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1. Introduction

Predicting properties of hadrons still represents a serious chal-
lenge for Quantum Chromodynamics (QCD). Heavy quarks closely 
resemble static test charges and therefore are useful to probe con-
fining properties of QCD. So far, great progress has been made in 
the study of quarkonia, i.e. mesonic states that contain two heavy 
constituent quarks. In contrast, systems of three or more heavy 
quarks, which are a good starting point for understanding the phe-
nomenology of baryons and multi-quark bound states, are much 
less studied. In this case a key issue is whether multi-quark in-
teractions can be understood in terms of two-body interactions 
or whether there are genuine three- and many-body effects to 
be considered as part of the overall picture of strong interac-
tions [1,2].

The best known phenomenological models of the N-quark po-
tential are those of N = 3, the so-called � and Y-laws [3]. The 
�-law is based on pairwise interactions between quarks, while the 
Y -law is an example of three-body interactions. In the infrared re-
gion the former predicts that the potential grows linearly with the 
perimeter of the triangle formed by quarks [4], while the latter 
predicts a linear growth with the minimal length of a string net-
work which has a junction at the Fermat point of the triangle [5].

Until recently, lattice gauge theory was the premier method for 
obtaining quantitative and qualitative information about strongly 
interacting gauge theories. For the three-quark potential the accu-
racy of numerical simulations has been improved during the past 
decade [6–9] that provided evidence for the Y-law at long dis-
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tances. On the other hand, it is expected that at short distances 
the �-law is a good approximation to the potential [3,6]. How-
ever, what is still missing is a model which would incorporate the 
�-law at short distances and the Y -law at long ones.

In this Letter we present the first example of such a model. It 
continues a series of studies [10–12] devoted to the static poten-
tials in four-dimensional (pure) gauge theory by means of a five 
(ten)-dimensional effective string theory. Our reasons for continu-
ing to pursue this model are:

(1) Because there is no string theory which is dual to QCD. It 
would seem very good to gain what experience we can by solving 
any problems that can be solved within the effective string model 
already at our disposal.

(2) Because the results provided by this model are consistent 
with the lattice calculations and QCD phenomenology [13–15].

(3) Because analytic formulas are obtained by solving this 
model.

(4) Because it allows us to make predictions [16] which may 
then be tested by means of other methods, e.g., numerical simula-
tions.

Before proceeding to the detailed analysis, let us set the ba-
sic framework. As for the quark–antiquark potential, the static 
N-quark potential can be determined from the expectation value 
of a Wilson loop. The loop in question, baryonic loop, is defined 
in a gauge-invariant manner as WNQ = 1

N!εa1...aN εa′
1...a′

N

∏N
i=1 U aia

′
i , 

with the path-ordered exponents U aia
′
i along the lines shown in 

Fig. 1. In the limit T → ∞ the expectation value of the loop is sim-
ply 〈WNQ(C)〉 ∼ e−ET , with E the ground state energy of N quarks 
(N-quark potential).

In discussing baryonic Wilson loops, we adapt the formalism 
[17,18] proposed within the AdS/CFT correspondence [19] to our 
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Fig. 1. Left: A baryonic Wilson loop in SU(3) gauge theory. Right: In SU(4), a configuration used to calculate the expectation value of a baryonic loop. The quarks are set on 
the x-y plane. V is a baryon vertex located at r = r0 and S is its projection onto the x-y plane.
purposes. First, we take the following ansatz for the background 
geometry [20]

ds2 = esr2 R2

r2

(
dt2 + d	x2 + dr2) + e−sr2

g(5)

ab dωadωb , (1)

where d	x2 = dx2 + dy2 + dz2. This is a deformed product of AdS5
and an internal space (five-sphere) X whose coordinates are ωa . 
The deformation is due to the r-dependent warp factor, with s the 
deformation parameter. Such a deformation is a kind of the soft 
wall model of [21], where the violation of conformal symmetry 
is manifest in the background metric. In (1), there are two free 
parameters to be fitted to the results of numerical simulations or 
quarkonia spectra. Both fits look very good [13,14].

Next, we consider the baryon vertex which is a N-string junc-
tion. Since we are interested in a static quark potential, we choose 
static gauge and then make an ansatz for the action, describing a 
static configuration, of the form

Svert = m
e−2sr2

r
T , (2)

where m and s are parameters, r is independent of t , and T =∫ T
0 dt . In what follows, we will assume that quarks are placed at 

points on the boundary of 5-dimensional deformed AdS (at r = 0) 
but at the same point in the internal space. This assumption makes 
the problem effectively five-dimensional. Therefore the detailed 
structure of X is not important, except for the warp factor depend-
ing on the radial direction. The motivation for such a factor in (2)
is drawn from the AdS/CFT construction, where the baryon vertex 
is a 5-brane [17]. Taking a term 

∫
dtd5ω

√
g(6) from the world-

volume action of the brane results in T e−2sr2
/r if r is independent 

of t . This is, of course, a heuristic argument but, as we will see, the 
ansatz (2) is quite successful: it allows us to describe the results 
for N = 3 using just one parameter.

The expectation value of the Wilson loop is schematically given 
by the path integral over world-sheet fields

〈WNQ(C)〉 =
∫

D�e−S w , (3)

where S w is a total action of the Nambu–Goto strings and vertex. 
The strings are stretched between the quarks on the boundary and 
the baryon vertex in the interior, as sketched in Fig. 1. In principle, 
the integral can be evaluated approximately in terms of minimal 
surfaces that obey the boundary conditions. The result is written 
as 〈WNQ(C)〉 = ∑

n wn exp[−Sn], where Sn means a renormalized 
minimal area whose weight is wn .
2. Calculating the N-quark potential

We consider a situation in which N quarks are placed at the 
vertices of a regular N-sided convex polygon of side length L. This 
configuration has the symmetry group D N . Hence S is a center of 
the polygon and all the strings have an identical profile. To com-
pute the potential, we proceed along very similar lines to those 
of [12]. First, we take the static gauge that allows us to solve 
the equations of motion and determine the string profile. Next we 
extremize the action with respect to the location of the baryon 
vertex r0 that results in the no-force condition at r = r0. There is, 
however, one important distinction between the present calcula-
tion and those in the literature devoted to large N gauge theories. 
We make an assumption that the parameter m is negative. As a re-
sult, gravity pulls the vertex toward the boundary. This bends the 
strings and blunts the tip of the configuration [16], as shown in 
Fig. 1.

Having found the solution, we can compute the total energy of 
the configuration. At the end of the day we arrive at [16]

L(ν) = 2 sin
(π

N

)√
λ

s

[ 1∫
0

dv v2 eλ(1−v2)
(

1 − v4e2λ(1−v2)
)− 1

2

+
1∫

√
ν
λ

dv v2 eλ(1−v2)
(

1 − v4e2λ(1−v2)
)− 1

2
]

(4)

and

E(ν) = Ng

√
s

λ

[
κ

√
λ

ν
e−2ν − 1

+
1∫

0

dv

v2

(
eλv2

(
1 − v4e2λ(1−v2)

)− 1
2 − 1

)

+
1∫

√
ν
λ

dv

v2
eλv2

(
1 − v4 e2λ(1−v2)

)− 1
2
]

+ C , (5)

where ν = sr2
0 , g = R2

2πα′ , κ = m
Ng

, and C is a normalization con-

stant. λ is a function of ν and κ such that λ = −ProductLog[−νe−ν

(1 −κ2(1 +4ν)2e−6ν)− 1
2 ], where ProductLog(z) is the principal so-

lution for w in z = wew .1 Also note that ν ∈ [0, ν∗], with ν∗ a 
solution to ν2 = e2(ν−1)(1 − κ2(1 + 4ν)2e−6ν).

1 See, e.g., https :/ /reference .wolfram .com /language /ref /Pro-ductLog .html.

https://reference.wolfram.com/language/ref/Pro-ductLog.html
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Fig. 2. The lattice data, obtained on an equilateral triangle at β = 6.0, are taken from [6,8] (squares), [7] (disks), and [9] (triangles). We use the normalization of [8]. We 
don’t display any error bars because they are comparable to the size of the symbols. Left: The 3-quark potential at g = 0.176, s = 0.44 GeV2, κ = −0.083, and C = 1.87 GeV. 
Right: Some asymptotic curves for the model at the same parameter values: −3 α3Q

L + C (dot dashed), −3 α3Q
L + C + 3

2 σ0 L (long dashes), and 
√

3σ L + c (short dashes).
Thus, the N-quark potential as a function of the interquark 
separation is parametrically specified via the parametric functions 
E(ν) and L(ν). Importantly, the parameters g and s coincide with 
those of the quark–antiquark potential [10,11] and, as a conse-
quence, κ is the only free parameter in the model. This is our main 
result.

It is worth analyzing E(L) in the two limiting cases, short and 
long distances. In the former case we find

E(L) = −qN
αNQ

L
+ C + pN

N − 1
σ0L + o(L) , (6)

αNQ = − 1

qN
L0 E0g , σ0 = N − 1

pNL0

(
E1 + L1

L0
E0

)
gs , (7)

where qN = ∑N
i> j L/ri j , pN = ∑N

i> j ri j/L, ri j denotes the distance 
between the vertices i and j, Li and Ei are given in the Appendix.

In the latter case, we get a generalization (star-law) of the Y-law 
with a single Steiner point S

E(L) = N

2 sin
(
π
N

)σ L + c + o(1) , (8)

with the same string tension σ as in [10–12]

σ = egs ,

c = Ng
√
s

[
κ√
ν∗

e−2ν∗ −1+
1∫

0

dv

v2

(
ev2

(
1 − v4e2(1−v2)

) 1
2 − 1

)

+
1∫

√
ν∗

dv

v2
ev2

(
1 − v4e2(1−v2)

) 1
2
]

+ C . (9)

Three features of the model are worth highlighting here. First, at 
short distances it yields the subleading linear term.2 Second, at 
long distances the model reduces to the star-law with the physical 
string tension σ , as expected [12]. Finally, the constant terms at 
short and long distances are different. Notice that c − C is scheme 
independent and is free from divergences. This makes the model 
so different from the phenomenological laws.

2 This issue was discussed in the QCD literature but in the context of the quark–
antiquark potential (see, e.g., [22]).
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Numerical results and phenomenological prospects

It is of great interest to compare our model of the N-quark po-
tial with the results of numerical simulations.
Clearly, N = 3 is of primary importance.3 In this case, we set 

0.176 and s = 0.44 GeV2, i.e., to the same values as those 
[11] used for modeling the quark–antiquark potentials of [15]. 

ith these parameters fixed, the model has only a single free pa-
eter κ . We then fit it with α3Q = 0.125 taken from [8]. So we 

t κ = −0.083. The result is plotted in Fig. 2, on the left. We see 
at the model reproduces the lattice data remarkably well. Also 
te that a fit to α3Q = 0.129 of [9] doesn’t change the picture as 
e discrepancy between the data of [8] and [9] is negligible at 
all distances.
For completeness, it is worth making a couple of estimates. 

st, from (7) we get α3Q/αQQ̄ ≈0.495, where αQQ̄ = (2π)3
−4
( 1

4

)
g

,24]. Thus, the relation between the “Coulomb” coefficients 
nd in perturbative QCD holds with good accuracy in our model. 

is looks puzzling as we consider small distances but not very 
all ones of perturbative QCD. Second, from (7) and (9), we find 
/σ ≈ 1.007 that favors the �-law at short distances, as also 
ted in [8].
For practical purposes, the parametric form of the potential 
ks somewhat awkward. It is instructive to compare the lattice 

ta to the asymptotic behavior of E(L) to see what happens. In 
. 2 we have plotted the results. As can be seen, in the range 
interest a single Coulomb-type term doesn’t yield a satisfactory 
scription. But if one adds an additional linear term, then the 
uation will improve. Such a two-component model, almost the 
law, does describe the data quite well in the range 0.1 fm ≤ L �

fm. However, at longer distances 0.6 fm � L ≤ 1.2 fm, it be-
mes less accurate than a single linear term from the Y-law, as 
eady noted in [7]. Thus the model we propose smoothly inter-
lates between the � and Y-laws with a transition at L ≈ 0.6 fm.
Unfortunately, in lattice gauge theory very little is known about 

e N-quark potential if N > 3. Even in SU(4) [6], the availability of 
ta is much more limited than it should be to make a consistent 
mparison with our predictions.

The AdS/CFT correspondence requires the large N limit [19]. While we borrow 
e ideas from it, we do not follow it completely. Our aim is an effective string 

ory with N finite. It is worth noting that sometimes the 1/N expansion is rem-
cent of known phenomenology of hadron physics (see, e.g., [23]). Maybe our 
rk provides one more example of this type of reminiscence.
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In the physically interesting case N = 3, the model incorporates 
pairwise interactions, the �-law, at short distances and a genuine 
three-body interaction at longer ones. Note that one can think of 
the pairwise interaction as that of a quark and a diquark thanks 
to a string stretched in between. Such an interaction occurs at in-
termediate scales in between very small scales, where quarks are 
asymptotically free, and large scales, where quarks are strongly 
coupled.

4. Summary and discussion

In this Letter, we have modeled the N-quark potential using the 
now standard ideas motivated by gauge-string duality. Our work 
based on the background geometry (1), which is singled out by 
the earlier works [11,20], provides the first convincing example of 
interpolation between the � and Y -laws. Mathematically, the po-
tential is described by a complicated function whose asymptotic 
behavior is given by the � and Y -laws.

The model we are developing is an effective string theory based 
on the Nambu–Goto formalism in a curved space. Therefore it has 
some limitations including: the issue of a Lüscher-like correction 
on a curved background and the issue of attraction between the 
baryon vertex and boundary. What could be the reason for the 
latter? m is a result of a resummation of infinitely many terms 
(α′ corrections) in the five-brane action. Is it negative because the 
brane tension is negative,4 and if so, does it lead to instability? 
These questions have no obvious or immediate answers. Hopefully, 
it will be resolved in the future by using the Green–Schwarz for-
malism, already developed for strings on AdS5 ×S5 [26]. Obviously, 
finding the way to the string description of QCD is a challenging 
and difficult problem. In the meantime, lattice gauge theory and 
effective string models will remain the main tools of investigation.
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Appendix A. Some useful formulas

In studying the short distance behavior of E(L), the following 
two facts are useful. First, L goes to zero as ν → 0. Second, for 
small ν and λ we have ν(λ) = ρ

1
2 λ + (

1 − 2κ2 − ρ
1
2
)
λ2 + o(λ2), 

with ρ = 1 − κ2.

4 There has been an extensive discussion of negative tension branes in several 
different contexts: cosmology, F-theory compactifications, orientifold models (see, 
e.g., [25]), but not in gauge/string duality.
Expanding (4) and (5) to subleading order in λ, we find

L =
√

λ

s

(
L0 + L1λ

)
, E = g

√
s

λ

(
E0 + E1λ

) + C , (A.1)

together with

L0 = 1

2
sin

(
π
N

)
B

(
κ2; 1

2 , 3
4

)
,

L1 = 1

2
sin

(
π
N

)(
B

(
κ2;− 1

2 , 3
4

) − B
(
κ2;− 1

2 , 5
4

) − η
)

,

E0 = N
(
κρ− 1

4 + 1

4
B

(
κ2; 1

2 ,− 1
4

))
,

E1 = N
(
−2κρ

1
4 + 1

4
B

(
κ2; 1

2 , 1
4

) + 1

2

L1

sin
(
π
N

))
.

Here η = 2ρ
1
4 |κ |−1

(
1 − 2κ2 − ρ

1
2
)
, B(z; a, b) = B(a, b) + B(z; a, b), 

and B(z; a, b) is the incomplete beta function. Then a simple alge-
bra leads to the explicit formulas for αNQ and σ0.
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