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Summary

Stroke causes 5.7 million deaths annually. This ranks
stroke as the second most common cause of death and, ad-
ditionally, it is a major cause of disability. Because of an
ageing population, stroke incidence and costs will greatly
increase in the future. This makes stroke an ongoing social
and economic burden, in contrast to the only very limited
therapeutic options. In the last decade vast sums were spent
on translational research focused on neuroprotective
strategies in the acute phase of ischaemic stroke. A plethora
of candidate agents were tested in experimental models
and preclinical studies, but none was proven effective in
clinical trials. This gave rise to discussions about the pos-
sible reasons for this failure, ending up mainly with criti-
cism of methodological aspects of the preclinical and clin-
ical studies, or of the relevance of animal studies in drug
development. Indeed, the question could rather be wheth-
er neuroprotection is the right target for successful stroke
treatment. In this context, a paradigm change can currently
be observed: the focus of experimental and translational
stroke research is shifting from early neuroprotection to
delayed mechanisms such as stroke-associated comorbidit-
ies, regeneration and plasticity. In this review we highlight
a few recently emerging fields in translational stroke re-
search. One such topic is the crosstalk between immunity
and the injured brain as key pathomechanism in stroke. On
one hand, innate and adaptive immune cells play an im-
portant role in the fate of injured brain tissue after stroke;
on the other, peripheral immune alterations are critically in-
volved in post-stroke comorbidities. Another emerging re-
search area is the analysis of mechanisms involved in re-
generation and neuronal plasticity after stroke. Here, we
discuss the current understanding of basic mechanisms in-
volved after brain injury, clinical imaging approaches and
therapeutic strategies to promote regeneration in stroke pa-
tients.
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Status quo – stroke

Annually, about 16 million first-ever strokes occur world-
wide, causing a total of 5.7 million deaths [1]. As a con-
sequence, stroke ranks as the second cause of death in the
world population after ischaemic heart disease. Moreover,
stroke is a global epidemic: about 85% of all stroke deaths
are registered in low- and middle-income countries [2].
In 2002, stroke was the sixth most common reason for
reduced disability-adjusted life-years [3]. In the United
States, the total direct and indirect cost for stroke was es-
timated at $ 65.5 billion in 2008 [4]. In all 27 European
Union countries the overall costs were estimated € 27 bil-
lion in 2008 (European cardiovascular disease statistics
2008). A further increase in stroke incidence and costs can
be expected simply as a result of population aging.
Although stroke places such an enormous medical and eco-
nomic burden on society, thrombolysis with tissue plas-
minogen activator and mechanical vascular recanalisation
are currently the only clinically approved therapies for
ischaemic stroke. Moreover, there are well known limit-
ations, including a narrow time window, coagulation ab-
normalities, intracranial haemorrhage and a list of further
contraindications, which make these therapeutic options
accessible only to a small percentage of stroke patients [5].
Therefore, prognosis for patients remains poor and the ne-
cessity for effective stroke treatment remains an urgent pri-
ority. For more than two decades, translational stroke re-
search focused on neuroprotective strategies in the acute
phase of ischaemic stroke. More than 1000 neuroprotective
compounds have been tested in rodent models with the
aim to improve stroke outcome [6]. Early mechanisms of
neuronal damage like excitotoxicity, production of reactive
oxygen species, cellular energy deficiency and depolar-
isation were targeted. Indeed, many agents reduced brain
damage (in most cases measured as decreased infarct
volume) in rodent models of experimental stroke. Out of
these candidates approximately 50 neuroprotective agents
were tested in more than 100 clinical stroke trials, but none
has improved outcome in clinical stroke patients [6].
What are possible reasons for the failure of so many trials?
So far, attention in discussions about this failure has been
drawn mainly to methodological mistakes. The inappropri-
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ate selection of experimental animals in terms of age, sex,
comparable physiology and genetic background was dis-
cussed, as well as the low replication rate and lack of stat-
istical rigor in preclinical studies [7–9]. Regarding the fail-
ure of clinical trials in stroke, other syndromes with strong
involvement of the innate immune system, such as sepsis,
have been equally resistant to effective drug development.
In sepsis, for example, more than 100 randomised phase
II and III clinical trials did not result in a single US Food
and Drug Administration (FDA) approved drug [10]. Sep-
sis is a very different disease from stroke, both in preclin-
ical and clinical settings. This poses the question, what are
the factors involved in the failure to improve clinical out-
come? Is the human immune system really that different
from the rodent? Is our focus on suppressing the inflam-
matory response a dead-end strategy because inflamma-
tion is not only harmful but also essential for repair pro-
cesses and regeneration? These are serious caveats in the
varied field of immune-oriented research that will have to
be more specifically addressed in future studies. Addition-
ally, after the translation to clinical trials, the time window
and dose for administration, as well as patient heterogen-
eity and inaccurate outcome parameters, were listed as pos-
sible sources for failure [11]. This has finally led to the
currently widely discussed concept of a “translational road-
block” particularly in stroke research, which becomes ob-
vious through the numerous commentaries, editorials and
reviews on this topic [12–14].
However, we have to ask ourselves whether the choice of
research tools, protocols and methods are the sole reason
for this depressing failure in translational stroke research.
Finally, the choice of the therapeutic target itself – acute
neuronal death and neuroprotective strategies – also has
to be questioned. Consequently, a paradigm shift in trans-
lational stroke research can currently be observed: from
early neuroprotection to mechanisms involved in subse-
quent processes such as stroke-associated comorbidities,
regeneration and plasticity. In the following text we want to
highlight two of these evolving fields.

Brain-immune interactions in stroke

In response to the ischaemic injury, neuroinflammatory re-
sponses are relevant pathomechanisms promoting second-
ary brain injury in the subacute phase after stroke [15].
Brain resident microglia and astrocytes are activated after
ischaemic brain injury and release mediators such as free
radicals and proinflammatory cytokines that inflict second-
ary damage on the peri-ischaemic tissue [16]. Activated
glial cells play an important role in clearance of cell debris,
promoting neuroregenerative processes and controlling the
neuroinflammatory reaction, and hence have a beneficial
rather than a neurotoxic function after stroke [17–20]. Ad-
ditionally, the rapid inflammatory response involves in-
filtration of leukocyte subpopulations (fig. 1; neutrophils,
monocytes and lymphocytes). Recruitment seems to occur
in a strictly synchronised manner following brain
ischaemia; one of the first types of immune cell infiltrating
are neutrophils, followed by monocytes and lymphocytes
[21, 22].

Our current mechanistic insights about the contribution of
immunity to stroke pathophysiology were obtained nearly
exclusively in rodent stroke models. Despite the only very
limited information about neuroinflammatory mechanisms
in human stroke, efforts by academia and pharmaceutical
companies have prematurely resulted in testing immun-
omodulatory drugs in human stroke patients (table 1) [23,
24]. These first clinical trials, which aimed to test immun-
omodulatory drugs (e.g. fingolimod, natalizumab, table 1)
in stroke patients, were particularly hampered by the lack
of suitable clinical surrogate markers for post-stroke
neuroinflammation. However, such novel parameters, for
example blood biomarkers or functional imaging of
neuroinflammation, will be indispensable for character-
ising neuroinflammation in stroke subtypes and analysing
the efficacy of immunomodulatory drugs in stroke patients.
State-of-the-art imaging modalities such as magnetic res-
onance imaging (MRI) and positron emission tomography
(PET) of microglial activation have already provided valu-
able information in preclinical studies [25]. Molecular MRI
seems to be a promising, relatively noninvasive method
to image in vivo inflammatory processes in the brain and
detect biomarkers (e.g. vascular cell adhesion protein
[VCAM] and intercellular adhesion molecule-1 [ICAM-1])
that are not detectable by conventional MRI [26, 27]. Still
there are disadvantages, like the low MR sensitivity for
cellular neuroinflammation, compared with other molecu-
lar imaging modalities such as PET and single-photon-
emission-computer-tomography (SPECT). Ultrasmall su-
perparamagnetic iron oxide particles (USPIO) [28], which
are used in cancer and cardiac imaging, for example, have
high amounts of iron oxide, which can compensate for the
low sensitivity. However, repeated usage is limited, as a
result of accumulation of the inert particles in liver and
kidney. PET imaging of inflammation, using tracers bind-
ing the translocator-protein 18kDa (TSPO; formerly known
as peripheral benzodiazepine receptor), showed promising
results in first clinical approaches in stroke patients [29].
Despite having lower spatial resolution than MRI, the high

Figure 1

Multiphasic brain interactions after stroke and opportunities for
treatment.
Previous neuroprotective strategies targeted pathological
mechanisms in a very narrow window of opportunity in the (hyper-)
acute phase after stroke (orange). Recently, the focus of
translational stroke research has shifted towards understanding
pathological processes in the subacute and chronic phase such as
neuroinflammation and neuroregeneration (green). These targets
have the potential for novel therapeutic approaches which are
suitable for a larger population of stroke patients then
neuroprotective agents or thrombolysis.
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contrast resolution of PET, offering functional and molecu-
lar information with high sensitivity in low molar ranges,
makes it a potential imaging modality for future clinical tri-
als targeting neuroinflammatory pathways after stroke.
In addition to the neuroinflammatory reaction to the acute
brain injury, perturbations of peripheral immune homeo-
stasis have attracted much attention as a relevant complic-
ation after stroke. Recent investigations showed that peri-
pheral immune activation has already peaked 4 hours after
stroke [30] with highly increased serum concentrations of
proinflammatory mediators, both after experimental stroke
[31] and in stroke patients [32]. We have recently demon-
strated that proinflammatory mediators released from the
necrotic brain tissue into the blood circulation after stroke –
so-called damage associated molecular patterns (DAMPs)
– are critical mediators of a multiphasic peripheral immun-
omodulation [33]. DAMPs include a plethora of different
soluble molecules derived from dying cells and giving rise
to new treatment options targeting either DAMPs or their
receptors on peripheral immune cells.
Acute immune activation after brain injury is followed by
a sudden shift into a subacute immunosuppressive phase

caused by exhaustion of innate immune cells and apoptotic
lymphocyte death [33]. Subacute immunosuppression res-
ults in an increased susceptibility to secondary infections,
particularly of the respiratory and urinary tract, which con-
tribute substantially to post-stroke mortality and morbidity
[34, 35]. The commonly attributed explanation for this
phenomenon is stress-signalling after brain injury, includ-
ing activation of the hypothalamic–pituitary–adrenal axis
and sympathetic innervation of immune organs such as the
spleen and bone marrow [36–38]. An alternative explan-
ation proposes exhaustion of innate immune cells upon
acute (over)activation and lymphocyte apoptosis due to in-
adequate costimulatory signalling derived from such ex-
hausted antigen-presenting cells leading to an immunosup-
pressive phenotype [39]. However, the exact mechanisms
of immunodepression following stroke will require further
investigation and are a prime example of insufficient re-
verse translation: while susceptibility to bacterial infections
due to functional immunosuppression is a long-standing
clinical experience, translation from bedside-to-bench was
largely neglected. Future experimental studies will be re-

Table 1: Treatment of post-stroke inflammation.

Preclinical Model Clinical Treatment effect on: MiscellaneousTarget
Reference Reference Infarct

volume
Neurol.
deficits

Inflammation

Hasegawa Y.
et al. 2010,
Stroke [62]

tMCAo (rat) + + n.d. Decreased Casp-3 expression and
number of dying neurons

Wei Y. et al.,
2011, Ann
Neurol [63]

tMCAo
(mouse)

+ + Reduction of activated microglia
and neutrophil infiltration

Decreased dying cells in core and
peri-infarct area

Rolland W. et
al., 2013, Exp
Neurol [64]

ICH (rat) n.d. + Reduction of circulating leukocytes
and ICAM-1+ T cells in brain

Ameliorated brain atrophy and
memory performance

Kraft P. et al.
2013, Stroke
[65]

tMCAo
(mouse)

+ + No effect on local inflammatory
response

Reduces microvascular thrombosis;
no direct neuroprotection or BBB
improvement

Campos F. et
al., 2013,
Stroke [66]

Thrombo-
embolic stroke
(mouse)

+ + n.d. Combined alteplase and fingolimod
administration; BBB improvement

Fu Y. et al.,
2014, PNAS
[67]

+ + Reduction of circulating
lymphocytes

Small study: 11 vs 11 patients

Fu Y. et al.,
2014, JAMA
Neurol [68]

n.d. + Reduction of circulating
lymphocytes

Reduction of PHE and relative PHE
after administration

Downregulation
of S1P receptors
Fingolimod
(FTY720)

Zhu Z. et al.,
2015,
Circulation [23]

+ + Reduction of circulating
lymphocytes

Combined alteplase and fingolimod
administration

Liesz A. et al.,
2011, Brain
[15]

pMCAo and 30
min tMCAo
(mouse)

+ + Reduced number of infiltrating
leukocytes

Anti-CD49d inhibited T cell migration
and abrogated their effector
mechanisms

Langhauser F.
et al., 2014,
Stroke [69]

pMCAo and 30
min tMCAo
(mouse)

o o Reduced number of infiltrating
leukocytes

Anti-CD49d did not influence overall
stroke outcome irrespective of model
or time

Llovera G. et
al., 2015, Sci
Trans Med [70]

pMCAo and 60
min tMCAo
(mouse)

+/o o Reduced number of infiltrating
leukocytes after pMCAo

First preclinical randomised controlled
multicentre trial; reduced infarct
volume only in small cortical lesions

Blockage of
VLA-4
Natalizumab (α-
CD49d)

Elkins J. et al.
“ACTION trial”
(ISC 2016)

o + n.d. Improvement in functional
independence, cognition and patient-
reported stroke impact

BBB = blood-brain barrier; ICH = intracerebral haemorrhage; PHE = perihaematomal oedema; pMCAo = permanent middle cerebral artery occlusion; tMCAo = transient
middle cerebral artery occlusion; VCAM-1 = vascular cell adhesion molecule-1; VLA-4 = very late antigen-4
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quired for mechanistic understanding and target identifica-
tion of this clinically important complication after stroke.

Long-term stroke outcome:
regeneration and plasticity

Stroke patients experience continuous functional recovery
after the stroke for weeks to years [40]. Due to differences
in severity and location of the cerebral lesion, large vari-
ability between subjects in terms of functional recovery
makes it almost impossible to generalise regenerative pro-
cesses after the acute brain lesion. Although there are
standardised scorings for neurological deficits and recov-
ery after stroke in routine clinical use, such as the NIH
Stroke Scale or Rankin Scale, current routine clinical tools
are still insufficient to assess functional recovery [41]. Des-
pite impressive progresses and convincing preliminary res-
ults obtained by use of imaging modalities to investigate
neuronal plasticity, functional imaging of brain plasticity
and remapping during the spontaneous recovery after
stroke is barely used in clinical practice. Rodent studies
[42] as well as clinical observations [43] provide important
information about the loss and regain of neuronal con-
nectivity after stroke; nevertheless, systematic network
analyses and computational mapping remain demanding
and require a high amount of methodological expertise. For
integration of functional noninvasive imaging into clinic-
al routine further investigations and the development of ro-
bust protocols are needed.

Recently, novel in-vivo imaging modalities visualising cor-
tical neuronal activity in rodent models have advanced our
understanding of reorganisation of cortical functional rep-
resentation and reorganisation after injury [44]. After ex-
perimental stroke, the loss of functional connectivity, rep-
resented by breakdown of cortical connectivity maps, is
recovered over weeks by establishing new structural and
functional circuits (fig. 2a) [42, 45]. In-vivo imaging of
neuronal activity showed that forelimb-evoked responses
re-emerge in peri-infarct areas of the cortex after rodent
stroke [26, 46]. The processes of re-establishing neuronal
circuits, including axonal sprouting, synapse plasticity and
neurogenesis, require a distinct micro-milieu of signalling
cues to arise during cortical remodelling processes. There-
fore, neuronal “re-wiring” becomes a challenge under the
conditions of an adult brain, which is generally inhibitory
to axonal sprouting [47]. Instead, for post-stroke recovery
neurons must engage a neuronal growth programme. Pre-
vious reports have shown that growth-inhibitory molecules
are reduced after experimental stroke and neurons them-
selves activate growth-promoting genes in successive
waves after ischaemia [47]. Grefkes and colleagues demon-
strated, by using functional magnetic resonance imaging
(fMRI), the impact of stroke lesions on cerebral network
connectivity [43]. They observed, as in the above men-
tioned rodent studies, that motor deficits of patients with
focal ischaemia are associated with pathological intra- and
interhemispheric connections between motor areas (fig.
2b). In the future, combining clinical assessment of disab-
ilities and analyses of connectivity by means of imaging

Table 2: Neuroregenerative approaches after stroke.

(Pre)clinical Model Therapeutic effect on: MiscellaneousTarget
Reference Funct. outcome Regeneration
Plautz E. et al., 2003,
Neurol Res [71]

Bipolar coagulation of
vasculature in M1
cortex (squirrel monkey)

+ Large-scale plasticity of movement
representation in stimulated cortex

Combination therapy of sub-
threshold electrical stimulation
and rehabilitative training

Hummel F. et al., 2005,
Brain [72]

Six patients (chronic
stroke); double-blind
crossover study

+ Functional improvement in paretic hand
of all patients, which outlasted
stimulation period

Noninvasive cortical stimulation
and assessment of functional
hand motor skills

Khedr EM. et al., 2005,
Neurology [73]

52 stroke patients in a
randomised therapeutic
trial

+ rTMS led to improvement of disability
scores

10 consecutive days rTMS in
addition to best clinical care

Takeuchi N. et al., 2005,
Stroke [74]

20 stroke patients with
a first-time cerebral
infarct

+ Reduction of transcallosal inhibition by
reducing the amplitude of motor-evoked
potentials in contralesional M1

Double blind study of real vs
sham rTMS

Grefkes C. et al., 2010,
NeuroImage [75]

Eleven patients with
unilateral hand
weakness after first-
ever stroke

+ rTMS over contra-lesional M1 reduced
inhibition influence and enables more
effective motor processing in lesioned
areas

Usage of DCM to assess rTMS
influence on effective
connectivity within cortical motor
system

Transcranial
magnetic or
direct current
cortical
stimulation

Zimerman M. et al.,
2012, Stroke [61]

Twelve patients with
first-ever subcortical
stroke

+ Contra-lesional M1 tDCS improved early
online learning period

Association between an
intervention-induced SICI within
lesional M1 and enhancement of
skill acquisition

Wolf S. et al., 2006,
JAMA [76]

116 stroke patients in a
randomised clinical trial

+ CIMT produced improvements in arm
motor function that persist ≥1 year

Measurement of motor function
by functional ability and motor
activity log

Staubli P. et al., 2009, J
Neuroeng Rehabil [57]

Four patients with
chronic stroke and left
side hemiparesis

+ Three out of four patients showed
improvement in motor functions

Intensive therapy using the robot
ARMin II in a functional 3D
workspace

Motor function
therapy &
ergorobotics

Lo A. et al., 2010, N
Engl J Med [77]

127 chronic patients in
a multicentre,
randomised trial

+ Robot-assisted therapy showed motor
function improvement after 12 and 36
weeks

Four-modules robotic system for
horizontal, vertical, wrist and
grasp movements

CIMT = constraint-induced movement therapy; DCM = dynamic causal modelling; M1= primary motor cortex; SICI = short interval intracortical inhibition; tDCS =
transcranial direct current stimulation; rTMS = repetitive transcranial magnetic stimulation

Review article: Biomedical intelligence Swiss Med Wkly. 2016;146:w14329

Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 4 of 10



modalities such as fMRI might help to determine the pa-
tient’s status during the time-course of recovery and to
design personalised therapeutic options. Neuronal con-
nectivity analyses will provide insights into how neur-
omodulatory interventions might target pathological net-
works that are associated with incomplete recovery. Such
novel diagnostic approaches will improve treatment
paradigms based on the individual network pathology un-
derlying a particular neurological deficit [48].
Active stimulation of motor function and coordination
plays an important role in the recovery and regeneration
of cortical circuits. This becomes obvious in experimental
stroke studies in which rats housed in an enriched environ-
ment, with access to various activities and interaction with
other rats, perform significantly better than rats that were
housed in a standard environment [49, 50]. Similarly, clin-

Figure 2

Comparison of neuronal connectivity after stroke in mouse and
human.
a. In-vivo imaging of mouse cortex during left forelimb stimulation
shows sensory-evoked polarisation in control mice emerging
immediately (20 ms) in a confined area representing left forelimb
function. In contrast, forelimb stimulation after stroke resulted in a
more diffuse signal encompassing mainly the contralateral
hemisphere. Additionally, there is a significant shift in timing of
signal propagation, with a delayed and prolonged response after
stroke (compare signal maps at 20 and 80 ms after forelimb
stimulation).
b. Connectivity analysis based on significantly activated voxels
(BOLD signal, fMRI) during movement of the right hand shows a
distinct single-hemispheric cortical pattern in healthy controls. Hand
movement in stroke patients were associated with enhanced and
more extended neural activity in both hemispheres. White
arrowheads mark the affected hemispheres.( Adapted from
Mohajerani et al. 2011 [45] and Grefkes et al. 2008 [43], with
permission).

ical studies have shown improved cognitive recovery when
stroke patients were exposed to music [51], and physical
therapy for movement coordination and motor function are
well established routine interventions in stroke recovery
units [52, 53]. In the last decade, ergo-robotics has become
a promising tool in motor-stimulating therapies, although
it is not yet used in daily routine. Passively supporting
systems like the SwedishHelparm™[54] assist arm move-
ments with counter-weights connected to the arm for ful-
filling reach tasks. More advanced systems, like the assis-
ted rehabilitation and measurement (ARM) guide [55], not
only support arm movements during therapy, but evaluate
the arm impairments to improve further therapy. Recently,
state-of-the-art exoskeleton robots provide support, move-
ment guidance and evaluation of movement to individual-
ise rehabilitation therapies, which provided a significantly
improved outcome in chronic stroke patients [56, 57]. Ad-
ditionally, several clinical studies have shown the positive
effects of robot-aided neurorehabilitation in comparison
with conventional therapy (table 2) [58, 59]. Throughout
the last decade, other noninvasive treatment paradigms
emerged in the field of chronic stroke regeneration. One
paradigm is repetitive transcranial magnetic stimulation
(rTMS), relying on the use of an insulated coil placed over
the scalp. The coil generates repetitive magnetic pulses,
producing changes in brain activity. In several clinical
stroke trials, rTMS of the motor cortex led to improved
hand function (table 2). A second approach is direct current
stimulation (DCS), which uses constant low current de-
livered via electrodes on the scalp [60]. In a study with pa-
tients having a subcortical stroke, contra-lesional M1 area
DCS showed an intervention-induced enhancement of skill
acquisition [61] (table 2).
Taken together, an integrated view of individual neuronal
plasticity after clinical stroke through use of novel imaging
modalities and advanced deficit assessment will improve
efforts toward personalised and more efficient therapy in
stroke recovery.
In summary, after the failure of countless neuroprotective
agents in the acute phase, stroke research has to continue
transforming from a “neuro-centric” to a multi-disciplinary
research field considering the contributions of various
brain-resident and invading cell populations to the injured
brain, and the complex interplay of the brain and remote or-
gans over a prolonged time course after the stroke. Stroke
is more than an acute event, it is a chronic condition and
we must not underestimate the potential of therapeutic in-
terventions in the subacute and chronic stages. In the fu-
ture, promising findings in immune alterations caused by
ischaemia and post-stroke brain recovery can provide us
with manifold treatment opportunities, which can diminish
the burden of stroke.
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Figures (large format)

Figure 1

Multiphasic brain interactions after stroke and opportunities for treatment.
Previous neuroprotective strategies targeted pathological mechanisms in a very narrow window of opportunity in the (hyper-) acute phase after
stroke (orange). Recently, the focus of translational stroke research has shifted towards understanding pathological processes in the subacute
and chronic phase such as neuroinflammation and neuroregeneration (green). These targets have the potential for novel therapeutic
approaches which are suitable for a larger population of stroke patients then neuroprotective agents or thrombolysis.
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Figure 2

Comparison of neuronal connectivity after stroke in mouse and human.
a. In-vivo imaging of mouse cortex during left forelimb stimulation shows sensory-evoked polarisation in control mice emerging immediately (20
ms) in a confined area representing left forelimb function. In contrast, forelimb stimulation after stroke resulted in a more diffuse signal
encompassing mainly the contralateral hemisphere. Additionally, there is a significant shift in timing of signal propagation, with a delayed and
prolonged response after stroke (compare signal maps at 20 and 80 ms after forelimb stimulation).
b. Connectivity analysis based on significantly activated voxels (BOLD signal, fMRI) during movement of the right hand shows a distinct single-
hemispheric cortical pattern in healthy controls. Hand movement in stroke patients were associated with enhanced and more extended neural
activity in both hemispheres. White arrowheads mark the affected hemispheres.( Adapted from Mohajerani et al. 2011 [45] and Grefkes et al.
2008 [43], with permission).
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