]? 0:[n7Q]7 O:[nun]7
0= [Q, l’nz], 0= [T], mQ], 0= [mg, 1’1’12}. (236)

This says that @) and 7 are nilpotent and commute, that @) and 7 are derivations of the
star product, and that the star product is associative. Equivalently, Q,n and my define
three mutually commuting A, structures. Though it is not important for the equations
of motion, we note that the star product is cyclic with respect to the small (and large)
Hilbert space symplectic form:

(wg|(me @ T+ T®mg) = 0. (2.37)

Similarly the eta zero mode is cyclic with respect to the large Hilbert space symplectic form.

Because ¥ng and Ug carry different picture, the composite products Mn+1 must pro-
vide a different amount of picture depending on how many NS and R states are being
multiplied. To keep track of this, it will be useful to invoke the concept of Ramond num-
ber. A multi-string product has Ramond number r if it is nonvanishing only when the
number of Ramond inputs minus the number of Ramond outputs is equal to r. We will
write the Ramond number of a product using a vertical slash followed by an index indicat-
ing the Ramond number. For example, by, |, is an m-string product of Ramond number r.
The definition of Ramond number implies that the product b,,|, has the property

bin|r <1" Ramond States) = NS state,
bin|r <r+1 Ramond states) = R state,

bm|r(otherwise) =0. (2.38)
Any product can be written as a unique sum of products of definite Ramond number:
b, = bmn|—1 4+ bmlo + bm|1 + - .- + b |m- (2.39)

The Ramond number of b, is bounded between —1 and m since b, can have at most m
Ramond inputs and at most 1 Ramond output. Since Ramond number is conserved when
composing products, it is conserved when taking commutators of coderivations:

s

[bTmCTLHS = Z [bm|mcn|sfr]> (240)

r=-—1

with the understanding that commutators in this sum vanish if the Ramond number exceeds
the number of inputs of the product. As an example of this identity, note that associativity



of the star product implies

0 = [mg, myllp = [mz]o, malo], (2.41)
0 = [my, myl|z = 2[myo, myls], (2.42)
0 = [my, my|s = [malz, mals], (2.43)

where the star product is broken into components of definite Ramond number as
my = my|p + mylo. (2.44)

The components of the star product with odd Ramond number vanish identically.

We are now ready to describe the equations of motion constructed in [38]. The compos-
ite products Mn+2 have a component at Ramond number 0 and a component at Ramond
number 2:

Mn—f—Q = Mp+2lo + mni2l2, (2.45)

which carry the following picture and ghost numbers:

My42lo:  picture n+ 1, ghost number — n, (2.46)

Mpi2l2 @ picture n, ghost number — n. (2.47)
The 1-string product Mi|o is identified with the BRST operator
Mily=Q, (2.48)

and mals is the Ramond number 2 component of Witten’s open string star product. We
also define bare products of odd degree and gauge products of even degree:

bare products my42]o:  picture n, ghost number — n, (2.49)

gauge products fpi,42lp:  picture n 4+ 1, ghost number —n — 1. (2.50)

The bare product mslo is the Ramond number zero component of Witten’s open string
star product. We define generating functions

oo

M]o(t) = > t"Muy1lo, (2.51)
n=0
oo

mly(t) = > "m0, (2.52)
n=0
o0

mlo(t) = > t"my o, (2.53)
n=0
o0

H‘O(t) = Ztnun+2|07 (254)
n=0



which are postulated to satisfy the differential equations
d

ZMlo() = [Mlo(1). ulo(®)), (2.55)
L mlo(1) = [ml (1), (1) (2.56)
L mlo(t) = [ml (1), (1) (2:57)
[, wlo(t)] = mlo(t). (2:58)

Expanding in powers of ¢ gives a recursive system of equations which determine higher
products in terms of sums of commutators of lower ones. A crucial step in solving this
system of equations concerns (2.58), which defines the gauge product piy42|0 in terms of
the bare product m,,42|o. The solution of (2.58) requires a choice of contracting homotopy
of 1.5 This choice influences the configuration of picture changing insertions which appear
in the vertices, and will determine whether or not the equations of motion can be derived
from an action.

The products can be usefully characterized by the cohomomorphism

G(t) = Pexp Uot ds p\o(s)] , (2.59)

where the path ordering is in sequence of increasing s from left to right. In particular, the
generating functions take the form

M|o(t) = G(t)_IQG(t), (2.60)
mla(t) = G () mal2G(1), (2.61)
mlo(t) = G () maloG(1), (2.62)
ulo(t) = G (1)~ S G(r). (2.63)

Also, using (2.58) and (2.62) it is straightforward to show that [44]
n=G""(n—my)G. (2.64)

Here and in what follows, all objects are evaluated at ¢t = 1 when the dependence on t is
not explicitly indicated. The coderivation representing the composite products is

M = M‘o =+ 1’1’1|2
=G HQ +myy)G. (2.65)

From this expression it immediately follows that
M,M] =0, [n,M]=0, (2.66)

because Q, my and 1 are mutually commuting A, structures. Therefore the composite
products satisfy A, relations and are in the small Hilbert space.

STn this context, a contracting homotopy for 1 is a degree odd linear operator Zo acting on the vector
space of coderivations which satisfies [n,Z o D] + Z o [n,D] = D for an arbitrary coderivation D.

~10 -



3 The action

Now we can bring the Ramond kinetic term and equations of motion together to define
an action:

S = %w(\i, QW) + %a(@, My(¥,9)) + %a(\ﬂ, M3(V, ¥, 0)) + ..., (3.1)

where W is the composite string field and MyH.l are the composite products introduced in
subsection 2.2. Since we now consider the action, the dynamical Ramond string field must
belong to the restricted space.

When we vary the action, it is assumed that we should reproduce the equations
of motion

0= QU + My(, ¥) + Ms(U, U, ) +... . (3.2)

However, this requires that the composite products are cyclic with respect to the composite
symplectic form:

(@) (M1 @T+10 Myq1) =0 on #restricted, (3.3)

Thus the composite products define a cyclic Ay, algebra. Cyclicity does not follow au-
tomatically from the construction of the equations of motion given in subsection 2.2, but
requires a special choice of picture changing insertions inside the vertices. More technically,
it requires a special choice of contracting homotopy for n in the solution of (2.58), and our
task is to find it.

3.1 Picture changing insertion

The picture changing insertions in the action are defined with the operator
€ : degree odd, ghost number —1, picture 1, (3.4)

which has the following properties:
1) € is a contracting homotopy for n: [n,£] = 1,

2) £ is BPZ even: (wr|é @1 = (wr|[I®E,

3) [@,&] = X when acting on a Ramond state at picture —3/2 in the small Hilbert space,
4) € =0.

Property 1) is needed to define a contracting homotopy for 1 in the solution of (2.58).
Properties 2) and 3) will be needed in the proof of cyclicity. Property 4) will not be
essential for our purposes, but we would like to have it anyway.

A natural candidate for §~ is the operator ©(fy) as used in [1], which in particular
satisfies

Q. 0(8o)] = X. (3.5)

- 11 -



However, we must be careful to avoid acting ©(fy) on states annihilated by /3p. This means
that ©(fp) can only act “safely” on the states:

©(fp) : small Hilbert space, picture —3/2. (3.6)

It may seem somewhat unnatural to require that ©(f5) acts on the small Hilbert space,
since generically it maps into the large Hilbert space. Let us explain why this is necessary.
Suppose O(5p) could act on an arbitrary state A at picture —3/2 in the large Hilbert space.
Then we should be able to contract with a state B at picture —1/2,

(©(60)A; B) L, (3.7)

and obtain a finite result. Now suppose A = QA’ and B’ = QB. Then using the BPZ even
property of X gives

(O©(By)A, B), = (A, XB) [, 4+ (=1)““)+1©(5,)A’, By, (3.8)

We have assumed that the left hand side is finite, and the second term on the right hand
side should be finite by the same assumption. However, this contradicts the fact that the
first term on the right hand side can be infinite if B is annihilated by 5y. Therefore, the
action of ©(fp) in the large Hilbert space must generally be singular.

This causes problems with a direct attempt to identify ©(fy) with the operator 5
Nevertheless, it was shown in [1] that ©(fy) at least formally satisfies properties 1) — 4).
However, in [1] it was assumed that ©(fp) never acts on states annihilated by (y. Here
we would like to provide a setting where this assumption is justified. First, note that (3.6)
implies that we can define operators ©(5p)n and n0(5y) acting on the following states:

©(Bp)n : large Hilbert space, picture —1/2,
nO(Hp) : large Hilbert space, picture —1/2. (3.9)

The operator O(fy)n is well defined since n maps from the large Hilbert space at picture
—1/2 into the small Hilbert space at picture —3/2, after which we can act with ©(5p). The
operator nO(fy) is defined by BPZ conjugation of ©(/)n. Therefore we have

(wr|nO(Bo) @I = (wr [T @ O(Bo)n (3.10)
when acting on states in the large Hilbert space at picture —1/2. We also have
19 (o) + O (Bo)n =1 (3.11)

when acting in the large Hilbert space at picture —1/2. We can also say that ©(8y) is
nilpotent in the sense that

10(6o)*n = 0, (3.12)
which similarly holds on states in the large Hilbert space at picture —1/2.
Having understood the limitations of ©(fp), we can search for a more acceptable
alternative. For this purpose we introduce the operator [39, 36]
dz
jel=1 2

£= f(2)€(2), (3.13)

- 12 —



where the function f(z) is holomorphic in the vicinity of the unit circle. The function f(z)
can be chosen so that ¢ is BPZ even and commutes with 7 to give 1:

(wrl¢ @I =(wrll®¢,  [n,§] =1. (3.14)

In addition ¢2 = 0. Therefore ¢ realizes properties 1), 2) and 4), but it does not realize
property 3). Rather, the BRST variation gives the operator

X =1[Q,¢], (3.15)

which is not the same as X. This can be fixed by defining a “hybrid” operator between &
and ©(5y):

E= ¢+ (0(Bo)ne — E)P_3/5 + (€nO(Bo) — E)P_1 o, (3.16)

where P,, projects onto states at picture n. Note that ©(/3y) always appears here in allowed
combinations with 7 acting on allowed pictures. Note also that fN reduces to £ when acting
on NS states, as is appropriate for defining the NS superstring field theory [36]. It is also
clear that §~ is BPZ even, and so realizes property 2). To see that property 3) is realized,
let us define the picture changing operator

X =1[0,4. (3.17)

Note that in general X is different from X defined in (2.13) and X defined in (3.15).
However, X is identical to X when it acts on a state A in the small Hilbert space at
picture —3/2:

A= [Q.0(Bo)nelA
= (2tng + ©(Bo)nx ) A

= (X[, &+ ©(Bo)n, X]) A
ya (3.18)

so property 3) is realized. Now let us confirm properties 1) and 4). Note
Pon =nPni1, (3.19)

and compute

€] =1+ ( (Bo)n§ — f)P 3/2
+h@@% &) + (OB —€)n| Py
+ (6nBh) —€)nPy
=1+ - n&)P 3/2
+ |n©(Bo) — n& + O(Bo)n — én}P 1/2
+ (&n —E&n) P2
=1, (3.20)
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where we used (3.11) and [n,£] = 1. Finally let us check property 4):

& =€+ (O(Bo)ng — €) Py (O(B0)E — €) Py
+ (€n0(B0) —€) P12 (€70(B0) — €) Pojo
+ €(O0B0)E — &) Pao + (O(Bo)ng — ) Pgyos
+ €(€nO(Bo) =€) P1 o+ (€nO(Bo) — €) P o
+ (O(80)nE — €) Py (€nO(B0) — €) Py
+ (£n©(B0) =€) P12 (O(BoIng — €) Pyo

= €24£(O(B)nE — &) Pays + (O(Bo)E — €)€P 50 + € (En0(Bo) — €) Lo

+ (€n0(B0) — €)€P 30 + (€nO(Bo) — €) (O(BoIng — €) Pyo: (3.21)

In the second step we commuted all projectors to the right and dropped terms with a pair
of projections into incompatible pictures. Using &2 = 0 this further simplifies

£ = €0(B)IEP 572 + ENO(B0)EP /2 + (£10(50)*nE — EnO(Bo)€ — €O(B)nE ) P

= 5779(50)277§P73/2
=0, (3.22)

which vanishes as a consequence of (3.12). Therefore we have a definition of the picture
changing insertion é with all necessary properties.

It is worth mentioning that X and ©(/3y) cannot be expressed in an elementary way in
terms of the local picture changing insertions X (z) and &(z). Therefore, the computation
of correlation functions with X and ©(fy) does not appear to be straightforward. However,
a recipe for computations with such operators was given in [50] in the context of [~
correlation functions, where they may be represented as formal integrals

X = /dC/dfeCGO_ZBO, ©(bo) = —/dé 6_5:507 (3.23)

where ( is an odd integration variable and C is an even integration variable. The key point
is that the integral over the even variable ¢ should be understood algebraically, analogous
to the Berezin integral over the odd variable (, rather than as an ordinary integral in the
sense of analysis. One difficulty, however, is the appearance of a singular factor 5 ~1in the
integral for ©(fy). This is related to the fact that ©(fy) is an operator in the large Hilbert
space, and therefore its precise definition must go slightly beyond the formalism of [50].
Here we give one prescription for dealing with this. We may express ©(fp) in the form

O(fo) =& + A, (3.24)

where

A= 0(fh) - &, (3.25)
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and &y is the zero mode of the & ghost. The term A can be represented as an alge-
braic integral

_e—Cho 1 ~e—CB(2)
A= /dge 7{ d’z,/dge . (3.26)
¢ Jo|=1 20 2 ¢
Since the first term is independent of z, we can write A as
1 ~ ~
A= dz /d —e %P0 4 e_w(z)). (3.27)
|2]=1 2mi 2

Finally, we represent the integrand as the integral of a total derivative,

A= dzl/ ~1/ dt — (2)+(1- t)Fo), (3.28)

|2|=1 21 z

and taking the derivative with respect to t gives

A — / dt% dz 1/ Cﬁo— —C (tB(2)+(1-t)Bo) (3.29)
|z

|= 12mz

Note that the problematic factor CN ~1is canceled. The upshot is that we have defined
©(Bp) as a sum of &y, which can be understood in the bosonized v system, and A, which
can be evaluated following [50]. To see how this definition can be applied, note that the
computation of a typical open string field theory vertex requires evaluating correlation
functions with multiple insertions of ©(fp):

oWe® oM, (3.30)

where ©() represent appropriate conformal transformations of ©(3y). Writing ©(5y) =
&0 + A produces cross terms of the form

W@ | m AmA) Am+2) | A) (3.31)

where & () and A® represent appropriate conformal transformations of & and A, respec-
tively. Since (€1))2 = 0, we can replace these insertions with

eM(® My (glm) _ cYAmID A A, (3.32)

We can now drop the factor £V, which only serves to saturate the & zero mode in the large
Hilbert space, and evaluate the remaining factors using v correlation functions as in [50].

An important question is whether our choice of picture changing insertions f and
X avoid contact divergences in vertices and amplitudes, as appear for example when we
use a local picture changing insertion in the cubic vertex [51]. In the NS sector such
divergences are absent since the picture changing insertions appear as holomorphic contour
integrals [39, 36]. In the Ramond sector, the picture changing insertions appear as ©(f)
and X; to our knowledge, such operators can only be divergent in the presence of a zero
mode of the path integral associated with §y. We have taken some care to ensure that
©(Bp) and X act on states of pictures where such zero modes are absent, and therefore
the vertices are expected to be finite. Explicit calculations with similar operators will be
discussed in upcoming work [52], and no contact divergences appear.
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3.2 The 2-string product

We are ready to construct the products defining the action. Let us start by expanding the
equations of motion out to second order in the string field and in NS and R components:

0 =QUns + Ma[o(Uns, Uns) + ma|2(Vr, Yr) + ..., (3.33)
0=QYR + Mg‘o(\DNs, \I/R) + MQ‘O(\I/R7 \IINS) + ... (334)

In [36] the product of two NS states was defined by

1
Malo = < (Xmg\o Fmalo(X@I+1a X)) (multiplying NS states).  (3.35)

This definition does not work for multiplying an NS and R state, since it does not multiply
into the restricted space in the Ramond sector. For this reason we take

Ms)o = Xma|o (multiplying NS and R state in #restricted), (3.36)

Because XYX = X, this product satisfies XYMs|p = Ma|o and therefore maps into the
restricted space. Note that this definition of Ms|¢ differs from [38], where it was assumed
that Ma|o multiplies two NS states and an NS and R state in the same way. To make
notation uniform it is helpful to write X and X together using the picture changing operator
X , so we define

1/~ - -
§(Xm2\0+m2|o(X®H+]I®X)> (0 Ramond inputs)

Xmalo (1 Ramond input)

The full composite 2-product is then

¢

1/~ ~ -
§<Xm2|0 +m2|0(X®H+H®X)) (0 Ramond inputs)

My =< Xmolo (1 Ramond input) . (3.38)
mala (2 Ramond inputs)

Note that using X gives a definition of the product Ms|p between arbitrary states in H.
Following the discussion of subsection 2.2, the product Ms|p should be derived from a gauge
2-product ua|p and bare 2-product me|y satisfying the formulas

Moo = [Q, 12fo], (3.39)
M, 12lo] = malo. (3.40)
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The last equation defines uslp in terms of mg|p with an appropriate choice of contract-
ing homotopy for 1. The choice of contracting homotopy which produces our preferred
definition of Ms|g is realized by the following gauge 2-product:

1/~ ~ -
3 (£m2|0 —malo({@I+1® E)) (0 Ramond inputs)

pzlo = . (3.41)
Emalo (1 Ramond input)

This completes the definition of the equations of motion up to second order.
Now we want to see that the equations of motion can be derived from an action. This
requires that the composite 2-product is cyclic:

(G ® My = —(@|Ma @1 on Hrestricted (3.42)

Note that cyclicity only needs to hold when the vertex is evaluated on the composite
restricted space, since this is the space of the dynamical string field appearing in the action.
Outside this space the products will not be cyclic, and in fact the notion of cyclicity itself is
somewhat problematic since Y may act on a state of the wrong picture. The demonstration
of cyclicity goes slightly differently depending on the arrangement of NS and R states in
the vertex. Let us discuss for example the case

(@/(1® Ma)(Ry ® Ry @ Ny), (3.43)

where Rq, Ry are Ramond states and N; is an NS state in F{restricted Expanding into
components of definite Ramond number, we have

(@/(1@ Mo)(By ® Ry ® M) = ((wslo] + (wsloly © 1) (1© (Melo + mal2) ) (Ry © Ry © M)
= (wsl2|(9 ® Mafo)(R1 ® Ry ® N1). (3.44)

The product mals drops out since it does not multiply a sufficient number of Ramond
states, and (wg|o| drops out since it contracts too many Ramond states. Plugging in (3.37)
we obtain

Y @ Xmalo)(R1 ® Ro ® Ny)

Y@ Xmalo)(R1 @ Ra @ Ny)

XY @ malo)(R1 @ Ry ® Ny)

ws|2|(IT® malp)(R1 ® Re @ Np)
ws|(I®ma)(R1 ® Ry ® Nyp). (3.45)

(@(I® My)(R1 © Ry ® N1) = (ws]2]

ws!2|

—_— o~~~

=
= {
= (wsla|
=
=

In the second step we noted that X acts on a state of picture —3/2 in the small Hilbert
space, and therefore can be replaced by X. In the third step we used that X is BPZ even
and in the fourth step we used the fact that R; is in the restricted space. Finally we
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dropped the Ramond number labels since in this context they are redundant. Note that
in these steps it is important to assume that the states are in Hresticted  Next consider

(@ (M @ T)(Ry ® Ra @ Ny) = ({wslol + (wslold @) ((Malo +mala) @ T) (1 © By @ Ny)

= (wslo|(m2|2 ® I)(R1 ® Ra2 ® Nyp)
= (ws|(m2 ® )(R1 ® Rz @ N1). (3.46)

We therefore have
(@|(May @1+ 1® Ma)(R1 ® Ry ® Np) = (wg|(me @I+ 1@ my)(Ry ® Ry @ Ny) = 0, (3.47)

which vanishes because the open string star product is cyclic. The proof of cyclicity for
the other combinations R ® N1 ® Re and N1 ® R ® Re goes similarly. When all inputs are
NS states, cyclicity follows from the construction of the NS open superstring field theory
in [36]. Therefore we have a cubic vertex consistent with a cyclic A structure.

3.3 Higher products

Now let us discuss the generalization to higher string products. Defining the higher prod-

ucts requires a choice of contracting homotopy for 1 in the solution of the equation

M, Mpp2lo] = Mmoo (3.48)

The contracting homotopy we choose defines the gauge products as follows:

1 ~ & ng .
i3 (fmn+2\0*mn+2!0(€ @I®ntl | 418+ f)) (0 Ramond inputs)
fnt2lo=
EMmn2o (1 Ramond input)

(3.49)
It is not immediately obvious that this leads to a cyclic Ay, structure. We will prove that
it does in the next subsection. For now, we demonstrate two important properties, which
follow from this definition:

Moo = Xmpialo (1 Ramond input), (3.50)

Mpt2l2 =0 (3 Ramond inputs). (3.51)

The first equation generalizes (3.37), and implies that the interactions are consistent with
the projection onto the restricted space in the Ramond sector. The second equation ad-
dresses a puzzle raised in [38] concerning the existence of cubic terms in the Ramond string
field in the equations of motion. The existence of such terms is consistent with A, rela-
tions, but is not compatible with the existence of an action since the equations of motion do
not possess quartic terms in the Ramond string field. (Recall that Mn has no component
with Ramond number 4.) Therefore, the fact that my,2|s vanishes with three Ramond
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inputs is expected and in fact necessary to derive the equations of motion from an action.
In total, then, we find that the composite products appear as follows:

1 /~ - -
g (an+2]0 + Mg X @I 4 .—|—]I®"+1®X)> (0 Ramond inputs)
s Xmniolo (1 Ramond input)
Mn+2 -
Mpt2l2 (2 Ramond inputs)
0 (otherwise)

(3.52)

The products my,12]p and my42|2 above are determined recursively by solving (2.56)
and (2.57) with our choice of gauge products (3.49).

To streamline the proof of (3.50) and (3.51), it will be useful to introduce the projection

operator

m TH — TH, (3.53)
which selects n-string states containing » Ramond factors (and therefore n —r NS factors).
This projector commutes in a simple way through coderivations of products with definite
Ramond number:

an+1 bn|s = bn|s s (3.54)

m+n’

We also define .
Mo =Y _mh, (3.55)
r=0

which projects onto n-string states with an undetermined number of Ramond factors. With
these projectors we can express (3.50) and (3.51) in a more useful form using coderivations.

First we write

M, 42]07p 40 = an+2|07ﬁll+27 (3.56)

m, ol 5 = 0, (3.57)

where X is the coderivation corresponding to X. Commuting the projectors through the
coderivations using (3.54) gives

T M 1a]o = Xr{mu, oo, (3.58)
Tim, a)s = 0. (3.59)
Summing over n then implies
HM|p — Q) = X7iml]y , (3.60)
mimly =0 . (3.61)

In the first equation we subtract @ since (3.60) only applies to the 2-string product
and higher.
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To prove (3.60) and (3.61) it is helpful to first derive the form of G~! when it produces
one Ramond output:
mGL (3.62)

To compute this, note that

2 [Ham] = —lub(n&) (3.63)

from the definition of the path ordered exponential. Our choice of contracting homotopy
for n in the Ramond sector (3.49) implies

miplo(t) = mi&mlo(t), (3.64)

where & is the coderivation corresponding to €. Plugging in gives

d ~ ~ ~ -
ZmMGm ] = —rlEml()G(0) ™! = —r1EG(H) " mals, (3.65)

where we used m|o(t) = G(t) " my|oG(t). Therefore we obtain
d [ﬁ(‘;(t)—l} = [W%G‘(t)_l}mgb. (3.66)

The solution is subject to the initial condition G(0)~! = Lpgs
operator on the tensor algebra. This determines the solution to be

where [, is the identity

W%G(t)il = 71& [HTﬁ - tém2|o} . (367)
This satisfies (3.66) since (maz|p)? = 0 by (2.41). Setting ¢t = 1 we have
ﬂé*:wﬂgﬁ—&md. (3.68)

This identity will play a central role in the following analysis, as it is the basis for our
proof of cyclicity and the relations (3.60) and (3.61), and it provides a crucial link to the
WZW-based theory in section 4. Note that expanding the path ordered exponential (2.59)
and integrating over the parameter in the generating function gives a general expression
for W%G*I:

a 1 1
A6t =t (L~ ol — gblo + pusloalo + .. ) (3.69)
This is substantially more elaborate than (3.68). With our choice of contracting homotopy
for n, the higher order products in W%Gfl drop out, giving a closed form expression.

Now we are ready to prove (3.60) and (3.61). First note that the bare products with
one Ramond output simplify to

ﬂ%m‘o = W%Gilmgbé
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since the second term in (3.68) cancels by associativity of the star product. Now consider
M]|o with one Ramond output:

’R’% [QG - Qém2|oé + imzyoé
= W%Q[HTﬁ - émﬂo}é + Xﬂ'%mgbé
= 711Q 4 Xmimy|oG. (3.71)

From this we conclude
1 (Mg — Q) = Xmiml]o, (3.72)

establishing (3.50). Next consider

W%n’llz = W%G_lmgbé

=7 |Lg — Emy|o | ma|2G

= mimy |G + Erimy|oms |0 G, (3.73)
where in the third line we used

mp|omgz[s = —mgz[omy|o (3.74)
from (2.42). Now note

Timg|y = malams = 0. (3.75)

This holds because the 2-string component of the state space cannot have three Ramond
factors. Therefore
mim|y = 0, (3.76)

which establishes (3.51).

3.4 Proof of cyclicity

Having constructed the products, we are ready to demonstrate cyclicity:
(@|(Mpyr @T+T® Mpyq) =0 on Hrestricted, (3.77)

We will need to simplify this equation somewhat before we arrive at the key property
responsible for cyclicity and provide its proof. Note that the cyclicity of M, = Q was
already demonstrated in subsection 2.1. When the vertex acts only on NS states, cyclicity
follows from the construction of the NS open superstring field theory in [36]. When the
vertex acts on one or three Ramond states, it vanishes identically since the symplectic form
and composite products do not carry odd Ramond number. When the vertex acts on four
or more Ramond states, it vanishes identically since the composite products vanish when
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multiplying three or more Ramond states. Therefore, all that we need to show is that the
vertex is cyclic when it acts on two Ramond states:

(@ (M2 @T+T® Myyo)m2,s =0 on Hrestricted, (3.78)
Expanding ]’\Z[/ng into components of definite Ramond number, this reads

(wsl(mpyal2 @ T+ T® mypalo)mn 3 (3.79)
+ (ws|(Y ® D) (Mnralo ® [+ 1@ Myyolo)mi g =0 on Hrestricted,

In the first term, both Ramond states must be channeled into the input of my,q2]s. In
the second term, the Ramond states split between the input of M,,12|¢p and the symplectic
form. This means that we can simplify the second term using (3.50):

(ws](Y ® 1) (Mps2lo ® )72 45 = (ws|(YX mni2lo @ D)7 n+3

(
|(YXmn 2o @ D, n+3
(
(

ws

ws mn+2’0 & DCH) Th+3

ws|(Mns2lo @ D725 on restricted (3.80)

o~ o~~~

In the first step we used (3.50); in the second step we used the fact that X = X when
acting on a state in the small Hilbert space at picture —3/2; in the third step we used that
X and Y are BPZ even; in the fourth step we used that XY = 1 when acting on states in
the restricted space. Then the statement of cyclicity reduces to

<WS| ((mn+2|0 + mn+2]2) X I + I ® (mn+2|0 + mn+2|2)>wi+3 =0 on ﬁreStricted. (381)

Therefore my, 2|0 + Mpt2|2 should be cyclic with respect to the small Hilbert space sym-
plectic form when the vertex acts on F{restricted including two Ramond states. Actually, we
wish to make a slightly stronger hypothesis: m,,12]o + M2z is cyclic with respect to the
large Hilbert space symplectic when the vertex acts on the large Hilbert space including
two Ramond states:

(il (maslo +mnsale) O T+10 (musalo+ musal) Jwas =0. (382)

This relation is the nontrivial property required for the proof of cyclicity. We will provide
a demonstration in a moment, but first let us explain why (3.82) implies (3.81). The small
and large Hilbert space symplectic forms can be related by

(ws] = (wr|¢ BT, (3.83)

where ¢ satisfies [n,£] = 1. The precise form of £ is not important since its only role is
to saturate the £ zero mode in the large Hilbert space CF'T correlator. The left hand side
of (3.81) can be expressed as

(wsl ((mn2lo + minrala) O T+1S (mapalo +masale) )2 g

= (@rl(€ © ((musalo + musale) @1+ (musalo + musale) )n2ys  (3:84)
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where for current purposes we assume that this equation acts on the small Hilbert space,
including states in Hs™¢*d Now in front of w2, 5 insert the identity operator in the form

H®n+3 — 775 ® ]I®n+27 (385)

where né is equivalent to the identity since it acts on a state in the small Hilbert space.
Moving 7 to the left it will commute with £ to give 1 and otherwise act on states in the
small Hilbert space to give zero. Thus we have

(sl ((masalo +masale) S T+IS (Musalo +mnrala) )7

= —(wi] ((’mn+2lo + Mny2l2) @ T+ 1@ (mni2lo + mn+2|2))7ffz+3(€ ®[#"F2). (3.86)
From this we can see that (3.82) implies (3.81) when operating on Hrestricted,

We can proceed to prove (3.82) using the recursive definition of the products. However,
the proof in this form requires consideration of several different cases depending on the
arrangement of NS and R inputs on the left hand side of (3.82). Earlier we encountered
similar inconvenience in the proof of cyclicity of M, at the end of subsection 3.2. A more
efficient route to the proof uses the coalgebra formalism, and therefore it is useful to review
how the cyclicity is described in this language. An n-string product D, is cyclic with respect
to a symplectic form w if

(w|(Dp®I1+1® D,)=0. (3.87)

If we have a sequence of cyclic n-string products Dy, D1, Do, ... of the same degree, the
corresponding coderivation D = Dy + D1 4+ Ds + ... will satisfy

(w|maD = 0. (3.88)

We then say that the coderivation D is cyclic with respect to the symplectic form w. A
cohomomorphism H is cyclic with respect to w if it satisfies

<W‘TFQI:I = (w\m. (389)

An example of a cyclic cohomomorphism is

H = Pexp Uolds h(s)] , (3.90)

where h(s) are a one-parameter family of degree even cyclic coderivations. To prove that
H in this form is cyclic, consider H(u) obtained by replacing the lower limit s = 0 in the
path ordered exponential above with s = u. Taking the derivative with respect to u we find

2 (fmoi(u) = (wlmoh(u) () = 0 (3.91)

This vanishes on the assumption that h(s) is cyclic. Therefore, the object (w|mH(u) is
independent of u. Setting u = 0 and u = 1 reproduces (3.89). The construction of the NS
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superstring field theory [36] implies that the gauge products are cyclic with respect to the
large Hilbert space symplectic form when acting on NS states. Therefore we have

(wrlmyulo(t) = 0. (3.92)
Using (2.59) this also implies
(wi|79G = (wg |79, (3.93)

Therefore G is cyclic in the large Hilbert space when acting on NS states.

Next it is helpful to recall a few things about the “triangle formalism” of the product
and coproduct introduced in [45]. For this purpose we will need to think about “tensor
products” of tensor algebras, which we denote with the symbol ®’ to avoid confusion with
the tensor product ® defining TH. The product V/ is a linear map from two copies of TH
into TH:

V:TH& TH — TH, (3.94)

and the coproduct A is a linear map from one copy of TH into two copies of T' H:
A:TH - TH® TH. (3.95)

The coproduct is defined by its action on tensor products of states:

n

AAI®..®A =) (A1®...®A) & (A1 ®...® Ay), (3.96)
k=0

where at the extremes of summation ® multiplies the identity of the tensor product 1rg
The product ¥/ acts by replacing the primed tensor product ®’ with the tensor product ®.
A coderivation D and a cohomomorphism H satisfy the following compatibility conditions
with respect to the coproduct:

AD = (D &' 1. + 1.7 ® D)A, (3.97)

AH = (H& H)A. (3.98)

These are in fact the defining properties of coderivations and cohomomorphisms. The
useful identity for our computations is

— :v[wm ' wn] A (3.99)

A generalization which also accounts for a projection onto » Ramond factors is
T
Troen = 0 V| mi* &' mk] 4, (3.100)
k=0

with the understanding that 7% vanishes if k& > n.
Using coalgebra notation, the key equation (3.82) can be expressed as follows:

(wr|(m3mlo + 7omls) = 0. (3.101)
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To prove this, consider the second term on the left hand side:
(wr|r9mly = (wr|79G T my |, G

= <wL|7T(2)(A}G71m2|2G

= (wg |79my)>G. (3.102)
In the second step we used the fact that G is cyclic with respect to wy, when it only has
NS outputs, as in (3.93). Next consider the first term of (3.101). Expressing 72 in terms
of the product and coproduct gives

(wilmdmlo = (w [V |7} &'« | & mlo

= <wL]V (ﬂ% ®’ W%)(m‘o ®' HTﬁ + HT7-[ ®' m’())] A

— (wi|V (wimb) ® i+l @ (W%m|0>]A. (3.103)

The form of m|y with one Ramond output is given in (3.70). Plugging in gives

(wr|maml|y = <wL\V_(ﬂ'im2]0G) ® ml 4+ 7 & (ﬂ'%mgloé)] A. (3.104)
The factor 7} in the two terms above can be written as
m =71G7IG = 1 G — értmy|oG, (3.105)

where we used (3.68). Therefore we have

(wr|mam|y = (wr |V (ﬂ%m2|o(}) ®’ (W}G) + (W%G) ®' (W%mgloé) A (3.106)

— <O.)L’V[(7T%m20ér) ®/ (gﬂ'%mg‘oé) + (gﬂ'%mg‘oé) ®/ (W%mg‘oé)] /.

The second term above can be simplified as follows:

<wL|V (]I ®/ f) ((W%m2|oé) ®/ (Tr%m2|()é)> — (é@l ]I) ((W%mﬂoé) ®/ (W%ng’oé))] AN
= (| ®& - ERDV| (rim2)oG) & (Tr%m2|oc‘;)] A, (3.107)
which vanishes since é is BPZ even. With what is left we can disentangle the product and
coproduct:
(wrlmimlo = (wr |V | (7] @ 7})(melo @ Ly + 1 ® malo)(G @' G) [ A
= (wr|V (W% ®’ 77%)(m2|0 Q' HTﬁ + HTﬁ ®' m2|0)] NG
= (wr |V |7 & ﬂ'i] Amy|oG
= (wr|m3maloG. (3.108)
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Bringing the first and second terms in (3.101) together therefore gives
<wL](7r§m|0 + 7['31’11’2) = <wL\(7r%m2\0 + 71’311’12’2)@. (3109)
Commuting the projectors past the star product in the two terms gives

(wr|(m3mlg + mimls) = (wr|ma(mzlo + maly) 3G
= <wL\7r2m27r§C;
—0, (3.110)

which vanishes since the star product is cyclic with respect to the large Hilbert space
symplectic form. This completes the proof of cyclicity.

3.5 Relation to Sen’s formulation

Here we would like to spell out the relation between our treatment of the Ramond sector
and the approach developed by Sen [10, 11]. The main advantage of Sen’s approach is that
it utilizes simpler picture changing insertions, which may facilitate calculations. On the
other hand, the theory propagates spurious free fields and does not directly display a cyclic
A structure.

Sen’s approach requires two dynamical string fields

U = Ung + Vg, (3.111)
II = IIng + IIg. (3.112)

The NS fields Ung and Ilng are in the small Hilbert space, degree even, and carry ghost
number 1 and picture —1. The Ramond fields ¥r and IIr are in the small Hilbert space,
degree even, and at ghost number 1, but carry different pictures: Wy carries picture —1/2
and IR carries picture —3/2. In this approach it is not necessary to assume that XY¥g =
Wgr. The action takes the form

S = —%wg(ﬁ, GQII) +ws (11, Q\Tf)+%ws(\ff,52(\fl, \Tf))Jriws(‘T’,g:s(‘fh U, 0))+..., (3.113)

where gn+2 are degree odd multi-string products which appropriately multiply NS and R
states, and the operator G is defined by

G=1 (acting on NS state),
G =X (acting on R state). (3.114)

For present purposes we can assume that the picture changing operator X is defined as
in (3.15). In particular, G is BPZ even and [Q, G] = 0.

The action does not realize a cyclic Ay, structure in the standard sense, but the
products gn+2 satisfy a hierarchy of closely related algebraic identities. To describe them,
we introduce a sequence of degree odd multi-string products

M, =Q, My, M, M, ..., (3.115)
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where
Mpys =Gbpo  (n=0,1,2,...). (3.116)

The relation to the composite products introduced earlier will be clear in a moment. The
first few algebraic relations satisfied by the multi-string products are

0 = Qbs(A, B) + ba(QA, B) + (—1)%8Wp,y (A, QB), (3.117)
0= Qbs(A, B,C) + b3(QA, B, C) + (—1)%sWp3(4,QB, ) (3.118)
+ (—1)dea)tdeaB)pa (A B, QC) + ba(Ma(A, B),C) + (—1)%8W) by (A, My (B, C)),

More abstractly, the full set of algebraic relations can be described using the coderivations

b=by+bs+bs+..., (3.119)
M=Q+M;+Ms+M;+..., (3.120)

as
m1(Qb + bM) = 0. (3.121)

In addition, gauge invariance requires that the products gn+2 are cyclic with respect to the
small Hilbert space symplectic form:

(ws|mab = 0. (3.122)
Note that (3.116) implies
Gmb =1 (M — Q). (3.123)

Multiplying (3.121) by G gives

0 = Gm1(Qb + bM)
=m(QM - Q)+ (M- QM)
= m M2, (3.124)

which implies that the products Mn+1 satisfy Ao relations:
[M, M] = 0. (3.125)

However, the products ]\7”+1 are not required to be cyclic. Rather, cyclicity is realized by
the products Bn+2 which appear in the action. We will explain why this formulation leads
to a gauge invariant action in appendix A.

As suggested by the notation, it is natural to identify Mn+1 with the composite prod-
ucts constructed earlier. Indeed the composite products can be written in the form

Mpso=Gbpro (n=0,1,2,..)) (3.126)
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for some products b, 42, where

G =1 (acting on NS state),
G =X (acting on R state). (3.127)

This differs from (3.116) only by the substitution of X with X. Therefore it is natural to
construct the products as before but replacing the picture changing insertion in (3.49) as

3 (3.128)

Then the composite products satisfy (3.116), where En+2 takes the form

1
3 (an+2]o + Mpp2o(X QI 4+ ]I®"H®X)> (0 Ramond inputs)
_ Mn+2|o (1 Ramond input)
bn+2 =
Mny2[2 (2 Ramond inputs)
0 (otherwise)

(3.129)
with the understanding that m,2|o and my42|2 are constructed out of & rather than £
We can show that b, satisfies (3.121) by pulling a factor of G out of the A relations for
Mn+2.7 Furthermore, the cyclicity of gn+2 follows from the proof of (3.82) in the previous
subsection with the replacement of é with &.

4 Relation to the WZW-based formulation

In this section we explain the relation between our construction to the WZW-based formu-
lation of [1]. The relation between the NS sectors was considered in [44-46], and our task
will be to extend this analysis to the Ramond sector.

The WZW-based theory uses an NS dynamical field

&\)NS7 (41)

which is Grassmann even, carries ghost and picture number zero, and lives in the large
Hilbert space (generically n®ng # 0). The dynamical Ramond field

\/I}Ra (42)

is the same kind of state as the Ramond field ¥R from the A, theory; it is Grassmann
odd, carries ghost number 1 and picture —1/2, and lives in the restricted space in the
Ramond sector. We will always denote objects in the WZW-based theory with a “hat” to

"Note that the products ]\AJ/n.H satisfy Ao relations regardless of whether or not X has a kernel. This
can only be true if (3.121) holds regardless of whether X has a kernel. However, it is not difficult to
check (3.121) directly.
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distinguish from corresponding objects defined in the A, theory. To write the NS sector
of the action in WZW-like form, we introduce a one-parameter family of NS string fields
Pns(t),t € [0, 1], subject to the boundary conditions

Dng(0) =0,  Dyg(1) = Pys. (4.3)
The WZW-based action of [1] can be written as
§= J 00, Qs — [ ar{(A0.QA,(0 + (FOT0)1, (4.0
The “potentials” are defined by

Kn (t) = (n(ﬁNs ®) )e—@NS )

Ayt) = (jte@NS(t)> e~ s (t), (4.5)

The object ﬁ(t) is a linear operator acting on string fields, defined by

~ 1
Ft) = ———, (4.6)
1=8adg, o
where ad A, refers to the adjoint action of A\n(t):
adg V= [4,(t), ¥]. (4.7)

All products of string fields are computed with the open string star product AB = A x B,
and all commutators of string fields are graded with respect to Grassmann parity. The
WZW-based action only depends on the value of iNs(t) at ¢t = 1. Variation of the action
produces the equations of motion [1]

0=QA, + (FIg)? (4.8)
0=QFUg. (4.9)
Unless the dependence on t is explicitly indicated, we will assume ¢ = 1 here and in

what follows.

4.1 Field redefinition

The relation between these string field theories can be extracted by inspection of the
equations of motion [45]. The equations of motion of the A, theory can be expressed in

the form .
0=M——, (4.10)
1-U

where )
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denotes the group-like element generated by U. Since

M = G H(Q + my)y)G, (4.12)

multiplying (4.10) by G gives
(4.13)

A 1
0= +m G —.
(Q 22) 3

Let us look at the component of this equation with one NS output:

A1
0=79(Q+ myl)G——
1( 2[2) .

.1 |
0 2
=Qm G ~ + mom5 G —
OmG g tmmGI Ty
1 .1
G ) (4.14)

.1 .
0 1

= 1 G — | +mo | MG =, T

Q<1 1 \1/> 2<1 -0 'T1-v

The component with one Ramond output is

A1
0:7r1Q+m22G =
HQ+ mo)G——

= QG ! + mami G 1
EE A

~afre ). e

Further note that
1
(4.16)

(4.17)

and define
N 1
Ay =mG—— 4.1
n Tl 1— \I]st ( 8)
A 1 1
FUr=mG——® V¥ —_—. 4.1
R =T1 1—‘1’NS® R®1—‘I’Ns (4.19)
Therefore (4.14) and (4.15) reduce to
0=QA, + (FIgr)?
0= QFUg.

(4.20)

These are the same as the equations of motion of the WZW-based theory, (4.8) and (4.9),
It is therefore natural to suppose that the field redefinition

with the “hats” missing.

between the theories is given by equating
A, = A, 4.21)
FlUg = FUg. (4.22)
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In the NS sector, this only specifies the field redefinition up to a gauge transformation of
the form R R
ePNs = ¢®Nsel oy =0, (4.23)

where v is a gauge parameter, since this transformation leaves gn invariant. This ambiguity
can be removed by partial gauge fixing [39, 44, 45], or by lifting the NS sector of the Ay
theory to the large Hilbert space [46], as will be reviewed in the next subsection.

To further simplify the field redefinition in the Ramond sector let us take a closer look
at F'UR. Consider the expression:

aqa 1 1
MGG — @V ® ———. (4.24)

alqa 1 1
G 1G——— @I ® ——— = Uy, (4.25)

A 1 1 ~ ~
—rlG ol ifel
MG P VRO Ty Emalom;

The first term on the right hand side is F¥R. By writing

1
——— RUr® (4.26)
1— Wns

T 1— Ung'

my =V |m & 7 + 7 @ ﬂﬂ A (4.27)
we can show that the second term on the right hand side is

~ N 1 -
EmalomyG——"r— @ UR ® = Ema|o(F¥R © A + Ay ® Fy)

1
1 — Ung 1 — Ung
= ¢[A,, FUR], (4.28)

where in the last step we switched from degree to Grassmann grading.® Equating (4.25)

8The coproduct A acts on a group-like element as [45]

1 1 ;1

A = . 4.2
-4 1-A%71-2 (429)
A straightforward generalization gives the formulas
1 1 1 ;1 1 1 1 ;1
Al—A®B®1—A71—A®1—A®B®1—A+1—A®B®1—A®1—A’ (4.30)
1 1 1 1 ;1 1 1
AT AP T 90T =A% AP a9
1 1 ;1 1
TITAOBO T A® mA®09
+- L eBe-t 9o o 1 (4.31)
1-A 1-A 1-A 1-A° ’

We use the first formula in the derivation of (4.28), and later the second formula in the derivation of (4.61)
and the calculation of (A.7) from (A.8).
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and (4.26) then implies

UR = FUR — £[A,, FUR]. (4.32)
This can be interpreted as a recursive formula for F'UR:
FUg = UR + £[A,, FUg]. (4.33)
Plugging this formula into itself implies
Fg = H—éladAn (4.34)

This is the same formula which defines F \/I\IR, but with the “hats” missing. Since the field
redefinition in the NS sector implies 27, = A, the field redefinition in the Ramond sector
simplifies to

g = Ug. (4.35)
The Ramond fields are equal; there is no field redefinition between them. This was antic-
ipated in [1] and is not surprising for the following reason. Since the Ramond fields have
identical kinetic terms, we can assume a field redefinition relating them takes the form

\T/R:\IJR+DC<J72(\T/,\T/)+J§(\Tf,\f/,xff)+...), (4.36)

where };, }E, ... are string products and the factor of X is needed to ensure that both fields
live in the restricted space. Since the interaction vertices of both theories are built out of
Q, 5 and the open string star product, it is natural to assume that the field redefinition can
be constructed from these operations. The (n + 2)-product in the field redefinition ﬁl+2
must carry ghost number —n — 1. Therefore it must contain at least n + 1 insertions of
f , since no other operations carry negative ghost number. This implies that ]?n+2 carries
at least picture n + 1, and fn—i—Z(\i, ey \Tl) must have picture greater than or equal to —1.
However, consistency of the field redefinition requires that ﬁl+2(\i, R \T/) carries picture
—3/2. Therefore ﬁl+2 must vanish, and the Ramond fields are equal.

We therefore conclude that the field redefinition between the A, theory and WZW-
based theory is

A, = A, (4.37)
g = U, (4.38)

up to a gauge transformation of the form (4.23). It is important to note that the proposed
field redefinition is consistent with the assumption that Wng and Wy are in the small Hilbert
space. In the Ramond sector this is obvious. In the NS sector it follows from the fact that
A, and Xn satisfy

nA, — Ay x Ay =0, 1A, — A, A, =0. (4.39)
See [44, 45].

4.2 Equivalence of the actions

Here we demonstrate that the field redefinition given by (4.37) and (4.38) relates the
theories at the level of the action, not just the equations of motion. Following the analysis
of [44, 46], this can be demonstrated by expressing the Ay, action in the same form as the

~32 -



WZW-based action, including the contribution from the Ramond sector. Let us explain
how this is done.

The (n + 3)-string vertex in the Ay, action is

1 JUNUEY ~

n+3@(\IJ,Mn+2(\II,...,\I/)). (4.40)

Let us expand ¥ into NS and R components. Since the composite products multiply at
most two Ramond states, the expanded vertex takes the form

. i SO0, Ma(F, ., 7)) = i - |8(s, Mo, Uxs))
n+1 L
+ Z&(\I/R, MnJrQ(\IINS, ..., Uns, ¥R, Uns, - - -, \IJNs)) (4.41)
k=0 k times
n n—k .
+) 0> &(Ixs, Muya(Txs, - -, Uns, g, Uxs, - -, Ung, Ur, Ung, - -, Uxg)) |-
k=0 j=0 Y ¢

k times j times

Many terms in these sums are redundant. In fact, using cyclicity we can write the sum in
the second line as 2/(n + 1) times the double sum in the third line. Therefore we have

1 -~ ~ —

w(W, M, v...,¥)) = w(UNs, M, Ung, ..., ¥ 4.42
n+3w( s Myi2(9, ..., ) n+3w( NS Mp2(¥ns, -+, Uns)) (4.42)
1 n n—k .
+THZZW(WN87MH+2(\I]NSM",\IINSM\IJRa\IJNS,'"a\IINSj ‘IJR,\I’NS,...,\IINS)).
k=0 j=0 k times J times

Next we introduce a one-parameter family of NS string fields Wns(t),t € [0, 1] subject to
the boundary conditions

Uns(0) =0,  Wns(1) = Uns. (4.43)

The (n + 3)-string vertex can be written as the integral of a total derivative in ¢:

1 o~ ~ o~ ~ Lodr o1 . ~
n + 3w(\11, Mn+2(\IJ7 sy \P)) = /0 dt % |:n ¥+ SW(WNS (t)a Mn+2(\1/NS (t)a ceey \IJNS(t))) (444)
n n—k
1 B —
to D G Uns(t), Mup2(Uns(t), .., Uns(t),Ur, Uns(t), .., Uns (), U, Uns (1), ... Uns(1))]-
k=0 j=0 k times j times

Acting d/dt produces n + 3 terms with Wng(t) = d¥ng(t)/dt in the first line, and in the
second term it produces n+1 terms with Ung(t). All of these terms are related by cyclicity,
and therefore we can bring \ile(t) to the first entry of the symplectic form and cancel the
factors 1/(n+3) and 1/(n + 1):

niga(@,ﬂm(\i,...,@)) :/0 dt [ws(\i'NS(t),MnJrg(\I/Ns(t),...,\I/Ns(t))) (4.45)
n n—k
+ 3 ws(Tns(t), Mo (Ins(t), - -, Uns(t), Tr, Uns (1), ... Uns(t), Ur Uxs(t), . .., Uxs(t))) .
k=0 j=0 k times j times
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On the right hand side we replaced w with wg since only NS states are contracted. We can
simplify this expression using coderivations and group-like elements:

1 ~ o~ = ~ ! : 1
(U, My o0, .. 0 = [ dt Ws (1), 11 Mg g —————— 4.46
T ) = [ s (s Ml ) (00
+ Uns(t), mm y¥®\y B eUpe——

Summing over the vertices, the action can therefore be expressed as

1o~ ~ = 1 _ .~
S = 56(¥, Q) + ZO mw(\P,Mn+2(\II, ) (4.47)

1
— s Q) + (s, QUxs) + [t (s (thm (Mo = Q)= )

. 1 1
)\ t — VU — VU e — .
+°"S< Ns(8) mmlo gy @ VR @ Ty © R®1—sz(t)>]

We can absorb the NS kinetic term into the integral over ¢, obtaining

1 1 . 1
S = §ws("é‘I’R, QYR) +/0 dt {ws (‘I’Ns(t),ﬂlel\I]I\IS(t)) (4.48)
. 1 1 1
+ wg (lI/NS(t)’Trlmhl—\I’Ns(t) & \I/R & m & \I/R () 1_‘lle(t)):| .

Because this form of the action was constructed from the integral of a total derivative, it
only depends on the value of Ung(t) at t = 1.

Next it will be helpful to reformulate the theory in the large Hilbert space. We replace
WUns with a new NS string field ®ng in the large Hilbert space according to

Ung = nPns. (4.49)

The new field ®ng is degree odd (because it is Grassmann even) and carries ghost and
picture number zero. We also introduce a corresponding family of string fields ®ng(t),t €
[0, 1] such that n®ns(t) = Uns(t). Plugging into the action gives

1 1 ) 1
== ) )\ d Mlg———— 4.
§ = gws(Y¥r, Q R)+/O dt [wL< Ns(t), m ’01_W¢Ns(t)> (4.50)
. 1 1
+wp ((Exs(t), mmly———— @I ———— @V ———— || .
o (st mmle g o s e )|

Here we replaced the small Hilbert space symplectic form with the large Hilbert space
symplectic form using the relation

ws(n®, V) = wr (P, V), (4.51)

where @ is in the large Hilbert space and ¥ is in the small Hilbert space. Next we use the
identity [44, 46]

P | 1 L] 1
B = H—®B H — 4.52
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where B and C are string fields, A is a degree even string field, and the cohomomorphism
H is cyclic with respect to w. In the current application we identify

-~

A—ndns(t), H-G, w—wr. (4.53)

Note, in particular, that G is cyclic with respect to the large Hilbert space symplectic form
when it receives no Ramond inputs. Thus we can rewrite the action as follows:

1
S = Ews('é\I’mQ‘I’R) (4.54)
+/1dtw < G ! ® dns(t) ® =
v — < )
0 LA 1—nPns(t) NS 1—n®Ns(t)
R 1 1 1
G—— _o(mM ®
MO e <’” °1—n<1>Ns<t>> 1—n<I>Ns<t>>

1 & 1 2
, T
1—n@ns(t)’ " 1—nPys(t)

1
A 1 .
dt G—— @ Pns(t
) o (g bt e

1 1 1 1
TiMlp——————— QURQ ————QUVR® X .
(1 e s ) R T s () R 1—n<I>Ns(t>> 1—n<I>Ns<t>>

We can simplify the term with M|y by writing

1 1 1 1
————® (mM > ® =M|j———. 4.55
1 —nPns(t) ( 1Mo 1 —nPns(t) 1 —nPns(t) lo 1 —ndns(t) (4.35)

The term with m|s can also be simplified using

1 1 1 1
— Q| My RQURRX— - QUR® X
1—n®ys(t) (1 ‘21—nq>NS(t) R ndns(t) © 1 1—n<1>Ns(t)> 1—n®ys(t)

1
QURQ ———<QUYR®

1—n®ns(t) (4.56)

:m’

1
*1—ndys(t) 1—n®ns(t)

Therefore, we have
1
S = §ws(9‘1’R,Q‘I’R)

1 . 1 . 1 . 1
+/ dt w (WG@‘I) He— mGM >
0 E\MT —pons(t) s () 1—ndns(t)’ |01—77<I>Ns(t)
1 . 1 . 1
+/ dtw <7r G—— b)) ———,
o MG OO T e

N 1 1
mGmlpg———QUR® ——— QUR® —«F——~ | . (4.57
! |21—17<I>Ng(t) BT dns() ~ 1—77<I>Ns(t)> (4:57)
Now using
mnGM|y = m QG = Qm G, (4.58)
7T1Gm|2 = 7T1III2|2G = mzﬂ'gé, (4.59)
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we further obtain

1
S = §w5(9‘I’R7 QYR)

1 A 1 . 1 N 1
+/ dt wr, <7T1G®‘I>Ns(t)®,Q7T1G>
0 S (t)

1 —T](I)Ns(t) 1 —T]CI)N (t) 1 —T](I)NS
1 R 1 . 1
+ | dtw,[mG— RPN () D,
/0 L( P n@as(t) ns(?) 1—nPns(t)
. 1 1 1
2
mom5G————QUR® QRUR® > 4.60
R pans(t) © N 1—ndns(t) T 1—ndus(t) (4.60)

Using 73 =V [r{ ®' 7{]/\, one can show that

A 1 1 1
2
G——QQUrR® ————QVr®———— = ( F())¥ F()U 4.61
T s () T s () © T RO T B (1) ( ®) R) @ ( ®) R)’ (4.61)
where
~ 1
F)Vp =mG——QRQUrQ@——F7—. 4.62
()R =m I—ndns(t)  + 1-nPns(t) (4.62)
Switching from degree to Grassmann grading, the action is therefore expressed as
1 1
S = 50, QU)s — [ de (4(0).QA,(0) + (F(O) Vw1, (463)
0
where following [44, 46] we define the potentials by
Ag(t) G ! ® dns(t) @ = (4.64)
=7 .
' T pens(e) © 1 —n®ns(t)
~ 1
At =mG——m—. 4.65
o) =m 1 —n®ns(t) (4.65)

Thus the Ay, action is expressed in the same form as (4.4) but with the “hats” missing.
Now we can show that the action of the A., theory is related to the action of the
WZW-based theory by field redefinition. We postulate that the two theories are related by

Ay(t) = At), g = Up. (4.66)

Equating the ¢-potentials provides an invertible map between ®ng(t) and Pys(t), and
automatically equates the n-potentials [46]:

o~

A, (t) = A(1). (4.67)

With these identifications it is identically true that the actions (4.4) and (4.63) are equal.
Moreover, since the Ay action is only a function of Ung(t) = nPns(t) at t = 1, the
identification (4.66) is equivalent to

o~

A, =4, Ug=1Ug, (4.68)

which is the field redefinition anticipated in the previous subsection.
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5 Conclusions

In this paper we have constructed the NS and R sectors of open superstring field theory
realizing a cyclic Ao, structure. This means, in particular, that we have an explicit solution
of the classical Batalin-Vilkovisky master equation,

(8,8} =0, (5.1)

after relaxing the ghost number constraint on the NS and R string fields. Therefore, for
the purpose of tree level amplitudes we have a consistent definition of the gauge-fixed path
integral, and for the first time we are prepared to consider quantum effects in superstring
field theory.

However, the absence of explicit closed string fields and the appearance of spurious
singularities at higher genus may make quantization subtle. Therefore it is desirable to
give a construction of superstring field theory realizing a more general decomposition of
the bosonic moduli space than is provided by the Witten vertex. This in turn is closely
related to the generalization to heterotic and type II closed superstring field theories.
The appropriate construction of NS actions and Ramond equations of motion is described
in [37, 38], and in principle all that is needed is to implement cyclicity. For example, in
the closely related open string field theory with stubs [37, 38], it is not difficult to see that
the gauge products with one Ramond output and zero picture deficit should be defined by

MSL_QTH)‘?T = éMgJST)\QT (2r + 1 Ramond inputs), (5.2)

so that the equations of motion are consistent with the projection onto the restricted
space in the Ramond sector. However, a full specification of the vertices requires many
additional gauge products of varying Ramond numbers and picture deficits. Solving the
entire recursive system of products consistent with cyclicity is a much more challenging
problem, which we hope to consider soon.
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A Gauge invariance in Sen’s formulation

In Sen’s formulation of the Ramond sector [10, 11], the action does not realize a cyclic A
structure in the standard sense. Therefore it is worth explaining why it is gauge invariant.
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The infinitesimal gauge transformation can be written in the form

(A1)

|
Tl = QO+ mb-

(A.2)

~ — 1
ow :7'['1].\/11

where Q and A are degree odd gauge parameters in the small Hilbert space, at ghost
number zero, and with the appropriate picture in the NS and R sectors. The variation of
the action is

65 = —ws(0I1, GQII) 4+ ws(6¥, QII) 4+ ws(J11, QU) 4 wg (5\1’:,7T161 ! \i) . (A3)

The gauge parameter O immediately drops out since Q(NZ always appears in the symplec-
tic form contracted with a BRST invariant state. Substituting the infinitesimal gauge
transformation then gives

55:—ws<mi§ 1~®K®1~,9Qﬁ>+w5(mM1~®A® ,QH) (A.4)
1-v 1-w 1-v

~ 1 ~ 1 ~ ~ 1 ~ 1 ~ 1
+ws<7rlb ~®A®~,Q\D>+ws<mM~®A® —,mb ~>.
1-U 1-U 1-U 1-U 1-U

The first and second terms cancel upon using the BPZ even property of G and converting
b into M — Q. In the last term we replace 7711\/1 with mQ + Gmb:

~ 1 ~ 1 ~ ~ ~ 1 ~ 1 ~ 1
0S = wg (mb — RA® ~,Q\Il> +wg <QA—|—Q7T1b = QQAR® —,mb ~> .
1—-v 1—-w 1-v 1—-w 1-v
(A.5)
Next use the BPZ even property of G and again convert b into M — Q:
5S ( b ®A® Q\If) <QK - >
=wg |7 — —_—, T —
S\ 1-\1} — s 1T
~ ~ 1 —~ 1
—|—w5(mb ~®A® ~,7T1(M—Q) ~>
1-U 1-w 1-w
~ 1 ~ 1 ~ 1 —~ 1
:wS< , ~>—|—w,5' <7T1b — QAR =, mM N). (A.G)
- v 1-w 1-w 1-w

Using cyclicity of b we can rewrite the second term as

~ 1 ~ 1 —~ 1 ~ ~ 1 ~ 1 1
S <7i'1b ~ ®A & ~,7T1M~) = wg <A, 7T1b = & <7T1M~> X ~> .
1-v 1-v 1-v

1-v 1-w 1-v
(A.7)
This follows from the relation
~ 1 ~ 1 ~ 1 1
0 = (wg|mb N®A®~®<7T1M N>® =, (A.8)
1-v 1-w 1-v 1-U
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after representing mo =V [m ®' m} A and acting with the coproduct. Therefore the gauge
variation of the action produces

- -1 - -1 ~ 1 1
0S = wg <A,7T1Qb ~> + wg <A,7r1b = & <7T1M ~> & ~)
1-v 1-v 1-v 1-w

- |
— ws (A, m(Qb + bM ~>
S < 1(Q )T 5
=0, (A.9)
which vanishes as a consequence of (3.121).
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