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1Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077
Göttingen, Germany and 2Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377
Munich, Germany

Received April 11, 2016; Revised May 23, 2016; Accepted May 29, 2016

ABSTRACT

Position weight matrices (PWMs) are the stan-
dard model for DNA and RNA regulatory motifs. In
PWMs nucleotide probabilities are independent of
nucleotides at other positions. Models that account
for dependencies need many parameters and are
prone to overfitting. We have developed a Bayesian
approach for motif discovery using Markov mod-
els in which conditional probabilities of order k −
1 act as priors for those of order k. This Bayesian
Markov model (BaMM) training automatically adapts
model complexity to the amount of available data.
We also derive an EM algorithm for de-novo dis-
covery of enriched motifs. For transcription factor
binding, BaMMs achieve significantly (P = 1/16)
higher cross-validated partial AUC than PWMs in
97% of 446 ChIP-seq ENCODE datasets and improve
performance by 36% on average. BaMMs also learn
complex multipartite motifs, improving predictions of
transcription start sites, polyadenylation sites, bacte-
rial pause sites, and RNA binding sites by 26–101%.
BaMMs never performed worse than PWMs. These
robust improvements argue in favour of generally re-
placing PWMs by BaMMs.

INTRODUCTION

The control of gene expression allows the cell to adapt its
protein and RNA inventory in response to developmental
and environmental cues. At its center lies the binding of
proteins to specific motifs in promoters and enhancers to
control RNA synthesis rates and to RNAs to regulate their
splicing, localization, translation and degradation. The ac-
curate prediction of protein binding affinities to DNA and
RNA sequences is therefore of central importance for a
quantitative understanding of cellular regulation and of life
in general.

Most known models that describe the sequence specificity
of transcription factors were deduced from in-vivo bind-

ing sites measured by ChIP-seq (1), from in-vitro measure-
ments of binding strengths using either protein binding mi-
croarrays (PBMs) (2) or in-vitro selection coupled to high-
throughput sequencing (HT-SELEX) (3), or from bacterial
one-hybrid assays (4). To obtain a statistical model of bind-
ing specificity from such measurements, motif discovery al-
gorithms learn the model parameters that agree best with
the measurements. At present, the standard model for this
purpose is the position weight matrix (PWM), and thou-
sands of PWMs for transcription factors are available in
motif databases such as JASPAR, HOCOMOCO, Swiss-
Regulon or TRANSFAC (5–8).

PWMs rank binding sites according to the log-odds
score S(x1 : W) = ∑W

j=1 s j (xj ) with contributions sj(xj) =
log2 [pj(xj)/pbg(xj)] that depend only on single nucleotides xj
in the binding site sequence x1 : W := (x1. . .xW). Here, pj(xj)
is the probability of nucleotide xj ∈ {A, C, G, T} to occur at
position j of the binding site, and pbg(xj) is the background
probability for nucleotide xj in a representative sequence set.

PWMs cannot model correlations between nucleotides.
For example, if 50% of binding site sequences are GATC
and the other 50% are GTAC, a PWM will give the same
high score to GTTC and GAAC as to the true binding se-
quences. It cannot learn that at position 2 an A must be
followed by a T and T by A.

Nucleotide correlations can originate from (i) stacking
interactions that determine binding through DNA ‘shape
readout’ (9), (ii) amino acids that contact multiple bases si-
multaneously (10), (iii) multiple sequence-dependent bind-
ing modes of a factor (11–14) and (iv) complex multi-
submotif architectures with varying submotif spacings,
which are typically bound cooperatively by multiple factors
(15–17).

For these reasons one might expect more complex models
that do not assume nucleotides to contribute independently
to the binding strength to perform better than PWMs. How-
ever, the usefulness of such more complex models has been
controversially discussed for long (18–20). Zhao et al. found
PWMs to be as accurate as mixtures of PWMs to describe
the binding strengths of transcription factors measured by
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PBMs (2,21). Weirauch et al. concluded that for >90% of
tested transcription factors PWMs performed as well as
more complex models to predict PBM binding strengths,
and they were just as good in predicting in-vivo ChIP-seq
binding sites for all factors (22). It is still not clear whether
these results are really due to the absence of correlations in
binding sites of most transcription factors or to what extent
they are explained by the difficulty to train the many model
parameters reliably and robustly.

Numerous models incorporating nucleotide dependen-
cies have been developed to improve the modelling of bind-
ing site motifs and complex, multipartite motifs. Some learn
mixtures of PWMs (23–25) or Markov models (26), or pro-
file hidden Markov models (HMMs) (27). But dependencies
generally decrease with increasing distance (3), and there-
fore most models are based on inhomogeneous Markov
models (iMMs), in which the probability of xj depends on
the previous k nucleotides xj − k : j − 1 (28–30). First-order
iMMs, sometimes called dinucleotide PWMs, have been
added to the HOCOMOCO and JASPAR databases. HO-
COMOCO’s dinucleotide PWMs performed better on aver-
age than simple PWMs (6) and JASPAR’s first-order iMMs
yielded significantly better results than PWMs for 21% of
96 tested datasets (30).

The drawback of iMMs is that the number of parame-
ters W × 3 × 4k grows exponentially with k. Already for a
second-order model we need 48 parameters per position. To
estimate them with 10% accuracy requires ∼100 counts per
3-mer, or 4800 sequences. When fewer sequences are avail-
able, more complex models risk being overtrained: they may
perform significantly worse than a simple PWM model due
to the noisy parameter estimates while showing overly opti-
mistic performance on the training data.

To prevent overtraining, various heuristic methods were
suggested that reduce the number of parameters in a data-
driven fashion, by pruning the dependency graph describing
which positions each motif position j depends on (23,31–
33). These methods have several technical drawbacks: (i)
they take yes/no decisions, which necessarily lead to a loss
of information near the decision boundary. (ii) Optimising
a discrete dependency graph is cumbersome: to decide be-
tween two alternative graphs one needs to find the optimum
model parameters for each graph. Also, since two graphs
usually induce models with different numbers of param-
eters, a likelihood-based optimization is not possible. (iii)
The discreteness of the graph topology precludes efficient
gradient-based optimization techniques. (iv) Finally, no al-
gorithms have been put forward to train these models on
unaligned motifs. These models can therefore not be applied
for de-novo motif discovery.

Here, we present a Bayesian approach to learn inhomo-
geneous Markov models for sequence motifs that makes op-
timal use of the available information while avoiding over-
training. The key idea is that we use the conditional prob-
abilities of order k − 1 as priors for the conditional proba-
bilities of order k.

Our Bayesian approach is similar to interpolated Markov
models (34,35) in that the probabilities of order k are ob-
tained as linear interpolation of the maximum likelihood
(ML) estimate for order k and the lower-order probabili-
ties. Various rather ad-hoc methods have been used to set

the interpolation weights (34–37) (e.g. by making them de-
pend on the P-value with which the hypothesis can be re-
jected that the conditional probabilities of order k − 1 and
of order k are noisy estimates of the same underlying dis-
tributions (36)). In contrast, the interpolation weights of
BaMMs emerge naturally from our probabilistic approach
without further assumptions except for the choice of priors.

We analyse how much can be gained by using higher-
order inhomogeneous BaMMs over two baseline meth-
ods: zeroth-order BaMMs, which are simply PWMs trained
with the standard EM-type algorithm as implemented in
MEME (38), and our tool XXmotif, which performed
favourably in comparison to state-of-the-art motif discov-
ery tools (39). We assessed these different methods by the
quality of the models they produced starting from the motif
occurrences discovered by XXmotif. We demonstrate con-
sistent improvements by higher-order BaMMs as compared
to PWMs on each of a large and heterogeneous collection of
datasets with simple and complex motif architectures. Like-
wise, correlation of predicted binding affinities with quan-
titative EMSA measurements was substantially improved.

MATERIALS AND METHODS

Bayesian Markov model learning

We would like to solve the following task: We have a set of
sequences that are enriched in a sought motif, for exam-
ple a binding motif for a transcription factor or a multi-
submotif region with complex architecture. The sequences
might have been produced by ChIP-seq or SELEX-seq ex-
periments, they might be promoters of coregulated genes,
regions of differential DNase I accessibility, or specific ge-
nomic sites such as splice sites. Our goal is to train a model
that discovers the location and strength of enriched motifs
in the training sequences and that can predict motifs and
their strengths in arbitrary sequences.

In the Supplemental Methods (Eqs. (S.1)–(S.7)) we show
that, to learn a model for the Gibbs binding energy �G(x)
to sequence x = x1:W, we can solve an equivalent statisti-
cal learning problem: we learn the probability distribution
of motif sequences, pmotif(x), and of background sequences,
pbg(x). Then the binding energy in units of kBT (where
kB is Boltzmann’s constant) is, up to a constant, given by
the log-odds score, �G(x)/kBT = log[pmotif(x)/pbg(x)] +
const. Here, we rely on the common approximation of un-
saturated binding (low factor concentration), whereby the
probability to observe sequence x in the training set is pro-
portional to exp(�G(x)/kBT).

We model the background sequences with a ho-
mogeneous Markov model (MM) of order K′,
pbg(x1:W) = ∏W

j=1 p(K ′)
bg (xj |xj−K ′ : j−1) and the motif sites

with an inhomogeneous Markov model (iMM) of order
K, pmotif(x1:W) = ∏W

j=1 p(K)
j (xj |xj−K : j−1). This results in a

log-odds score

S(x) = log2
pmotif(x)
pbg(x)

=
W∑

j=1

log2

p(K)
j (xj |xj−K : j−1)

p(K ′)
bg (xj |xj−K ′ : j−1)

.
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Figure 1. Bayesian Markov model training automatically adapts the ef-
fective number of parameters to the amount of data. In the last line, if
the context GCT is so frequent at position j in the motif that its num-
ber of occurrences outweighs the pseudocount strength, nj(GCT) � �3,
the third-order probabilities for this context will be roughly the maximum
likelihood estimate, e.g. p(3)

j (A|GCT) ≈nj(GCTA)/nj − 1(GCT). However,
if few GCT were observed in comparison with the pseudocounts, nj(GCT)
� �3, the third-order probabilities will fall back on the second-order es-
timate, p(3)

j (A|GCT) ≈ p(2)
j (A|CT). If also nj(CT) � �2, then likewise the

second-order estimate will fall back on the first-order estimate, and hence
p(3)

j (A|GCT) ≈ p(1)
j (A|T). In this way, higher-order dependencies are only

learned for the fraction of k-mer contexts that occur sufficiently often at
one position j in the motif ’s training instances to trump the pseudocounts.
Throughout this work we set �0 = 1 and �k = 20 × 3k − 1.

Since the binding energy �G(x) is a linear function of the
log-odds score, the score is ideal for ranking potential bind-
ing sites by their predicted strength.

The central idea for Bayesian Markov Model (BaMM)
training is that, to learn the kth-order probability
p(k)

j (xj |xj−k : j−1), we can use the order-(k−1) proba-

bility p(k−1)
j (xj |xj−k+1 : j−1) as prior information. The

latter is an excellent approximation of the former because
dependencies between positions generally decrease quickly
with increasing distance (3). And since the shorter context
xj − k + 1 : j − 1 is on average four times more frequent than
xj − k : j − 1, the lower-order probabilities will also be more
robustly estimated.

We learn the parameters of the inhomogeneous Markov
model by maximising the posterior probability, the prod-
uct of the likelihood and the prior probability (Eq. (S.12) in
Supplementary Methods). A natural prior is a product of
Dirichlet distributions with pseudocount parameters pro-
portional to the lower-order model probabilities, with pro-
portionality constants �k for k = 1, . . . , K whose size deter-
mines the strength of the prior. Maximizing the posterior
probability yields

p(k)
j (xj |xj−k: j−1) = n j (xj−k: j ) + αk p(k−1)

j (xj |xj−k+1: j−1)

n j−1(xj−k: j−1) + αk
,

which is illustrated in Figure 1. For frequently occurring k-
mers xj − k: j − 1 the counts dominate over the pseudocounts
and we can accurately estimate the conditional probabilities
from the counts. For k-mers with few counts the pseudo-
counts dominate and the probability reverts to the estimate
at order k − 1, which in turn may be dominated by the esti-

mate at order k − 2, and so forth, down to an order where
the number of counts dominates the pseudocounts. In this
way, conditional probabilities are learned only for those k-
mers for which they can be robustly estimated, while other
conditional probabilities are approximated by robustly esti-
mated lower-order probabilities.

We fixed the prior strengths �0 = 1 and �k = � × �k − 1 for
k ≥ 1, with hyperparameters � = 20 and � = 3. The increas-
ing strength of pseudocounts with increasing k reflects the
prior belief that dependencies should quickly decline with
distance (3). Owing to this rather strong regularization, we
prevent overtraining on all datasets (see, e.g. Supplemen-
tary Figure S18). As background model, we always train
a second-order homogeneous BaMM on the set of posi-
tive training sequences, with the default � setting from our
tool XXmotif (39) (�k = 10 for all k ≥ 0). This choice gives
good performance as trimers capture the properties of back-
ground sequences in sufficient detail without learning the
motifs themselves.

Motif discovery using Bayesian models

When the motif sites in the training sequences are not
known a priori, we need to learn a good model and at the
same time find motif instances in sequences that are often
hundreds or thousands of nucleotides long. Most motif dis-
covery algorithms train PWMs. We derieve here an expec-
tation maximization (EM) algorithm to train BaMMs. A
formal derivation is given in the Supplementary Methods.

The goal is to estimate the model parameters p(K)
motif , which

is a vector containing the W × 4K + 1 conditional probabili-
ties p(K)

j (xK+1|x1:K ) for any K + 1-mer x1: K + 1. The EM al-
gorithm cycles between E- and M-step. In the E-step, we
re-estimate the probabilities for a motif to be present at po-
sition i of sequence n,

rni := p(zn = i |xn, p(K)
motif) = p(xn|zn = i, p(K)

motif)∑
i ′ p(xn|zn = i ′, p(K)

motif)
.

We use the zero-or-one-occurrence-per-sequence (ZOOPS)
model (38) (for the motivation see Supplementary Meth-
ods), and the hidden variable zn indicates at which position
the motif is present in sequence n. In the M-step we use the
new rni to update the model parameters p(k)

motif for all orders
k = 0, . . . , K. This update equation looks exactly the same
as the previous equation for known motifs locations, except
that now the counts nj(x1: k) are interpreted as fractional
counts computed according to

n j (x1:k) :=
∑

n

rniI(xn
i+ j−k:i− j−1 = x1:k).

The indicator function returns 1 if the logical expression is
true and 0 otherwise. The update of model parameters in the
M-step runs through all orders from k = 0 to k = K, each
time using the just updated model parameters from the or-
der below. We iterate the EM algorithm until convergence.
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RESULTS

Nucleotide dependencies in transcription factor binding sites

We show how BaMMs can improve by 29% the prediction
of transcription factor binding sites learned from ChIP-seq-
enriched sequences by modelling the correlations between
nucleotides in their binding sites.

We evaluated our approach on 446 human ChIP-seq
datasets for 94 sequence-specific transcription factors as-
sociated with RNA polymerase (RNAP) II from The EN-
CODE Project Consortium (1). Positive sequences were
compiled from up to 5000 peak regions with highest con-
fidence by extracting ±102 bp around peak summits. We
initialized our BaMM learning with the motif instances that
XXmotif uses to build its top PWM model but added two
positions to both 5′- and 3′-ends of the models. We sam-
pled synthetic background sequences with the same length
as the positive sequences but 100 times as many, using the
trimer frequencies from the positive sequences. To compare
PWMs with higher-order BaMMs without any influence
from other source except model order, we treated PWMs
as zeroth-order BaMMs.

The performance in discriminating binding from back-
ground sequences was assessed using four-fold cross-
validation, by sorting in descending order the sequences
by their maximum log-odds score over all possible motif
positions and recording the cumulated number of correct
predictions (TP) and false predictions (FP) above a score
threshold. Lowering the score threshold from maximum to
minimum we trace out a curve of TP versus FP. The nor-
malized version in which one plots the true positive rate
(TPR), the fraction of TP out of all positive sequences, ver-
sus the false positive rate (FPR), the fraction of FP out of all
background sequences, is called receiver operating charac-
teristic (ROC) curve. The partial area under the ROC curve
(pAUC) up to the fifth percentile of FPR (insets in Figure
2A and B) is a good measure of performance, because at
FPR > 0.05 and TPR = 1 the precision, i.e. the fraction of
predictions that are correct (i.e. truly bound), has already
fallen to below 1/(1 + 0.05 × 100) = 0.167. The pAUC
therefore summarises the part of the ROC curve most rel-
evant in practice for predicting factor binding sites and is
preferable over the AUC.

Figure 2A shows the ratios of pAUC for first-order
BaMMs to the pAUC for PWMs (order 0) on each of
the 446 datasets. On almost all sets the pAUC increases
and the average relative increase is 16%. Strikingly, fifth-
order BaMMs perform considerably better than first-order
BaMMs, yielding an average fold pAUC increase over
PWMs of 29% (Figure 2B). Also, on none of the 446 dataset
they are clearly worse than PWMs, showing that overtrain-
ing is effectively prevented. Higher-orders are particularly
beneficial for the more challenging datasets with low pAUC
values.

Figure 2C–E illustrates the improvements for specific
datasets. The precision-recall curves summarise predictive
performance, showing the precision TP/(TP + FP) versus
the recall (= sensitivity), the fraction of all bound sequences
that are predicted at this precision.

We developed sequence logos for higher orders to visualise
the BaMMs. We split the relative entropy H

(
pmotif

∣∣pbg
) =∑

x pmotif(x) log2[pmotif(x)/pbg(x)] into a sum of terms, one
for each order. The logos show the amount of information
contributed by each order over and above what is provided by
lower orders, for each oligonucleotide and position.

The well-studied CCCTC-binding factor (CTCF) has
been implicated in the establishment of topologically as-
sociating domains and the formation of regulatory chro-
mosome interactions (40). A fifth-order BaMM for CTCF
achieves 14% higher pAUC than a PWM (orange triangle in
Figure 2B and C, left). The first-order sequence logo identi-
fies the added information (Figure 2C, right). For example,
at position 16 an A is preferentially followed by a G and a
G by a C, relative to the zeroth-order model. The first-order
dependencies may reflect the intricate interplay of a subset
of CTCF’s 11 zinc-finger (ZnF) domains.

Transcription factor MafK of the AP-1 family of basic-
region leucine zippers (bZIP) can bind DNA as homodimer
or heterodimer. Depending on its multimeric state, MafK
targets the 13 bp T-MARE or the 14 bp C-MARE motif.
These are composed of a 7 bp and 8 bp core sequence, re-
spectively, flanked by GC elements on both sides (41). A
fifth-order BaMM for MafK achieves a 19% higher pAUC
than a PWM (green triangle in Figure 2B). Most of this im-
provement is already present in first order (Figure 2D, left).
The first-order logo shows that two alternative DNA recog-
nition modes are represented by the BaMM. While the T-
MARE is primarily modelled in zeroth order (Figure 2D,
middle), the C-MARE is modelled via first-order dependen-
cies (Figure 2D, right). The upstream AT-rich region seen
in zeroth order is revealed by the first-order logo to be a
poly(dA:dT) tract. This indicates that MafK reads out the
narrowed DNA minor groove width known to be induced
by poly(dA:dT) tracts (42).

The bZIP transcription factor JunD binds two half-site
motifs separated by one or two base pairs. The preferred
spacing is cell-type-specific and depends on the availabil-
ity of oligomerization partners (43). A fifth-order BaMM
for JunD achieves a 96% higher pAUC than a PWM (blue
triangle in Figure 2B and E, left). The model represents a
mixture of two binding sites, ATGA-S-TCAT (S = G or C)
and the slightly less frequent ATGA-CG-TCAT. The right
half-sites TCAT are aligned in the model, whereas the left
half-sites are displaced from each other by one position. In
positions 3 to 6 of the zeroth-order logo, this results in mix-
tures of A + T, T + G, G + A and A + C (Figure 2E, middle),
while in the first-order logo it results in contributions AT +
TG, TG + GA and GA+AC at positions 4–6 (Figure 2E,
right).

Supplementary Figures S1–S9 contain analyses for fur-
ther transcription factors: BATF, c-Jun, c-Fos, Hnf4a,
IRF4, NF-YB, NRSF, PU.1 and ZnF143. Remarkably, for
some datasets, e.g. ZnF143, we still observe substantial im-
provements at order three or higher.

Improvements from flanking nucleotides

We show here that, by including the nucleotides flanking
the core binding sites of transcription factors, we can sub-
stantially increase the predictive performance of BaMMs
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Figure 2. Modelling nucleotide dependencies in transcription factor binding motifs improves motif discovery and prediction. (A) Factor of increase in
partial area under the ROC curve (pAUC) of first-order BaMMs versus zeroth-order BaMMs (PWMs) on 446 ChIP-seq datasets for transcription factors
from ENCODE. The average performance increase is 16% (dashed line). Y-scale is logarithmic. Inset: partial ROC curve for PWM of MafK binding. (B)
Same as (A) but showing the increase in pAUC of fifth-order BaMMs versus PWMs. Inset: fifth-order BaMM of MafK binding. (C) CTCF models learned
from ChIP-seq sites in Mcf-7 cells. Predictive performance (left) for BaMMs of increasing order. Zeroth-order (middle) and first-order (right) sequence
logos of second-order BaMM. (D) Same as (C) for MafK binding measured in HepG2 cells. (E) Same as (C) but for JunD binding in HepG2 cells. Positions
2–6 of the first-order model (right) encode the two half-sites ATGAC and XATGA shifted from each other by one nucleotide.
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but less so for PWMs, widening the performance gain of
BaMMs over PWMs to 36%.

Two recent studies pointed out that for some tran-
scription factors the nucleotides flanking the core binding
site make sizeable contributions to the binding specificity
(44,45). These contributions are probably owed to shape
readout around to the core site, for example the minor
groove width (42). Since DNA shape is largely determined
by base-stacking interactions, we expect shape readout to
lead to strong next-neighbour nucleotide dependencies. If
this is true, higher-order models should profit particularly
from the inclusion of flanking nucleotides.

We therefore analysed the contribution of flanking nu-
cleotides on BaMMs of various orders by comparing mod-
els of the same length as found by XXmotif with models
extended by four base pairs on either side. For the 8-bp-
extended models, we also extended all sequences by 8 bp to
keep the same search space size. We then trained original
and 8-bp-extended BaMMs.

PWMs increase their pAUC by 5% on average (Figure
3A), with a few datasets showing considerably better and
others considerably worse performance with 8-bp-extended
models. Nicely, fifth-order BaMMs indeed increased their
pAUC much more, by 19% on average, and only a single
dataset shows >5% worse performance with an extended
model (Figure 3B).

When comparing 8-bp-extended PWMs with 8-bp-
extended BaMMs of fifth order (Figure 3C), the average
increase in pAUC was 36%. Most strikingly, extended fifth-
order BaMMs significantly (at 6.25% level) outperformed
the zeroth-order BaMMs and also the XXmotif models
(Figure 3D) in the vast majority of datasets (97% and 99%,
respectively), even though XXmotif compared favourably
to state-of-the-art motif discovery tools (39).

Figure 3E shows the results for the second-order BaMM
of basic helix–loop–helix (bHLH) family transcription fac-
tor USF1. The additional information in the flanking re-
gions in first order (right logo) leads to an increase in
pAUC of 20% (blue triangle in Figure 3B) and an increase
of precision from 25% to 90% for low recall (Figure 3E
left). The strong influence of flanking nucleotides has also
been demonstrated for other bHLH transcription factors
(44,46), including CBF1, a homolog of USF1 in Saccha-
romyces cerevisiae. Similar analyses for the transcription
factors GR, IRF1 and c-Fos can be found in Supplemen-
tary Figure S10.

Piqued by this success, we asked how much can be gained
by including a still larger sequence context around core sites.
We chose CTCF for its importance in chromatin organiza-
tion and extended the core model by 25 bp on either side.
Again, only higher-order models profit markedly (Supple-
mentary Figure S11). The predictive performance for the
second-order model reaches an impressive recall of 52% at
95% precision, whereas the zeroth-order BaMM predicts
only 14% true sites at that precision.

Quantitative prediction of binding affinities

To attain a quantitative understanding of transcriptional
regulation, we need to predict accurately the factor oc-
cupancies on regulatory sequences. We demonstrate here

that BaMMs trained on ChIP-seq data can predict binding
affinities directly measured by biophysical methods consid-
erably more accurately than PWMs and a number of com-
peting methods.

Sun et al. (47) measured dissociation constants (Kd) of the
pioneer ZnF transcription factor Klf4 for binding to vari-
ous sequences by competitive EMSA experiments. Thirty
three sequences had a single mutation and 25 sequences had
multiple mutations to the 10 bp Klf4 consensus motif. As
in Sun et al. (47), we computed the logarithms of each Kd
divided by a K ref

d . For the sequences with single mutations
K ref

d was their median Kd and for the sequences with multi-
ple mutations the Kd closest to their mean.

We trained BaMMs of increasing complexity using
101 bp sequences extracted around the 5000 strongest
ChIP-seq peaks from (48). We plotted the log ratios of
EMSA Kd’s versus the corresponding predictions from our
models. We compared the performance of BaMMs of in-
creasing order by means of the Pearson correlation between
measured and predicted log Kd ratios.

Overall, the Pearson correlation improves with increas-
ing BaMM order (solid lines in Figure 4A, left). While the
zeroth-order BaMM successfully predicts Klf4 affinities to
singly mutated binding sites, it fails for the multiply mu-
tated binding sites (Figure 4A, middle). In contrast, the
fifth-order BaMM succeeds on both sets (Figure 4A, right).

To confirm these results, we performed a similar analy-
sis on a dataset of competitive EMSA measurements for 64
double-stranded oligonucleotide probes containing poten-
tial FoxA2 binding sites (49). These were correlated with
predictions from the deep learning method DeepBind (50)
and various other methods, which were trained on a FoxA2
ENCODE ChIP-seq dataset, and with prediction from a
number of published PWMs for FoxA2. We repeated the
analysis for our BaMM predictions and obtained a Spear-
man correlation of r = 0.831, better than the best compet-
ing method, DeepBind (r = 0.814 and 0.784) (Figure 4B).
This is remarkable, as no parameters were adjusted and our
BaMMs were not developed with the aim of quantitative
prediction of binding affinities.

These results indicate that, at least for some factors,
BaMMs of order ≥3 are required to satisfactorily predict
binding affinities to low-affinity binding sites. This is re-
flected in the information content of the higher-order se-
quence logos (Supplementary Figure S13).

Predicting RNAP II transcription start sites

Whereas our previous analyses were based on simple mo-
tifs composed of a single binding site, we now assess higher-
order Markov models for modelling complex motifs, regu-
latory regions that are targeted by multiple, cooperatively
binding factors. Such complex motifs can be composed of
multiple, non-obligatory submotifs with variable spacings
and strengths.

The core promoter is the region of approximately ±50
bp around the transcription start site (TSS) that is required
to initiate transcription. RNAP II core promoters can be
classified into two classes (51), exhibiting a TSS distribution
with a narrow peak (NP) or a broad peak (BP). In animals
the former tend to be correlated with highly regulated genes



Nucleic Acids Research, 2016, Vol. 44, No. 13 6061

Figure 3. Nucleotides flanking the core binding sites of transcription factors may contribute greatly to the specificity of higher-order models. (A) Factor
of increase in performance (on log scale) of 8-bp-extended versus unextended zeroth-order BaMMs (PWMs) on 446 ChIP-seq datasets for transcription
factors from ENCODE. The mean increase is 5% (dashed line). (B) Performance increase of fifth-order 8-bp-extended versus unextended BaMMs. (C)
Performance increase of fifth-order 8-bp-extended BaMMs versus zeroth-order 8-bp-extended BaMMs (PWMs). Significant improvements (P = 1/16
= 6.25%) are obtained on 97% of all datasets (filled diamonds). The remaining 12 datasets show insignificant differences (open diamonds). (D) Performance
increase of fifth-order 8-bp-extended BaMMs versus PWMs refined by XXmotif. (E) Results for 8-bp-extended USF1 model learned from ChIP-seq sites
in the H1-hESC line.
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Figure 4. Higher-order BaMMs boost accuracy of binding affinity predictions for weak sites. (A) Left: Pearson correlation between log(Kd/Kref
d ) values for

Klf4 binding to singly and multiply mutated consensus sites and log(Kd/Kref
d ) values predicted with models trained on Klf4-bound sequences from ChIP-

seq. Solid lines: BaMM models; dashed lines: PWMs from XXmotif. Middle: log(Kd/Kref
d ) values measured by competitive EMSA assay versus values

predicted by zeroth-order BaMM trained on ChIP-seq data. Right: same but predictions from fifth-order BaMM. Affinities to weak, multiply mutated
sites (orange) are very badly predicted using a PWM (correlation 0.26) but decently using a fifth-order BaMM (correlation 0.64). (B) Left: same as (A), but
showing Spearman rank correlations for FoxA2 binding affinities measured for 64 putative binding sites. DeepBind† and DeepBind differ only in model
length (16 versus 24 bp). Right: Spearman correlations of our eighth-order BaMM and various other methods, adopted from Alipanahi et al. (50).

and more frequently carry TATA-box and Initiator motifs,
while the latter are correlated with housekeeping genes and
have fewer, more poorly defined motifs.

We clustered and filtered TSSs measured in D.
melanogaster by cap analysis of gene expression (CAGE)
(52), resulting in 15 971 TSS clusters, assigned to 11 536
unique genes, which we classified into 7262 NP and 8709
BP core promoters. Furthermore, we modelled ribosomal
protein (RP) gene core promoters using 92 core promoter
sequences, corresponding to 86 unique RP genes listed in
the RPG database (53).

We again used four-fold cross-validation, training on 75%
of the TSSs, testing on 25% of TSSs and pooling results of
the four test sets. Because of the different peak widths for
NP, BP and RP core promoters (90% of CAGE tags are
contained in regions of 9, 47 and 23 bp around the peak
mode, respectively), we took training sequences of lengths
109, 147 and 123 bp around the mode of each TSS peak and
trained models of length 101 bp on them. We trained the
second order background model on 501 bp sequences cen-
tered around TSSs. For each test sequence of 501 bp around
a TSS, the position with the largest log-odds score was taken
to be the predicted TSS. When the prediction was within 4,
23 or 11 bp in the case of NP, BP and RP promoters, respec-
tively, it counted as a true positive prediction, otherwise as
false positive. The precision was the fraction of sequences
with true positive predictions.

Figure 5A shows the positional distribution of predic-
tions around NP TSSs for BaMMs of order 0, 1 and
2, normalized to a random predictor with uniform den-
sity. While NP core promoters are relatively well predicted
within ±4 bp by all three models, the second-order model
achieves a precision of 76%, 26% higher than the preci-
sion of the PWM model (60%). These improvements are re-
flected by a concomitant increase in total information con-
tent of the models (middle top). For even higher model or-
ders, the precision saturates but, crucially, does not show
any signs of overfitting (Supplementary Figure S16).

The zeroth-order sequence logo of the second-order NP
core promoter BaMM (Figure 5A, right) reveals the Initia-
tor motif at the TSS, the TATA box near −32 bp, and the
motif 10 and downstream promoter elements (MTE, DPE).
The left inset shows first-order dependencies in the region
around the TATA box, which partly arise from the variable
positioning of the TATA box with respect to the TSS. The
right inset covers a region of overlapping DPE and E-box
motifs and gives an idea how such overlapping, alternative
motifs can be represented by a first-order BaMM. (See Sup-
plementary Figure S14 for complete sequence logos.)

The BP TSSs are evidently much harder to predict than
the NP TSSs (Figure 5B), owing to the scarcity and poor in-
formation content of their motifs. For difficult cases, how-
ever, BaMMs show particularly clearcut gains: the preci-
sion achieved by a second-order BaMM of 44% is twice
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Figure 5. Higher-order BaMMs excel at predicting complex, multipartite motifs. (A) Left: positional distribution of TSS predictions around measured
TSSs of 7262 narrow peak (NP) core promoters in D. melanogaster, normalized to random prediction with uniform density. Inset: same with expanded
y-axis to show false predictions. Middle bottom: Fraction of sequences with correct predictions, defined to lie within 4 bp of measured TSS peak mode.
Dashed line: precision of random predictor. Middle top: Total information content in BaMMs. Right: zeroth-order sequence logo of secon-order BaMM.
Insets: first-order sequence logos in region covering the TATA box (left) and the DPE and E-box motifs (right). (B) Same as (A) but for TSSs of 8709 broad
peak (BP) promoters. Correct predictions are defined to lie within 23 bp of measured TSSs. Logo insets show second- and first-order contributions. (C)
Same as (A) but for polyadenylation (pA) sites from S. cerevisiae. Correct predictions are within 5 bp of measured pA sites. Logo insets show first-order
contributions at efficiency and U-rich elements. (D) Same as (A) but for RNAP pause sites from E. coli. Correct predictions are within 0 bp of measured
pause sites.
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as high as for the zeroth-order model. Similar to NP core
promoters, the BaMM of BP core promoters represents se-
quence motifs that slightly vary in positioning and also dis-
tinct, overlapping motifs (Figure 5B, right). For instance,
the Ohler6 element (54) and the DNA recognition element
(DRE) are admixed but distinguishable in the second-order
sequence logo (left inset). Similarly, the core promoter ele-
ments Ohler1 and Ohler7 (54) are overlapping each other
but are distinguishable in higher orders (right inset).

The information density in higher orders of the NP and
BP models seems rather low, but it sums up to consider-
able sizes across the modelled region (Supplementary Fig-
ures S14 and S15). We speculate that the nucleotide depen-
dencies in our models reflect, at least in part, DNA struc-
tural properties of core promoter regions that contribute to
TSS recognition (55).

Models of RP gene core promoter sequences do not profit
from higher orders (Supplementary Figure S17A). How-
ever, despite the low number of sequence instances, even
a fifth-order BaMM is not overfit (Supplementary Figure
S18A).

Prediction of polyadenylation sites

Sequence elements around the RNAP II polyadenylation
(pA) site induce transcription termination by recruiting the
cleavage and polyadenylation machinery to the pA site. In S.
cerevisiae, 3′-end processing sequence signals were detected
in the range from roughly 70 bp upstream to 30 bp down-
stream of the pA site (56) including the UA-rich efficiency
element (EE), the A-rich positioning element (PE) and U-
rich elements.

We extracted sequences of length 401 bp around 4228 pA
sites in S. cerevisiae from 4173 unique genes using major
transcript isoform annotations (57). The training and anal-
ysis was performed analagous to the core promoter pre-
diction, using four-fold cross-validation. Training was done
on the regions from −70 to +30 bp around the pA sites
and training of the BaMM background model on the full
401 bp sequences. Testing was done on full-length 401 bp se-
quences, with true positive predictions defined to lie within
5 bp of the annotated pA site.

Again, higher-order BaMMs outperform PWM models
by a wide margin, improving the 28% precision of the PWM
model by 45% up to 40% for the second-order BaMM (Fig-
ure 5C, left and middle bottom). The second-order BaMM
comprises all known 3′-end processing elements (Figure 5C,
right). The first-order correlations are necessary to model
the EE (left inset) and the downstream T-rich region (right
inset), which is revealed to be a poly(dA:dT) tract in higher
orders (inset and Supplementary Figure S16). Again, even
models of very high order did not suffer from overtraining
(Supplementary Figure S18B).

Prediction of bacterial RNAP pause sites

Pausing of RNAP during transcription has regulatory func-
tions in RNA folding, recruitment of factors to mRNAs,
and transcription termination. Larson et al. (58) measured
RNAP pause sites in E. coli and B. subtilis using nascent
elongating transcript sequencing (NET-seq) and identified
16 and 12 bp RNAP pause sequence signatures, respectively.

We extracted sequences of length 121 bp centered at 11
648 E. coli and 6809 B. subtilis pause sites. 20 bp models
were trained on the regions from −12 to +7 bp around pause
sites, which adds 2 bp in E. coli and 4 bp in B. subtilis to ei-
ther end of the pause site motifs defined by Larson et al. The
second-order background model was trained on the entire
genome. The assessment was analogous to the TSS and pA
site predictions, using 4-fold cross-validation and defining
correct predictions as being precise within 0 bp.

The zeroth-order BaMM predicts 31% of E. coli pause
sites correctly, the first-order BaMM increases the precision
to 38%, and the second-order BaMMs to 43% (Figure 5D).
This suggests that pause sites might have a specific signature
of DNA structural properties reflected in higher-order nu-
cleotide dependencies. Off-site predictions up- and down-
stream of the pause index, e.g. at −11 bp, are presumably
caused by local similarities in the sequence features (Figure
5D, right).

Beside the GpG dinucleotide at the 5′-end of the RNA-
DNA hybrid, 10 bp upstream of the 3′-end, another distinc-
tive feature of the consensus sequence described by Larson
et al. is the occurrence of TpG or CpG at the location of the
3′-end of the nascent transcript and incoming nucleoside
triphospate. The CpG dinucleotide of the template strand
was recently shown to inhibit elongation and induce G-to-
A errors when spanning the active site of RNAP (59). Our
second-order BaMM refines this signature by revealing that
after a TpG a G is favoured, whereas CpG is more likely to
be followed by a T or C (Figure 5D, right, inset).

In B. subtilis, the precision is only about half as high as
in E. coli, but improvements through higher-order BaMMs
are more marked. The third-order BaMM reaches 21% pre-
cision, an increase of 55% over zeroth-order (Supplemen-
tary Figures S17B and S18C).

Pause site models differ substantially in all orders be-
tween the gram-negative E. coli and the gram-positive B.
subtilis, except for a GpG dinucleotide at the upstream edge
of the RNA–DNA hybrid and a pyrimidine at the down-
stream edge.

Prediction of protein–RNA binding sites

In cells,mRNAs are actively kept in a largely unfolded
state by energy-dependent processes (60). In contrast to
DNA, which forms a relatively stiff double helix, mRNAs
are therefore mostly single-stranded and extremely flexible.
This leads to profound differences in the sequence speci-
ficity of RNA- versus DNA-binding. DNA sequences sim-
ilar to the consensus sequence will usually be bound in a
very similar overall protein–DNA conformation, whereas
a single mutation from high-affinity RNA motif will usu-
ally cause the highly flexible mRNA to change its structure
quite dramatically in order to minimise the binding energy.
Such behaviour strongly violates the assumption that the
binding energy can be approximated by independent energy
contributions from each nucleotide, and it comes as no sur-
prise that PWMs are poor models for RNA binding factors
(61). We were therefore wondering whether BaMMs would
be more appropriate.

We used a dataset of binding sites of 25 mRNP biogenesis
factors from S. cerevisiae measured in vivo using PAR-CLIP
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(62,63). We extracted 25 nt sequences centered around the
crosslinked uridines of the strongest 2000 binding sites. We
randomly sampled 20 000 25 nt background sequences cen-
tered around uridines in the transcriptome of S. cerevisiae.
Our analysis of the performance to discriminate between
bound and background sequences proceeds in a way anal-
ogous to the benchmark in Figures 2 and 3.

Figure 6A shows the discriminative power of second-
order BaMMs compared to zeroth-order, PWM models.
The performance of all models is low in comparison to
DNA binders in Figure 2 when we consider that here we
used a ratio of background to positive sequences of 10:1 in-
stead of 100:1. BaMMs outperformed PWM models for all
RNA-binding proteins (P = 3 × 10−8, Wilcoxon one-sided
signed-rank test, n = 25), in two cases doubling the pAUC
values.

The most drastic improvement was seen for the SR-like
factor Hrb1 (Figure 6B). The crosslinked U at position 0
(not shown) is frequently flanked by A and G upstream and
downstream, respectively (Figure 6, middle), which are also
enriched around other RNA-binding protein crosslink sites
(Supplementary Figure S19). In the first- and second-order
logos we can discern a CUG-rich region upstream of the
crosslink site (Figure 6B, right), representing up to five suc-
cessive CUG repeats, which cannot be learned by the PWM
due to their variable positioning. Hrb1 was not known to
bind CUG-rich sequences, but our observation makes sense
in light of the fact that it contains three RRM domains just
like CELF1, which is known to bind CUG-rich ssRNAs
(64).

Nab3 profits greatly from higher orders (Figure 6C) be-
cause the Nab3 motifs UCUU and CUUG are learned to-
gether with the Nrd1 motifs UGUA and GUAG, which are
enriched near Nab3 crosslink sites (65) (Supplementary Fig-
ure S19A). A typical, very moderate gain is seen for the
Mex67 adaptor protein Yra1 (Supplementary Figure S6D
and Figure S19B).

DISCUSSION

In this study, we developed a Bayesian approach to train
inhomogeneous Markov models that uses the conditional
probabilities from lower order k − 1 as prior for order k.
The BaMMs trained with this scheme can be regarded as
a variation of interpolated Markov models. Unlike the var-
ious heuristic schemes that have been proposed for choos-
ing the interpolation weights (34–37), in our Bayesian ap-
proach we do not need to make any ad hoc choices and
merely require two hyperparameters to set the strengths of
the Bayesian priors for all model orders.

Our scheme also sidesteps the common approach of
pruning the discrete dependency graph of the Markov
model in order to limit the model’s complexity (23,31–33).
Instead, we use continuous, soft, data-driven cut-offs which
are effectively realized using Bayesian priors. We thereby
avoid the cumbersome discrete optimization of a depen-
dency graph and can make use of simple and effective opti-
mization methods. This also allowed us to develop an EM-
based algorithm for motif discovery using BaMM training.

We tested our BaMMs in a cross-validation setting
on hundreds of ENCODE ChIP-seq datasets, RNAP II

core promoter sequences and polyadenylation sites, bacte-
rial RNAP pause sites and RNA-bound sites from PAR-
CLIP measurements, using the same hyperparameters. On
all datasets, BaMMs yielded sizeable improvements, typ-
ically around 30–40% increase in precision. BaMMs of
order 5 led to a significant improvement (at significance
level 0.0625) over PWMs on 97% of the 446 ENCODE
ChIP-seq datasets, while the performance was very sim-
ilar on the remaining 3% (Figure 3C). For comparison,
the Markov models recently introduced in the JASPAR
database (TFFMs) showed significantly improved perfor-
mance on only 21% of 96 ENCODE ChIP-seq datasets (66).
Fifth-order BaMMs also showed 12% better performance
on average than first-order BaMMs on the 446 ENCODE
ChIP-seq datasets (Figures 2A and B, Supplementary Fig-
ure S21).

A strength of BaMMs is that one does not need to decide
on a case-by-case basis which order to choose, since there
is no disadvantage in always choosing a relatively high or-
der such as k = 5 or k = 8: Despite the theoretically high
number of parameters at larger orders, BaMMs never de-
teriorated in performance with increasing order k, in con-
trast to simple inhomogeneous Markov models, which were
prone to overtraining (Supplementary Figures S12, S18 and
S20). And in many cases the performance of BaMMs did
still improve up to quite high orders (see e.g. Figure 4 and
Supplementary Figure S21).

Given this success with modelling nucleotide correla-
tions, why did k-mer-based methods not clearly outper-
form PWM-based models in the DREAM5 challenge (22)?
First, whereas ChIP-seq measurements are done with full-
length transcription factors, many of which possess multiple
DNA-binding domains and binding partners, PBM mea-
surements are mostly done with single DNA binding do-
mains. Second, we think that, in contrast to ChIP-seq mea-
surements, the amount of information present in a PBM
measurement is often not enough to learn a model more
detailed than a PWM. To see why this might be the case,
we note that each 8-mer occurs 16 times and each 10-mer
occurs once on the PBMs used in (22). Due to the measure-
ment noise, usually only the affinities to 8-mers are consid-
ered, since these can be averaged over the 16 measurements.
However, for many DNA-binding domains the nucleotides
flanking the core 8-mer probably have a considerable influ-
ence on binding strength. This means that the 16 measure-
ments of each 8-mer are convoluted by the effects of the
flanking nucleotides and could therefore be too unreliable
to allow for training complex models with many parame-
ters. Another way to look at the question is this: in a PBM
measurement typically only 1% of probes, i.e. 400, are sig-
nificantly bound and will carry most of the information,
which might not be enough to estimate the (42 − 1) × 10
= 150 parameters of a first-order model reliably enough.

We developed higher-order sequence logos to visualise
the information learned in the various orders on top of what
is contained in lower orders. As illustrated in several exam-
ples, the logos could often explain the origin of the added
value in higher orders.

For transcription factors, the added value is owed to vari-
able submotif spacings, variable dimerization partners, and
DNA shape readout, neither of which can be adequately
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Figure 6. Modelling the sequence specificity of RNA binding factors is challenging but improves with higher orders. (A) Increase of prediction performance
of second- versus zeroth-order BaMMs for binding sites of 25 mRNP biogenesis factors from S. cerevisiae measured by PAR-CLIP. Dashed line: mean
fold increase. (B) Left: higher-order BaMMs lead to sizeable gains in precision and recall for predicting Hrb1 binding sites. Right: sequence logos for order
0 and 1 of second-order BaMM (central crosslinked U was removed from the zeroth-order logo). (C and D) Effect of BaMMs model order on prediction
performance for Nab3 (C) and Yra1 (D).

learned with PWMs. Variable submotif spacings could also
be learned by profile HMMs or mixtures of PWMs, how-
ever they lack flexibility to model dinucleotide preferences
due to DNA shape readout and to describe more complex
architectures with variable presence of motifs. Also, HMM
training is slow as it requires running a forward-backward
algorithm in each iteration of the EM algorithm.

Extension of the core transcription factor binding motif
by 8 bp improved fifth-order BaMMs by 19% but PWMs
by only 5%, due to the ability of higher orders to model
the DNA shape constraints around the core binding site.
Implicitly learning structural properties might work better
than explicitly including them in the model (67), since any
DNA physical property will be reflected in specific, learn-
able oligonucleotide preferences.

We tested the ability of PWMs and BaMMs trained on
ChIP-seq data to predict binding affinities for two transcrip-
tion factors measured by EMSA on datasets of sequences
near their consensus binding sequences. BaMMs improved
predictions of PWMs and a number of other methods. The
improvements are likely owed to weak sites more than a sin-
gle substitution away from the consensus. On singly mu-
tated sequences, the PWM predicted binding affinities as
well as the BaMM, while on doubly mutated sites it showed
a dismal correlation of 0.26 while the BaMM achieved 0.64
(Figure 4). Hence PWMs learn to predict mostly the high-
affinity sites correctly, as the energies of all sequences a sin-
gle mutation away from consensus can still be described
with their simple energy model, and the breakdown of the
PWM performance for doubly mutated sites reflects the
breakdown of the additivity assumption according to which
nucleotides contribute individually to the binding energy.

As low-affinity sites have been reported to be important for
the specificity and robustness of gene expression (68), im-
provements in predicting binding to weak sites will be im-
portant for quantitative modelling of transcriptional regu-
lation.

Complex, multipartite motifs profited from the flexibil-
ity of BaMMs to represent multiple submotifs at variable
spacings and strengths. This flexibility may be useful to pre-
dict binding sites of cooperatively binding transcription fac-
tors, which often prefer certain spacings and orientations
(15,69). It might prove particularly powerful for predict-
ing binding sites of factors with multiple DNA-binding do-
mains. Zinc fingers (ZnFs) comprise up to a third of hu-
man transcription factors (70) and they contain on average
10 DNA-binding domains, which might partly explain why
clearly defined motifs could be found for 8% of them (3). Al-
though the 15 ���-type ZnFs (http://v1.factorbook.org) in
our ENCODE ChIP-seq datasets improve about as much
as the other tested factors between zeroth and fifth order
(Supplementary Figure S22), the striking prediction per-
formance and specificity we observed for the fifth order
BaMM of Znf143 (Supplementary Figure S9) and a 67-bp-
long model of CTCF (Supplementary Figure S11) indicates
that the complex binding sites of some ZnF transcription
factors with multiple DNA-binding domains might be well
predictable using long BaMMs.

At present, a limitation of BaMMs in comparison to
Bayesian network models (e.g. (23,32)) is that nucleotide
dependencies are only modelled within consecutive k-mers.
Overcoming this would be useful for transcription factors
that change their binding mode depending on the sequence
and to learn complex motif architectures with correlated

http://v1.factorbook.org
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submotif occurrences, for example. It seems straightforward
to generalise the presented approach by making each po-
sition j dependent on up to k not necessarily neighbour-
ing upstream positions using a heuristic selection strategy.
Because the described EM algorithm is fast––a fifth-order
BaMM with 21 positions from 5000 sequences of 205 bp is
learned within 83 s on a single core of a 3.4 GHz Intel Core
i7-2600 CPU––we may choose a generous value k = 5 or
even higher in practice.

To further improve the performance of our BaMM-based
motif discovery tool BaMM!motif, we will learn automat-
ically from the data (i) the hyperparameters and (ii) the
model length, a nontrivial task since the changing number
of parameters precludes a simple optimization of the likeli-
hood or posterior probability. We will also (iii) develop an
efficient method to estimate the biological significance of
discovered motifs, and (iv) introduce positional priors. (v)
Since BaMM!motif ’s speed is at present limited by the seed
motif discovery code from XXmotif, we will accelerate this
code substantially. One future challenge will also be (vi) to
develop a rigorous approach that can deal with quantitative
data such as fluorescence intensities from HT-SELEX and
protein binding microarrays and peak strengths of ChIP-
seq measurements.

CONCLUSION

We have developed a Bayesian approach to train higher-
order Markov models, which automatically adapts model
complexity to the amount of available data position- and k-
mer-specifically. The BaMMs learned with this scheme were
never overtrained, even at high orders. To our knowledge
this is the first method for learning the dependency graph
among motif positions of higher-order Markov models that
does not require a-priori knowledge of motif locations and
that can hence be applied to de-novo motif discovery.

The most remarkable result of this study is the consis-
tency with which higher-order BaMMs yielded solid im-
provements across various heterogeneous datasets without
requiring parameter tuning on each dataset and without a
single case of failure. We can therefore answer affirmatively
the question of whether nucleotide correlations are signifi-
cant in transcription factor binding sites and other regula-
tory regions.

These results argue in favour of making the transition
from PWMs to BaMMs as the standard model to describe
protein–DNA binding affinities and to offer BaMM models
in databases for regulatory and binding site motifs.
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