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Abstract: Remote monitoring of Parkinson’s Disease (PD) patients with inertia sensors is a relevant
method for a better assessment of symptoms. We present a new approach for symptom quantification
based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in
combination with an animated 3D avatar giving the neurologist the impression of having the patient
live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task
derived from: (a) an examination based on video recordings as a clinical reference; (b) an automatically
classified UPDRS; and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were
recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a
pronation-supination movement of the hand. After preprocessing, the data were classified with a J48
classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar,
were examined by movement disorder specialists and rated by UPDRS. The mean agreement between
the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D
avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for
the examined task and will be further developed by the research team.

Keywords: MARG sensors; inertia sensors; IMU; motion data; Parkinson’s Disease;
UPDRS; symptom quantification; animated 3D avatar; telemonitoring; remote monitoring;
pronation-supination; diadochokinesis

1. Introduction

Parkinson’s disease (PD) is an age-related, neurodegenerative disorder whose underlying
pathological processes can be traced as a topographically ascending degeneration scheme spreading
from the lower brainstem toward mesencephalic structures and the basal ganglia, finally reaching the
neocortex, as evident from neuropathological studies [1]. The classical cardinal symptoms—namely
bradykinesia, rigidity, tremor, and postural instability—affect the motor skills of the patients [2].
In daily clinical practice, the severity of PD-related symptoms are typically quantified using the
Unified Parkinson Disease Rating Scale (UPDRS) revised by the Movement Disorder Society (MDS)
in 2003 [3]. Part III of the UPDRS considers the examination of motor symptoms. Various items
are rated on a five-point rating scheme, from 0 for no impairment to 4 for highest severity. The full
assessment of the patient’s health status with the UPDRS is time-consuming, is dependent on the rater’s
experience [4], and considers only a snapshot of time. The assessment of motor function over time is
necessary for an individual adjustment of medication and appropriate quality of treatment. To assess
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motor fluctuations during the day, patient diaries or questionnaires are typically used. These tools give
the doctor a basic idea of the domestic situation but they remain subjective and strongly dependent on
the patient’s capabilities and compliance.

Neurologists and PD patients would thus benefit from the continuous monitoring of symptoms
in everyday life. There have been many attempts to reach an objective, rater-independent assessment
of symptoms in the daily life of PD patients. For the quantification of motor symptoms video cameras
and motion sensors are used. Video-based systems allow the physician a visual impression of the
patient but have the drawback that the assessment is restricted to one location and motor tasks have
to be analyzed manually. This makes the evaluation of long-term trends of the patient’s condition
disproportionally time-consuming. Video recordings also give insight into the living conditions of the
patient, which can result in limited patient acceptance. In contrast, motion sensors can be worn on the
body and capture symptoms in everyday situations. Motion sensors include accelerometers and/or
gyroscopes and/or magnetic field sensors for drift compensation. If all of these sensors are contained
in one unit, it is also called a Magnetic, Angular Rate, Gravity (MARG) sensor. The evaluation of
symptoms with motion sensors can be based either on defined motor tasks [5–12] that the patients need
to perform periodically during their daily routines, or continuously in everyday movements [13–15].
The collected raw data must be processed in a way that allows for their use in clinical decision support.
Most systems use machine learning techniques to objectively predict the UPDRS score [7–9,12,13,16,17]
or their own continuous metrics [11] from data features. The results are usually presented in the form
of tables or charts.

In order to achieve a high user acceptance, it must be ensured that the data can be easily interpreted
by neurologists and to provide exactly the information that is needed to derive clinical decisions.
Therefore, it is important that the neurologists are familiar with the given information from their
clinical routine. For motor assessment, neurologists apply the UPDRS, as a quantitative scoring system,
based on the visual impression of their patients. Previous work from other authors can provide either
a visual impression by video recordings or compute the UPDRS score by MARG sensor data, but not
both. To convey both impressions, the two measuring systems would have to be combined. Hence we
present a new approach giving both impressions using only MARG sensors for home monitoring.

Project Vision and Goals

This work is part of a research project [18] at Ulm University of Applied Science in Germany.
The aim of the project is the development of a telemonitoring system for PD patients using MARG
sensors. The system consists of multiple sensor units, an Android application for interaction and
feedback to the patient, as well as an application server providing a web browser application to the
neurologist for the analysis of patient data. In addition to a quantitative data analysis by UPDRS,
gathered motion data should be visualized as an animated 3D human avatar. This avatar should move
as naturally and realistically as possible to give the physician (neurologist) the impression of having
the patient live in front of him. In contrast to video recordings of patients in the domestic environment,
the data recording for the avatar animation is not bound to a specific location and does not allow any
insight into the private life of the patient.

The overall concept of the telemonitoring system envisages using the UPDRS classifications for
an overview of the long-term condition. This should provide neurologists with a quick impression of
the course of symptoms over the monitoring period and fluctuations during the day (”all information
at a glance“). In addition, the avatar allows the neurologist to assess the patient’s movements in
specific situations, e.g., situations in which the patient complained about unusually severe symptoms.
Hence the avatar supplements the calculated UPDRS by the visual impression. Having both,
the neurologist can derive a substantiated clinical decision. This concept is, to our knowledge, a novel
approach which has not been described in the literature.

This system concept will be evaluated exemplarily regarding one motor task in a clinical setting.
The goal of this study is to compare the UPDRS ratings resulting from: (a) an examination based on
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video recordings as clinical reference; (b) an automatically computed UPDRS with a classification
algorithm as method in home monitoring with MARG sensors; and (c) a UPDRS rating on the basis of
a 3D animated human avatar. The results should show, whether the 3D avatar is suited for UPDRS
rating and how the ratings are associated with each other.

2. Material and Methods

The methods of this work are summarized in Figure 1. PD patients as well as controls performed
item 3.6 “Pronation-supination movements of hands” of the MDS-UPDRS [19] wearing four MARG
sensors on their wrists and upper arms (figured as yellow blocks in Figure 1a). The movements of the
patients were: (a) examined in video recordings by neurologists with a specific expertise in movement
disorders and rated by UPDRS. These ratings were taken as clinical reference. The raw motion
data were preprocessed which involved filtering, segmentation, extraction of the sensor orientation,
and feature generation. The preprocessed data were then used for (b) an automated computation
of the UPDRS using data classification techniques and (c) the generation of an animated 3D avatar.
The avatar was examined by the same movement disorders specialists and rated by UPDRS as well.
The resulting UPDRS ratings of methods a, b and c were compared on a common evaluation data set.
The following sections give a closer look at the details of these steps and the evaluation methodology.
All data gathered in this study and the computed features with their mathematical description as well
as the results of the different UPDRS ratings can be found on Zenodo ([20], see Appendix A).
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integrated flash memory if the connection is lost. The unit is powered by a 600 mAh Li-Pol battery, 
yielding a typical run time of 14 h. 

Figure 1. Comparison of UPDRS ratings based on (a) Video recordings; (b) Automated classification
algorithm; (c) Animated 3D avatar.

2.1. Sensor System

A sensor unit was entirely self-developed at Ulm University of Applied Sciences for the monitoring
of PD patients. The sensor unit comprises of a 9-axis MARG sensor (MPU-9150 from InvenSense, San Jose,
CA, USA) with a˘4 g @16 Bit,˘2000˝/s @16Bit, and˘1200 µT @13Bit measuring range and a sampling
rate of up to 200 Hz. The small, ergonomically shaped case is 48 mmˆ 42 mmˆ 15 mm and manufactured
with rapid prototyping. The total weight of the sensor unit is 32 grams. Figure 2a shows the size and
Figure 2b the inner components: printed circuit board, battery, and charging coil. The sensor unit can
be attached to the arm or leg by an elastic band. Recorded data can be sent via Bluetooth to a gateway
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device (e.g., smartphone) or stored on an integrated flash memory if the connection is lost. The unit is
powered by a 600 mAh Li-Pol battery, yielding a typical run time of 14 h.Sensors 2016, 16, 930 4 of 15 
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sensor unit placed on the avatar’s arm.

2.2. Subjects and Data Collection

Data were collected between June and July 2015 in the outpatient clinic of the Department for
Neurology, University of Ulm. All participants were notified of the study’s procedure and goals before
signing an informed consent form. The inclusion criterion for subjects was a clinical diagnosis of
Parkinson’s disease (UK Brain Bank Clinical Diagnosis Criteria [2]) and motor symptoms for a duration
of at least two years, while controls should not have been diagnosed with parkinsonism or any other
neurological diseases. All participants filled out a short questionnaire with person-related master data.
The PD patients answered the PDQ-8 questionnaire [21]. This questionnaire is a short form of the
39-item Parkinson’s Disease Questionnaire (PDQ-39) [22] for the quality of life of PD patients. Based on
the answers of eight questions a scale from 0–100 is computed, where 0 stands for no problems and
100 for maximum level of problems. The short form was chosen because it was less time-consuming
for the subjects and has comparable explanatory power regarding overall health status [21].

Table 1 summarizes the descriptive statistical parameters of the study population. The age and
sex of the two groups were mean-tested (Wilcoxon-Mann-Whitney test, two independent samples
t-test) and were found not to be statistically different at the 5% significance level. Therefore, the groups
can be considered age- and sex-matched.

Table 1. Study population.

Characteristic PD Patients Controls

n 13 13
Age (years, mean ˘ SD) 66.6 ˘ 9.72 66.15 ˘ 10.8

Sex (male:female) 9:4 7:6
Disease Duration (years, mean ˘ SD) 8.2 ˘ 4.62 -

PDQ-8 41.7 ˘ 12.79 -
UPDRS Task 3.6 (mean ˘ SD) 2.02 ˘ 1.16 0.51 ˘ 0.83

All study volunteers were asked to perform the pronation-supination task from “Part III: Motor
Examination” of the MDS-UPDRS with each hand separately. Sensor units were placed on the wrist
and the upper arm of both body sides (compare Figure 1a). The exercise started from a hand resting



Sensors 2016, 16, 930 5 of 15

position on the knees. Then each subject had to lift one arm into a horizontal position, “turn the palm
up and down alternating 10 times as fast and as fully as possible” [19] and lower the arm to the resting
position on the knee again. The task—as indicated in MDS-UPDRS—was demonstrated to the study
subjects before they performed the task twice per body site. Movement data from the four sensors
were sampled at 100 Hz and transmitted to a desktop recording software via Bluetooth. The execution
of the tasks was recorded with a video camera in front of the participants. The complete protocol took
20 min on average per subject. In Table 2, the criteria for task scoring can be found. The control group
had a mean UPDRS score of 0.51 (see Table 1) meaning that even some controls performed the task in a
way that raters classified as “mildly severe”.

Table 2. Definition of task 3.6 “Pronation-Supination Movements of Hands” [19].

Score Rhythm (Interruptions) Speed Amplitude Decrement

0 No interruptions Normal speed No decrement
1 1 to 2 Slightly slowing Near end of sequence
2 3 to 5 Mild slowing Midway in sequence
3 >5 Moderate slowing Starting after first sequence
4 Cannot or can only barely perform the task

2.3. Data Preprocessing

According to the guidelines of the MDS, three movement characteristics should be evaluated for
scoring Task 3.6: rhythm, speed, and amplitude decrement (see Table 2). These characteristics had to
be extracted from the recorded data sets.

First, raw data was low-pass filtered and the orientation was computed by applying the Madgwick
filter [23], developed by Madgwick in 2010. It is a Kalman-based filter, which estimates the orientation
by fusing the long-term drift-free gravitation and earth magnetic field with the precise, but drifting,
angular rate from the gyroscopes. A filter gain β equal to 0.041 was used as proposed in [23].
Advantages of the Madgwick filter are high performance drift compensation with low computational
load and simple tuning of the filter gains.

The segmentation of the recorded data was automated with a SVM (Support Vector Machine)
using the MATLAB toolbox Classification Learner. The SVM was evaluated and successfully validated
in a previous investigation. Seven phases were defined for the segmentation: initial resting position
on the thigh (RE1), lifting the arm (LI), keeping the arm steady in horizontal position (HO1),
pronation-supination for at least 10 turns (PS), keeping the arm steady in a horizontal position (HO2),
lowering of the arm (LO), and finally resting position on the thigh (RE2). The movement task with
data and still frames of all phases are visualized in Figure 3. The figure shows the angular rate along
the x-axis of the lower arm and the lift by approx. 45˝ (Euler angle relative to horizontal) of the arm.
From the PS phase, 51 time- and frequency-based features were computed. Seven features were based
on the acceleration data of the lower arm sensor data, 16 features on the orientation of upper and
lower arm, and the remaining 28 on the angular rate data of the x-axis (along the axis of the lower arm,
see Figure 2c for the coordinate system). A detailed mathematical description of all features is given
on Zenodo [20].

Eight of 51 features were selected by a feature selection algorithm for the classification task
(see Section 2.4). The correlation between these features and the video-based UPDRS score of the
86 training data sets was computed using the Pearson correlation coefficient. The coefficients and
details about the eight features are given in Table 3. All selected features were computed after the
separation of single oscillations (pronation-supination movement). For this purpose, all zero crossings
of the PS phase were determined. Data were split into oscillation pair-segments each consisting of two
adjacent oscillations, so that all oscillations belong to two segments, except for the first and last one.
All computations were first done for each pair-segment separately, then features were derived from
these computations using various descriptive statistical functions (mean, SD, quantiles, etc.).
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Table 3. Description of features finally used for the classification.

Feature Description Pearson 1 Correspondence

mean_angRate Mean of maximum angular rates in x-axis of all
oscillation segments ´0.67 Average overall speed 2

median_rotAngle Median value of maximum rotation angles from
left turn to right turn of all oscillation segments ´0.66 Average amplitude

upQuart_rotAngle Mean value of the upper quartiles (75%) of the
rotation angle within all oscillation segments ´0.63 Amplitude

ratioQ13_angRate Ratio of the mean angular rate in the first third of
oscillation segments to the last third of segments 0.51 Decrement of speed

during test

ratioQ13_rotAngle
Ratio of the mean of the rotation angles for a full
turn of the hand in the first third of oscillation
segments to the last third of segments

0.20 Decrement of amplitude
during test 2

std_rsquare_1n Standard deviation of R2 values for single-term
sine fit in the oscillation segments

0.70 Rhythm 2

mean_rsquare_3n Mean of R2 values for three-term sine fit in the
oscillation segments

´0.60 Smoothness and regularity
of pronation-supination

std_rsquare_3n Standard deviation of R2 values for three-term
sine fit in the oscillation segments

0.59 Smoothness and regularity
of pronation-supination

1 Pearson correlation coefficient between the feature and the UPDRS score; 2 These criteria are defined exactly
in the MDS-UPDRS item 3.6 (see Table 2).

Basically, three different types of computations were done. Firstly, the angular rate and its integral
were used to describe speed of movement (hand turnings) and the angle of the rotation reached
(mean_angRate, median_rotAngle, upQuart_rotAngle). Secondly, the speed and angle of rotation at the
beginning of the task in relation to the end of the task were determined in order to observe fatigue
(ratioQ13_AngRate, ratioQ13_rotAngle). For these, the number of hand rotations were divided into thirds,
and the ratio between the mean of the first third and the last third were computed. Hence, a value
below one indicated a decrement of the feature during the test. Thirdly, using a curve fitting, three
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features (std_rsquare_1n, mean_rsquare_3n, std_rsquare_3n) were computed, which reflect the rhythm or
rather the precision of the movement. They were based on the sum of sines model, see Equation (1):

y “
n

ÿ

i“1

aisin pbix` ciq (1)

Each oscillation pair-segment was fitted to a single-term (n = 1) and three-term (n = 3) sine
function, corresponding to the features ending in “_1n” and “_3n”, respectively. The coefficient of
determination (R2) of each fit in each pair-segment was computed. The standard deviation reflects the
variation of the single oscillations from a rhythmic sinusoidal movement or, in other words, the rhythm.
The precision of the oscillations was indicated by the two features based only on the three-term sine
fit (mean_rsquare_3n, std_rsquare_3n). For all oscillation pair-segments, the mean and standard
deviation of R2 values of the third order fit are computed.

2.4. Computation of UPDRS

An important component of the system is the association of a measured set of features with a
specific UPDRS score. Therefore, a classification algorithm was trained and validated by employing
the Waikato Environment for Knowledge Analysis (WEKA, Version 3.6.16) from the University of
Waikato. Each subject performed the pronation-supination motor task three or four times, resulting
in 101 data sets. 15 data sets were randomly chosen as common evaluation data for the comparison
of the three rating methods (compare Figure 1). The remaining 86 data sets were used for training.
Information about training and evaluation data are shown in Table 4.

Table 4. Training and evaluation data.

Characteristic Training Data Evaluation Data

Number of Data Sets n 86 15
Subjects (PD patients:controls) 13:13 10:5

Age (years, mean ˘ SD) 66.12 ˘ 10.08 65.07 ˘ 9.67
Sex (male:female) 16:10 9:6

UPDRS rating (mean ˘ SD) 1.15 ˘ 1.27 [0 to 4] 1.67 ˘ 1.29 [0 to 4]

An experienced rater (Rater D) was asked to score the training data on the basis of the video
recordings. These ratings were used as class labels for the classification task. In WEKA, the features
were filtered using a supervised feature selection algorithm (BestFirst, greedy hillclimbing with
backtracking [24]) and were thus reduced from 51 to nine features. For classification, the J48 tree
algorithm was chosen because it showed good classification results on the data. J48 is an open source
Java implementation of the C4.5 algorithm developed by Quinlan [25]. It builds a decision tree
following a recursive divide-and-conquer approach to split nodes into a subset of two partitions
and on the basis of information entropy it decides how nodes should be arranged in the decision
tree. The J48 algorithm was trained on training data. The resulting decision tree was transformed to
source code automatically through WEKA and stored as a Java source code file for later use. Finally,
the predictive model was tested against the independent evaluation data set in comparison to the
ratings based on the videos and the 3D avatar.

2.5. Generation of 3D Avatar

The requirements on a framework for implementing the 3D animated avatar were threefold.
One was the processing of quaternions. Another was the possibility of displaying the animation in
a web browser for evaluation by a neurologist, and on an Android smartphone for feedback to the
patients. A third requirement was that the framework was available under an open source license.
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The Java based libGDX framework (v1.5.4) [26] was selected for the development of the 3D-Avatar in
the Eclipse IDE (Luna).

The 3D human model was created with the open source tool Make Human (v1.0.2) [27].
All modelling settings (e.g., gender, age, muscle, height) were averaged to create a neutral human.
The model was rigged using the preset humanik.json, resulting in a skeleton with 65 bones.
Before loading the model to libGDX it was brought to sitting position in Blender (v2.73) and seated
on a cube representing a chair. The 3D environment (floor and walls) was created in Blender. Finally,
the model was exported as g3d-file for use in libGDX.

For the animation in libGDX, the camera position and light position were switched depending on
the side of the arm movement, in order to gain maximum recognizability and contrast. The side of
movement can automatically be computed from the integral of the angular rate on the x-axis (rotation
angle), because supination from the horizontal position has a typical angle of +120˝ which is higher
than the pronation with an angle of +30˝. Then, orientation data of both the upper and lower arm
were applied to the corresponding two bones. The movement of the upper arm moves the origin of
the lower arm. Hence, the upper arm movement had to be subtracted from the lower arm movement.
A rendering frequency of 60 frames per second (twice the standard video sampling rate) was chosen
for smooth movement. Thus, orientation data at a sampling rate of 100 Hz was spline-interpolated
and resampled to 60 Hz.

2.6. Evaluation of UPDRS Ratings

Fifteen data sets, from 10 PD patients and five controls, were randomly chosen for the evaluation
of the avatar. The raw data of the evaluation data set (see Table 4) were preprocessed and 3D avatar
animations were generated. The faces of all participants in the video recordings were pixelated to
ensure that patients were not recognized by their neurologists. The avatar animations and video
sequences were put in random order. Six experienced movement disorder neurologists from the
clinic for neurology, who rate the UPDRS at least several times a week, were asked to rate the avatar
animations and video sequences. To ensure that all neurologists used the same criteria for rating
(see Table 2), the criteria were printed and provided to all raters. After rating, the neurologists filled
out a short questionnaire about their impression of the avatar animations in contrast to a personal
or video-based examination of the patients. To summarize, each of the evaluation data sets was
rated: (a) on the basis of the video recording; (b) by the classification algorithm and (c) based on the
avatar animation (compare Figure 1). The statistical analysis of this data was performed with SAS
(SAS Institute Inc., Cary, NC, USA).

3. Results

For classification, the J48 algorithm was trained on 86 data sets using WEKA. It built a pruned tree
with 8 of 9 features. Evaluating the predictive model against the common evaluation dataset produced
the following results: the weighted true positive (TP) rate of 0.6 and weighted false positive (FP) rate
of 0.198, with a precision of 0.647. In Figure 4 the confusion matrix for the classification results, in
comparison to the video ratings of Rater D, is shown. The classifier had a maximum difference of 1
and tended to underestimate the UPDRS score (mean 1.4) in comparison to Rater D (mean 1.7).

The implemented 3D avatar is presented in Figure 5. The avatar was designed so that it allows no
indication of age, gender or ethnic group of the patient. Clothing was also dispensed with in order
to draw the focus of the rater to the movements of the avatar. The chair and the background were
also kept simple for those reasons. The deployed version of libGDX did not support the generation of
shadows. Hence, only light spots were implemented for good contrast. The avatar has been optimized
for desktops and has not been tested on Android or in a web browser so far. On the desktop, the avatar
makes smooth movements and does not jiggle.
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As a first evaluation of the avatar, it was presented to the six neurologists and compared to video
recordings. Each rater scored 15 video recordings and 15 animations. The ratings of all neurologists
were statistically analyzed using the Kruskal-Wallis-ANOVA. There was no statistically significant
difference between video and avatar ratings (p = 0.14), when all raters were taken into account.
In Figure 6a the results are shown grouped by rating base per study group. The mean for controls is
nearly the same (0.8 video and 0.87 avatar). The impairment of PD patients was rated higher on the
basis of the 3D avatar (2.03 video and 2.42 avatar), but with a smaller range. In contrast to the video
recordings, none of the PD avatars was rated with a normal UPDRS score 0.
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Considering the ratings of each neurologist, it was noticeable that only two neurologists used
the whole range from 0 to 4. The plots with the video ratings and avatar ratings per neurologists are
displayed in Figure 6b. There was a significant difference between the raters (p = 0.0039, Kruskal-Wallis
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ANOVA) regarding avatar and video ratings. The individual neurologists rated consistently so that
there were no significant differences between the ratings based on video and avatar, considering
each rater.

In Figure 7 the interrater reliability between each rater as well as between the raters and the
classification algorithm are shown. The reliability was computed with weighted Cohen’s kappa
statistics. The agreement between the video ratings were comparable with the ratings based on the
3D avatar. Rater A and Rater F had the lowest mean agreement with the other raters. The ratings
produced by the classification algorithm are comparable to those given by the raters, with a mean
agreement of 0.48 with the ratings based on videos resp. 0.47 with the ratings based on the 3D avatar.
The classifier had the highest agreement (videos 0.72 resp. avatar 0.61) with Rater D, who rated the
training data.Sensors 2016, 16, 930 10 of 15 
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Reliability is computed with weighted kappa coefficient.

Looking at the kappa statistics for avatar and video recording per rater (see Figure 8), the mean
agreement is 0.48. This was comparable to the agreement between the raters. Rater C had the smallest
correlation between his ratings based on video and avatar. Nevertheless, there was no significant
difference (Wilcoxon-Mann-Whitney test) for the scores based on avatar and video of Rater C.
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4. Discussion

The aim of this study was the comparison of UPDRS ratings obtained in three different ways:
(a) on the basis of video recordings; (b) automatically computed using data mining techniques
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and (c) rated on the basis of an animated 3D avatar. It has been shown that the difference between
ratings based on the 3D avatar and from ratings based on video recording is statistically non-significant.
The reliability of the classifier is comparable to the ratings between different neurologists.

The system concept of combining an automatic UPDRS classification with an animated 3D avatar
was evaluated in a clinical setting. Video recordings were used as clinical reference. Although the
assessment of videos is not the gold standard in clinical routine, they were necessary to make clinical
evaluation of the motor task possible for all six raters. This methodology has also been applied
by other research teams (e.g., [5,11,16,17]). Video recordings will not be used in the prospective
telemonitoring system, because the recording is bound to a specific location and videos provide insight
into the patients’ private lives. Primarily, the neurologists will be provided with the computed UPDRS
scorings, which they know from clinical routine. It is computed from various features that reflect
different movement characteristics. In general, the features allow a more differentiated evaluation of
the patient’s condition and are independent from rating patterns. However the interpretation needs a
certain knowledge of the sensor and the mathematical evaluation. Moreover, some features must be
interpreted in correlation with each other (e.g., a fast movement is only assessed positively when the
patient has a high amplitude with a regular movement). This makes the UPDRS score a more suitable
metric for the remote assessment of motor tasks. It has to be investigated if the analysis of long-term
trends may benefit from the use of single features instead of the five-stage scale. The features could be
a valuable enhancement to assess the treatment efficacy and help make fundamental decision, such as
whether a neurostimulator is to be implanted or not.

When evaluating the videos it became apparent that each of the six neurologists has a slightly
different way of rating the specific UPDRS item. One neurologist reported that he is instructing the
patients to turn their hand as fast as they can while another neurologist wants smooth and proper
rotations. Another neurologist mentioned that he instructs the patients to do more than 10 turns to
observe signs of fatigue. These different rating patterns are noticeable in the scoring range of the
neurologists and the interrater reliabilities. The agreement between Raters A and F is very poor
(Weighted kappa 0.18) which can be interpreted as almost random agreement. Yet, considering the
ratings based on video and avatar, each neurologist seemed to evaluate consistently in his own pattern.
Prospectively, the avatar could be used to adapt the UPDRS classification to the rating pattern of a
single neurologist using self-learning algorithms. This would require the neurologist to rate a sufficient
number of 3D animations, leading to a slow adaption of the automatically generated score to the
individual rater’s pattern of the neurologist. An adaption of the rating pattern could increase the
confidence of neurologists using the system but would mean that the individually trained scores
would no longer be comparable. Hence, the system could provide an individual UPDRS and a
standard UPDRS for comparison. It is conceivable that in the future, not only the neurologists but
also patients could benefit from the avatar on their smartphones. The avatar could reflect the patient’s
movements and, combined with the UPDRS rating, allow prompt feedback about their health situation
on their smartphone.

Regarding the automated UPDRS scoring, the classifier showed a good result with accuracy of
88%. The J48 classifier has been found to be suitable for this task and capable of distinguishing between
the five classes (UPDRS 0–4). The test, on agreement between classification results and neurologists by
interrater reliability, showed that the algorithm was comparable to the agreement between different
raters. Nevertheless, the classes in the training data set were not uniformly distributed, which would
have been ideal for training. This is why the classifier tends to concentrate the predicted UPDRS values
in correspondence with the dominant UPDRS classes. Furthermore, it is not ideal that data sets from
the same subjects were used for training and evaluation. If the classification model is overfitted to
these patients, this could lead to overly good classification results. The results should be reviewed
with a larger evaluation set of different subjects to draw reliable conclusions.

The classifier was trained using eight from initially 51 computed features. In contrast to Patel et al. [5],
who used general features not linked to a specific exercise, we focused on the pronation-supination motor



Sensors 2016, 16, 930 12 of 15

tasks and developed features adapted particularly to this task. While other groups also assessing the
PS task applied rectangular windows with constant length [5,10], we computed features based on two
full oscillations of varying duration, the oscillation pair-segments. The mean values of the features
for both alternatives were nearly identical, e.g., the Pearson correlation coefficient between the RMS
value of the full phase compared to the average of the segmented oscillations (mean_angRate) was
0.99 for the training dataset with n = 86. However, the oscillation-based analysis allows one to assess
the form of individual arm movements, and additionally the change of the movements over time.
For example, the standard deviation of the sine fits (std_rsquare_1n and std_rsquare_3n) characterizes
the rhythm and smoothness as well as regularity of the pronation-supination. So far, the classifier
has only been trained with features from the pronation-supination phase. In future studies, features
from other phases, e.g., the lifting and lowering slope, could also turn out to be useful. As lifting
and lowering are not part of the pronation-supination task, the features could be used for scoring
other items. Examples are the spontaneity of movement (see MDS-UPDRS 3.14) from the lifting and
lowering phase, the resting tremor in the initial resting position, as well as the postural tremor in
horizontal positions (see MDS-UPDRS 3.15 to 3.18). Several UPDRS items could be estimated from one
movement task lasting 20–30 s that the patient performs during the day, at home. That would be very
comfortable and effective for the patient.

In the course of this project, we developed a 3D avatar in libGDX. The animated 3D avatar should
be used to give a visual impression about the patient: with the avatar, it is possible to present only
relevant data for scoring a single task. The avatar allows the neurologist to get a detailed impression
of the movements and which characteristics were decisive for the UPDRS classification. Currently,
the avatar has to be generated manually. A user has to preprocess data with MATLAB and then load
the data files in to our Java desktop software. In a productive system, this process would be automated
on the server receiving data from the patient, processing it and generating the avatar requested by the
neurologist. The avatar was presented to six neurologists and rated by UPDRS. The scores based on
the animated avatar were comparable to those based on video recordings although the neurologists
were not trained in rating the 3D avatar. The neurologists were asked about their impressions of the
3D avatar. They expected that they would rate single items of the UPDRS in a more objective manner,
because impressions irrelevant to the task of the patient, like posture or sitting in a wheelchair, would
not alter their judgment. This estimation will be reviewed in a future study. In the questionnaire for the
neurologists, they evaluated the 3D avatar as well-suited to UPDRS ratings in comparison to a personal
or video-based examination of the patients. Some remarked on the relatively low contrast between the
hand and body of the avatar. One reason for the weak contrast was the lack of shadows. This could,
as a first step, be improved by using the new version 1.7.1 of libGDX, where shadow-rendering is
added. Further possibilities would be to use different colors for the palm and back of the hand as
well as for the body. One neurologist suggested showing only the avatar’s arm without the body.
This would lead to a less realistic impression of the whole patient but would set the focus to the
relevant body part. In addition, the omission of the avatar’s body would solve another technical issue:
Depending on thorax height and arm length of the patient, the angle of the limbs between resting
position and horizontal can be different from the one used for the avatar. This leads to the effect that
either the avatar lowers its arm into the 3D thigh or the arm level in the horizontal position is wrong.
In future, the individual anatomical proportions should be computed from the data of the motor task
using the existing knowledge of the initial position and the integrated distance of lifting the hand from
thigh to horizontal position. It has to be evaluated whether the data should be scaled to the avatar
using a mathematical model of the motor task, or the dimensions of the avatar should be adapted to
the patient’s proportions.

Finally, it should be noted that the animation of the avatar has more degrees of freedom than
can be estimated by the sensor units used. Hence it is an underdetermined problem. In a real life
setting, it is assumed that the PD patients wear as few sensor units as possible to increase convenience.
Presumably, patients will wear four sensors on the limbs and one at the hip. Hence, animation of a
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patient’s movement with MARG sensor data is only possible when the patient is performing predefined
movements, where assumptions can be made about the posture and the movement. For the given case
of the pronation-supination task, the movement of the upper arm has to be estimated by the motion
model. For the presented application, namely the animation of UPDRS exercises, the avatar is suitable
and animation is possible.

5. Conclusions

In summary, both the developed classification model as well as the avatar have shown
good evaluation results for the pronation-supination motor task. The mean agreement between:
(a) the ratings based on video and (b) the automatically classified UPDRS is 0.48 and (c) the 3D
avatar is 0.47. The ratings from (b) and (c) are comparable with ratings based on video recordings.
Thus, the classifier can be used for a quantitative overview of the monitoring period and the avatar is
similarly suitable for assessing the UPDRS as video recordings. In the future, we plan to optimize the
avatar by adding shadows to the animation and to omit the upper arm sensor, replacing it with a model
to estimate the upper arm movement. The suitability of the avatar will be assessed by implementing
more UPDRS exercises, including exercises that involve lower extremity movement, as well as whole
body movements like sit-to-stand task. These additions and improvements will then be evaluated in
a follow-up study, involving a larger set of patients and control subjects as well as neurologists for
assessment. The data sets obtained during this study will, in turn, be used for evaluation and the
further development of the classifier.

Acknowledgments: This work was supported by a grant from the Ministry of Science, Research and the Arts of
Baden-Wuerttemberg (Az: 33-7533-7-11.6-10/2). The authors want to thank J Horvath, M Denk and R Goetzfried
for their contribution and M Munz for his professional advice. Particular thanks are due to M Stuber and K Dubies
for their support and all neurologists of the RKU for their time and valuable feedback.

Author Contributions: N.E.P. was mainly responsible for planning and conducting the study, the classification
algorithm and statistics, structuring and writing the article and made substantial contributions in implementing
the avatar. L.K.P. and R.A.B. made substantial contributions in raw data analysis and critical revision of the article.
J.K. was medical supervisor, supported the study and was involved in critical revision of the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript (listed by appearance in text):

PD Parkinson’s disease
UPDRS Unified Parkinson Disease Rating Scale
MDS Movement Disorder Society
MARG magnetic, angular rate (gyroscope) and gravity (accelerometer)
PDQ Parkinson’s Disease Questionnaire
SVM Support Vector Machine
SD standard deviation
R2 coefficient of determination
ANOVA Analysis of Variance
BMI body mass index

Appendix A

On Zenodo you find the following supplementary data:

‚ Description and mathematical details about all 51 features
‚ anonymised data about the subjects (age, gender, PD patient/control group)
‚ 51 data features for each record
‚ results of the different UPDRS ratings from all neurologists and the classificator
‚ raw data of the pronation-supination phase in single data files (csv)



Sensors 2016, 16, 930 14 of 15

References

1. Braak, H.; Del Tredici, K. Neuroanatomy and Pathology of Sporadic Parkinson’s Disease (Advances in Anatomy,
Embryology and Cell Biology; 201); Springer: Berlin, Germany; Heidelberg, Germany, 2009.

2. Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s
disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184.
[CrossRef] [PubMed]

3. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s
Disease Rating Scale (UPDRS): Status and recommendations. Mov. Disord. Off. J. Mov. Disord. Soc. 2003,
18, 738–750.

4. Post, B.; Merkus, M.P.; de Bie, R.M.A.; de Haan, R.J.; Speelman, J.D. Unified Parkinson’s disease rating
scale motor examination: Are ratings of nurses, residents in neurology, and movement disorders specialists
interchangeable? Mov. Disord. Off. J. Mov. Disord. Soc. 2005, 20, 1577–1584. [CrossRef] [PubMed]

5. Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.;
Bonato, P. Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors.
IEEE Trans. Inf. Technol. Biomed. 2009, 13, 864–873. [CrossRef] [PubMed]

6. Klucken, J.; Barth, J.; Kugler, P.; Schlachetzki, J.; Henze, T.; Marxreiter, F.; Kohl, Z.; Steidl, R.; Hornegger, J.;
Eskofier, B.; et al. Unbiased and Mobile Gait Analysis Detects Motor Impairment in Parkinson’s Disease.
PLoS ONE 2013, 8. [CrossRef]

7. Giuberti, M.; Ferrari, G.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Linking UPDRS Scores and
Kinematic Variables in the Leg Agility Task of Parkinsonians. In Proceedings of the 2014 11th International
Conference on Wearable and Implantable Body Sensor Networks (BSN), Zurich, Switzerland, 16–19 June
2014; pp. 115–120.

8. Giuberti, M.; Ferrari, G.; Contin, L.; Cimolin, V.; Cau, N.; Galli, M.; Azzaro, C.; Albani, G.; Mauro, A. On the
Characterization of Leg Agility in Patients with Parkinson’s Disease. In Proceedings of the 2013 IEEE
International Conference on Body Sensor Networks (BSN), Cambridge, MA, USA, 6–9 May 2013; pp. 1–6.

9. Giuberti, M.; Ferrari, G.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Assigning UPDRS
Scores in the Leg Agility Task of Parkinsonians: Can It Be Done Through BSN-Based Kinematic Variables?
IEEE Internet Things J. 2015, 2, 41–51. [CrossRef]

10. Printy, B.P.; Renken, L.M.; Herrmann, J.P.; Lee, I.; Johnson, B.; Knight, E.; Varga, G.; Whitmer, D. Smartphone
application for classification of motor impairment severity in Parkinson’s disease. In Proceedings of the 2014
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL,
USA, 26–30 August 2014.

11. Heldman, D.A.; Filipkowski, D.E.; Riley, D.E.; Whitney, C.M.; Walter, B.L.; Gunzler, S.A.; Giuffrida, J.P.;
Mera, T.O. Automated motion sensor quantification of gait and lower extremity bradykinesia. In Proceedings
of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
San Diego, CA, USA, 28 August–1 September 2012; pp. 1956–1959.

12. Mera, T.O.; Heldman, D.A.; Espay, A.J.; Payne, M.; Giuffrida, J.P. Feasibility of home-based automated
Parkinson’s disease motor assessment. J. Neurosci. Methods 2012, 203, 152–156. [CrossRef] [PubMed]

13. Cancela, J.; Pansera, M.; Arredondo, M.T.; Estrada, J.J.; Pastorino, M.; Pastor-Sanz, L.; Villalar, J.L.
A comprehensive motor symptom monitoring and management system: The bradykinesia case.
In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and
Biology, Buenos Aires, Argentine Republic, 31 August–4 Septemebr 2010; pp. 1008–1011.

14. Cancela, J.; Pastorino, M.; Arredondo, M.T.; Konstantina, N.S.; Villagra, F.; Pastor, M.A. Feasibility Study of
a Wearable System Based on a Wireless Body Area Network for Gait Assessment in Parkinson’s Disease
Patients. Sensors 2014, 14, 4618–4633. [CrossRef] [PubMed]

15. Keijsers, N.L.; Horstink, W.W.; Gielen, S.C. Automatic assessment of levodopa-induced dyskinesias in daily
life by neural networks. Mov. Disord. Off. J. Mov. Disord. Soc. 2003, 18, 70–80. [CrossRef] [PubMed]

16. Stamatakis, J.; Ambroise, J.; Crémers, J.; Sharei, H.; Delvaux, V.; Macq, B.; Garraux, G. Finger tapping
clinimetric score prediction in Parkinson’s disease using low-cost accelerometers. Comput. Intell. Neurosci.
2013, 2013, 1–13. [CrossRef] [PubMed]

17. Khan, T.; Nyholm, D.; Westin, J.; Dougherty, M. A computer vision framework for finger-tapping evaluation
in Parkinson’s disease. Artif. Intell. Med. 2014, 60, 27–40. [CrossRef] [PubMed]

http://dx.doi.org/10.1136/jnnp.55.3.181
http://www.ncbi.nlm.nih.gov/pubmed/1564476
http://dx.doi.org/10.1002/mds.20640
http://www.ncbi.nlm.nih.gov/pubmed/16116612
http://dx.doi.org/10.1109/TITB.2009.2033471
http://www.ncbi.nlm.nih.gov/pubmed/19846382
http://dx.doi.org/10.1371/journal.pone.0056956
http://dx.doi.org/10.1109/JIOT.2015.2390075
http://dx.doi.org/10.1016/j.jneumeth.2011.09.019
http://www.ncbi.nlm.nih.gov/pubmed/21978487
http://dx.doi.org/10.3390/s140304618
http://www.ncbi.nlm.nih.gov/pubmed/24608005
http://dx.doi.org/10.1002/mds.10310
http://www.ncbi.nlm.nih.gov/pubmed/12518302
http://dx.doi.org/10.1155/2013/717853
http://www.ncbi.nlm.nih.gov/pubmed/23690760
http://dx.doi.org/10.1016/j.artmed.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/24332155


Sensors 2016, 16, 930 15 of 15

18. Piro, N.E.; Baumann, L.; Tengler, M.; Piro, L.; Blechschmidt-Trapp, R. Telemonitoring of Patients with
Parkinson’s Disease Using Inertia Sensors. Appl. Clin. Inform. 2014, 5, 503–511. [CrossRef] [PubMed]

19. Christopher, G.G. MDS-UPDRS. Offical Working Document: Chicago, IL, USA, 2008. Available online:
http://www.movementdisorders.org/MDS-Files1/PDFs/Rating-Scales/MDS-UPDRSfinal_Update.pdf
(accessed on 17 June 2016).

20. Piro, N.E.; Piro, L.K.; Kassubek, J.; Blechschmidt-Trapp, R.A. Parkinson Research: MARG Sensor Data of the
Pronation-Supination Task. Zenodo 2016. [CrossRef]

21. Jenkinson, C.; Fitzpatrick, R.; Peto, V.; Greenhall, R.; Hyman, N. The PDQ-8: Development and validation of
a short-form Parkinson’s disease questionnaire. Psychol. Health 1997, 12, 805–814. [CrossRef]

22. Peto, V.; Jenkinson, C.; Fitzpatrick, R. PDQ-39: A review of the development, validation and application of
a Parkinson’s disease quality of life questionnaire and its associated measures. J. Neurol. 1998, 245, 10–14.
[CrossRef]

23. Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, A. Estimation of IMU and MARG orientation using a
gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation
Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7.

24. Witten, I.H. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: San Franciso,
CA, USA, 2005.

25. Quinlan, J.R. C4.5. Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993.
26. Zechner, M. libGDX 1.5.4, 2015. Available online: libgdx.badlogicgames.com (accessed on 17 June 2016).
27. MakeHuman Team. MakeHuman 1.0.2. Available online: http://www.makehuman.org/ (accessed on

17 June 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4338/ACI-2014-04-RA-0046
http://www.ncbi.nlm.nih.gov/pubmed/25024764
http://www.movementdisorders.org/MDS-Files1/PDFs/Rating-Scales/MDS-UPDRSfinal_Update.pdf
http://dx.doi.org/10.5281/zenodo.54551
http://dx.doi.org/10.1080/08870449708406741
http://dx.doi.org/10.1007/PL00007730
libgdx.badlogicgames.com
http://www.makehuman.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Material and Methods 
	Sensor System 
	Subjects and Data Collection 
	Data Preprocessing 
	Computation of UPDRS 
	Generation of 3D Avatar 
	Evaluation of UPDRS Ratings 

	Results 
	Discussion 
	Conclusions 
	

