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1 Introduction

A major obstacle to the construction of superstring field theories has been formulating

an action for the Ramond sector. The last few months have seen remarkable progress on

this problem. In [1] a complete action for open superstring field theory was formulated

by restricting the off-shell state space of the Ramond field so as to reproduce the correct

integration over the fermionic modulus in the Ramond propagator.1 A closely related

approach has recently been developed by Sen [10, 11], which has a somewhat simpler

worldsheet realization at the cost of introducing spurious free fields.

We are now in a position to complete the construction of all classical superstring

field theories. The construction of [1] was realized by extending the Neveu-Schwarz (NS)

open superstring field theory of Berkovits [12, 13] to include the Ramond (R) sector. The

Berkovits theory gives an elegant Wess-Zumino-Witten-like (WZW-like) action for the NS

sector in the large Hilbert space [14] and is a suitable starting point for the study of tachyon

condensation and classical solutions [15–22]. However, the question of recent interest is how

to construct other superstring field theories and how to quantize them. In this capacity

1The construction of [1] is based on a very old idea for formulating the free action for the Ramond string

field [2–8], which with the proper understanding is equivalent to the formulation of Witten [9]. However,

the construction of [1] gives the first consistent nonlinear extension of this free action.
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the Berkovits formulation is not ideal, since it does not immediately generalize to type II

closed superstrings,2 and, despite some attempts [29–34], it is not known how to properly

define the gauge-fixed path integral.

For this reason, in this paper we turn our attention to a different form of open string

field theory which uses the small Hilbert space and realizes a cyclic A∞ structure. The con-

struction of superstring field theories based on A∞ and L∞ algebras is attractive since all

forms of superstring field theory can in principle be described in this language [35–38, 11].

In addition, the definition of the gauge-fixed path integral is straightforward thanks to

the close relation between homotopy algebras, Batalin-Vilkovisky quantization, and the

Feynman-graph decomposition of moduli spaces of Riemann surfaces (or their supergeo-

metrical extension3) [41–43].

Our construction of open superstring field theory extends the NS open superstring

field theory of [36] to include the Ramond sector, and the interactions are built from

Witten’s open string star product dressed with picture changing insertions. Part of the

work for constructing this theory was done in [38], which gives classical equations of motion

describing the interactions between the NS and R sectors. Our task is to modify the

equations of motion so that they can be derived from an action. This requires, specifically,

that the equations of motion realize a cyclic A∞ structure, where the notion of cyclicity

is provided by the inner products defining the NS and R kinetic terms. Interestingly, the

action we find for the Ramond sector turns out to be identical to that of [1] after the

appropriate translation of NS degrees of freedom [44–46].

This paper is organized as follows. In section 2 we review the formulation of the

Ramond sector kinetic term used in [1] and the NS and Ramond equations of motion

described in [38]. In section 3 we construct an action by requiring compatibility of the

equations of motion with the bilinear form defining the Ramond sector kinetic term. First

we describe the picture changing insertion which plays a central role in defining the vertices.

Then we give an explicit discussion of the 2-string product, generalize to the higher string

products, and provide a proof that the resulting A∞ structure is cyclic. We also describe

how the construction can be translated into the formulation of the Ramond kinetic term

used by Sen [10, 11]. In section 4 we relate our construction to the WZW-based formulation

developed by Kunitomo and one of the authors [1]. We end with some concluding remarks.

Note added. While this paper was in preparation, we were informed of independent

work by Konopka and Sachs addressing the same problem. Their work should appear

concurrently [47]. See also [48] for related discussion.

2Some attempts to provide a WZW-like formulation of closed type II superstring field theory are de-

scribed in [23, 24]. For heterotic string field theory a WZW-like formulation in the large Hilbert space is

well established [25], and its extension to the Ramond sector would be interesting to consider [26–28].
3The manner in which picture changing operators in the vertices implement integration over odd moduli

has not yet been made fully explicit, though the computation of the four-point amplitude in [39] has given

some preliminary insight. However, it follows from the computation of the S-matrix [40] that the tree-

level actions and equations of motion constructed so far correctly integrate over the supermoduli spaces of

punctured disks and spheres.
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2 Background

In this section we review the Ramond kinetic term [1] and equations of motion [38]. To

describe compositions of string products and their interrelations in an efficient manner,

we will make extensive use of the coalgebra formalism. The coalgebra formalism expresses

string products in terms of coderivations or cohomomorphisms acting on the tensor algebra

generated from the open string state space H̃:

T H̃ ≡ H̃⊗0 ⊕ H̃ ⊕ H̃⊗2 ⊕ H̃⊗3 ⊕ . . . . (2.1)

Coderivations will be denoted in boldface, and cohomomorphisms with a “hat” and in

boldface. String fields can be described by group-like elements of the tensor algebra. The

coalgebra formalism works efficiently if we use a shifted grading of the open string field

called degree. The degree of a string field A is defined to be its Grassmann parity ε(A)

plus one:

deg(A) = ε(A) + 1 mod Z2. (2.2)

For a detailed description of all the relevant definitions, formulas, and the notational con-

ventions, see [45].

2.1 Ramond kinetic term

Let us start by summarizing what is needed to have a consistent open string field theory

kinetic term from the perspective of an action realizing a cyclic A∞ structure. We need

three things:

(A) A state space H, perhaps a subspace of the full CFT state space, which is closed

under the action of the BRST operator Q. The BRST cohomology at ghost number

1 computed in H reproduces the appropriate spectrum of open string states.

(B) A symplectic form ω on the state space H. This is a linear map from two copies of

the state space into complex numbers,

ω : H⊗H → C, (2.3)

which is graded antisymmetric,

ω(A,B) = −(−1)deg(A)deg(B)ω(B,A), (2.4)

and nondegenerate. We sometimes write the symplectic form as 〈ω|, and write

ω(A,B) ≡ 〈ω|A ⊗ B. We assume that ω is nonzero only when acting on states

whose ghost number adds up to 3.

(C) The BRST operator must be cyclic with respect to the symplectic form ω:

ω(QA,B) = −(−1)deg(A)ω(A,QB). (2.5)

Equivalently

〈ω|(Q⊗ I + I⊗Q) = 0, (2.6)

where I is the identity operator on the state space.

– 3 –
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If these three criteria are met, a string field theory kinetic term can be written as

S =
1

2
ω(Ψ, QΨ), (2.7)

where Ψ is a degree even and ghost number 1 dynamical string field in H. Variation of

the action produces the expected equations of motion QΨ = 0, and the action has the

linearized gauge invariance

Ψ′ = Ψ +QΛ, (2.8)

where Λ ∈ H is degree odd and carries ghost number 0.

Let us see how this story applies to the NS and R sectors of the open superstring. We

consider the RNS formulation of the open superstring, described by a c = 15 matter bound-

ary superconformal field theory tensored with the c = −15 ghost boundary superconformal

field theory b, c, β, γ. The βγ system may be bosonized to the ξ, η, eφ system [14]. We will

write the eta zero mode η0 as η. The state space of the open superstring is the direct sum

of an NS component HNS and a Ramond component HR:

H̃ = HNS ⊕HR. (2.9)

We use H̃ to denote the combined state space. Formulating the NS kinetic term requires

a subspace of HNS consisting of states at picture −1 and in the small Hilbert space. The

BRST operator preserves this subspace, and has the correct cohomology at ghost number

1. The symplectic form can be defined by the small Hilbert space BPZ inner product (up

to a sign from the shifted grading):4

ωS(A,B) ≡ (−1)deg(A)〈A,B〉S , (2.10)

where the subscript S denotes the small Hilbert space. Furthermore, the BRST operator

is cyclic with respect to ωS . Since conditions (A), (B) and (C) are met, we can write the

NS kinetic term as

S =
1

2
ωS(ΨNS, QΨNS), (2.11)

where the dynamical NS string field ΨNS ∈ HNS is in the small Hilbert space (ηΨNS = 0),

is degree even, and carries ghost number 1 and picture −1. Though it is not needed

to formulate the NS kinetic term, it will be useful to consider the large Hilbert space

symplectic form ωL defined in terms of the large Hilbert space BPZ inner product by

ωL(A,B) ≡ (−1)deg(A)〈A,B〉L, (2.12)

where the subscript L denotes the large Hilbert space.

4The elementary correlator in the small Hilbert space will be normalized as 〈c∂c∂2ce−2φ(0)〉S = −2 ×
Zmatter, where Zmatter is the disk partition function in the matter boundary conformal field theory. In the

large Hilbert space the elementary correlator will be normalized as 〈ξc∂c∂2ce−2φ(0)〉L = 2× Zmatter, with

the opposite sign.
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Now let us describe the Ramond kinetic term. The major technical problem in this

respect is defining an appropriate symplectic form. For this purpose we introduce two

picture changing operators:

X ≡ −δ(β0)G0 + δ′(β0)b0, (2.13)

Y ≡ −c0δ
′(γ0), (2.14)

where G0 is the zero mode of the supercurrent. The operator X is degree even and carries

ghost number 0 and picture 1, and Y is degree even and carries ghost number 0 and picture

−1. Since these operators depend on βγ zero modes, they only act on states in the Ramond

sector. Moreover, it is clear that X should not act on states which are annihilated by β0

and Y should not act on states which are annihilated by γ0. For this reason we will always

assume that X and Y act on states in the small Hilbert space at the following pictures:

X : small Hilbert space, picture −3/2,

Y : small Hilbert space, picture −1/2. (2.15)

In particular, all pictures besides picture −3/2 either contain states annihilated by β0 or

are BPZ conjugate to pictures containing states annihilated by β0. Similarly, all pictures

besides picture −1/2 either contain states annihilated by γ0 or are BPZ conjugate to

pictures containing states annihilated by γ0. Assuming X and Y act on the appropriate

picture as above, they satisfy

XYX = X, YXY = Y, [Q,X] = 0, (2.16)

and are BPZ even:

〈ωS |X⊗ I = 〈ωS |I⊗ X, 〈ωS |Y⊗ I = 〈ωS |I⊗ Y. (2.17)

Note that (2.16) implies that the operator XY is a projector:

(XY)2 = XY. (2.18)

This projector selects a subspace

Hrestricted
R ⊂ HR (2.19)

of Ramond states which satisfy

XYA = A, A ∈ Hrestricted
R . (2.20)

We will call this the restricted space. To ensure that the action of XY is well defined, we

will assume that the restricted space only contains states in the small Hilbert space and

at picture −1/2. We claim that the restricted space allows for the definition of a Ramond

kinetic term, and to see it, we check conditions (A), (B) and (C). First note that the

restricted space is preserved by the action of the BRST operator:

XYQA = XYQXYA = XYXQYA = XQYA = QXYA = QA, A ∈ Hrestricted
R . (2.21)

– 5 –
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Moreover, the cohomology of Q computed in Hrestricted
R reproduces the correct physical

spectrum [49]. Therefore condition (A) is met. Next, we define a symplectic form on

Hrestricted
R by

ωS(YA,B), A,B ∈ Hrestricted
R . (2.22)

Graded antisymmetry follows from the fact that Y is BPZ even and the fact that ωS is

graded antisymmetric. Nondegeneracy follows from the fact that YA = 0 implies A = 0

upon operating with X, and ωS is nondegenerate on the subspace of Ramond states at

pictures −1/2 and −3/2. Therefore condition (B) is met. Finally, we have

ωS(YA,QB) = ωS(YA,QXYB)

= ωS(YA,XQYB)

= ωS(XYA,QYB)

= ωS(A,QYB)

= −(−1)deg(A)ωS(YQA,B), A,B ∈ Hrestricted
R , (2.23)

so condition (C) is met. Therefore, we can write a free action for the Ramond string field as

S =
1

2
ωS(YΨR, QΨR), (2.24)

where the dynamical Ramond string field ΨR is in the small Hilbert space (ηΨR = 0), is

degree even, carries ghost number 1 and picture −1/2, and satisfies XYΨR = ΨR.

We can package the dynamical NS and R string fields together into a string field:

Ψ̃ = ΨNS + ΨR. (2.25)

We call this the “composite string field”. It is an element of the state space

H̃restricted = Hrestricted
NS ⊕Hrestricted

R , (2.26)

which we call the “composite restricted space”. In the NS sector, the space Hrestricted
NS

consists of states in the small Hilbert space at picture −1. In the Ramond sector, the space

Hrestricted
R is defined as above. We define a “composite symplectic form”

ω̃ : H̃restricted ⊗ H̃restricted → C (2.27)

by

〈ω̃| ≡ 〈ωS |0|+ 〈ωS |2|Y⊗ I, (2.28)

where, following notation to be introduced in a moment, 〈ωS |0| is nonzero only when

contracting two NS states, and 〈ωS |2| is nonzero only when contracting two Ramond states.

From the above discussion, it is clear that the composite restricted space together with the

composite symplectic form satisfy conditions (A), (B) and (C), so we can write the kinetic

term as

S =
1

2
ω̃(Ψ̃, QΨ̃), (2.29)

which describes the free propagation of both the NS and R states.

– 6 –
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2.2 Ramond equations of motion

Now that we have a free action for the NS and R sectors, our task will be to add interactions.

The structure of interactions at the level of the equations of motion was described in [38].

It is helpful to review this before considering the action.

The equations of motion are characterized by a sequence of degree odd multi-string

products:

M̃1 ≡ Q, M̃2, M̃3, M̃4, . . . . (2.30)

We call these “composite products” since they encapsulate the multiplication of both NS

and R states. We require three properties:

(I) The composite products satisfy the relations of an A∞ algebra. Equivalently, if M̃n+1

is the coderivation corresponding to M̃n+1, the sum

M̃ ≡ M̃1 + M̃2 + M̃3 + M̃4 + . . . (2.31)

defines a nilpotent coderivation on the tensor algebra:5

[M̃, M̃] = 0. (2.32)

(II) The composite products are defined in the small Hilbert space. Equivalently, the

coderivation M̃ commutes with the coderivation η representing the eta zero mode:

[η, M̃] = 0. (2.33)

(III) The composite products carry the required ghost and picture number so that the

equations of motion,

0 = QΨ̃ + M̃2(Ψ̃, Ψ̃) + M̃3(Ψ̃, Ψ̃, Ψ̃) + . . . , (2.34)

have an NS component at ghost number 2 and picture −1, and a Ramond component

at ghost number 2 and picture −1/2.

When we write the equations of motion, the dynamical Ramond string field does not have

to be in the restricted space. Formulating the equations of motion in the restricted space

is closely related to constructing the action, and will be described later. However, we still

assume that ΨR is in the small Hilbert space, is degree even, and carries ghost number 1

and picture −1/2.

We will construct the composite products by placing picture changing insertions on

Witten’s associative star product:

m2(A,B) ≡ (−1)deg(A)A ∗B. (2.35)

5Commutators of multi-string products are always graded with respect to degree [36]. Commutators of

string fields, computed with the open string star product, are graded with respect to Grassmann parity.

When taking commutators of operators (or equivalently commutators of 1-string products) the degree and

Grassmann gradings are equivalent.

– 7 –
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The generalization to other forms of open string multiplication (for example, the star

product with “stubs” [37, 38]) is closely related to the generalization to heterotic and type

II superstring field theories, and will be left for future work. The BRST operator, the eta

zero mode, and the star product satisfy

0 = [Q,Q], 0 = [η,Q], 0 = [η,η],

0 = [Q,m2], 0 = [η,m2], 0 = [m2,m2]. (2.36)

This says that Q and η are nilpotent and commute, that Q and η are derivations of the

star product, and that the star product is associative. Equivalently, Q,η and m2 define

three mutually commuting A∞ structures. Though it is not important for the equations

of motion, we note that the star product is cyclic with respect to the small (and large)

Hilbert space symplectic form:

〈ωS |(m2 ⊗ I + I⊗m2) = 0. (2.37)

Similarly the eta zero mode is cyclic with respect to the large Hilbert space symplectic form.

Because ΨNS and ΨR carry different picture, the composite products M̃n+1 must pro-

vide a different amount of picture depending on how many NS and R states are being

multiplied. To keep track of this, it will be useful to invoke the concept of Ramond num-

ber. A multi-string product has Ramond number r if it is nonvanishing only when the

number of Ramond inputs minus the number of Ramond outputs is equal to r. We will

write the Ramond number of a product using a vertical slash followed by an index indicat-

ing the Ramond number. For example, bm|r is an m-string product of Ramond number r.

The definition of Ramond number implies that the product bm|r has the property

bm|r
(
r Ramond states

)
= NS state,

bm|r
(
r+1 Ramond states

)
= R state,

bm|r
(

otherwise
)

= 0. (2.38)

Any product can be written as a unique sum of products of definite Ramond number:

bm = bm|−1 + bm|0 + bm|1 + . . .+ bm|m. (2.39)

The Ramond number of bm is bounded between −1 and m since bm can have at most m

Ramond inputs and at most 1 Ramond output. Since Ramond number is conserved when

composing products, it is conserved when taking commutators of coderivations:

[bm, cn]|s =
s∑

r=−1

[bm|r, cn|s−r], (2.40)

with the understanding that commutators in this sum vanish if the Ramond number exceeds

the number of inputs of the product. As an example of this identity, note that associativity

– 8 –
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of the star product implies

0 = [m2,m2]|0 = [m2|0,m2|0], (2.41)

0 = [m2,m2]|2 = 2[m2|0,m2|2], (2.42)

0 = [m2,m2]|4 = [m2|2,m2|2], (2.43)

where the star product is broken into components of definite Ramond number as

m2 = m2|0 + m2|2. (2.44)

The components of the star product with odd Ramond number vanish identically.

We are now ready to describe the equations of motion constructed in [38]. The compos-

ite products M̃n+2 have a component at Ramond number 0 and a component at Ramond

number 2:

M̃n+2 = Mn+2|0 +mn+2|2, (2.45)

which carry the following picture and ghost numbers:

Mn+2|0 : picture n+ 1, ghost number − n, (2.46)

mn+2|2 : picture n, ghost number − n. (2.47)

The 1-string product M1|0 is identified with the BRST operator

M1|0 ≡ Q, (2.48)

and m2|2 is the Ramond number 2 component of Witten’s open string star product. We

also define bare products of odd degree and gauge products of even degree:

bare products mn+2|0 : picture n, ghost number − n, (2.49)

gauge products µn+2|0 : picture n+ 1, ghost number − n− 1. (2.50)

The bare product m2|0 is the Ramond number zero component of Witten’s open string

star product. We define generating functions

M|0(t) ≡
∞∑
n=0

tnMn+1|0, (2.51)

m|2(t) ≡
∞∑
n=0

tnmn+2|2, (2.52)

m|0(t) ≡
∞∑
n=0

tnmn+2|0, (2.53)

µ|0(t) ≡
∞∑
n=0

tnµn+2|0, (2.54)

– 9 –
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which are postulated to satisfy the differential equations

d

dt
M|0(t) = [M|0(t),µ|0(t)], (2.55)

d

dt
m|2(t) = [m|2(t),µ|0(t)], (2.56)

d

dt
m|0(t) = [m|0(t),µ|0(t)], (2.57)

[η,µ|0(t)] = m|0(t). (2.58)

Expanding in powers of t gives a recursive system of equations which determine higher

products in terms of sums of commutators of lower ones. A crucial step in solving this

system of equations concerns (2.58), which defines the gauge product µn+2|0 in terms of

the bare product mn+2|0. The solution of (2.58) requires a choice of contracting homotopy

of η.6 This choice influences the configuration of picture changing insertions which appear

in the vertices, and will determine whether or not the equations of motion can be derived

from an action.

The products can be usefully characterized by the cohomomorphism

Ĝ(t) ≡ P exp

[∫ t

0
dsµ|0(s)

]
, (2.59)

where the path ordering is in sequence of increasing s from left to right. In particular, the

generating functions take the form

M|0(t) = Ĝ(t)−1QĜ(t), (2.60)

m|2(t) = Ĝ(t)−1m2|2Ĝ(t), (2.61)

m|0(t) = Ĝ(t)−1m2|0Ĝ(t), (2.62)

µ|0(t) = Ĝ(t)−1 d

dt
Ĝ(t). (2.63)

Also, using (2.58) and (2.62) it is straightforward to show that [44]

η = Ĝ−1(η−m2|0)Ĝ. (2.64)

Here and in what follows, all objects are evaluated at t = 1 when the dependence on t is

not explicitly indicated. The coderivation representing the composite products is

M̃ = M|0 + m|2
= Ĝ−1(Q + m2|2)Ĝ. (2.65)

From this expression it immediately follows that

[M̃, M̃] = 0, [η, M̃] = 0, (2.66)

because Q,m2 and η are mutually commuting A∞ structures. Therefore the composite

products satisfy A∞ relations and are in the small Hilbert space.

6In this context, a contracting homotopy for η is a degree odd linear operator Ξ◦ acting on the vector

space of coderivations which satisfies [η,Ξ ◦D] + Ξ ◦ [η,D] = D for an arbitrary coderivation D.

– 10 –
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3 The action

Now we can bring the Ramond kinetic term and equations of motion together to define

an action:

S =
1

2
ω̃(Ψ̃, QΨ̃) +

1

3
ω̃(Ψ̃, M̃2(Ψ̃, Ψ̃)) +

1

4
ω̃(Ψ̃, M̃3(Ψ̃, Ψ̃, Ψ̃)) + . . . , (3.1)

where Ψ̃ is the composite string field and M̃n+1 are the composite products introduced in

subsection 2.2. Since we now consider the action, the dynamical Ramond string field must

belong to the restricted space.

When we vary the action, it is assumed that we should reproduce the equations

of motion

0 = QΨ̃ + M̃2(Ψ̃, Ψ̃) + M̃3(Ψ̃, Ψ̃, Ψ̃) + . . . . (3.2)

However, this requires that the composite products are cyclic with respect to the composite

symplectic form:

〈ω̃|
(
M̃n+1 ⊗ I + I⊗ M̃n+1

)
= 0 on H̃restricted. (3.3)

Thus the composite products define a cyclic A∞ algebra. Cyclicity does not follow au-

tomatically from the construction of the equations of motion given in subsection 2.2, but

requires a special choice of picture changing insertions inside the vertices. More technically,

it requires a special choice of contracting homotopy for η in the solution of (2.58), and our

task is to find it.

3.1 Picture changing insertion

The picture changing insertions in the action are defined with the operator

ξ̃ : degree odd, ghost number −1, picture 1, (3.4)

which has the following properties:

1) ξ̃ is a contracting homotopy for η: [η, ξ̃] = 1,

2) ξ̃ is BPZ even: 〈ωL|ξ̃ ⊗ I = 〈ωL|I⊗ ξ̃,

3) [Q, ξ̃] = X when acting on a Ramond state at picture −3/2 in the small Hilbert space,

4) ξ̃2 = 0.

Property 1) is needed to define a contracting homotopy for η in the solution of (2.58).

Properties 2) and 3) will be needed in the proof of cyclicity. Property 4) will not be

essential for our purposes, but we would like to have it anyway.

A natural candidate for ξ̃ is the operator Θ(β0) as used in [1], which in particular

satisfies

[Q,Θ(β0)] = X. (3.5)
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However, we must be careful to avoid acting Θ(β0) on states annihilated by β0. This means

that Θ(β0) can only act “safely” on the states:

Θ(β0) : small Hilbert space, picture −3/2. (3.6)

It may seem somewhat unnatural to require that Θ(β0) acts on the small Hilbert space,

since generically it maps into the large Hilbert space. Let us explain why this is necessary.

Suppose Θ(β0) could act on an arbitrary state A at picture −3/2 in the large Hilbert space.

Then we should be able to contract with a state B at picture −1/2,

〈Θ(β0)A,B〉L, (3.7)

and obtain a finite result. Now suppose A = QA′ and B′ = QB. Then using the BPZ even

property of X gives

〈Θ(β0)A,B〉L = 〈A′,XB〉L + (−1)ε(A
′)+1〈Θ(β0)A′, B′〉L. (3.8)

We have assumed that the left hand side is finite, and the second term on the right hand

side should be finite by the same assumption. However, this contradicts the fact that the

first term on the right hand side can be infinite if B is annihilated by β0. Therefore, the

action of Θ(β0) in the large Hilbert space must generally be singular.

This causes problems with a direct attempt to identify Θ(β0) with the operator ξ̃.

Nevertheless, it was shown in [1] that Θ(β0) at least formally satisfies properties 1) − 4).

However, in [1] it was assumed that Θ(β0) never acts on states annihilated by β0. Here

we would like to provide a setting where this assumption is justified. First, note that (3.6)

implies that we can define operators Θ(β0)η and ηΘ(β0) acting on the following states:

Θ(β0)η : large Hilbert space, picture −1/2,

ηΘ(β0) : large Hilbert space, picture −1/2. (3.9)

The operator Θ(β0)η is well defined since η maps from the large Hilbert space at picture

−1/2 into the small Hilbert space at picture −3/2, after which we can act with Θ(β0). The

operator ηΘ(β0) is defined by BPZ conjugation of Θ(β0)η. Therefore we have

〈ωL|ηΘ(β0)⊗ I = 〈ωL|I⊗Θ(β0)η (3.10)

when acting on states in the large Hilbert space at picture −1/2. We also have

ηΘ(β0) + Θ(β0)η = 1 (3.11)

when acting in the large Hilbert space at picture −1/2. We can also say that Θ(β0) is

nilpotent in the sense that

ηΘ(β0)2η = 0, (3.12)

which similarly holds on states in the large Hilbert space at picture −1/2.

Having understood the limitations of Θ(β0), we can search for a more acceptable

alternative. For this purpose we introduce the operator [39, 36]

ξ ≡
∮
|z|=1

dz

2πi
f(z)ξ(z), (3.13)
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where the function f(z) is holomorphic in the vicinity of the unit circle. The function f(z)

can be chosen so that ξ is BPZ even and commutes with η to give 1:

〈ωL|ξ ⊗ I = 〈ωL|I⊗ ξ, [η, ξ] = 1. (3.14)

In addition ξ2 = 0. Therefore ξ realizes properties 1), 2) and 4), but it does not realize

property 3). Rather, the BRST variation gives the operator

X ≡ [Q, ξ], (3.15)

which is not the same as X. This can be fixed by defining a “hybrid” operator between ξ

and Θ(β0):

ξ̃ ≡ ξ + (Θ(β0)ηξ − ξ)P−3/2 + (ξηΘ(β0)− ξ)P−1/2, (3.16)

where Pn projects onto states at picture n. Note that Θ(β0) always appears here in allowed

combinations with η acting on allowed pictures. Note also that ξ̃ reduces to ξ when acting

on NS states, as is appropriate for defining the NS superstring field theory [36]. It is also

clear that ξ̃ is BPZ even, and so realizes property 2). To see that property 3) is realized,

let us define the picture changing operator

X̃ ≡ [Q, ξ̃]. (3.17)

Note that in general X̃ is different from X defined in (2.13) and X defined in (3.15).

However, X̃ is identical to X when it acts on a state A in the small Hilbert space at

picture −3/2:

X̃A = [Q,Θ(β0)ηξ]A

=
(
Xηξ + Θ(β0)ηX

)
A

=
(
X[η, ξ] + Θ(β0)[η,X]

)
A

= XA, (3.18)

so property 3) is realized. Now let us confirm properties 1) and 4). Note

Pnη = ηPn+1, (3.19)

and compute

[η, ξ̃] = 1 + η
(

Θ(β0)ηξ − ξ
)
P−3/2

+
[
η
(
ξηΘ(β0)− ξ

)
+
(

Θ(β0)ηξ − ξ
)
η
]
P−1/2

+
(
ξηΘ(β0)− ξ

)
ηP1/2

= 1 + (ηξ − ηξ)P−3/2

+
[
ηΘ(β0)− ηξ + Θ(β0)η − ξη

]
P−1/2

+ (ξη − ξη)P1/2

= 1, (3.20)
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where we used (3.11) and [η, ξ] = 1. Finally let us check property 4):

ξ̃2 = ξ2 +
(

Θ(β0)ηξ − ξ
)
P−3/2

(
Θ(β0)ηξ − ξ

)
P−3/2

+
(
ξηΘ(β0)− ξ

)
P−1/2

(
ξηΘ(β0)− ξ

)
P−1/2

+ ξ
(

Θ(β0)ηξ − ξ
)
P−3/2 +

(
Θ(β0)ηξ − ξ

)
P−3/2ξ

+ ξ
(
ξηΘ(β0)− ξ

)
P−1/2+

(
ξηΘ(β0)− ξ

)
P−1/2ξ

+
(

Θ(β0)ηξ − ξ
)
P−3/2

(
ξηΘ(β0)− ξ

)
P−1/2

+
(
ξηΘ(β0)− ξ

)
P−1/2

(
Θ(β0)ηξ − ξ

)
P−3/2

= ξ2 + ξ
(

Θ(β0)ηξ − ξ
)
P−3/2 +

(
Θ(β0)ηξ − ξ

)
ξP−5/2 + ξ

(
ξηΘ(β0)− ξ

)
P−1/2

+
(
ξηΘ(β0)− ξ

)
ξP−3/2 +

(
ξηΘ(β0)− ξ

)(
Θ(β0)ηξ − ξ

)
P−3/2. (3.21)

In the second step we commuted all projectors to the right and dropped terms with a pair

of projections into incompatible pictures. Using ξ2 = 0 this further simplifies

ξ̃2 = ξΘ(β0)ηξP−3/2 + ξηΘ(β0)ξP−3/2 +
(
ξηΘ(β0)2ηξ − ξηΘ(β0)ξ − ξΘ(β0)ηξ

)
P−3/2

= ξηΘ(β0)2ηξP−3/2

= 0, (3.22)

which vanishes as a consequence of (3.12). Therefore we have a definition of the picture

changing insertion ξ̃ with all necessary properties.

It is worth mentioning that X and Θ(β0) cannot be expressed in an elementary way in

terms of the local picture changing insertions X(z) and ξ(z). Therefore, the computation

of correlation functions with X and Θ(β0) does not appear to be straightforward. However,

a recipe for computations with such operators was given in [50] in the context of βγ

correlation functions, where they may be represented as formal integrals

X ≡
∫
dζ

∫
dζ̃ eζG0−ζ̃β0 , Θ(β0) ≡ −

∫
dζ̃

e−ζ̃β0

ζ̃
, (3.23)

where ζ is an odd integration variable and ζ̃ is an even integration variable. The key point

is that the integral over the even variable ζ̃ should be understood algebraically, analogous

to the Berezin integral over the odd variable ζ, rather than as an ordinary integral in the

sense of analysis. One difficulty, however, is the appearance of a singular factor ζ̃−1 in the

integral for Θ(β0). This is related to the fact that Θ(β0) is an operator in the large Hilbert

space, and therefore its precise definition must go slightly beyond the formalism of [50].

Here we give one prescription for dealing with this. We may express Θ(β0) in the form

Θ(β0) = ξ0 + ∆, (3.24)

where

∆ ≡ Θ(β0)− ξ0, (3.25)
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and ξ0 is the zero mode of the ξ ghost. The term ∆ can be represented as an alge-

braic integral

∆ = −
∫
dζ̃

e−ζ̃β0

ζ̃
+

∮
|z|=1

dz

2πi

1

z

∫
dζ̃

e−ζ̃β(z)

ζ̃
. (3.26)

Since the first term is independent of z, we can write ∆ as

∆ =

∮
|z|=1

dz

2πi

1

z

∫
dζ̃

1

ζ̃

(
− e−ζ̃β0 + e−ζ̃β(z)

)
. (3.27)

Finally, we represent the integrand as the integral of a total derivative,

∆ =

∮
|z|=1

dz

2πi

1

z

∫
dζ̃

1

ζ̃

∫ 1

0
dt

d

dt
e−ζ̃(tβ(z)+(1−t)β0), (3.28)

and taking the derivative with respect to t gives

∆ =

∫ 1

0
dt

∮
|z|=1

dz

2πi

1

z

∫
dζ̃(β0 − β(z))e−ζ̃(tβ(z)+(1−t)β0). (3.29)

Note that the problematic factor ζ̃−1 is canceled. The upshot is that we have defined

Θ(β0) as a sum of ξ0, which can be understood in the bosonized βγ system, and ∆, which

can be evaluated following [50]. To see how this definition can be applied, note that the

computation of a typical open string field theory vertex requires evaluating correlation

functions with multiple insertions of Θ(β0):

Θ(1)Θ(2) . . .Θ(n), (3.30)

where Θ(i) represent appropriate conformal transformations of Θ(β0). Writing Θ(β0) =

ξ0 + ∆ produces cross terms of the form

ξ(1)ξ(2) . . . ξ(m)∆(m+1)∆(m+2) . . . ∆(n), (3.31)

where ξ(i) and ∆(i) represent appropriate conformal transformations of ξ0 and ∆, respec-

tively. Since (ξ(1))2 = 0, we can replace these insertions with

ξ(1)(ξ(2) − ξ(1)) . . . (ξ(m) − ξ(1))∆(m+1)∆(m+2) . . . ∆(n). (3.32)

We can now drop the factor ξ(1), which only serves to saturate the ξ zero mode in the large

Hilbert space, and evaluate the remaining factors using βγ correlation functions as in [50].

An important question is whether our choice of picture changing insertions ξ̃ and

X̃ avoid contact divergences in vertices and amplitudes, as appear for example when we

use a local picture changing insertion in the cubic vertex [51]. In the NS sector such

divergences are absent since the picture changing insertions appear as holomorphic contour

integrals [39, 36]. In the Ramond sector, the picture changing insertions appear as Θ(β0)

and X; to our knowledge, such operators can only be divergent in the presence of a zero

mode of the path integral associated with β0. We have taken some care to ensure that

Θ(β0) and X act on states of pictures where such zero modes are absent, and therefore

the vertices are expected to be finite. Explicit calculations with similar operators will be

discussed in upcoming work [52], and no contact divergences appear.
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3.2 The 2-string product

We are ready to construct the products defining the action. Let us start by expanding the

equations of motion out to second order in the string field and in NS and R components:

0 = QΨNS +M2|0(ΨNS,ΨNS) +m2|2(ΨR,ΨR) + . . . , (3.33)

0 = QΨR +M2|0(ΨNS,ΨR) +M2|0(ΨR,ΨNS) + . . . . (3.34)

In [36] the product of two NS states was defined by

M2|0 =
1

3

(
Xm2|0 +m2|0(X ⊗ I + I⊗X)

)
(multiplying NS states). (3.35)

This definition does not work for multiplying an NS and R state, since it does not multiply

into the restricted space in the Ramond sector. For this reason we take

M2|0 = Xm2|0 (multiplying NS and R state in H̃restricted). (3.36)

Because XYX = X, this product satisfies XYM2|0 = M2|0 and therefore maps into the

restricted space. Note that this definition of M2|0 differs from [38], where it was assumed

that M2|0 multiplies two NS states and an NS and R state in the same way. To make

notation uniform it is helpful to write X and X together using the picture changing operator

X̃, so we define

M2|0 ≡


1

3

(
X̃m2|0 +m2|0(X̃ ⊗ I + I⊗ X̃)

)
(0 Ramond inputs)

X̃m2|0 (1 Ramond input)

. (3.37)

The full composite 2-product is then

M̃2 ≡



1

3

(
X̃m2|0 +m2|0(X̃ ⊗ I + I⊗ X̃)

)
(0 Ramond inputs)

X̃m2|0 (1 Ramond input)

m2|2 (2 Ramond inputs)

. (3.38)

Note that using X̃ gives a definition of the product M2|0 between arbitrary states in H̃.

Following the discussion of subsection 2.2, the product M2|0 should be derived from a gauge

2-product µ2|0 and bare 2-product m2|0 satisfying the formulas

M2|0 = [Q,µ2|0], (3.39)

[η,µ2|0] = m2|0. (3.40)
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The last equation defines µ2|0 in terms of m2|0 with an appropriate choice of contract-

ing homotopy for η. The choice of contracting homotopy which produces our preferred

definition of M2|0 is realized by the following gauge 2-product:

µ2|0 ≡


1

3

(
ξ̃m2|0 −m2|0(ξ̃ ⊗ I + I⊗ ξ̃)

)
(0 Ramond inputs)

ξ̃m2|0 (1 Ramond input)

. (3.41)

This completes the definition of the equations of motion up to second order.

Now we want to see that the equations of motion can be derived from an action. This

requires that the composite 2-product is cyclic:

〈ω̃|I⊗ M̃2 = −〈ω̃|M̃2 ⊗ I on H̃restricted. (3.42)

Note that cyclicity only needs to hold when the vertex is evaluated on the composite

restricted space, since this is the space of the dynamical string field appearing in the action.

Outside this space the products will not be cyclic, and in fact the notion of cyclicity itself is

somewhat problematic since Y may act on a state of the wrong picture. The demonstration

of cyclicity goes slightly differently depending on the arrangement of NS and R states in

the vertex. Let us discuss for example the case

〈ω̃|(I⊗ M̃2)(R1 ⊗R2 ⊗N1), (3.43)

where R1, R2 are Ramond states and N1 is an NS state in H̃restricted. Expanding into

components of definite Ramond number, we have

〈ω̃|(I⊗ M̃2)(R1 ⊗R2 ⊗N1) =
(
〈ωS |0|+ 〈ωS |2|Y⊗ I

)(
I⊗ (M2|0 +m2|2)

)
(R1 ⊗R2 ⊗N1)

= 〈ωS |2|(Y⊗M2|0)(R1 ⊗R2 ⊗N1). (3.44)

The product m2|2 drops out since it does not multiply a sufficient number of Ramond

states, and 〈ωS |0| drops out since it contracts too many Ramond states. Plugging in (3.37)

we obtain

〈ω̃|(I⊗ M̃2)(R1 ⊗R2 ⊗N1) = 〈ωS |2|(Y⊗ X̃m2|0)(R1 ⊗R2 ⊗N1)

= 〈ωS |2|(Y⊗ Xm2|0)(R1 ⊗R2 ⊗N1)

= 〈ωS |2|(XY⊗m2|0)(R1 ⊗R2 ⊗N1)

= 〈ωS |2|(I⊗m2|0)(R1 ⊗R2 ⊗N1)

= 〈ωS |(I⊗m2)(R1 ⊗R2 ⊗N1). (3.45)

In the second step we noted that X̃ acts on a state of picture −3/2 in the small Hilbert

space, and therefore can be replaced by X. In the third step we used that X is BPZ even

and in the fourth step we used the fact that R1 is in the restricted space. Finally we
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dropped the Ramond number labels since in this context they are redundant. Note that

in these steps it is important to assume that the states are in H̃restricted. Next consider

〈ω̃|(M̃2 ⊗ I)(R1 ⊗R2 ⊗N1) =
(
〈ωS |0|+ 〈ωS |2|Y⊗ I

)(
(M2|0 +m2|2)⊗ I

)
(R1 ⊗R2 ⊗N1)

= 〈ωS |0|(m2|2 ⊗ I)(R1 ⊗R2 ⊗N1)

= 〈ωS |(m2 ⊗ I)(R1 ⊗R2 ⊗N1). (3.46)

We therefore have

〈ω̃|(M̃2 ⊗ I + I⊗ M̃2)(R1 ⊗R2 ⊗N1) = 〈ωS |(m2 ⊗ I + I⊗m2)(R1 ⊗R2 ⊗N1) = 0, (3.47)

which vanishes because the open string star product is cyclic. The proof of cyclicity for

the other combinations R1⊗N1⊗R2 and N1⊗R1⊗R2 goes similarly. When all inputs are

NS states, cyclicity follows from the construction of the NS open superstring field theory

in [36]. Therefore we have a cubic vertex consistent with a cyclic A∞ structure.

3.3 Higher products

Now let us discuss the generalization to higher string products. Defining the higher prod-

ucts requires a choice of contracting homotopy for η in the solution of the equation

[η,µn+2|0] = mn+2|0. (3.48)

The contracting homotopy we choose defines the gauge products as follows:

µn+2|0≡


1

n+3

(
ξ̃mn+2|0−mn+2|0(ξ̃ ⊗ I⊗n+1 + . . .+I⊗n+1 ⊗ ξ̃)

)
(0 Ramond inputs)

ξ̃mn+2|0 (1 Ramond input)

.

(3.49)

It is not immediately obvious that this leads to a cyclic A∞ structure. We will prove that

it does in the next subsection. For now, we demonstrate two important properties, which

follow from this definition:

Mn+2|0 = X̃mn+2|0 (1 Ramond input), (3.50)

mn+2|2 = 0 (3 Ramond inputs). (3.51)

The first equation generalizes (3.37), and implies that the interactions are consistent with

the projection onto the restricted space in the Ramond sector. The second equation ad-

dresses a puzzle raised in [38] concerning the existence of cubic terms in the Ramond string

field in the equations of motion. The existence of such terms is consistent with A∞ rela-

tions, but is not compatible with the existence of an action since the equations of motion do

not possess quartic terms in the Ramond string field. (Recall that M̃n has no component

with Ramond number 4.) Therefore, the fact that mn+2|2 vanishes with three Ramond
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inputs is expected and in fact necessary to derive the equations of motion from an action.

In total, then, we find that the composite products appear as follows:

M̃n+2 =



1

n+ 3

(
X̃mn+2|0 +mn+2|0(X̃⊗I⊗n+1+. . .+I⊗n+1⊗X̃)

)
(0 Ramond inputs)

X̃mn+2|0 (1 Ramond input)

mn+2|2 (2 Ramond inputs)

0 (otherwise)

.

(3.52)

The products mn+2|0 and mn+2|2 above are determined recursively by solving (2.56)

and (2.57) with our choice of gauge products (3.49).

To streamline the proof of (3.50) and (3.51), it will be useful to introduce the projection

operator

πrn : T H̃ → T H̃, (3.53)

which selects n-string states containing r Ramond factors (and therefore n− r NS factors).

This projector commutes in a simple way through coderivations of products with definite

Ramond number:

πrm+1 bn|s = bn|s πs+rm+n. (3.54)

We also define

πn =
n∑
r=0

πrn, (3.55)

which projects onto n-string states with an undetermined number of Ramond factors. With

these projectors we can express (3.50) and (3.51) in a more useful form using coderivations.

First we write

Mn+2|0π1
n+2 = X̃mn+2|0π1

n+2, (3.56)

mn+2|2π3
n+2 = 0, (3.57)

where X̃ is the coderivation corresponding to X̃. Commuting the projectors through the

coderivations using (3.54) gives

π1
1Mn+2|0 = X̃π1

1mn+2|0, (3.58)

π1
1mn+2|2 = 0. (3.59)

Summing over n then implies

π1
1(M|0 −Q) = X̃π1

1m|0 , (3.60)

π1
1m|2 = 0 . (3.61)

In the first equation we subtract Q since (3.60) only applies to the 2-string product

and higher.
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To prove (3.60) and (3.61) it is helpful to first derive the form of Ĝ−1 when it produces

one Ramond output:

π1
1Ĝ−1. (3.62)

To compute this, note that

d

dt

[
π1

1Ĝ(t)−1
]

= −π1
1µ|0(t)Ĝ(t)−1 (3.63)

from the definition of the path ordered exponential. Our choice of contracting homotopy

for η in the Ramond sector (3.49) implies

π1
1µ|0(t) = π1

1ξ̃m|0(t), (3.64)

where ξ̃ is the coderivation corresponding to ξ̃. Plugging in gives

d

dt

[
π1

1Ĝ(t)−1
]

= −π1
1ξ̃m|0(t)Ĝ(t)−1 = −π1

1ξ̃Ĝ(t)−1m2|0, (3.65)

where we used m|0(t) = Ĝ(t)−1m2|0Ĝ(t). Therefore we obtain

d

dt

[
π1

1Ĝ(t)−1
]

= −ξ̃
[
π1

1Ĝ(t)−1
]
m2|0. (3.66)

The solution is subject to the initial condition Ĝ(0)−1 = I
T H̃, where I

T H̃ is the identity

operator on the tensor algebra. This determines the solution to be

π1
1Ĝ(t)−1 = π1

1

[
I
T H̃ − tξ̃m2|0

]
. (3.67)

This satisfies (3.66) since (m2|0)2 = 0 by (2.41). Setting t = 1 we have

π1
1Ĝ−1 = π1

1

[
I
T H̃ − ξ̃m2|0

]
. (3.68)

This identity will play a central role in the following analysis, as it is the basis for our

proof of cyclicity and the relations (3.60) and (3.61), and it provides a crucial link to the

WZW-based theory in section 4. Note that expanding the path ordered exponential (2.59)

and integrating over the parameter in the generating function gives a general expression

for π1
1Ĝ−1:

π1
1Ĝ−1 = π1

1

(
I
T H̃ − µ2|0 −

1

2
µ3|0 +

1

2
µ2|0µ2|0 + . . .

)
. (3.69)

This is substantially more elaborate than (3.68). With our choice of contracting homotopy

for η, the higher order products in π1
1Ĝ−1 drop out, giving a closed form expression.

Now we are ready to prove (3.60) and (3.61). First note that the bare products with

one Ramond output simplify to

π1
1m|0 = π1

1Ĝ−1m2|0Ĝ
= π1

1m2|0Ĝ, (3.70)
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since the second term in (3.68) cancels by associativity of the star product. Now consider

M|0 with one Ramond output:

π1
1M|0 = π1

1Ĝ−1QĜ

= π1
1

[
I
T H̃ − ξ̃m2|0

]
QĜ

= π1
1

[
QĜ−Qξ̃m2|0Ĝ + X̃m2|0Ĝ

]
= π1

1Q
[
I
T H̃ − ξ̃m2|0

]
Ĝ + X̃π1

1m2|0Ĝ

= π1
1Q + X̃π1

1m2|0Ĝ. (3.71)

From this we conclude

π1
1(M|0 −Q) = X̃π1

1m|0, (3.72)

establishing (3.50). Next consider

π1
1m|2 = π1

1Ĝ−1m2|2Ĝ

= π1
1

[
I
T H̃ − ξ̃m2|0

]
m2|2Ĝ

= π1
1m2|2Ĝ + ξ̃π1

1m2|2m2|0Ĝ, (3.73)

where in the third line we used

m2|0m2|2 = −m2|2m2|0 (3.74)

from (2.42). Now note

π1
1m2|2 = m2|2π3

2 = 0. (3.75)

This holds because the 2-string component of the state space cannot have three Ramond

factors. Therefore

π1
1m|2 = 0, (3.76)

which establishes (3.51).

3.4 Proof of cyclicity

Having constructed the products, we are ready to demonstrate cyclicity:

〈ω̃|(M̃n+1 ⊗ I + I⊗ M̃n+1) = 0 on H̃restricted. (3.77)

We will need to simplify this equation somewhat before we arrive at the key property

responsible for cyclicity and provide its proof. Note that the cyclicity of M̃1 = Q was

already demonstrated in subsection 2.1. When the vertex acts only on NS states, cyclicity

follows from the construction of the NS open superstring field theory in [36]. When the

vertex acts on one or three Ramond states, it vanishes identically since the symplectic form

and composite products do not carry odd Ramond number. When the vertex acts on four

or more Ramond states, it vanishes identically since the composite products vanish when
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multiplying three or more Ramond states. Therefore, all that we need to show is that the

vertex is cyclic when it acts on two Ramond states:

〈ω̃|(M̃n+2 ⊗ I + I⊗ M̃n+2)π2
n+3 = 0 on H̃restricted. (3.78)

Expanding M̃n+2 into components of definite Ramond number, this reads

〈ωS |(mn+2|2 ⊗ I + I⊗mn+2|2)π2
n+3 (3.79)

+ 〈ωS |(Y⊗ I)(Mn+2|0 ⊗ I + I⊗Mn+2|0)π2
n+3 = 0 on H̃restricted.

In the first term, both Ramond states must be channeled into the input of mn+2|2. In

the second term, the Ramond states split between the input of Mn+2|0 and the symplectic

form. This means that we can simplify the second term using (3.50):

〈ωS |(Y⊗ I)(Mn+2|0 ⊗ I)π2
n+3 = 〈ωS |(YX̃mn+2|0 ⊗ I)π2

n+3

= 〈ωS |(YXmn+2|0 ⊗ I)π2
n+3

= 〈ωS |(mn+2|0 ⊗ XY)π2
n+3

= 〈ωS |(mn+2|0 ⊗ I)π2
n+3 on H̃restricted. (3.80)

In the first step we used (3.50); in the second step we used the fact that X̃ = X when

acting on a state in the small Hilbert space at picture −3/2; in the third step we used that

X and Y are BPZ even; in the fourth step we used that XY = 1 when acting on states in

the restricted space. Then the statement of cyclicity reduces to

〈ωS |
(

(mn+2|0 +mn+2|2)⊗ I + I⊗ (mn+2|0 +mn+2|2)
)
π2
n+3 = 0 on H̃restricted. (3.81)

Therefore mn+2|0 + mn+2|2 should be cyclic with respect to the small Hilbert space sym-

plectic form when the vertex acts on H̃restricted including two Ramond states. Actually, we

wish to make a slightly stronger hypothesis: mn+2|0 +mn+2|2 is cyclic with respect to the

large Hilbert space symplectic when the vertex acts on the large Hilbert space including

two Ramond states:

〈ωL|
(

(mn+2|0 +mn+2|2)⊗ I + I⊗ (mn+2|0 +mn+2|2)
)
π2
n+3 = 0. (3.82)

This relation is the nontrivial property required for the proof of cyclicity. We will provide

a demonstration in a moment, but first let us explain why (3.82) implies (3.81). The small

and large Hilbert space symplectic forms can be related by

〈ωS | = 〈ωL|ξ ⊗ I, (3.83)

where ξ satisfies [η, ξ] = 1. The precise form of ξ is not important since its only role is

to saturate the ξ zero mode in the large Hilbert space CFT correlator. The left hand side

of (3.81) can be expressed as

〈ωS |
(

(mn+2|0 +mn+2|2)⊗ I + I⊗ (mn+2|0 +mn+2|2)
)
π2
n+3

= 〈ωL|(ξ ⊗ I)
(

(mn+2|0 +mn+2|2)⊗ I + I⊗ (mn+2|0 +mn+2|2)
)
π2
n+3, (3.84)
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where for current purposes we assume that this equation acts on the small Hilbert space,

including states in H̃restricted. Now in front of π2
n+3 insert the identity operator in the form

I⊗n+3 = ηξ ⊗ I⊗n+2, (3.85)

where ηξ is equivalent to the identity since it acts on a state in the small Hilbert space.

Moving η to the left it will commute with ξ to give 1 and otherwise act on states in the

small Hilbert space to give zero. Thus we have

〈ωS |
(

(mn+2|0 +mn+2|2)⊗ I + I⊗ (mn+2|0 +mn+2|2)
)
π2
n+3

= −〈ωL|
(

(mn+2|0 +mn+2|2)⊗ I + I⊗ (mn+2|0 +mn+2|2)
)
π2
n+3(ξ ⊗ I⊗n+2). (3.86)

From this we can see that (3.82) implies (3.81) when operating on H̃restricted.

We can proceed to prove (3.82) using the recursive definition of the products. However,

the proof in this form requires consideration of several different cases depending on the

arrangement of NS and R inputs on the left hand side of (3.82). Earlier we encountered

similar inconvenience in the proof of cyclicity of M̃2 at the end of subsection 3.2. A more

efficient route to the proof uses the coalgebra formalism, and therefore it is useful to review

how the cyclicity is described in this language. An n-string product Dn is cyclic with respect

to a symplectic form ω if

〈ω|(Dn ⊗ I + I⊗Dn) = 0. (3.87)

If we have a sequence of cyclic n-string products D0, D1, D2, . . . of the same degree, the

corresponding coderivation D = D0 + D1 + D2 + . . . will satisfy

〈ω|π2D = 0. (3.88)

We then say that the coderivation D is cyclic with respect to the symplectic form ω. A

cohomomorphism Ĥ is cyclic with respect to ω if it satisfies

〈ω|π2Ĥ = 〈ω|π2. (3.89)

An example of a cyclic cohomomorphism is

Ĥ = P exp

[∫ 1

0
dsh(s)

]
, (3.90)

where h(s) are a one-parameter family of degree even cyclic coderivations. To prove that

Ĥ in this form is cyclic, consider Ĥ(u) obtained by replacing the lower limit s = 0 in the

path ordered exponential above with s = u. Taking the derivative with respect to u we find

d

du
〈ω|π2Ĥ(u) = 〈ω|π2h(u)Ĥ(u) = 0. (3.91)

This vanishes on the assumption that h(s) is cyclic. Therefore, the object 〈ω|π2Ĥ(u) is

independent of u. Setting u = 0 and u = 1 reproduces (3.89). The construction of the NS
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superstring field theory [36] implies that the gauge products are cyclic with respect to the

large Hilbert space symplectic form when acting on NS states. Therefore we have

〈ωL|π0
2µ|0(t) = 0. (3.92)

Using (2.59) this also implies

〈ωL|π0
2Ĝ = 〈ωL|π0

2. (3.93)

Therefore Ĝ is cyclic in the large Hilbert space when acting on NS states.

Next it is helpful to recall a few things about the “triangle formalism” of the product

and coproduct introduced in [45]. For this purpose we will need to think about “tensor

products” of tensor algebras, which we denote with the symbol ⊗′ to avoid confusion with

the tensor product ⊗ defining T H̃. The product
4

is a linear map from two copies of T H̃
into T H̃:

4
: T H̃ ⊗′ T H̃ → T H̃, (3.94)

and the coproduct 4 is a linear map from one copy of T H̃ into two copies of T H̃:

4 : T H̃ → T H̃ ⊗′ T H̃. (3.95)

The coproduct is defined by its action on tensor products of states:

4A1 ⊗ . . .⊗An =
n∑
k=0

(A1 ⊗ . . .⊗Ak)⊗′ (Ak+1 ⊗ . . .⊗An), (3.96)

where at the extremes of summation ⊗′ multiplies the identity of the tensor product 1
T H̃.

The product
4

acts by replacing the primed tensor product ⊗′ with the tensor product ⊗.

A coderivation D and a cohomomorphism Ĥ satisfy the following compatibility conditions

with respect to the coproduct:

4D = (D⊗′ I
T H̃ + I

T H̃ ⊗
′ D)4, (3.97)

4Ĥ = (Ĥ⊗′ Ĥ)4. (3.98)

These are in fact the defining properties of coderivations and cohomomorphisms. The

useful identity for our computations is

πm+n =
4[

πm ⊗′ πn
]
4. (3.99)

A generalization which also accounts for a projection onto r Ramond factors is

πrm+n =

r∑
k=0

4[
πr−km ⊗′ πkn

]
4, (3.100)

with the understanding that πkn vanishes if k > n.

Using coalgebra notation, the key equation (3.82) can be expressed as follows:

〈ωL|
(
π2

2m|0 + π0
2m|2

)
= 0. (3.101)
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To prove this, consider the second term on the left hand side:

〈ωL|π0
2m|2 = 〈ωL|π0

2Ĝ−1m2|2Ĝ
= 〈ωL|π0

2ĜĜ−1m2|2Ĝ
= 〈ωL|π0

2m2|2Ĝ. (3.102)

In the second step we used the fact that Ĝ is cyclic with respect to ωL when it only has

NS outputs, as in (3.93). Next consider the first term of (3.101). Expressing π2
2 in terms

of the product and coproduct gives

〈ωL|π2
2m|0 = 〈ωL|

4[
π1

1 ⊗′ π1
1

]
4m|0

= 〈ωL|
4
[

(π1
1 ⊗′ π1

1)(m|0 ⊗′ IT H̃ + I
T H̃ ⊗

′m|0)

]
4

= 〈ωL|
4
[(
π1

1m|0
)
⊗′ π1

1 + π1
1 ⊗′

(
π1

1m|0
)]
4. (3.103)

The form of m|0 with one Ramond output is given in (3.70). Plugging in gives

〈ωL|π2
2m|0 = 〈ωL|

4[
(π1

1m2|0Ĝ)⊗′ π1
1 + π1

1 ⊗′ (π1
1m2|0Ĝ)

]
4. (3.104)

The factor π1
1 in the two terms above can be written as

π1
1 = π1

1Ĝ−1Ĝ = π1
1Ĝ− ξ̃π1

1m2|0Ĝ, (3.105)

where we used (3.68). Therefore we have

〈ωL|π2
2m|0 = 〈ωL|

4
[(
π1

1m2|0Ĝ
)
⊗′
(
π1

1Ĝ
)

+
(
π1

1Ĝ
)
⊗′
(
π1

1m2|0Ĝ
)]
4 (3.106)

− 〈ωL|
4
[(
π1

1m2|0Ĝ
)
⊗′
(
ξ̃π1

1m2|0Ĝ
)

+
(
ξ̃π1

1m2|0Ĝ
)
⊗′
(
π1

1m2|0Ĝ
)]
4.

The second term above can be simplified as follows:

〈ωL|
4
[(

I⊗′ ξ̃
)((

π1
1m2|0Ĝ

)
⊗′
(
π1

1m2|0Ĝ
))
−
(
ξ̃ ⊗′ I

)((
π1

1m2|0Ĝ
)
⊗′
(
π1

1m2|0Ĝ
))]
4

= 〈ωL|(I⊗ ξ̃ − ξ̃ ⊗ I)4
[(
π1

1m2|0Ĝ
)
⊗′
(
π1

1m2|0Ĝ
)]
4, (3.107)

which vanishes since ξ̃ is BPZ even. With what is left we can disentangle the product and

coproduct:

〈ωL|π2
2m|0 = 〈ωL|

4
[

(π1
1 ⊗′ π1

1)(m2|0 ⊗′ IT H̃ + I
T H̃ ⊗

′m2|0)(Ĝ⊗′ Ĝ)

]
4

= 〈ωL|
4
[

(π1
1 ⊗′ π1

1)(m2|0 ⊗′ IT H̃ + I
T H̃ ⊗

′m2|0)

]
4Ĝ

= 〈ωL|
4[

π1
1 ⊗′ π1

1

]
4m2|0Ĝ

= 〈ωL|π2
2m2|0Ĝ. (3.108)
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Bringing the first and second terms in (3.101) together therefore gives

〈ωL|
(
π2

2m|0 + π0
2m|2

)
= 〈ωL|(π2

2m2|0 + π0
2m2|2)Ĝ. (3.109)

Commuting the projectors past the star product in the two terms gives

〈ωL|
(
π2

2m|0 + π0
2m|2

)
= 〈ωL|π2(m2|0 + m2|2)π2

3Ĝ

= 〈ωL|π2m2π
2
3Ĝ

= 0, (3.110)

which vanishes since the star product is cyclic with respect to the large Hilbert space

symplectic form. This completes the proof of cyclicity.

3.5 Relation to Sen’s formulation

Here we would like to spell out the relation between our treatment of the Ramond sector

and the approach developed by Sen [10, 11]. The main advantage of Sen’s approach is that

it utilizes simpler picture changing insertions, which may facilitate calculations. On the

other hand, the theory propagates spurious free fields and does not directly display a cyclic

A∞ structure.

Sen’s approach requires two dynamical string fields

Ψ̃ = ΨNS + ΨR, (3.111)

Π̃ = ΠNS + ΠR. (3.112)

The NS fields ΨNS and ΠNS are in the small Hilbert space, degree even, and carry ghost

number 1 and picture −1. The Ramond fields ΨR and ΠR are in the small Hilbert space,

degree even, and at ghost number 1, but carry different pictures: ΨR carries picture −1/2

and ΠR carries picture −3/2. In this approach it is not necessary to assume that XYΨR =

ΨR. The action takes the form

S = −1

2
ωS(Π̃,GQΠ̃)+ωS(Π̃, QΨ̃)+

1

3
ωS(Ψ̃, b̃2(Ψ̃, Ψ̃))+

1

4
ωS(Ψ̃, b̃3(Ψ̃, Ψ̃, Ψ̃))+ . . . , (3.113)

where b̃n+2 are degree odd multi-string products which appropriately multiply NS and R

states, and the operator G is defined by

G = I (acting on NS state),

G = X (acting on R state). (3.114)

For present purposes we can assume that the picture changing operator X is defined as

in (3.15). In particular, G is BPZ even and [Q,G] = 0.

The action does not realize a cyclic A∞ structure in the standard sense, but the

products b̃n+2 satisfy a hierarchy of closely related algebraic identities. To describe them,

we introduce a sequence of degree odd multi-string products

M̃1 ≡ Q, M̃2, M̃3, M̃4, . . . , (3.115)
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where

M̃n+2 ≡ Gb̃n+2 (n = 0, 1, 2, . . .). (3.116)

The relation to the composite products introduced earlier will be clear in a moment. The

first few algebraic relations satisfied by the multi-string products are

0 = Qb̃2(A,B) + b̃2(QA,B) + (−1)deg(A)b̃2(A,QB), (3.117)

0 = Qb̃3(A,B,C) + b̃3(QA,B,C) + (−1)deg(A)b̃3(A,QB,C) (3.118)

+ (−1)deg(A)+deg(B)b̃3(A,B,QC) + b̃2(M̃2(A,B), C) + (−1)deg(A)b̃2(A, M̃2(B,C)),

... .

More abstractly, the full set of algebraic relations can be described using the coderivations

b̃ ≡ b̃2 + b̃3 + b̃4 + . . . , (3.119)

M̃ ≡ Q + M̃2 + M̃3 + M̃4 + . . . , (3.120)

as

π1(Qb̃ + b̃M̃) = 0. (3.121)

In addition, gauge invariance requires that the products b̃n+2 are cyclic with respect to the

small Hilbert space symplectic form:

〈ωS |π2b̃ = 0. (3.122)

Note that (3.116) implies

Gπ1b̃ = π1(M̃−Q). (3.123)

Multiplying (3.121) by G gives

0 = Gπ1(Qb̃ + b̃M̃)

= π1

(
Q(M̃−Q) + (M̃−Q)M̃

)
= π1M̃

2, (3.124)

which implies that the products M̃n+1 satisfy A∞ relations:

[M̃, M̃] = 0. (3.125)

However, the products M̃n+1 are not required to be cyclic. Rather, cyclicity is realized by

the products b̃n+2 which appear in the action. We will explain why this formulation leads

to a gauge invariant action in appendix A.

As suggested by the notation, it is natural to identify M̃n+1 with the composite prod-

ucts constructed earlier. Indeed the composite products can be written in the form

M̃n+2 = G̃ b̃n+2 (n = 0, 1, 2, . . .) (3.126)
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for some products b̃n+2, where

G̃ = I (acting on NS state),

G̃ = X̃ (acting on R state). (3.127)

This differs from (3.116) only by the substitution of X̃ with X. Therefore it is natural to

construct the products as before but replacing the picture changing insertion in (3.49) as

ξ̃ → ξ. (3.128)

Then the composite products satisfy (3.116), where b̃n+2 takes the form

b̃n+2 =



1

n+ 3

(
Xmn+2|0 +mn+2|0(X⊗I⊗n+1 + . . .+ I⊗n+1⊗X)

)
(0 Ramond inputs)

mn+2|0 (1 Ramond input)

mn+2|2 (2 Ramond inputs)

0 (otherwise)

(3.129)

with the understanding that mn+2|0 and mn+2|2 are constructed out of ξ rather than ξ̃.

We can show that b̃n+2 satisfies (3.121) by pulling a factor of G out of the A∞ relations for

M̃n+2.7 Furthermore, the cyclicity of b̃n+2 follows from the proof of (3.82) in the previous

subsection with the replacement of ξ̃ with ξ.

4 Relation to the WZW-based formulation

In this section we explain the relation between our construction to the WZW-based formu-

lation of [1]. The relation between the NS sectors was considered in [44–46], and our task

will be to extend this analysis to the Ramond sector.

The WZW-based theory uses an NS dynamical field

Φ̂NS, (4.1)

which is Grassmann even, carries ghost and picture number zero, and lives in the large

Hilbert space (generically ηΦ̂NS 6= 0). The dynamical Ramond field

Ψ̂R, (4.2)

is the same kind of state as the Ramond field ΨR from the A∞ theory; it is Grassmann

odd, carries ghost number 1 and picture −1/2, and lives in the restricted space in the

Ramond sector. We will always denote objects in the WZW-based theory with a “hat” to

7Note that the products M̃n+1 satisfy A∞ relations regardless of whether or not X has a kernel. This

can only be true if (3.121) holds regardless of whether X has a kernel. However, it is not difficult to

check (3.121) directly.
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distinguish from corresponding objects defined in the A∞ theory. To write the NS sector

of the action in WZW-like form, we introduce a one-parameter family of NS string fields

Φ̂NS(t), t ∈ [0, 1], subject to the boundary conditions

Φ̂NS(0) = 0, Φ̂NS(1) = Φ̂NS. (4.3)

The WZW-based action of [1] can be written as

Ŝ =
1

2
〈YΨ̂R, QΨ̂R〉S −

∫ 1

0
dt 〈Ât(t), QÂη(t) + (F̂ (t)Ψ̂R)2〉L. (4.4)

The “potentials” are defined by

Âη(t) ≡ (ηeΦ̂NS(t))e−Φ̂NS(t),

Ât(t) ≡
(
d

dt
eΦ̂NS(t)

)
e−Φ̂NS(t). (4.5)

The object F̂ (t) is a linear operator acting on string fields, defined by

F̂ (t) ≡ 1

I− ξ̃ad
Âη(t)

, (4.6)

where ad
Âη(t)

refers to the adjoint action of Âη(t):

ad
Âη(t)

Ψ ≡ [Âη(t),Ψ]. (4.7)

All products of string fields are computed with the open string star product AB = A ∗B,

and all commutators of string fields are graded with respect to Grassmann parity. The

WZW-based action only depends on the value of Φ̂NS(t) at t = 1. Variation of the action

produces the equations of motion [1]

0 = QÂη + (F̂ Ψ̂R)2, (4.8)

0 = QF̂ Ψ̂R. (4.9)

Unless the dependence on t is explicitly indicated, we will assume t = 1 here and in

what follows.

4.1 Field redefinition

The relation between these string field theories can be extracted by inspection of the

equations of motion [45]. The equations of motion of the A∞ theory can be expressed in

the form

0 = M̃
1

1− Ψ̃
, (4.10)

where
1

1− Ψ̃
= 1

T H̃ + Ψ̃ + Ψ̃⊗ Ψ̃ + Ψ̃⊗ Ψ̃⊗ Ψ̃ + . . . (4.11)
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denotes the group-like element generated by Ψ̃. Since

M̃ = Ĝ−1(Q + m2|2)Ĝ, (4.12)

multiplying (4.10) by Ĝ gives

0 = (Q + m2|2)Ĝ
1

1− Ψ̃
. (4.13)

Let us look at the component of this equation with one NS output:

0 = π0
1(Q + m2|2)Ĝ

1

1− Ψ̃

= Qπ0
1Ĝ

1

1− Ψ̃
+m2π

2
2Ĝ

1

1− Ψ̃

= Q

(
π0

1Ĝ
1

1− Ψ̃

)
+m2

(
π1

1Ĝ
1

1− Ψ̃
, π1

1Ĝ
1

1− Ψ̃

)
. (4.14)

The component with one Ramond output is

0 = π1
1(Q + m2|2)Ĝ

1

1− Ψ̃

= Qπ1
1Ĝ

1

1− Ψ̃
+m2π

3
2Ĝ

1

1− Ψ̃

= Q

(
π1

1Ĝ
1

1− Ψ̃

)
. (4.15)

Further note that

π0
1Ĝ

1

1− Ψ̃
= π1Ĝ

1

1−ΨNS
, (4.16)

π1
1Ĝ

1

1− Ψ̃
= π1Ĝ

1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS
, (4.17)

and define

Aη ≡ π1Ĝ
1

1−ΨNS
, (4.18)

FΨR ≡ π1Ĝ
1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS
. (4.19)

Therefore (4.14) and (4.15) reduce to

0 = QAη + (FΨR)2,

0 = QFΨR. (4.20)

These are the same as the equations of motion of the WZW-based theory, (4.8) and (4.9),

with the “hats” missing. It is therefore natural to suppose that the field redefinition

between the theories is given by equating

Âη = Aη, (4.21)

F̂ Ψ̂R = FΨR. (4.22)
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In the NS sector, this only specifies the field redefinition up to a gauge transformation of

the form

eΦ̂′NS = eΦ̂NSev, ηv = 0, (4.23)

where v is a gauge parameter, since this transformation leaves Âη invariant. This ambiguity

can be removed by partial gauge fixing [39, 44, 45], or by lifting the NS sector of the A∞
theory to the large Hilbert space [46], as will be reviewed in the next subsection.

To further simplify the field redefinition in the Ramond sector let us take a closer look

at FΨR. Consider the expression:

π1
1Ĝ−1Ĝ

1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS
. (4.24)

Canceling Ĝ−1 and Ĝ and projecting onto the 1-string output gives

π1
1Ĝ−1Ĝ

1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS
= ΨR. (4.25)

On the other hand, we can substitute (3.68) for π1
1Ĝ−1, obtaining

π1
1Ĝ−1Ĝ

1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS

= π1
1(I

T H̃ − ξ̃m2|0)Ĝ
1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS

= π1
1Ĝ

1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS
− ξ̃m2|0π1

2Ĝ
1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS
. (4.26)

The first term on the right hand side is FΨR. By writing

π1
2 =
4[

π1
1 ⊗′ π0

1 + π0
1 ⊗′ π1

1

]
4 (4.27)

we can show that the second term on the right hand side is

ξ̃m2|0π1
2Ĝ

1

1−ΨNS
⊗ΨR ⊗

1

1−ΨNS
= ξ̃m2|0

(
FΨR ⊗Aη +Aη ⊗ FΨR

)
= ξ̃[Aη, FΨR], (4.28)

where in the last step we switched from degree to Grassmann grading.8 Equating (4.25)

8The coproduct 4 acts on a group-like element as [45]

4 1

1−A =
1

1−A ⊗
′ 1

1−A. (4.29)

A straightforward generalization gives the formulas

4 1

1−A ⊗B ⊗
1

1−A =
1

1−A ⊗
′ 1

1−A ⊗B ⊗
1

1−A+
1

1−A ⊗B ⊗
1

1−A ⊗
′ 1

1−A, (4.30)

4 1

1−A ⊗B ⊗
1

1−A ⊗ C ⊗
1

1−A =
1

1−A ⊗
′ 1

1−A ⊗B ⊗
1

1−A ⊗ C ⊗
1

1−A

+
1

1−A ⊗B ⊗
1

1−A ⊗
′ 1

1−A ⊗ C ⊗
1

1−A

+
1

1−A ⊗B ⊗
1

1−A ⊗ C ⊗
1

1−A ⊗
′ 1

1−A. (4.31)

We use the first formula in the derivation of (4.28), and later the second formula in the derivation of (4.61)

and the calculation of (A.7) from (A.8).
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and (4.26) then implies

ΨR = FΨR − ξ̃[Aη, FΨR]. (4.32)

This can be interpreted as a recursive formula for FΨR:

FΨR = ΨR + ξ̃[Aη, FΨR]. (4.33)

Plugging this formula into itself implies

FΨR =
1

I− ξ̃adAη
ΨR. (4.34)

This is the same formula which defines F̂ Ψ̂R, but with the “hats” missing. Since the field

redefinition in the NS sector implies Âη = Aη, the field redefinition in the Ramond sector

simplifies to

Ψ̂R = ΨR. (4.35)

The Ramond fields are equal; there is no field redefinition between them. This was antic-

ipated in [1] and is not surprising for the following reason. Since the Ramond fields have

identical kinetic terms, we can assume a field redefinition relating them takes the form

Ψ̂R = ΨR + X
(
f̃2(Ψ̃, Ψ̃) + f̃3(Ψ̃, Ψ̃, Ψ̃) + . . .

)
, (4.36)

where f̃2, f̃3, . . . are string products and the factor of X is needed to ensure that both fields

live in the restricted space. Since the interaction vertices of both theories are built out of

Q, ξ̃ and the open string star product, it is natural to assume that the field redefinition can

be constructed from these operations. The (n + 2)-product in the field redefinition f̃n+2

must carry ghost number −n − 1. Therefore it must contain at least n + 1 insertions of

ξ̃, since no other operations carry negative ghost number. This implies that f̃n+2 carries

at least picture n+ 1, and f̃n+2(Ψ̃, . . . , Ψ̃) must have picture greater than or equal to −1.

However, consistency of the field redefinition requires that f̃n+2(Ψ̃, . . . , Ψ̃) carries picture

−3/2. Therefore f̃n+2 must vanish, and the Ramond fields are equal.

We therefore conclude that the field redefinition between the A∞ theory and WZW-

based theory is

Âη = Aη, (4.37)

Ψ̂R = ΨR, (4.38)

up to a gauge transformation of the form (4.23). It is important to note that the proposed

field redefinition is consistent with the assumption that ΨNS and ΨR are in the small Hilbert

space. In the Ramond sector this is obvious. In the NS sector it follows from the fact that

Aη and Âη satisfy

ηAη −Aη ∗Aη = 0, ηÂη − Âη ∗ Âη = 0. (4.39)

See [44, 45].

4.2 Equivalence of the actions

Here we demonstrate that the field redefinition given by (4.37) and (4.38) relates the

theories at the level of the action, not just the equations of motion. Following the analysis

of [44, 46], this can be demonstrated by expressing the A∞ action in the same form as the
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WZW-based action, including the contribution from the Ramond sector. Let us explain

how this is done.

The (n+ 3)-string vertex in the A∞ action is

1

n+ 3
ω̃(Ψ̃, M̃n+2(Ψ̃, . . . , Ψ̃)). (4.40)

Let us expand Ψ̃ into NS and R components. Since the composite products multiply at

most two Ramond states, the expanded vertex takes the form

1

n+ 3
ω̃(Ψ̃, M̃n+2(Ψ̃, . . . , Ψ̃)) =

1

n+ 3

[
ω̃(ΨNS, M̃n+2(ΨNS, . . . ,ΨNS))

+

n+1∑
k=0

ω̃(ΨR, M̃n+2(ΨNS, . . . ,ΨNS︸ ︷︷ ︸
k times

,ΨR,ΨNS, . . . ,ΨNS)) (4.41)

+
n∑
k=0

n−k∑
j=0

ω̃(ΨNS, M̃n+2(ΨNS, . . . ,ΨNS︸ ︷︷ ︸
k times

,ΨR,ΨNS, . . . ,ΨNS︸ ︷︷ ︸
j times

,ΨR,ΨNS, . . . ,ΨNS))

]
.

Many terms in these sums are redundant. In fact, using cyclicity we can write the sum in

the second line as 2/(n+ 1) times the double sum in the third line. Therefore we have

1

n+ 3
ω̃(Ψ̃, M̃n+2(Ψ̃, . . . , Ψ̃)) =

1

n+ 3
ω̃(ΨNS, M̃n+2(ΨNS, . . . ,ΨNS)) (4.42)

+
1

n+1

n∑
k=0

n−k∑
j=0

ω̃(ΨNS, M̃n+2(ΨNS, . . . ,ΨNS︸ ︷︷ ︸
k times

,ΨR,ΨNS, . . . ,ΨNS︸ ︷︷ ︸
j times

,ΨR,ΨNS, . . . ,ΨNS)).

Next we introduce a one-parameter family of NS string fields ΨNS(t), t ∈ [0, 1] subject to

the boundary conditions

ΨNS(0) = 0, ΨNS(1) = ΨNS. (4.43)

The (n+ 3)-string vertex can be written as the integral of a total derivative in t:

1

n+ 3
ω̃(Ψ̃, M̃n+2(Ψ̃, . . . , Ψ̃)) =

∫ 1

0

dt
d

dt

[
1

n+ 3
ω̃(ΨNS(t), M̃n+2(ΨNS(t), . . . ,ΨNS(t))) (4.44)

+
1

n+1

n∑
k=0

n−k∑
j=0

ω̃(ΨNS(t), M̃n+2(ΨNS(t), . . . ,ΨNS(t)︸ ︷︷ ︸
k times

,ΨR,ΨNS(t), . . . ,ΨNS(t)︸ ︷︷ ︸
j times

,ΨR,ΨNS(t), . . . ,ΨNS(t)))

]
.

Acting d/dt produces n + 3 terms with Ψ̇NS(t) = dΨNS(t)/dt in the first line, and in the

second term it produces n+1 terms with Ψ̇NS(t). All of these terms are related by cyclicity,

and therefore we can bring Ψ̇NS(t) to the first entry of the symplectic form and cancel the

factors 1/(n+ 3) and 1/(n+ 1):

1

n+ 3
ω̃(Ψ̃, M̃n+2(Ψ̃, . . . , Ψ̃)) =

∫ 1

0

dt

[
ωS(Ψ̇NS(t), M̃n+2(ΨNS(t), . . . ,ΨNS(t))) (4.45)

+

n∑
k=0

n−k∑
j=0

ωS(Ψ̇NS(t), M̃n+2(ΨNS(t), . . . ,ΨNS(t)︸ ︷︷ ︸
k times

,ΨR,ΨNS(t), . . . ,ΨNS(t)︸ ︷︷ ︸
j times

,ΨR,ΨNS(t), . . . ,ΨNS(t)))

]
.
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On the right hand side we replaced ω̃ with ωS since only NS states are contracted. We can

simplify this expression using coderivations and group-like elements:

1

n+ 3
ω̃(Ψ̃, M̃n+2(Ψ̃, . . . , Ψ̃)) =

∫ 1

0
dt

[
ωS

(
Ψ̇NS(t), π1Mn+2|0

1

1−ΨNS(t)

)
(4.46)

+ ωS

(
Ψ̇NS(t), π1mn+2|2

1

1−ΨNS(t)
⊗ΨR ⊗

1

1−ΨNS(t)
⊗ΨR ⊗

1

1−ΨNS(t)

)]
.

Summing over the vertices, the action can therefore be expressed as

S =
1

2
ω̃(Ψ̃, QΨ̃) +

∞∑
n=0

1

n+ 3
ω̃(Ψ̃, M̃n+2(Ψ̃, . . . Ψ̃)) (4.47)

=
1

2
ωS(YΨR, QΨR) +

1

2
ωS(ΨNS, QΨNS) +

∫ 1

0
dt

[
ωS

(
Ψ̇NS(t), π1(M|0 −Q)

1

1−ΨNS(t)

)
+ ωS

(
Ψ̇NS(t), π1m|2

1

1−ΨNS(t)
⊗ΨR ⊗

1

1−ΨNS(t)
⊗ΨR ⊗

1

1−ΨNS(t)

)]
.

We can absorb the NS kinetic term into the integral over t, obtaining

S =
1

2
ωS(YΨR, QΨR) +

∫ 1

0
dt

[
ωS

(
Ψ̇NS(t), π1M|0

1

1−ΨNS(t)

)
(4.48)

+ ωS

(
Ψ̇NS(t), π1m|2

1

1−ΨNS(t)
⊗ΨR ⊗

1

1−ΨNS(t)
⊗ΨR ⊗

1

1−ΨNS(t)

)]
.

Because this form of the action was constructed from the integral of a total derivative, it

only depends on the value of ΨNS(t) at t = 1.

Next it will be helpful to reformulate the theory in the large Hilbert space. We replace

ΨNS with a new NS string field ΦNS in the large Hilbert space according to

ΨNS = ηΦNS. (4.49)

The new field ΦNS is degree odd (because it is Grassmann even) and carries ghost and

picture number zero. We also introduce a corresponding family of string fields ΦNS(t), t ∈
[0, 1] such that ηΦNS(t) = ΨNS(t). Plugging into the action gives

S =
1

2
ωS(YΨR, QΨR) +

∫ 1

0
dt

[
ωL

(
Φ̇NS(t), π1M|0

1

1− ηΦNS(t)

)
(4.50)

+ ωL

(
Φ̇NS(t), π1m|2

1

1− ηΦNS(t)
⊗ΨR ⊗

1

1− ηΦNS(t)
⊗ΨR ⊗

1

1− ηΦNS(t)

)]
.

Here we replaced the small Hilbert space symplectic form with the large Hilbert space

symplectic form using the relation

ωS(ηΦ,Ψ) = ωL(Φ,Ψ), (4.51)

where Φ is in the large Hilbert space and Ψ is in the small Hilbert space. Next we use the

identity [44, 46]

ω(B,C) = ω

(
π1Ĥ

1

1−A
⊗B ⊗ 1

1−A
, π1Ĥ

1

1−A
⊗ C ⊗ 1

1−A

)
, (4.52)
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where B and C are string fields, A is a degree even string field, and the cohomomorphism

Ĥ is cyclic with respect to ω. In the current application we identify

A→ ηΦNS(t), Ĥ→ Ĝ, ω → ωL. (4.53)

Note, in particular, that Ĝ is cyclic with respect to the large Hilbert space symplectic form

when it receives no Ramond inputs. Thus we can rewrite the action as follows:

S =
1

2
ωS(YΨR, QΨR) (4.54)

+

∫ 1

0

dt ωL

(
π1Ĝ

1

1−ηΦNS(t)
⊗ Φ̇NS(t)⊗ 1

1−ηΦNS(t)
,

π1Ĝ
1

1−ηΦNS(t)
⊗
(
π1M|0

1

1−ηΦNS(t)

)
⊗ 1

1−ηΦNS(t)

)
+

∫ 1

0

dt ωL

(
π1Ĝ

1

1−ηΦNS(t)
⊗ Φ̇NS(t)⊗ 1

1−ηΦNS(t)
, π1Ĝ

1

1−ηΦNS(t)
⊗(

π1m|2
1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)

)
⊗ 1

1−ηΦNS(t)

)
.

We can simplify the term with M|0 by writing

1

1− ηΦNS(t)
⊗
(
π1M|0

1

1− ηΦNS(t)

)
⊗ 1

1− ηΦNS(t)
= M|0

1

1− ηΦNS(t)
. (4.55)

The term with m|2 can also be simplified using

1

1−ηΦNS(t)
⊗
(
π1m|2

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)

)
⊗ 1

1−ηΦNS(t)

= m|2
1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
. (4.56)

Therefore, we have

S =
1

2
ωS(YΨR, QΨR)

+

∫ 1

0
dt ωL

(
π1Ĝ

1

1− ηΦNS(t)
⊗ Φ̇NS(t)⊗ 1

1− ηΦNS(t)
, π1ĜM|0

1

1− ηΦNS(t)

)
+

∫ 1

0
dt ωL

(
π1Ĝ

1

1−ηΦNS(t)
⊗Φ̇NS(t)⊗ 1

1−ηΦNS(t)
,

π1Ĝm|2
1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)

)
. (4.57)

Now using

π1ĜM|0 = π1QĜ = Qπ1Ĝ, (4.58)

π1Ĝm|2 = π1m2|2Ĝ = m2π
2
2Ĝ, (4.59)
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we further obtain

S =
1

2
ωS(YΨR, QΨR)

+

∫ 1

0
dt ωL

(
π1Ĝ

1

1− ηΦNS(t)
⊗ Φ̇NS(t)⊗ 1

1− ηΦNS(t)
, Qπ1Ĝ

1

1− ηΦNS(t)

)
+

∫ 1

0
dt ωL

(
π1Ĝ

1

1−ηΦNS(t)
⊗Φ̇NS(t)⊗ 1

1−ηΦNS(t)
,

m2π
2
2Ĝ

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)

)
. (4.60)

Using π2
2 =
4

[π1
1 ⊗′ π1

1]4, one can show that

π2
2Ĝ

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
=
(
F (t)ΨR

)
⊗
(
F (t)ΨR

)
, (4.61)

where

F (t)ΨR ≡ π1Ĝ
1

1−ηΦNS(t)
⊗ΨR⊗

1

1−ηΦNS(t)
. (4.62)

Switching from degree to Grassmann grading, the action is therefore expressed as

S =
1

2
〈YΨR, QΨR〉S −

∫ 1

0
dt 〈At(t), QAη(t) + (F (t)ΨR)2〉L, (4.63)

where following [44, 46] we define the potentials by

At(t) ≡ π1Ĝ
1

1− ηΦNS(t)
⊗ Φ̇NS(t)⊗ 1

1− ηΦNS(t)
, (4.64)

Aη(t) ≡ π1Ĝ
1

1− ηΦNS(t)
. (4.65)

Thus the A∞ action is expressed in the same form as (4.4) but with the “hats” missing.

Now we can show that the action of the A∞ theory is related to the action of the

WZW-based theory by field redefinition. We postulate that the two theories are related by

Ât(t) = At(t), Ψ̂R = ΨR. (4.66)

Equating the t-potentials provides an invertible map between ΦNS(t) and Φ̂NS(t), and

automatically equates the η-potentials [46]:

Âη(t) = Aη(t). (4.67)

With these identifications it is identically true that the actions (4.4) and (4.63) are equal.

Moreover, since the A∞ action is only a function of ΨNS(t) = ηΦNS(t) at t = 1, the

identification (4.66) is equivalent to

Âη = Aη, Ψ̂R = ΨR, (4.68)

which is the field redefinition anticipated in the previous subsection.
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5 Conclusions

In this paper we have constructed the NS and R sectors of open superstring field theory

realizing a cyclic A∞ structure. This means, in particular, that we have an explicit solution

of the classical Batalin-Vilkovisky master equation,

{S, S} = 0, (5.1)

after relaxing the ghost number constraint on the NS and R string fields. Therefore, for

the purpose of tree level amplitudes we have a consistent definition of the gauge-fixed path

integral, and for the first time we are prepared to consider quantum effects in superstring

field theory.

However, the absence of explicit closed string fields and the appearance of spurious

singularities at higher genus may make quantization subtle. Therefore it is desirable to

give a construction of superstring field theory realizing a more general decomposition of

the bosonic moduli space than is provided by the Witten vertex. This in turn is closely

related to the generalization to heterotic and type II closed superstring field theories.

The appropriate construction of NS actions and Ramond equations of motion is described

in [37, 38], and in principle all that is needed is to implement cyclicity. For example, in

the closely related open string field theory with stubs [37, 38], it is not difficult to see that

the gauge products with one Ramond output and zero picture deficit should be defined by

µ
(n−r+1)
n+2 |2r = ξ̃M

(n−r)
n+2 |2r (2r + 1 Ramond inputs), (5.2)

so that the equations of motion are consistent with the projection onto the restricted

space in the Ramond sector. However, a full specification of the vertices requires many

additional gauge products of varying Ramond numbers and picture deficits. Solving the

entire recursive system of products consistent with cyclicity is a much more challenging

problem, which we hope to consider soon.
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A Gauge invariance in Sen’s formulation

In Sen’s formulation of the Ramond sector [10, 11], the action does not realize a cyclic A∞
structure in the standard sense. Therefore it is worth explaining why it is gauge invariant.
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The infinitesimal gauge transformation can be written in the form

δΠ̃ = QΩ̃ + π1b̃
1

1− Ψ̃
⊗ Λ̃⊗ 1

1− Ψ̃
, (A.1)

δΨ̃ = π1M̃
1

1− Ψ̃
⊗ Λ̃⊗ 1

1− Ψ̃
, (A.2)

where Ω̃ and Λ̃ are degree odd gauge parameters in the small Hilbert space, at ghost

number zero, and with the appropriate picture in the NS and R sectors. The variation of

the action is

δS = −ωS(δΠ̃,GQΠ̃) + ωS(δΨ̃, QΠ̃) + ωS(δΠ̃, QΨ̃) + ωS

(
δΨ̃, π1b̃

1

1− Ψ̃

)
. (A.3)

The gauge parameter Ω̃ immediately drops out since QΩ̃ always appears in the symplec-

tic form contracted with a BRST invariant state. Substituting the infinitesimal gauge

transformation then gives

δS = −ωS
(
π1b̃

1

1−Ψ̃
⊗ Λ̃⊗ 1

1−Ψ̃
,GQΠ̃

)
+ωS

(
π1M̃

1

1−Ψ̃
⊗ Λ̃⊗ 1

1−Ψ̃
, QΠ̃

)
(A.4)

+ ωS

(
π1b̃

1

1−Ψ̃
⊗ Λ̃⊗ 1

1−Ψ̃
, QΨ̃

)
+ωS

(
π1M̃

1

1−Ψ̃
⊗ Λ̃⊗ 1

1−Ψ̃
, π1b̃

1

1−Ψ̃

)
.

The first and second terms cancel upon using the BPZ even property of G and converting

b̃ into M̃−Q. In the last term we replace π1M̃ with π1Q + Gπ1b̃:

δS = ωS

(
π1b̃

1

1−Ψ̃
⊗ Λ̃⊗ 1

1−Ψ̃
, QΨ̃

)
+ωS

(
QΛ̃+Gπ1b̃

1

1−Ψ̃
⊗ Λ̃⊗ 1

1−Ψ̃
, π1b̃

1

1−Ψ̃

)
.

(A.5)

Next use the BPZ even property of G and again convert b̃ into M̃−Q:

δS = ωS

(
π1b̃

1

1− Ψ̃
⊗ Λ̃⊗ 1

1− Ψ̃
, QΨ̃

)
+ ωS

(
QΛ̃, π1b̃

1

1− Ψ̃

)
+ωS

(
π1b̃

1

1− Ψ̃
⊗ Λ̃⊗ 1

1− Ψ̃
, π1(M̃−Q)

1

1− Ψ̃

)
= ωS

(
Λ̃, π1Qb̃

1

1− Ψ̃

)
+ ωS

(
π1b̃

1

1− Ψ̃
⊗ Λ̃⊗ 1

1− Ψ̃
, π1M̃

1

1− Ψ̃

)
. (A.6)

Using cyclicity of b̃ we can rewrite the second term as

ωS

(
π1b̃

1

1−Ψ̃
⊗ Λ̃⊗ 1

1−Ψ̃
, π1M̃

1

1−Ψ̃

)
= ωS

(
Λ̃, π1b̃

1

1−Ψ̃
⊗
(
π1M̃

1

1−Ψ̃

)
⊗ 1

1−Ψ̃

)
.

(A.7)

This follows from the relation

0 = 〈ωS |π2b̃
1

1− Ψ̃
⊗ Λ̃⊗ 1

1− Ψ̃
⊗
(
π1M̃

1

1− Ψ̃

)
⊗ 1

1− Ψ̃
, (A.8)
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after representing π2 =
4[

π1 ⊗′ π1

]
4 and acting with the coproduct. Therefore the gauge

variation of the action produces

δS = ωS

(
Λ̃, π1Qb̃

1

1− Ψ̃

)
+ ωS

(
Λ̃, π1b̃

1

1− Ψ̃
⊗
(
π1M̃

1

1− Ψ̃

)
⊗ 1

1− Ψ̃

)
= ωS

(
Λ̃, π1(Qb̃ + b̃M̃)

1

1− Ψ̃

)
= 0, (A.9)

which vanishes as a consequence of (3.121).
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