J.-L. Martin · A. Migus G. A. Mourou · A. H. Zewail (Eds.)

Ultrafast Phenomena VIII

Proceedings of the 8th International Conference, Antibes Juan-Les-Pins, France, June 8–12, 1992

With 523 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Contents

Part I	Overview and General Prospects	
	Pulse Modelocking and Kerr-Lens Modelocking Haus (With 6 Figures)	3
By Y. Yan	Control Spectrometer n, B.E. Kohler, R.E. Gillilan, R.M. Whitnell, K.R. Wilson, kamel	8
	lotions of Proteins rplus	13
	oretical Aspects of Electron Transfer in Supermolecules ner and M. Bixon (With 3 Figures)	15
	and Time-Resolved Spectroscopy of Magneto-Excitons Chemla, J.B. Stark, and W.H. Knox (With 6 Figures)	21
_	er Harmonic Generation in Strong Laser Fields Huillier and P. Balcou (With 3 Figures)	29
QED at 10 By A.C. M	O ²⁰ W/cm ² Melissinos (With 6 Figures)	34
Part II	Elementary Dynamics: Chemistry, Biology and Physics	 }
Femtocher By A.H. Z	nistry Zewail (With 6 Figures)	43
By N.F. S	Dichroism Studies of I ₂ Predissociation in Solution cherer, L.D. Ziegler, D. Jonas, and G.R. Fleming gures)	49
Using 10 f	on of the Primary Event in Vision s Blue-Green Optical Pulses schoenlein, L.A. Peteanu, Q.W. Wang, R.A. Mathies,	
	Shank (With 3 Figures)	53

Mechanisms of Charge Separation in Bacterial Reaction Centers By M.H. Vos, F. Rappaport, JC. Lambry, C. Rischel, J. Breton, and JL. Martin (With 2 Figures)	58
Coherent Phonons in Superconducting Materials By W. Albrecht, Th. Kruse, and H. Kurz (With 3 Figures)	63
Displacive Excitation of Coherent Phonons By T.K. Cheng, J. Vidal, H.J. Zeiger, E.P. Ippen, G. Dresselhaus, and M.S. Dresselhaus (With 1 Figure)	66
Femtosecond Time-Resolved Photodissociation of Triiodide Ions in Alcohol Solution: Directly Observed Photoinduced Vibrational Coherence of Reactants and Products By U. Banin, A. Waldman, and S. Ruhman (With 4 Figures)	68
Vibrational Coherence in Charge Transfer By K. Wynne, C. Galli, P.J.F. De Rege, M.J. Therien, and R.M. Hochstrasser (With 1 Figure)	71
Ultrafast Dynamics in Solution: Wavepacket Motion and the Cage Effect in Iodine By Y. Yan, R.M. Whitnell, K.R. Wilson, and A.H. Zewail (With 1 Figure)	74
Femtosecond Time-Resolved Ionization Spectroscopy of Polyatomic Molecules By M. Seel and W. Domcke (With 1 Figure)	76
A Study of Nuclear Vibrational Wave Packets in Na ₂ by Time- and Frequency-Resolved Fluorescence Upconversion By I.A. Walmsley, T.J. Dunn, J. Sweetser, and C. Radzewicz (With 3 Figures)	78
Ultrafast Dynamics of Solid C ₆₀ By S.L. Dexheimer, D.M. Mittleman, R.W. Schoenlein, W. Vareka, XD. Xiang, A. Zettl, and C.V. Shank (With 2 Figures)	81
Femtosecond Dynamics of Molecular and Cluster Ionization and Fragmentation By T. Baumert, R. Thalweiser, V. Weiß, and G. Gerber (With 5 Figures)	83
Dephasing and Beats of Excitonic-Enhanced Transitions of J-Aggregates Measured by Femtosecond Time-Resolved Resonance CARS By V.F. Kamalov, R. Inaba, and K. Yoshihara (With 1 Figure)	87
Excited States Dynamics of the Special Pair Dimer By P.O.J. Scherer and S.F. Fischer (With 4 Figures)	89
Creation of an Anti-Wavepacket in a Rydberg Atom By L.D. Noordam, H. Stapelfeldt, D.I. Duncan, and T.F. Gallagher (With 3 Figures)	92

Squeezing of the Molecular Vibrations by Femtosecond Laser Pulses By A.V. Vinogradov and J. Janszky (With 1 Figure)	95
Part III Spectroscopy and Advances in Measurements	
Spectroscopic Applications of Phase-Locked Femtosecond Pulses By N.F. Scherer, M. Cho, L.D. Ziegler, M. Du, A. Matro, J. Cina, and G.R. Fleming (With 5 Figures)	99
Use of Piecewise Phase-Swept Pulses to Counteract Inhomogeneous Decay in Wave Packet Interferometry By L.W. Ungar, A. Matro, and J.A. Cina (With 1 Figure)	105
Ultrafast Nonlinear Spectroscopy with Chirped Optical Pulses By E.T.J. Nibbering, F. de Haan, D.A. Wiersma, and K. Duppen (With 2 Figures)	107
Multiple Excitation Pulse, Multiple Probe Pulse Femtosecond Spectroscopy By G.P. Wiederrecht, W. Wang, K.A. Nelson, A.M. Weiner, and D.E. Leaird (With 2 Figures)	110
Stimulated Emission Pumping and Selective Excitation by Adiabatic Passage with Frequency-Modulated Picosecond Laser Pulses By J.S. Melinger, A. Hariharan, S.R. Gandhi, and W.S. Warren (With 2 Figures)	113
A Subpicosecond Optical Sampling System By J.D. Kafka, J.W. Pieterse, and M.L. Watts (With 2 Figures)	116
Femtosecond Sagnac Interferometry By JC. Diels, P. Dorn, M. Lai, W. Rudolph, and X.M. Zhao (With 3 Figures)	120
Femtosecond Time-Gated Imaging of Translucent Objects Hidden in Highly Scattering Media By K.M. Yoo, B.B. Das, F. Liu, Q. Xing, and R.R. Alfano (With 2 Figures)	124
Femtosecond Waveform Processing via Spectral Holography By A.M. Weiner, D.E. Leaird, D.H. Reitze, and E.G. Paek (With 4 Figures)	128
The Chronocyclic Representation of Ultrashort Light Pulses By J. Paye (With 4 Figures)	133
Femtosecond Pulse Phase Measurement by Spectrally Resolved Up-Conversion By JP. Foing, JP. Likforman, and M. Joffre (With 3 Figures)	136 IX

Single-Shot Measurement of the Intensity and Phase of a Femtosecond Pulse By D.J. Kane and R. Trebino (With 4 Figures)	138
Two-Photon Interference Measurement of Ultrafast Laser Pulses By M. Matsuoka, Y. Miyamoto, T. Kuga, M. Baba, and Y. Li (With 2 Figures)	140
Picosecond Single-Shot Pulse-Shape Measurement by Stochastic Sampling of Detected Photon Times By N. Adams, C. Bovet, E. Rossa, and A. Simonin (With 1 Figure)	142
Integrated Devices for Single Picosecond Pulse Measurements By V. Gerbe, M. Cuzin, M.C. Gentet, and J. Lajzerowicz (With 3 Figures)	145
The C850X Ultrafast Streak Camera: An Instrument to Study Spatially and Temporally Subpicosecond Laser—Matter Interaction By A. Mens, R. Sauneuf, D. Schirmann, R. Verrecchia, P. Audebert, J.C. Gauthier, J.P. Geindre, A. Antonetti, J.P. Chambaret, G. Hamoniaux, and A. Mysyrowicz (With 2 Figures)	147
Distortion of a 6 fs Pulse in the Focus of a BK7 Lens By Zs. Bor and Z.L. Horváth (With 1 Figure)	150
Part IV Tools: Sources and Amplifiers	
Modelocking, Stabilizing, and Starting Ultrashort Pulse Lasers By E.P. Ippen (With 4 Figures)	155
17 fs Pulses from a Mode-Locked Ti:Sapphire Laser By C.P. Huang, M.T. Asaki, S. Backus, H. Nathel, H.C. Kapteyn, and M.M. Murnane (With 2 Figures)	160
Design Considerations for Femtosecond Ti:Sapphire Oscillators By Ch. Spielmann, P.F. Curley, T. Brabec, E. Wintner, A.J. Schmidt, and F. Krausz (With 3 Figures)	163
Self-Mode-Locked Cr ³⁺ :LiCaAlF ₆ and Cr ³⁺ :LiSrAlF ₆ Lasers By A. Miller, P. Li Kam Wa, B.H.T. Chai, J.M. Evans, and W. Sibbett (With 2 Figures)	166
Sub-50 fs Pulse Generation from a Self-Starting CW Passively Mode-Locked Cr:LiSrAlF ₆ Laser By N.H. Rizvi, P.M.W. French, and J.R. Taylor (With 2 Figures)	169
CW Krypton-Laser Pumped Cr ³⁺ :LiSrAlF ₆ and Cr ³⁺ :LiSr _{0.8} Ca _{0.2} AlF ₆ Crystals Produce 150 fs Mode-Locked Pulses By A. Miller, P. Li Kam Wa, H.S. Wang, S.L. Ayres, E.W. Van Stryland,	
and B.H.T. Chai (With 3 Figures)	172

By A. Seas, V. Petričević, and R.R. Alfano (With 3 Figures)	174
Femtosecond Pulses from Nd:Glass Lasers By A.J. Schmidt, M.H. Ober, M. Hofer, M.E. Fermann, F. Krausz, T. Brabec, Ch. Spielmann, and E. Wintner (With 3 Figures)	177
A Diode-Pumped Picosecond Oscillator at 1053 nm By I.P. Mercer, Z. Chang, M.R.G. Miller, C.N. Danson, C.B. Edwards, and M.H.R. Hutchinson (With 3 Figures)	182
A New Intracavity Antiresonant Semiconductor Fabry-Perot Passively Mode-Locks Nd:YLF and Nd:YAG Lasers By U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, and M.T. Asom (With 3 Figures)	184
CW Mode-Locked Singly-Resonant Optical Parametric Oscillator Pumped by a Ti:Sapphire Laser By A. Nebel, U. Socha, and R. Beigang (With 1 Figure)	187
70 fs, High-Average Power, CW Infrared Optical Parametric Oscillator By G. Mak, Q. Fu, and H.M. van Driel (With 2 Figures)	190
Femtosecond Intracavity Dispersion Measurements By W.H. Knox (With 2 Figures)	192
Time Synchronization Measurements Between Two Self-Modelocked Ti:Sapphire Lasers By D.E. Spence, W.E. Sleat, J.M. Evans, W. Sibbett, and J.D. Kafka (With 2 Figures)	194
Femtosecond Synchronous Pumping of Dye Lasers with <100 fs Jitter By W.H. Knox and F.A. Beisser (With 2 Figures)	196
Development of High Average Power Femtosecond Amplifiers Based on Ti:, Cr: and Nd:Doped Materials By J. Squier, S. Coe, G. Mourou, D. Harter, and F. Salin	198
Femtosecond Pulse Amplification and Continuum Generation at >250 kHz with a Ti:Sapphire Regenerative Amplifier By T.B. Norris (With 4 Figures)	200
Millijoule Femtosecond Pulse Amplification in Ti:Al ₂ O ₃ at Multi-kHz Repetition Rates By F. Salin, J. Squier, G. Mourou, and G. Vaillancourt (With 4 Figures)	203
High Repetition Rate CW Pumped Cr:LiSAF Regenerative Amplifier By F. Balembois, P. Georges, F. Salin, G. Roger, and A. Brun	201
(With 4 Figures)	206

18 fs Pulse Generation by a Single Excimer-Laser-Pumped Pulsed Dye Laser By P. Simon, C. Jordan, and S. Szatmari (With 2 Figures)	209
Monolithic CPM Diode Lasers By M.C. Wu, Y.K. Chen, T. Tanbun-Ek, and R.A. Logan (With 5 Figures)	211
Ultrashort Pulse Generation from High-Power Arrays Using Intracavity Nonlinearities By L.Y. Pang, J.G. Fujimoto, and E.S. Kintzer (With 3 Figures)	217
100-Gbps Response of Microcavity Lasers By H. Yokoyama, Y. Nambu, and T. Shimizu (With 2 Figures)	220
Sequential Laser Emission in Multiple Quantum Well Vertical-Cavity Structures By C. Tanguy, JL. Oudar, B. Sermage, and R. Azoulay (With 2 Figures)	222
Experimental Analysis of Gain Modulation in Sub-Picosecond (~0.45 ps) Mode-Locked Laser Diodes By N. Stelmakh, JM. Lourtioz, and D. Pascal (With 3 Figures)	224
Generation of Stable Pulse Trains with a Passively Modelocked Er-Fiber Laser By M.E. Fermann, M.J. Andrejco, Y. Silberberg, and A.M. Weiner (With 4 Figures)	227
Generation of Pairs of Solitons in an All-Fibre, Femtosecond Soliton Source By D.J. Richardson, V.V. Afanasjev, A.B. Grudinin, and D.N. Payne (With 5 Figures)	229
Nonlinear Loop Mirrors in Fiber Lasers By I.N. Duling III, C.J. Chen, P.K. Wai, and C.R. Menyuk (With 4 Figures)	232
Temporal Characteristics of the Ytterbium–Erbium Figure-8 Laser By I.Yu. Khrushchev, A.B. Grudinin, and E.M. Dianov (With 3 Figures)	235
Generation of 1.7 ps Solitons by Amplification of Pulses from a Laser Diode with Saturable Absorber in an Erbium-Doped Fibre By I.Yu. Khrushchev, A.B. Grudinin, E.M. Dianov, D.V. Kuksenkov, and E.L. Portnoy (With 3 Figures)	237
Part V High Intensity and Nonlinear Effects	
Generation of Ultra-Intense Pulses and Applications By G. Mourou (With 1 Figure)	241

By C. Rouyer, E. Mazataud, I. Allais, A. Pierre, and S. Seznec (With 2 Figures)	248
All-Solid Femtosecond Oscillator-Amplifier Laser Chain with 100 mJ per Pulse By C. Le Blanc, G. Grillon, J.P. Chambaret, G. Boyer, M. Franco, A. Mysyrowicz, and A. Antonetti (With 1 Figure)	251
Development of a High Intensity Femtosecond LiSAF Laser By M.C. Richardson, P. Beaud, B.H.T. Chai, E. Miesak, YF. Chen, and V. Yanovsky (With 2 Figures)	253
Contrasted Behaviors of Stark-Induced Resonances in Multiphoton Ionization of Krypton By E. Mevel, R. Trainham, J. Breger, G. Petite, P. Agostini, J.P. Chambaret, A. Migus, and A. Antonetti (With 1 Figure)	255
Phase-Dependent Ionization Using an Intense Two-Color Light Field By D. Schumacher, M.P. de Boer, H.G. Muller, R.R. Jones, and P.H. Bucksbaum (With 2 Figures)	257
Stabilization of Atoms in Ultra-Intense Laser Pulses: A Classical Model By A. Maquet, T. Ménis, R. Taïeb, and V. Véniard (With 1 Figure)	259
Inertially Confined Molecular Ions By M. Laberge, P. Dietrich, and P.B. Corkum (With 2 Figures)	261
A Femtosecond Lightning Rod By X.M. Zhao, C.Y. Yeh, JC. Diels, and C.Y. Wang (With 2 Figures)	264
Plasma Physics with Ultra-Short and Ultra-Intense Laser Pulses By T.W. Johnston, Y. Beaudoin, M. Chaker, C.Y. Côté, J.C. Kieffer, J.P. Matte, H. Pépin, C.Y. Chien, S. Coe, G. Mourou, and D. Umstadter (With 1 Figure)	267
X-Rays Generated by Femtosecond Laser-Produced Plasmas By J.P. Geindre, P. P. Audebert, A. Rousse, F. Falliès, J.C. Gauthier, A. Mysyrowicz, G. Grillon, J.P. Chambaret, A. Antonetti, A. Mens, R. Verrecchia, R. Sauneuf, and P. Schirman (With 2 Figures)	272
K-Shell Emission from 100 fs Laser-Produced Plasmas Created from Porous Aluminum Targets By R. Shepherd, D. Price, B. White, S. Gordan, A. Osterheld, R. Walling, D. Slaughter, and R. Stewart (With 2 Figures)	275
Kilovolt X-Ray Emission from Femtosecond Laser-Produced Plasmas By G. Jenke, H. Schüler, T. Engers, D. von der Linde, I. Uschmann, E. Förster, and K. Gäbel (With 1 Figure)	278

Ultrafast Spectroscopy of Plasmas Generated by Superintense Femtosecond Laser Pulses By D. von der Linde, H. Schüler, H. Schulz, and T. Engers (With 3 Figures)	280
Picosecond Soft-X-Ray Pulse Length Measurement by Pump-Probe Absorption Spectroscopy By M.H. Sher, U. Mohideen, H.W.K. Tom, O.R. Wood II, G.D. Aumiller, D.L. Windt, W.K. Waskiewicz, J. Sugar, T.J. McIlrath, and R.R. Freeman (With 4 Figures)	283
Photon Acceleration via Laser-Produced Ionization Fronts By R.L. Savage Jr., R.P. Brogle, W.B. Mori, and C. Joshi (With 5 Figures)	286
Propagation of Intense Laser Pulses in Plasmas By E. Esarey, P. Sprangle, J. Krall, and G. Joyce (With 1 Figure)	290
Ponderomotive Steepening in Short-Scale-Length Laser-Plasmas By D. Umstadter and X. Liu (With 2 Figures)	293
Possibility of Experimental Studies of Nonlinear Quantum Electrodynamics Effects Using High Power Ultrashort Laser Pulses By P.G. Kryukov (With 1 Figure)	296
Soliton-Like Self-Trapping of Three-Dimensional Patterns By A. Barthelemy, C. Froehly, M. Shalaby, P. Donnat, J. Paye, and A. Migus (With 9 Figures)	299
Physical Origins of the Spectral Continuum: Self-Focusing, Self-Trapping and Cerenkov Radiation By F. Salin, J. Watson, JF. Cormier, P. Georges, and A. Brun (With 2 Figures)	306
Diffraction and Focussing of Spectral Energy in a Two-Photon Process By B. Broers, L.D. Noordam, and H.B. van Linden van den Heuvell (With 3 Figures)	309
Efficient Raman Conversion of Femtosecond UV Light Pulses By K.A. Stankov and YW. Lee (With 1 Figure)	311
Organic Crystalline Fiber for Efficient Compression of Femtosecond Laser Pulses By M. Yamashita (With 1 Figure)	313
Nonlinear Temporal Diffraction in Optical Fibers By G.R. Boyer, M.K. Jackson, J. Paye, M.A. Franco, and A. Mysyrowicz (With 3 Figures)	315
Generation of a Soliton Pulse Train in an Optical Fibre Using Two CW Single-Frequency Diode Lasers By S.V. Chernikov, J.R. Taylor, P.V. Mamyshev, and E.M. Dianov (With 2 Figures)	318
XIV	

By Ph. Emplit, JP. Hamaide, and M. Haelterman (With 3 Figures)	320
Femtosecond Pulse Propagation in Erbium-Doped Single-Mode Fibers By J.M. Hickmann, A.S.L. Gomes, C.B. de Araújo, and A.S. Gouveia-Neto (With 3 Figures)	323
Compression of Pulses from Soliton Fibre Lasers in a Dispersion-Decreasing Fibre By S.V. Chernikov, D.J. Richardson, E.M. Dianov, and D.N. Payne (With 4 Figures)	325
Part VI Metals, Surfaces and Materials	
Observation of the Thermalization of Electrons in a Metal Excited by Femtosecond Optical Pulses By W.S. Fann, R. Storz, H.W.K. Tom, and J. Bokor (With 2 Figures)	331
Femtosecond Thermionic Emission: Experiment, Analytical Theory, and Particle Simulations By M.C. Downer, D.M. Riffe, X.Y. Wang, J.L. Erskine, D.L. Fisher, T. Tajima, and R.M. More (With 2 Figures)	335
Electron-Electron Dynamics Observed in Femtosecond Thermoreflection Measurements on Noble Metals By R.H.M. Groeneveld, R. Sprik, and Ad. Lagendijk (With 2 Figures)	338
Inversion of Single- and Two-Photon Photoelectric Sensitivities of Metals in the Femtosecond Range By J.P. Girardeau-Montaut, C. Girardeau-Montaut, S.D. Moustaïzis, and C. Fotakis (With 1 Figure)	340
Femtosecond Relaxation of Plasma Excitations in Silver Films By R.A. Höpfel, D. Steinmüller-Nethl, F.R. Aussenegg, and A. Leitner (With 3 Figures)	342
Femtosecond Free Induction Decay of Metal Surface Adsorbate Vibrations By J.C. Owrutsky, J.P. Culver, M. Li, Y.R. Kim, M.J. Sarisky, M.S. Yeganeh, R.M. Hochstrasser, and A.G. Yodh (With 1 Figure)	345
Observation of Laser-Induced Desorption of CO from Cu(111) with 100 fs Time-Resolution By J.A. Prybyla, H.W.K. Tom, and G.D. Aumiller (With 2 Figures)	347
Femtosecond Desorption of Molecular Oxygen from Pt(111) By FJ. Kao, D.G. Busch, D. Gomes da Costa, D. Cohen, and W. Ho (With 1 Figure)	350

Femtosecond Carrier Dynamics in Solid C ₆₀ Films By S.D. Brorson, M.K. Kelly, U. Wenschuh, R. Buhleier, and J. Kuhl (With 4 Figures)	354
The Role of Covalency in Femtosecond Time-Resolved Reflectivity of Hydrodynamically Expanding Solid Surfaces By X.Y. Wang, H.Y. Ahn, and M.C. Downer (With 1 Figure)	357
Ultrafast Formation Processes of Self-Trapped Excitons in Alkali Iodide Crystals under Band-to-Band Excitation By T. Tokizaki, S. Iwai, T. Shibata, A. Nakamura, K. Tanimura, and N. Itoh (With 2 Figures)	360
Femtosecond Self-Trapping of Interacting Electron–Hole Pairs in α -SiO ₂ By W. Joosen, S. Guizard, P. Martin, G. Petite, P. Agostini, A. Dos Santos, G. Grillon, J.P. Chambaret, D. Hulin, A. Migus, and A. Antonetti (With 4 Figures)	362
Ultrafast Soft Mode Dynamics in Ferroelectric Crystals By G.P. Wiederrecht, T.P. Dougherty, and K.A. Nelson (With 3 Figures)	365
Temporal Domain Study of the Phase Transition in PbTiO ₃ : A ₁ Symmetry Investigation By D.P. Kien, J.C. Loulergue, and J. Etchepare (With 2 Figures)	368
Femtosecond Transient Absorption Measurements on Low Band Gap Thiophene Polymers By A. Cybo-Ottoné, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, G. Zerbi, and R. Tubino (With 2 Figures)	370
Effects of Crosslinking in Host Polymer on Picosecond Optical Dephasing of Doped Dye Molecules By S. Nakanishi, S. Fujiwara, M. Kawase, and H. Itoh (With 3 Figures)	372
Ultrafast Relaxation of Exciton and Soliton-Antisoliton Pair in One-Dimensional Conjugated Polymers By T. Kobayashi, M. Yoshizawa, S. Takeuchi, and A. Yasuda (With 2 Figures)	376
Polarization-Dependent Femtosecond Dynamics of MBE-Grown Phthalocyanine Organic Thin Films By Sandalphon, V.S. Williams, K. Meissner, N.R. Armstrong, and N. Peyghambarian (With 3 Figures)	379
Detection of a New Strongly-Coupled Vibration Mode During the Exciton Bleaching of Polydiacetylene By J.M. Nunzi, C. Hirlimann, and J.F. Morhange (With 1 Figure)	381

Pressure-Induced Vibrational Relaxation and Electronic Dephasing in Molecular Crystals By E.L. Chronister and R.A. Crowell (With 3 Figures)	384
Ultrafast Reversible Phase Changes for Optical Recording By J. Solís, C.N. Afonso, F. Catalina, and C. Kalpouzos (With 1 Figure)	387
Picosecond Transient Absorption and Fluorescence Emission Studies of C_{60} and C_{70} in Solution By D. Kim, Y.D. Suh, S.K. Kim, and M. Lee (With 2 Figures)	389
Part VII Semiconductors, Confinement and Opto-Electronics	
Transient Absorption-Edge Singularities in GaAs By D. Hulin, JP. Foing, M. Joffre, M.K. Jackson, JL. Oudar, C. Tanguy, and M. Combescot (With 3 Figures)	395
Nonthermal Distribution of Electrons in GaAs By D. Snoke and W.W. Rühle (With 1 Figure)	399
Femtosecond Carrier-Carrier Interaction in GaAs By T. Gong, K.B. Ucer, L.X. Zheng, G.W. Wicks, J.F. Young, P.J. Kelly, and P.M. Fauchet (With 4 Figures)	402
Quantum Beats versus Polarization Interference: An Experimental Distinction By M. Koch, J. Feldmann, G. von Plessen, E.O. Göbel, P. Thomas, and K. Köhler (With 1 Figure)	405
Plasmon-Phonon Coupling and Hot Carrier Relaxation in GaAs and Low-Temperature-Grown GaAs By R.I. Devlen, J. Kuhl, and K. Ploog (With 2 Figures)	408
Femtosecond Carrier-Carrier Interaction Dynamics in Doped GaAs By T. Furuta and A. Yoshii (With 1 Figure)	410
Femtosecond Carrier Kinetics in Low-Temperature-Grown GaAs By X.Q. Zhou, H.M. van Driel, A.P. Heberle, W.W. Rühle, and K. Ploog (With 2 Figures)	412
Transient Anisotropic Luminescence and Long-Living Polarization of an Optically Excited Dense Electron–Hole Plasma By A.L. Ivanov and H. Haug (With 2 Figures)	414
Hot Hole Capture by Shallow Acceptors in p-Type GaAs Studied by Picosecond Infrared Spectroscopy By A. Lohner, M. Woerner, T. Elsaesser, and W. Kaiser	
(With 2 Figures)	416

Ultrafast Dephasing and Interference of Coherent Phonons in GaAs By W. Kütt, T. Pfeifer, T. Dekorsy, and H. Kurz (With 2 Figures)	418
Femtosecond, Electronically-Induced Disordering of GaAs By JK. Wang, Y. Siegal, P.N. Saeta, N. Bloembergen, and E. Mazur (With 2 Figures)	420
Laser-Induced Ultrafast Order-Disorder Transitions in Semiconductors By K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde (With 1 Figure)	422
Femtosecond Carrier Dynamics in InGaAsP Optical Amplifiers By J. Mark and J. Mørk (With 1 Figure)	424
Ultrafast Nonlinear Refraction in Semiconductor Laser Amplifiers By M. Sheik-Bahae and E.W. Van Stryland (With 3 Figures)	426
Femtosecond Luminescence Spectroscopy of Indium Phosphide By E. Fazio and G.M. Gale (With 2 Figures)	429
Dynamics of Excitons Probed by Accumulated Photon Echo By T. Bouma, P. Vledder, and J.I. Dijkhuis (With 1 Figure)	431
Time-Resolved Measurement of Hot Carrier Cooling Rates in a-Si:H and a-Ge:H By M. Wraback and J. Tauc (With 2 Figures)	433
Dephasing of the Short Exciton-Polariton Pulses in Polar Semiconductors: The Cuprous Chloride Case By F. Vallée, F. Bogani, and C. Flytzanis (With 3 Figures)	435
Femtosecond Electronic Dynamics of CdSe Nanocrystals By C.V. Shank, R.W. Schoenlein, D.M. Mittleman, J.J. Shiang, and A.P. Alivisatos (With 4 Figures)	438
Quantum Beats Spectroscopy of Exciton Spin Dynamics in GaAs Heterostructures By S. Bar-Ad and I. Bar-Joseph (With 3 Figures)	443
Evidence of Slow Hole Spin Relaxation in n-Modulation Doped GaAs/AlGaAs Quantum Well Structures By Ph. Roussignol, P. Rolland, R. Ferreira, C. Delalande, G. Bastard, A. Vinattieri, J. Martinez-Pastor, L. Carraresi, M. Colocci, J.F. Palmier, and B. Etienne (With 1 Figure)	446
Femtosecond Time-Resolved Four-Wave Mixing in GaAs Quantum Wells By D.S. Kim, J. Shah, T.C. Damen, J.E. Cunningham, W. Schäfer, and S. Schmitt-Rink (With 4 Figures)	448
Exciton Radiative Lifetimes in GaAs Quantum Wells By R. Eccleston, J. Kuhl, W.W. Rühle, and K. Ploog	451
(With 2 Figures)	401

in a Semiconductor Superlattice By J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunningham, T. Meier, G. von Plessen, P. Thomas, and S. Schmitt-Rink (With 5 Figures)	454
Coherent Pulse Breakup in Femtosecond Pulse Propagation in Semiconductors By P.A. Harten, A. Knorr, S.G. Lee, R. Jin, F. Brown de Colstoun, E.M. Wright, G. Khitrova, H.M. Gibbs, S.W. Koch, and N. Peyghambarian (With 1 Figure)	458
Absorption Saturation of the Urbach's Tail in Multiple Quantum Wells By R. Raj, B.G. Sfez, D. Pellat, and J.L. Oudar (With 2 Figures)	460
Photon Echo Polarisation Rules in GaAs Quantum Wells By R. Eccleston, D. Bennhardt, J. Kuhl, P. Thomas, and K. Ploog (With 3 Figures)	463
Observation of Many-Body Effects in the Femtosecond Temporal Profile of Quasi-2D Exciton Free-Induction Decay By S. Weiss, MA. Mycek, JY. Bigot, S. Schmitt-Rink, and D.S. Chemla (With 3 Figures)	466
Radiative Recombination of Free Excitons in GaAs Quantum Wells By B. Sermage, K. Satzke, C. Dumas, N. Roy, B. Deveaud, F. Clerot, and D.S. Katzer (With 4 Figures)	472
Field-Enhanced GaAs/AlGaAs Waveguide Saturable Absorbers By J.R. Karin, D.J. Derickson, R.J. Helkey, J.E. Bowers, and R.L. Thornton (With 2 Figures)	475
Picosecond Excitonic Nonlinearities in the Presence of Disorder By S.T. Cundiff and D.G. Steel (With 3 Figures)	478
Fast Optical Nonlinearities in Semiconductor Quantum Dots By G. Tamulaitis, R. Baltramiejūnas, S. Pakalnis, and A.I. Ekimov (With 2 Figures)	482
Terahertz Radiation from Coherent Electron Oscillations in a Double-Quantum-Well Structure By H.G. Roskos, M.C. Nuss, J. Shah, K. Leo, D.A.B. Miller, S. Schmitt-Rink, and K. Köhler (With 3 Figures)	484
Optical Generation of Terahertz Pulses from Polarized Excitons in Quantum Wells By P.C.M. Planken and M.C. Nuss (With 3 Figures)	487
Generation of High-Power Single-Cycle Picosecond Radiation By D.R. Dykaar, R.R. Jones, D. You, D. Schumacher, and P.H. Bucksbaum (With 3 Figures)	490

From the Ballistic to the Quasi-Equilibrium Regime By W. Sha, J. Rhee, and T.B. Norris (With 4 Figures)	493
A Novel Free-Standing Absolute-Voltage Probe with 2.3-Picosecond Resolution and 1-Microvolt Sensitivity By J. Kim, S. Williamson, J. Nees, and S. Wakana (With 3 Figures)	496
Picosecond Pseudomorphic AlGaAs/InGaAs MODFET Large-Signal Switching Measured by Electro-Optic Sampling By M.K. Jackson, M.Y. Frankel, J.F. Whitaker, G.A. Mourou, D. Hulin, A. Antonetti, M. Van Hove, W. De Raedt, P. Crozat, and H. Hafdallah (With 3 Figures)	500
Ultrafast Decay of Photodiffractive Gratings in Hetero n-i-p-i's by Enhanced In-Plane Transport By A.L. Smirl, D.S. McCallum, A.N. Cartwright, X.R. Huang, T.F. Boggess, and T.C. Hasenberg (With 2 Figures)	503
Picosecond High-Sensitivity In _x Ga _{1-x} As Photodetectors By S. Gupta, J.F. Whitaker, S.L. Williamson, P. Ho, J.S. Mazurowski, and J.M. Ballingall (With 2 Figures)	505
An Ultrafast Polarization-Independent All-Optical Demultiplexer Utilizing Induced-Frequency Shift By T. Morioka, K. Mori, and M. Saruwatari (With 2 Figures)	508
Electrical Soliton Devices as >100 GHz Signal Sources By E. Carman, M. Case, M. Kamegawa, R. Yu, K. Giboney, and M. Rodwell (With 2 Figures)	511
Determination of Photonic Band Gaps and Dispersion in Two-Dimensional Dielectric Arrays with Ultrafast Electromagnetic Transients By W.M. Robertson, G. Arjavalingam, R.D. Meade, K.D. Brommer, A.M. Rappe, and J.D. Joannopoulos (With 2 Figures)	513
Part VIII Biology: Primary Dynamics, Electron and Energy Transfer	
Ultrafast Infrared Spectroscopy of Protein Dynamics By R.M. Hochstrasser, R. Diller, S. Maiti, T. Lian, B. Locke, C. Moser, P.L. Dutton, B.R. Cowen, and G.C. Walker (With 5 Figures)	517
Ultrafast Near-IR Spectroscopy of Carbonmonoxymyoglobin: The Dynamics of Protein Relaxation By M. Lim, T.A. Jackson, and P.A. Anfinrud (With 4 Figures)	522

By R.J.D. Miller, J. Deak, S. Palese, M. Pereira, L. Richard, and L. Schilling (With 2 Figures)	525
Investigation of the Reaction Coordinate for Ligand Rebinding in Photoexcited Hemeproteins Using Transient Raman Spectroscopy By H. Zhu, R. Lingle, Jr., X. Xu, and J.B. Hopkins (With 2 Figures)	528
Resonance Raman Studies of Electronic and Vibrational Relaxation Dynamics in Heme Proteins By P.M. Champion, J.T. Sage, and P. Li	533
Molecular Processes in the Primary Reaction of Photosynthetic Reaction Centers By W. Zinth, C. Lauterwasser, U. Finkele, P. Hamm, S. Schmidt, and W. Kaiser (With 3 Figures)	535
Femtosecond Spontaneous Emission Studies of Photosynthetiic Bacterial Reaction Centers By S.J. Rosenthal, M. Du, X. Xie, T.J. DiMagno, M.E. Schmidt, J.R. Norris, and G.R. Fleming (With 1 Figure)	539
Subpicosecond Emission Studies of Bacterial Reaction Centers By P. Hamm and W. Zinth (With 1 Figure) Picosecond Fluorescence Kinetics of Purple Bacterial Reaction Centers By M.G. Müller, K. Griebenow, and A.R. Holzwarth (With 2 Figures)	541 543
Primary Radical Pair Formation in Photosystem-Two Reaction Centres By D.R. Klug, J.R. Durrant, G. Hastings, Q. Hong, D.M. Joseph, J. Barber, and G. Porter (With 3 Figures)	546
Energy Transfer and Primary Charge Separation in Heliobacteria by Picosecond Transient Absorption Spectroscopy By P.I. van Noort, T.J. Aartsma, and J. Amesz (With 3 Figures)	549
Excitation Energy Transfer in Mutants of <i>Rb. sphaeroides</i> : The Effects of Changes in the Core Antenna Size By L.M.P. Beekman, R.W. Visschers, K.J. Visscher, B. Althuis, W. Barz, D. Oesterhelt, V. Sundström, and R. van Grondelle	550
(With 3 Figures) Femtosecond Excitation Transfer in Allophycocyanin By A.V. Sharkov, E.V. Khoroshilov, I.V. Kryukov, P.G. Kryukov, T. Gillbro, R. Fischer, and H. Scheer (With 1 Figure)	552555
Femtosecond Förster Energy Transfer over 20 Å in Phycoerythrocyanin (PEC) Trimers By L.O. Palsson, T. Gillbro, A. Sharkov, R. Fischer, and H. Scheer (With 1 Figure)	557

Ultrafast Energy Transfer Within the Light-Harvesting Antenna of Photosynthetic Purple Bacteria By K.J. Visscher, V. Gulbinas, R.J. Cogdell, R. van Grondelle, and V. Sundström (With 2 Figures)					
Femtosecond Dynamics in Rhodopsin By T. Kobayashi, M. Taiji, K. Bryl, M. Nakagawa, and M. Tsuda (With 2 Figures)	562				
Subpicosecond Time-Resolved Spectroscopy of Halorhodopsin and Comparison with Bacteriorhodopsin By H. Kandori, K. Yoshihara, H. Tomioka, H. Sasabe, and Y. Shichida (With 3 Figures)	566				
Part IX Chemistry: Electron and Energy Transfer, and Solvation Dynamics					
Femtosecond Intermolecular Electron Transfer: Dye in Weakly Polar Electron-Donating Solvent By K. Yoshihara, A. Yartsev, Y. Nagasawa, H. Kandori, A. Douhal, and K. Kemnitz (With 3 Figures)	571				
Ultrafast Studies and Simulations on Direct Photoinduced Electron Transfer in the Betaines By A.E. Johnson, N.E. Levinger, G.C. Walker, and P.F. Barbara (With 3 Figures)	576				
Picosecond Infrared Study of Ultrafast Electron Transfer and Vibrational Energy Relaxation in [(NC) ₅ RU ^{II} CNRu ^{III} (NH ₃) ₅] ¹⁻ By P.O. Stoutland, S.K. Doorn, R.B. Dyer, and W.H. Woodruff (With 1 Figure)	579				
Ultrafast Studies on Intervalence Charge Transfer By K. Tominaga, D.A.V. Kliner, J.T. Hupp, and P.F. Barbara (With 1 Figure)	582				
Picosecond Infrared Study of Intramolecular Energy Transfer in [(phen)(CO) ₃ Re ^I (NC)Ru ^{II} (CN)(bpy) ₂] ⁺ By R.B. Dyer, K.A. Peterson, K.C. Gordon, W.H. Woodruff, J.R. Schoonover, T.J. Meyer, and C.A. Bignozzi (With 1 Figure)	585				
Noise-Induced Intramolecular Electron Transfer Processes in Polar Media By P.O.J. Scherer	587				
Femtosecond Proton Transfer in the Electronic Ground State of Vibrationally Hot Molecules By T. Elsaesser, W. Frey, and M.T. Portella (With 2 Figures)	589				

Solvent Effects on the Fast Proton Transfer of 3-Hydroxyflavone By B.J. Schwarz, L.A. Peteanu, and C.B. Harris (With 3 Figures)	592
Time-Resolved Charge Separation in Acceptor-Substituted Anthrylpolyenes By H. Port, G. Quapil, H.C. Wolf, F. Effenberger, CP. Niesert, R. Buhleier, Z. Gogolak, and J. Kuhl (With 2 Figures)	596
Vibrationally Unrelaxed cis-Stilbene Photoproducts Examined Through Two-Color UV Pump-Probe Anti-Stokes Raman Spectroscopy By D.L. Phillips, JM. Rodier, and A.B. Myers (With 4 Figures)	598
Vibrational Energy Redistribution and Relaxation in the Photoisomerization of cis-Stilbene By R.J. Sension, S.T. Repinec, A.Z. Szarka, and R.M. Hochstrasser (With 2 Figures)	601
Photoisomerization of cis-Stilbene in Compressed Solvents By L. Nikowa, D. Schwarzer, J. Troe, and J. Schroeder (With 2 Figures)	603
Ultrafast Torsional Dynamics in Adsorbates: An SSHG Study By M.J.E. Morgenthaler and S.R. Meech (With 1 Figure)	606
Barrierless Photochemical Isomerization By U. Åberg, E. Åkesson, I. Fedchenia, and V. Sundström (With 2 Figures)	608
Femtosecond Molecular Dynamics in Liquids By D.A. Wiersma, E.T.J. Nibbering, and K. Duppen (With 4 Figures)	611
Femtosecond Solvent Dynamics Studied by Time-Resolved Fluorescence and Transient Birefringence By S.J. Rosenthal, N.F. Scherer, M. Cho, X. Xie, M.E. Schmidt, and G.R. Fleming (With 2 Figures)	616
Adiabatic and Nonadiabatic Effects in Solvation Dynamics By E. Neria and A. Nitzan (With 1 Figure)	618
Excited-State Processes of 7-Azaindole By M. Négrerie, F. Gai, JC. Lambry, JL. Martin, and J.W. Petrich (With 1 Figure)	621
Excited-State Proton Transfer and Hydrogen-Bonding Dynamics in 7-Azaindole: Time-Resolved Fluorescence and Computer Simulation By C.F. Chapman, T.J. Marrone, R.S. Moog, and M. Maroncelli	624
Transient Hole Burning Studies of Electronic State Solvation: Phonon and Structural Contributions By J. Yu. J.T. Fourkas, and M. Berg (With 2 Figures)	626

Subpicosecond Study of the Dynamic Processes in Push-Pull Styrenes and the Role of Solvation By P. Hébert, G. Baldacchino, T. Gustavsson, V. Kabelka, P. Baldeck, and JC. Mialocq (With 3 Figures)	28
Picosecond Studies of Charge Transfer States in "Push-Pull" Linear Diphenyl Polyenes: Experimental Evidence for TICT and Bicimer States By J.M. Viallet, F. Dupuy, R. Lapouyade, W.Q. Zheng, and C. Rullière (With 2 Figures)	31
Features of the Dual Fluorescence of 4-N,N-dialkylaminoalkylbenzoates in Alkanes By M.C.C. de Lange, D.T. Leeson, A.H. Huizer, and C.A.G.O. Varma (With 1 Figure)	34
Investigation of Fast Relaxation Processes in Non-Fluorescent Rhodamine Dyes By P. Plaza, N.D. Hung, M.M. Martin, Y.H. Meyer, and W. Rettig (With 1 Figure)	36
	38
	41
Dynamics of Molecular Rotation at the Air/Water Interface by Time-Resolved Second-Harmonic Generation By A. Castro, D. Zhang, and K.B. Eisenthal (With 5 Figures) 64	44
Energy Relaxation and Redistribution in Large Molecules in Solution on Ultrafast Time Scales By C.B. Harris, J.C. King, K.E. Schultz, B.J. Schwartz, and J.Z. Zhang (With 2 Figures)	50
Photodissociation and Recombination Dynamics of I ₂ in Solution By J.C. Alfano, D.A.V. Kliner, A.E. Johnson, N.E. Levinger, and P.F. Barbara (With 3 Figures)	53
Probing the Microscopic Molecular Environment in Liquids with Femtosecond Fourier-Transform Raman Spectroscopy By D. McMorrow, S.K. Kim, J.S. Melinger, and W.T. Lotshaw (With 3 Figures)	56
The Homogeneity of Liquid Phase Vibrational Line Broadening from Raman Echo Experiments By L.J. Muller, D. Vanden Bout, and M. Berg (With 2 Figures) 65	58

Index of Contributors	671
Fast Processes in Liquid Alkane Photolysis Above the Ionization Threshold By M. Sander, U. Brummund, K. Luther, and J. Troe (With 1 Figure)	669
Dynamics and Mechanism of Cu-Porphyrin Triplet Quenching Through Liganding by Oxygen-Containing Solvents By V.S. Chirvony and R. Gadonas	667
Bimolecular Reactions are Power-Full By A. Masad, S.Y. Goldberg, D. Huppert, and N. Agmon (With 4 Figures)	664
Excited State Photoreactions of Chlorine Dioxide in Solution By R.C. Dunn and J.D. Simon (With 2 Figures)	661

Subpicosecond Emission Studies of Bacterial Reaction Centers

P. Hamm and W. Zinth

Institut für medizinische Optik der Ludwig-Maximilians-Universität München, Barbarastr. 16, W-8000 München, Fed. Rep. of Germany

The emission of the electronically excited state of the special pair in the reaction centers of the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides R26.1 and several mutants was observed by upconversion. In all samples, a biexponential decay of the fluorescence emission was observed.

In the primary photosynthetic reaction energy is stored by a charge transfer across a membrane bound pigment protein complex called reaction center (RC). The x-ray structure analysis of RC's from Rb. sphaeroides has shown that the electron carrying pigments are arranged in two branches (A and B) related by an approximate C2-symmetry. It is known that the electron uses predominantly the A branch. By transient absorbance measurements 3 kinetic components were found which could be associated with a sequential reaction model. After electronical excitation of the special pair (P) by a photon the electron is transfered via a bacteriochlorophyll monomer (BA) in 3.5 ps to a bacteriopheophytin (HA) in 0.9 ps, and finally to a quinone (QA) in 200 ps.

In order to get new and independent information on the first reaction step we investigated fluorescence emission of the electronically excited state P*. We present data on native RC's from Rb. sphaeroides and from mutants where the tyrosine at position M210 and the phenylalanine L181 were exchanged. In detail, we have investigated (YM210→F), (FL181→Y), and (YM210→F,FL181→Y). The mutations were at symmetry related positions between the special pair and chlorophyll monomer on each branch.

The experiments were based on a femtosecond near infrared laser-amplifier system operating at a repetition rate of 10 Hz. Exitation was performed at a wavelength of 865nm. The fluorescence light at a wavelength of 920 nm was upconverted in a 1mm thick BBO crystal. Uncritical collinear Type II phasematching was used. The time resolution was approximately 400 fs.

The transient absorbance measurements on native RC's in the spectral region of stimulated emission indicated that P^* decays monoexponentially with a time constant of 3.5ps. The results of the emission experiments are plotted in Fig. 1. No data trace follows a monoexponential decay. However, the measurements can be explained well by a biexponential model function with time constants of 2ps-6ps for a faster component and 7ps-26ps for the slower component. The values of the time constants $(\tau 1, \tau 2)$ and the amplitude ratios (A2/A1) are summarized in Table 1.

No other fast time constant is required to explain the experimental data; e.g. the 0.9 ps kinetic component which was observed by transient absorbance measurements in the spectral region of the absorption bands of BA is not observed in the emission experiment. On the other hand one would expect the 0.9 ps kinetic if it reflects an energy relaxation process within P^* . Therefore our finding supports the stepwise electron transfer model where the 0.9 ps kinetic is related to the transfer step from BA to HA.

Within the scope of nonadiabatic electron transfer theory the observation of an additional time constant (the 3.5ps kinetic splits into two kinetics) indicates that a new intermediate state has to be considered. Although we can not finally rule out other

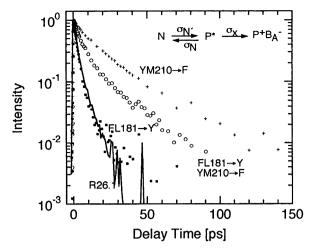


Fig.1: The emission experiments on RC's of R26.1 and of the mutants (YM210 \rightarrow F), (FL181 \rightarrow Y), and (YM210 \rightarrow F,FL181 \rightarrow Y).

Table 1:

	τ ₁ [ps]	τ ₂ [ps]	A ₂ /A ₁	$1/\sigma_{\mathbf{x}}$ [ps]	1/σ _N [ps]	$1/\sigma_{\mathbf{N}}$, [ps]
R26.1	2.3	7	0.25	3.2	13	4.8
YM210→F	6.1	26	1.37	18	29	9.0
FL181→Y	2.1	15	0.06	2.8	10	11
YM210→F,FL181→Y	3.5	18	0.59	8.8	11	7.1

reaction models we want to focus on the model which is shown as an insert in Fig 1. The model contains a "parking state" N coupled to P^* . The reaction rates σ_x , σ_N , and σ_N can be evaluated directly from the measured time constants and amplitude ratios and are summarized in Table 1. It can be seen, that a replacement of a phenylalanine by a tyrosine tends to speed up the reaction into the direction of the branch where the tyrosine is introduced.

A reevaluation of our former absorbance measurements taking into account the time constants given above allows us to compute the spectral properties of state N to be similar to those expected for a P⁺B⁻ state. This leads to the conclusion, that the "parking state" N may be P⁺BB⁻ were the electron is transiently brought on the inactive, the B branch.

Acknowledgement: The experiments were performed in collaboration with W.Kaiser, H.Scheer, D.Oesterhelt and K.Gray