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Abstract

We study the Kondo chain in the regime of high spin concentration where the low energy physics is
dominated by the Ruderman—Kittel-Kasuya—Yosida interaction. As has been recently shown (Tsvelik
and Yevtushenko 2015 Phys. Rev. Lett. 115 216402), this model has two phases with drastically
different transport properties depending on the anisotropy of the exchange interaction. In particular,
the helical symmetry of the fermions is spontaneously broken when the anisotropy is of the easy plane
type. This leads to a parametrical suppression of the localization effects. In the present paper we
substantially extend the previous theory, in particular, by analyzing a competition of forward- and
backward- scattering, including into the theory short range electron interactions and calculating spin
correlation functions. We discuss applicability of our theory and possible experiments which could
support the theoretical findings.

1. Introduction

The Kondo chain (KC) is one of the archetypal models for interacting low-dimensional systems which has been
intensively studied during the past two decades [1-11]. It consists of band electrons on a one-dimensional lattice
which interact with localized magnetic moments; electron—electron interactions can also be included in the
consideration [1, 2, 5,9, 12]. The KC is not exactly solvable, nevertheless, a lot is known about it both from
numerical and analytical studies [ 1, 6—9]. In particular, ground state properties are known from DMRG for the
isotropic point [13].

One possible realization of KC is a cleaved edge overgrowth GaAs quantum wire doped with magnetic ions.
Such quantum wires were manufactured along time ago [ 14, 15] and have been successfully used to study one-
dimensional strongly correlated physics (see, for example, [16, 17]). Functionalizing them with dynamical
magnetic impurities could yield an experimental realization of the KC. As another possible platform for KC one
may use carbon nanotubes functionalized with magnetic ions or molecules containing magnetic ions (possible
realizations can be found in [18-20]). Alternatively one may search for quasi one-dimensional structures with
coexisting localized and delocalized electrons in bulk materials. The theory predicts that in iron-based ladder
materials some of the iron d-orbitals are localized and some are itinerant [21-23]. The issue is to find such crystal
structures where the ladders would be sufficiently isolated from each other to prevent three-dimensional
ordering (three-dimensional ordering seems to occur in BaFe,Se; [24]).

It has been recently shown by two of us that the KC may display a rather nontrivial physics in the anisotropic
regime away from half-filling in the case of dense spins when the Ruderman—Kittel-Kasuya—Yosida (RKKY)
exchange interaction dominates the Kondo screening [25]. We considered an anisotropic exchange interaction with
the anisotropy of the XXZ-type. Then there are two phases with different low-energy properties, namely, the easy
axis (EA) phase and the easy plane (EP) one. In the EA phase, all single fermion excitations are gapped. The charge
transport is carried by collective excitations which can be easily pinned by ever present potential disorder. The
situation is drastically different in the EP phase. The minimum of the ground state energy corresponds to the helical
spin configuration with wave vector 2k (kg being the Fermi wave vector) which opens a gap in the spectrum of the

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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fermions of a particular helicity while the electrons having the other (opposite) helicity remain gapless. We remind
the readers that the helicity is defined as sgn(v)sgn (o), where v and o the the electron velocity and its spin,
respectively. This corresponds to the spontaneous breaking of the discreet Z, helical symmetry. If the potential
disorder is added to the phase with the broken symmetry a single-particle backscattering is prohibited either by spin
conservation (for electrons with the same helicity) or by the gap in one of the helical sectors (for electrons with
different helicity). This is similar to the absence of the single-particle back-scattering of edge modes in time-reversal
invariant topological insulators [5, 26—32] and results in suppression of localization effects. The latter can appear
only due to collective effects resulting in a parametrically large localization radius. In other words, ballistic charge
transportin the EP phase has a partial symmetry protection which is removed either in very long samples or if the
spin U(1) symmetry is broken. This is also similar to the symmetry protection of the edge transport in 2d topological
insulators: transport is ideal if time-reversal symmetry and spin U(1) symmetry are present. However, it can be
suppressed in along sample due to spontaneously broken time-reversal symmetry [33, 34].

In the present paper, we continue to study the KC in the RKKY regime where the low energy physics is
governed by the fermionic gaps. We aim to explain in more details the results of [25] and to substantially extend
the theory, in particular, by analyzing the role of forward scattering (i.e., of the Kondo physics), by taking into
account the short range electron interactions and by calculating the spin correlation functions.

Similar ideas to those presented here were already pursued in [2], where the emergence of helical order was
recognized. In contrast to [2] we take into account the dynamics of the lattice spins whose presence substantially
modifies the low-energy theory.

The Hamiltonian of the KC on a lattice is

H="Hy+ Hint = Z [tc,-ilci + h.c.] + Z Z]“Sfc}o”cj, a=xy,z )

i a jeM

where tis the hopping matrix element, ¢/ annihilates (creates) an electron atsite i, S; is a local spin of magnitude
s, 0 is a Pauli matrix, and M constitutes a subset of all lattice sites. ] denotes the interaction strength between the
impurities and the electrons. We distinguish J,and J, = J, =: ], . Shortrange interactions between the electrons
will be added later in section 4.4. The dynamics of a chain of spins will be added in section 2. We will be interested
in the case of dense magnetic impurities, o, §, > 1/Lx (with the impurity density p, and the single-impurity
Kondo length Ly), when the effects of the electron-induced exchange can take predominance over the Kondo
screening. The paper is organized as follows: we first introduce a convenient representation of the impurity spins
in section 2. Necessary conditions for the RKKY regime are then discussed in section 3. The gap is studied in
section 4. In section 5 we compute the conductance and analyze the effects of spinless disorder. The spin-spin
correlation functions are given in section 6.

2. Formulation of the low energy theory

To develop alow energy description of the KC model (1) we have to single out slow modes and integrate over the
fast ones. As the first step, we need to find a convenient representation of the spins such that it will be easy to
separate the low and high energy degrees of freedom.

2.1. Separation of scales in the spin sector
Consider first a single spin. It is described by the Wess—Zumino term in the action [35]

1 B s
— 3 Wy
Swz = 1L duj(; dT87r en - (O,n x O,n), )

where # is the direction of the spin, u is an auxiliary coordinate, which together with 7 parametrizes a disk. Multiple
spins require a summation over spins and can be described by introducing a (dimensionless) spin density p,

> Swe—S= [ dx?swz, 3)
0

impurities
where & is the underlying lattice constant for the spins.
Usually, two angular variables are used in parametrizing the spin S = s {sin(6)cos(¢)),

sin(f)sin (1)), cos(0) }:

Lwzl0, ¥] = =2 cos 00,0, 4)
€
where we have neglected boundary contributions (topological terms).

The form of the Lagrangian equation (4) makes it difficult to separate fast and slow variables, since the angles
6 and 1) contain both fast and slow modes. We need to find a different representation of the spin Berry phase,
which will allow us to separate the fast and the slow modes explicitly. We first observe that the expression

2
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Figure 1. The fast (red) and slow (blue) spin trajectories as a function of time. The slow spin is shorter, since it is the fast spin averaged
over some short timescale. The left panel shows the slow modes in the case of a free spin, in the right panel the spin physics is
dominated by the interaction mediated by the backscattering electrons. In the latter case, the slow mode is orthogonal to the fast
trajectory.

equation (4) can be obtained by considering a coordinate system comoving with the spin. Namely, we choose an
orthnormal basis {ej, e,, e;} attime 7 = 0 and assume that this coordinate system is comoving with the spin
such that s{ := (S, e;) isindependent of 7. Then it is easy to check that the following expression reproduces (4):

Lwz10, 9] = —-2(S, e (ej, Orep) ey 5)
2¢,
The check of equation (5) can be done by choosing the explicit parametrization
e; = {—cos(0)cos(v)), —cos(f)sin(v)), sin(d) }, (6a)
e; = {sin(¢)), —cos(v), 0}, (6b)
e; = {sin(f)cos(v)), sin(f)sin(y)), cos(d)} = S/s, (6¢)

with S||e; and inserting equation (6) into equation (5). A specific choice of the basis e; ; is not important since
Ly in the form equation (5) is manifestly covariant under both a rotation in x, y, z, and a change of basis {e;}.

In path integral quantization, we thus sum over all paths described by 0 (x, 7) and ¥ (x, 7). The measure is
givenby D{Q} = sin0D {0} D{w}.

Let us now consider two superimposed spin motions: the actual trajectory considered in the path integral,
and its slow component (figure 1). We already have the Wess—Zumino term for the actual trajectory. If we want
to use equation (5) for the slow component, we need to introduce a second set of basis vectors which is comoving
with the slow component. This doubles the number of angles, but we assume a separation of scales: of the four
angles, two will be fast and two will be slow. Thus, there will be no double counting of modes which justifies our
approach. A convenient choice for the slow basis is given by the rotation of the actual trajectory (figure 2)

e/ = —sin(qy)[cos(ar)e; + sin(ar)e;] + cos()es, (7a)
e, = sin(ay)e; — cos(ay)es, (7b)
e; = cos(ay)[cos(aw)e; + sin(ai)e;] + sin(ay)es. (7¢0)

The total path-integral measure now consists of the four angles: D {€2s, {2’} = cos o sin 6D
{0} D{y} D{cy} D{ay}, which will be the product of the measures for fast and slow modes.

Now we can describe the dynamics of the slow modes, which is given by the slow Wess—Zumino term: we
pick the bases such that S||e; and S0, ||€5. The dynamics of the slow modes are then obtained by using
equation (5) with the full spin S and the slow basis e}:

SVS\I,OZW = = ispsﬁo_1 fdxfdt sin(ay) [Orcu + cos(0)0,v]. 8)

The dynamics is that of the basis { e/, e,, e;} (i.e. of the slow spin), whereas the overall scale is that of the actual
trajectory projected onto the slow component. This projection may be viewed as a renormalization of the length
of the spin’s slow component.
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Figure 2. The parametrization of a spin by the angles 0, 1), au, .

2.2. The interaction between the spins and the fermions
The low-energy fermion modes are obtained by linearizing the spectrum and expanding the operators ¢ in
smooth chiral modes R, L,

&y (n) = e *e &Ry (x) + e oLy (x), x = né,. ©)
The Lagrangian density of the band electrons becomes

Le=U1J Do, — i @ 79)vpd,] V. (10)

The first space in the tensor product is the spin one, the Pauli matrices 79 act in the chiral space; I = diag(1, 1);
ve = 2t&, sin(kg&,) is the Fermi velocity; W' = (R;, R, Ly, L)) is the four-component fermionic spinor field.
If the electron interaction is taken into account, it is more convenient to use the bosonized Lagrangian density

Lo=-" iax@pafq)p L u,K,(0:0,)* + ﬁ(a@p)z , (11)
p=cs | T 2m K,

where K, is the Luttinger paramter; u, the renormalized Fermi velocity; and we have used the bosonization
identity

1 ; i
Uy = e U e irkrte— 5 12— O 40 (12-0)] (12)

B V2T,

D, (&) and O, (©) are dual bosonic fields belonging to the charge (spin) sector, r distinguishes right- and left-
moving modes, o is the spin projection and U,, are Klein factors. One can introduce spin and charge sources to
determine how the low energy degrees of freedom couple to external perturbations:

V2he 0P, + J2hy

s s

['source = hc(Pf + Pﬁ) + hs(pi2 - Pf) = - 8x65) (13)

here pf/f = pﬁ/ Ly pf/ L'is the charge/spin density of the right- /left-moving electrons. The spin source is
included for purely illustrative purposes. We will combine the fermionic and bosonic description, selecting the
one which is most convenient for the given caculations.

Now consider the electron-spin interactions Hj,;. We will explicitely distinguish forward and backward

scattering since they give rise to different physics. The slow part of the backscattering term is (see appendix)
Ly - 2P e o sinz(g)& S e cosz(g) ot
2 2 2
+2J, sin(9)6z}Le‘i“ + h.c, (14)

where @ = oy — 2kpx and we have introduced the spin-flip operator S;. = S, £ iS,.

4



I0OP Publishing NewJ. Phys. 18 (2016) 053004 D H Schimmel et al

For the forward scattering, we obtain

(sl, fs) _ S SiIl(OéH) Ps

Lll‘lt 2

R {Jf sinf[e"o~ + e o™ + 2J! cosfo?}R + (R — L) (15)

3. Renormalization of forward versus backward scattering coupling constants

Equations (14) and (15) describe two competing phenomena: forward scattering tends towards Kondo-type
physics, backward scattering opens a gap (see section 4). Both phenomena are distinct and mutually exclusive. If
backscattering is dominant, then the emerging gap will cut the RG and suppress forward scattering. If forward
scattering dominates, the formation of Kondo-singlett prevents the gap from opening [7]. We will focus on the
physics related to the gaps. Therefore, we have to identify conditions under which the backscattering terms are
more important. To determine the dominant term, we consider a firstloop RG.

Let us consider the bosonized free electrons, equation (11). They constitute two Luttinger liquids, describing
aspin density wave (SDW) and a charge density wave (CDW). If there is no electron—electron interaction, then
K; = K. = 1. Aweak, short range, spin independent repulsion between electrons changes K. to K. < 1,but
leaves K untouched.

The RG equations for the couplings read as (see appendix B):

ot = 1t oyt = [4(x+ ) - 2|t 16)

o =L + Ko — 2|18, ot = B(K +1)- 2]]3, (17)

where I parametrizes an energy cutoff A' via X' = exp(I)A. The flow differs from that of single Kondo impurity

because we consider a dense array of impurities. All of these terms are relevant, if K. and Kj are close to 1. Assuming
weak, short range, spin independent repulsion (i.e. K. < 1,and K = 1), we see that the backward scattering terms
flow faster in the RG-flow from high to low energies than forward scattering ones, i.e. the terms ~J® can dominate.

Let us assume that an impurity scatters anisotropically in spin space (J, = J,), but there is no difference
between the electrons’ directions (J£,,. = J&...). Then, simple scaling shows that backward scattering becomes
relevant prior to forward scattering. The scattering will remain anisotropic and the strength of the anisotropy is
dictated by the inital conditions (], versus ], at the beginning of the flow).

Weak, short range, spin dependent electron—electron interactions do not change the picture and
backscattering dominates, provided that |[K; — 1| < |K. — 1. However, if the spin dependent electron—
electron interactions are attractive (repulsive), they will drive the flow towards dominantly spin-flip (spin-
conserving) backscattering.

Thus, we conclude that the gap physics dominates if there is a weak, repulsive, spin-independent electron—
electron interaction. From now on, we consider this regime and neglect J'. We note that it is well-known that for
large spins the Kondo-temperature is small [36]. Thus, for sufficiently large spins we can conclude without an
explicit RG analysis that the gap physics will dominate.

4. Effects of backward scattering

We now focus on effects generated by backscattering. If the spin configuration is fixed, the backscattering terms
act like mass terms for the fermions. This modifies the dispersion relations, as shown in figure 3. The ground
state energy of single component massive fermions with mass m differs from that of gapless fermions by

AE = —im2 In(t/|m|) + O(m?). (18)
2TVE

To minimize the ground state energy, one thus has to maximize the gaps. Depending on the relative values of J*
and J* this leads to different ground state spin configurations and different physics.

4.1. EA anisotropy, J, > ]|
Letus consider J, > ], .Itis convenient to remove the phases o and ¢ from the interaction equation (14). This
can be done by the transformation of the fermion fields

RT — efiq/;/Zfia/ZRT’ Rl — eiuiv/zfia/ZRl’ LT N e—iq/;/2+ia/2LT) Ll N eiw/2+ia/2LL’ (19)

which is anomalous. The anomaly is the well-known Tomonaga—Luttinger anomaly; its contribution to the
Lagrangianis [37]
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Figure 3. The dispersion of helical modes. Blue and green lines correspond to particles and holes of the first helical sector. For helical
particles the direction is in one-to-one correspondes with their spin. Upon opening a gap A, the dispersion changes to the red curve.

S Lnl® vl = Y L [(0,9) + (vde®)2]. (20)

J2d=a,0 L\ 2®d=a,1 TVE

This result may also be obtained from Abelian bosonization [38] (see the appendix C)*. We have neglected
coupling between the charge (spin) density and the field a (¢)). This mixing is generically of the form

Emixing ~ iara(PL - pR)C + MaxOé(PL + /)R)c + iar"/}(pL + pR)s + uds (pp — PR)S) (21)

where p, stands for a density of left- /right-moving (r = L and r = R) electrons and u is their velocity. Once the
electrons become gapped, the low-energy degrees of freedom cannot excite density fluctuations. With this
accuracy, in the low energy theory we can neglect derivatives of the electron densities.

The full Lagrangian is thus

LV~ L, + L:E;l“a,w:o + D L@, ve) + Lwz (22)
J20=a,9

Here £ is only the backward scattering part L"), equation (14). After the transformation equation (19), the

sources now couple to the phases ®. and ©; and the angles

V2he 0P, + J2hy

™ s

Liource = _ﬁaxa - E Y — 0x6;. (23)
™ ™

L&) in equation (22) is a mass term. The masses for fixed spin variables are given by

2
BCOSUP P cos + (Psindd + Jb)2 4

mk =
Inthecaseof J, > ]| the gap is always large (of order J,) and it is maximized for § = 7 /2 and o) = 0.

Since all fermions are gapped we may neglect their coupling to external sources, provided we restrict
ourselves to energies below the gap. We now integrate out the fermions under this assumption, i.e. we will
consider correlation functions on length scales larger than the coherence length vg/m. Since the original
normalization of the path integral was with respect to gapless fermions, the effective Lagrangian is now changed
by the fermionic ground state energy equation (18). The total Lagrangian reads as

AE
L)~ 22 Z L(®, vi) + Lwz, (25)

0 ﬁ@:a,w

where we also have assumed that fluctations of the angles # and oyjare small, such that the angles are close to their
ground state values. AE is a function of the angles, see equations (18) and (24). Expanding equation (25) in
0 =60 — n/2and |, we obtain

4 .
We use the conventions from [39].
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L) = > Lr(®@,ve) + a{lUD? — UDAO) + [UD? + UD (e} + isp&y (0-),  (26)

20=a,1 Ly

where a = log(t/])(sp,)*/4mvE, and we do not distinguish between the J’s in the log. We will further assume for
now that 0,1 is small, such that the cross-term o 0'0,4) is a higher order contribution. This will be verified
below. L, in equation (26) is the mass term for ¢ and a, which shows that the assumption of small ¢’ and oy is
consistent.

Now we perform the integrals over oy and 6’ and obtain

‘ (50,5 )?
L = L1 (®, vp) + ————
(e ﬁ?:a,w“ Y a0 + 0D

Note that 1) and « remain gapless, justifying the previous approximation of small 9,1. Thus, two angular
modes are fast (6 and «) and two are slow (cvand ¢)), as we expected.

Equation (27) is the action of two U(1)-symmetric Luttinger liquids with a charge mode, a, and a spin
mode, 1

(0,r)?. (27)

1 1
Lea = =L, vi) + —LrL(a, ). (28)
2 K.
The two phases couple to different sources: « to charges and ¢ to spins. The slow mode a has a renormalized
velocity and Luttinger parameter

V—Gzﬁzf \/]zz-i-]f_
0 TVE

log(t/]) <« 1, (29)
VE 2

where we used that the band width is the largest energy scale (i.e. vg/€, > J) in the last inequality. This severly
affects the charge transport, which is mediated by cv.

4.2. Breaking the Z, symmetry

We have demonstrated that for J, > ], all fermionic modes have approximately the same gap ~J,.
Approaching the SU(2) symmitric point, the mass 7_ shrinks until it would reach zero at J, = J, . In terms of the
EA picture, some fermions (two helical modes) become light and their contribution encompasses large
fluctuations on top of their ground state energy. We explicitely assumed that the fluctuations around the ground
state are small. Therefore, our approach is no longer valid for m_ — 0.

For now, let us consider the other limit J, < J,. We will see that this parameter regime behaves in a way
qualitatively different to J, > J, . The order parameter distinguishing the phases is discussed in section 6. The
vanishing of the gap for J, — ]|, the spontaneous symmetry breaking for J, < ], and the presence of an order
parameter all strongly suggest the presence of a quantum phase transition, although its theoretical description is
missing.

4.3. EP anisotropy, J, < ]|

Let us put for simplicity J, — 0. Then, itis convenient to express equation (14) through helical modes
LM = 5 cos o5 [j]_RTT cos? (0/2)e W+ + hel, (30)
L) = —scos Q|0 ULRE sin? (0/2)e'“~L; + h.c.]. (1)

Clearly, the interesting pointsare § = 0, mand § = 7/2.1f = 7 /2, then the effective ], is reduced by a factor
of cos? /4 = sin’ /4 = = relative to the effective ], ofa single gapped helical sector at § = 0, 7. Since the
ground state energy equation (18) of a helical sectors with the gap m; is

AEp = — o mIn(t/|mil) + O(m?), m;~ ], (32)
2TVE
the ground state of a single gapped sector of twice the mass has a lower energy than that of two equally gapped
helical sectors. Thus, it is energetically favorable to spontaneously break the Z, symmetry between different
helical sectors. The two ground states are labelled by § = 0and 6 = 7.

Letus choose § = 0. Then, the first helical sector equation (30) becomes gapped, while the second sector
equation (31) is gapless. Now, the angle o« — 1) does not enter the action if fluctuations of 6 are set to zero. It
enters (in the leading order in #) only via the combination

2. ) . 1. 2
L D —scos aHpS]L%e*‘(a*u’)RfLT + he + 1spsfols1n(au)%67a. (33)
L:LHZ) LSIOW
s wzZ
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Thelast summand is (for oy ~ 0) beyond our accuracy and will be neglected. The influence of the first two
summands may be estimated by integrating over R and L;. The resulting expression is

L D Trlog

. - i 2 o—ita—1)
(1w+v1:k 0 ) 1 iw + vek scosaHpS]LAle a—y 1)

> _ 92 . . .
iw — vk 5 cos O‘Hps]J- 7el(a ¥) iw — vpk

The off-diagonal parts will enter only starting at the second order of the expansion of the log, thus o — 1) only
enters with a prefactor of J f 6*, which is smaller than our accuracy and has to be neglected. Under this
assumption, the angle o can be shifted to av — 1), thus eliminating one angular variable, as the Wess—Zumino
term equation (8) also depends onlyon o + % to leadiqg orderin 6 and q. Itis easiest to eliminate o by
bosonizing the modes coupled to the spins, and shifting’

O, » O, — V2a/4, I — B+ J20/4. (35)

The shift needs to be in both spin and charge sectors such that all charge conserving fermionic bilinears of the
gapless sector remain unaffected. This is a consequence of the helical nature of the sectors and means that o will
couple to both spin and charge sources:

ACsource o - Eaxa - EaxO‘a (36)
2w 21

where we did not write the coupling of the sources to the fermions. Next, we integrate out the gapped helical
sector. The ground state energy contribution from this is

AE = —im2 In(t/|m|) + O(m?), 37)
27TV1:

2
where m? = % (5,0S Cos ) cos g] L) . The ground state energy equation (37) is minimized for cyy = 0 (we remind
that § ~ 0). We expand AE to second order in oyjand ¢ and obtain

AE ~ —(Sps)zﬁlog(t JIDJTIO/2)* + (. (38)
47TVF

Thus, § and o are high-energy modes, which confirms the consistency of our approach in the EP phase. We can
integrate out the fast variables and obtain

1
Lop = RIGi'R + LIGy 'Ly + — Lo v)), (39)
where
/ K/
Yo - Ko Sl foear < 1, (40)
Vp 4 2TVE

and Gy }L = 0, F ivp0, is the inverse Green’s function of free helical fermions. Upon bosonization, the gapless
helical fermions become a helical Luttinger liquid:

1
L= Lo (@, v) + FETL(OA Va)- (41)
Thus, the low energy physics is described by two U(1) Luttinger liquids, just as in the EA case. However, the
Luttinger liquids are now helical modes and they differ from the EA case in the way they couple to external
sources (see equation (36)).

4.4. The effects of electron interactions
In the discussion of the EA and EP cases, we have neglected the effects of electron interactions. However, we used
interactions to find the regime where the gap physics dominates Kondo physics. To fill this gap, we investigate
the effects of interactions on the results of sections 4.1 and 4.3.

In the presence of interactions, K and/or K acquire values different from one. This changes the effect of the
transformation equation (19) in the EA case. These transformations now induce terms of the form

1 u
LD —=0,a0,P. — u,K;0,10,0x|. 42
2ﬁ7r(1<c “ ! v ) (42)

Since all the fermions become massive, these terms may be dropped (see discussion following equation (21)).
The other effect of interactions is a renormalization of the gap m (equation (24)). This is simply a renormalization
of the parameters appearing in equation (26), which we will neglect for now.

> The same may be done in the EA case, as explained in appendix C.
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In the EP case, the situation is different, because one helical branch remains gapless. If K; = 1/K_, the
Luttinger parameter and the velocity of a helical sector (e.g. Rj and L; as one sector) are changed to

~ 1 Ucls
= E\/uc2 + usz + u.u K K + KCK‘S , (43)
yielding the free part of the Lagrangian
L = —0,0,,0.8), + i(ak(axeh,)z + i(axcbh,.f). (44)
s 2m K

Here, ®j, is the bosonic field belonging to a given helical sector. The helical sectors h; (consisting of Ry and L))
and h, (consisting of R| and L;) couple as

1 u u
Ly =—1ucKe = = [(0:On,0:On) + | — — uK|(0xPp, Ox Py, 45
h—h ZW{(M Ks)( 1 0xOn,) (Kc u )( h h)} (45)
The transformation equation (35) thus adds to the Lagrangian the new part
oL = %(% — MSKS)(Q,CQ);,2 0xa) + O(0a 0Py, 0adOy,), (46)
™ c

where @y, is the bosonic field belonging to the gapless (helical) fermionic modes. Dropping once more couplings
of the derivative of the density of a gapped fermion (from the first helical sector) to gapless modes, the total low-
energy Lagrangian L., from equation (39) is modified only by 6 £ in equation (46)°:

£ =gy, + %LTL(a, V) + 6L. 47)

This expression can be analyzed by rediagonalizing it in field space. To do so, first integrate out ©y,. This
yields

. 11 1 i 11 1
Lnt— — _— (9.9,) + ——(0,D,.)? + —| —(0,0)* + = (v 0,)?
ep o ﬁK( hz) Py K( hz) o K(ly( ) K(;( a )
1 [ uc
E(E — usKs)axoz(?x(I)hz. (48)

Next, we redefine the fields avand @y, such that the temporal derivatives have the same prefactor:
a— JK.a, @, — ik Oy,. (49)
This leads to

£ = L 0,02 + — 20,01 + —— (0,07 + ——(¥,0:0) + 60,00,y (50)
2 21 2 27

where we have defined § = %« | KK, (;— - uSKS). Diagonalizing this leads to two new gapless particles with

dispersion
w? = (@ 4 v £ (@ + V)P + 487k (51)

Note that the remaining two degrees of freedom remain gapless. Interactions thus destroy the purely helical
nature of low-energy excitations, but they cannot gap these exctiations.

4.5. Suppression of forward scattering

We have seen that dominant backscattering leads to a vacuum structure where o = 0. The forward scattering
terms however are proportional to sin c, equation (15). This confirms the suppression of their contribution
once the gap is opened and examplifies our previous claim that Kondo physics and the gap physics are mutually
exclusive.

5. Density—density correlation functions and disorder
5.1. Density—density correlation functions
We have shown that both the cases of EA and EP anistropy are described by two U(1) Lutttinger liquids.

However, the fields have different physical meaning as evinced by their coupling to external source. Their

6 . . . .
And a new effective Luttinger parameter and velocity, see equation (43).
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difference can be seen from various correlation functions. Let us at first consider the density—density correlation
function

6%log Z [h]

€=l Wr®) = 5555

|hC =0> (5 2)
where p, is the electron density and Z [h] is the generating functional in the presence of the source k. . In
general, there are several contributions to C, including those from gapped and gapless excitations. Even if the
fermionic modes become gapped, there still is a contribution from collective electron and spin modes to long
range density—density correlation functions. This can be seen from the fact that some low energy degrees of
freedom (EA: a; EP v and one helical fermion) couple to k. . In Fourier space, the correlation functions are

2
Cea(w> q) = (%) <OL*O¢>, (53)
2
Cepltr 4) = (%) (B Dn) + (a¥a)/4). (54)
Using the corresponding low energy effective actions equations (28) and (39), this yields
2 262
1Kava€
Calw, q) = %; (55)
(W + (Lq)?)
2 v 1 Ko’
Coplwr ) = L a0 | (56)
™\ w*+ (Vpq) 4w+ (v, q)
Equations (55) and (56) correspond to ideal metallic transport. The small Luttinger parameter of the bosonic
modes (K,, K. < 1) reflects the coupling of the spin waves to the gapped fermions and leads to a reduced
Drude weight [33].
5.2. Therole of potential disorder
Let us investigate how potential disorder affects charge transport. We add a weak random potential
Vais = gV I ® 7)¥ + h.c, (57)

where g(x) is the smooth 2kr component of the scalar random potential. Note that we have dropped quickly
oscillating modes, just as for the spin impurities. If the disorder itself is distributed according to the Gaussion
orthogonal ensemble, then its 2kz component has a Gaussian unitary distribution. Thus the function gis drawn
from a Gaussian unitary ensemble (GUE). We use (g (x)) = 0and (g*(x)g (y)) = 2D6 (x — y). Weassume that
the potential disorder is sufficiently weak, such that it does not influence the high energy physics. The precise
meaning of this statement will be specified later.

As first step, we integrate the disorder exactly by using the replica trick. Upon disorder-averaging we obtain

Sis = 2 [dx [d(nal DIRILy + (T = D)6 MRy + (= D) )1, (58)
L]

where i, j are replica indices. The remainder of the action is diagonal in replica space.
To understand the effect of Sy;; on transport we now have to integrate out the massive modes. Recall that this
involves first a shift of the fermionic fields (equation (19))”:

Sis = [dx [AnADIRSLye™ + (T = L) DALIRze ™ + (T = IN@ DL (9

where the gapped and gapless modes now are cleanly separated in the rest of the action (with our accuracy).
Thus, it is easy to integrate out the gapped modes. We treat Sy;; perturbatively, obtaining an expansion in the
parameter % < 1(weak disorder).

In the EA case, all fermions are gapped and the only gapless mode appearing in L£g; is the charge mode cv. In
the EP case only the fermions with a given helicity (e.g. R; and L) become gapped and the disorder mixes the two
helical Luttinger liquids (o and the fermions of the non-gapped helicity). It is convenient to treat EA and EP
separately.

5.2.1. Easy axis
We start with the EA case, and put J; = 0. For transparency, we choose the fermionic spin-dependent mass

mea (T / | ) = £m. The matrix Green’s function for the fermions with a given spin reads:

7 In EP, the shift leads to the same result after absorbing ¢ in c.
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Figure 4. First order diagrams O (D") for the EA phase. Red (green) triangles denote e®/? (e~i%/2 ) with arguments of either the
1st or the 2nd vertex; dashed lines are the disorder correlation functions, solid lines stand for Green’s functions of the massive
fermions.

e)

Figure 5. A relevant subset of the EA diagrams. Notations are explained in the caption of figure 4. (a) and (b) Class (ii), diconnected
contributions. (c) Class (iii), red and green triangles are merged through a massive propagator. (d) Class (iv), we omit the diagram with
crossed disorder lines. (e) Class (v), we omit the diagram with non-crossed disorder lines. Note that green and red triangles are
connected by a massive propagator.

(GO = mea(0)]

A _ 0)y— (O -
Gn(@) = (GOYHG = mal@| T oy

(60)

where G{) are the Green’s functions of free chiral particles. It is important that G, is short ranged and it decays
beyond the time scale 1/m., (or beyond the coherence length £, = vf/me,). This implies in particular that two
slow operators connected by a massive propagator form a single local operator on length- and timescales large
compared to the inverse gap.

Leading terms are given by (S4;s )., where brackets mean that the massive fermions are integrated out. The
corresponding diagrams are shown in figure 4. It is easy to check that the diagrams from figure 4(a) cancel out
after summation over spin indices because .,( T ) = —me, ( | ). The diagrams from figure 4(b) are trivial

since G, is diagonal in the replica space and the spin phase o is smooth on the scale 1/m.,; therefore

eiry[l]efinz[Z] ~ ei()z[l]finz[l] =1, (61)

with some small gradient corrections which are unable to yield pinning. Here we denoted [ j] := a (x, 77).

Sub-leading terms of the order of D are given by (Sg;s Sais)- To be explicit, we need to compute
vEm

(Sais Sdis )EA = Dz<f d{x, x's 72 71,5}
< LR{iLpie™ + (1< 1)) ME{Rye™ + (1 < | ) m)]

X (R Likel™ 4+ (T = )G, 7L Rue ™ + (1 = L), )] > R (62)

In order to pin the CDW (the field @), an operator evaluating « at different times (i.e. times further apart
than 1/m.,) has to survive. The correlation function (Sg;s Sqis )Ea contains various possible contractions, most of
which are unable to generate pinning:

(i) Contractions involving two fermionic creation or annihilation operators: they vanish due to the structure
of the fermionic Green’s function, which does not allow for propagation of Cooper pairs.

(if) Contractions which simplify to two copies of the first order contribution (see figures 5(a), (b)): they do not
generate backscattering, as shown above.

(iii) Contractions of fermions at (x, 7;) with fermions at (x/, 75) and of fermions at (x, 7») with fermions at
(x', 1), with no contractions between (x, 77) and (x', 7}) (figure 5(c)): in these contractions—due to the
short range nature of the fermions’ Green’(s) functions—e'® fuses with e~ at the same position and time
(atanaccuracy of 1/m), and thus generate only derivatives of o, which are unable to pin the CDW.

11
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Figure 6. Two typical examples of first order diagrams O (D") for the EP phase. Red (green) arrows denote the product of smooth
fields L, Rwith €'®/2 (e~/2), The smooth fields L, R are taken from the non-gapped helical sector.

(iv) Contractions of fermions at (x, 7) with fermions at (x’, 7]) and of fermions at (x, 7,) with fermions at
(x', 75), with no contractions between (x, 71) and (x, 75) (figure 5(d)): these contractions all give the same
result and are able to generate pinning.

(v) Contractions between all positions and times (figure 5(e)): this sets all positions and times (and replica
indices) of the CDW equal to each other (with accuracy 1/m), such that again only derivatives of the field a
survive.

We calculate only one typical diagram which survives after all summations and is able to generate pinning
(type (iv)). An example of such a diagram is shown in figure 5(d). All other diagrams of class (iv) yield identical
results. The sign of the mass does not matter as there is an even number of propagators for each species.

Neglecting unimportant numerical factors, the analytical expression for the diagram from figure 5(d) reads
as:

DY x DY [ dfs, #'s 12, 7 o)X [G, (1, )]
i,j
X [Gu(V, D12 [Gn (2, 29112 (G2 D Ti2- (63)
Here, we have taken into account that the diagonal structure of ém resultsin i = k; j = | and fused together

slow spin phases, for instance: a/[1] + «[1'] =~ 2a[1]. Now we note that G,(1,17)=G,(1 — 1)and integrate
over all primed variables:

D %Zfd{’@ Tipfellli=e 2Dy Dy = D( D ) (64)
ea i,j

VEMlea

The structure of equation (64) corresponds to the non-local Sine-Gordon model which appears in the theory of
the usual disordered TLL [39]. The effective disorder strength D is renormalized and obeys the well-known RG
equation [40]:

EA: Oioglog(D) =3 — 2K, ~ 3, D(E,) = Dy; (65)

the second equality of equation (65) has been obtained by using equation (29).
Note that the effective strength of the disorder is suppressed compared to free fermions by an additional
factor of D/(vym). However, the operator is more relevant than for free fermions, as K& < 1.

5.2.2. Easy plane
Let us now turn to the EP case. We start again from the leading diagrams generated by (S;s). The principal
difference of the EP phase from the EA one is that the matrix Green’s function, equation (60), corresponds now
to the massive fermions with a given helicity. This changes the structure of the first order diagram, see figure 6.
All these diagrams correspond to forward-scattering of the massless helical fermions and they contain only small
gradients of the phase «, see equation (61) and its explanation. Thus, the leading diagrams are trivial and they
cannot yield localization, the sub-leading diagrams must be considered.

There are several categories of sub-leading diagrams:

(i) Contractions involving two creation or annihilation operators: they are identically zero.

(ii) Contractions which correspond to two copies of the leading diagrams (figure 7(a)): they do not lead to
backscattering and cannot pin the charge transport.

(iii) Contractions of fermions at (x, 7;) with fermions at (x/, 75) and of fermions at (x, 7») with fermions at
(x', 1), with no contractions between (x, 73) and (x', 7}) (the second part—excluding certain contractions
—is trivial, as there is only one massive fermion at each vertex) (figure 7(b)): these contractions—due to the
short range nature of the fermions’ Green’(s) function—combine ei® with e~ at the same position and
time (atan accuracy of 1 /m), and thus generate only derivatives of o, which are unable to pin the CDW.
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1 9 I 2 1 2
1/ ------ 2/ ............ <

/ / / /

a) 2 b) 1 1 C) 2

Figure 7. A relevant subset of the EP diagrams. Notations are explained in the caption of figure 6. (a) Class (ii), diconnected
contributions. (b) Class (iii), red and green arrows are merged through a massive propagator. We omit the diagram with crossed
disorder lines. Note that green and red arrows are connected by a massive propagator. (c) Class (iv), we omit the diagram with crossed
disorder lines.

(iv) Contractions of fermions at (x, 7) with fermions at (x’, 7}) and of fermions at (x, 7,) with fermions at
(x', 75), with no contractions between (x, 7;) and (x, 75) (the second condition is again trivially satisifed)
(figure 7(c)). These contractions all give the same result and are able to generate pinning.

The only relevant diagrams are those of class (iv), which all yield the same result. We will compute one of
these diagrams (figure 7(c)). Neglecting unimportant numerical factors, the analytical expression for the
diagram from figure 7(c) reads as:

DY o Dy f d{x, x5 7, 71 ,) el R2D LERY 1] L (1R 121 (G (1, 1) 112 [Gn (2, 20105 (66)
ij
see explanations after equation (63) and note the m must be substituted for m, (o) in Gy Calculating integrals
over all primed variables, we find:
- . N - D
DY o< Doy [[dlxs ma)e -2 LE[21RS (1] LRy (2], Dy= D(—). 67)
. VEm
if
This equation also can be reduced to the form of equation (64) if remaining fermions are bosonized and we
explicitly single out new CDWs and SDWs. However, the RG equation for D can be obtained without such a
complicated procedure with the help of the power counting. Firstly we note that the scaling dimension of each
back-scattering term in equation (67), L'R and R'L, is 1. The anomalous dimension of each exponential, et
K! < 1. The normal dimension in equation (67) is 3 which comes from three-fold integral. Combining these
dimensions together and neglecting small K, we find

EP : Oloq log(D) =3 —2x 1+ 0K, ~1; 7_D(§ep) =D, {ep = vg/m. (68)

is

Note that while the scaling of the disorder strength is the same as for free fermions, but the effective strength (the
starting value of the flow) is reduced parametrically by a factor of D/(vpm) < 1.

5.2.3. Localization radius
We now can find the localization radius for both phases, EA and EP. The solution of the RG equations, equations
(65)and (68), reads as

3
Dix) = bo[i) , D(x) = Dy—s; (69)

ea ep

with £, = ve/m. Thelocalization radius is defined as a scale on which the renormalized disorder becomes of
the order of the cut-off:

DAK)) = Kava [ ~ Koivi[és DA = vi /&, (70)

The additional small factor K,, in the equation for L9 can be justified with the help of the standard
optimization procedure [39] where L1°® is defined as a spatial scale on which the typical potential energy of the
disorder becomes equal to the energy governed by the term oc(d,r)? in the Lagrangian L.,, equation (28).

Definitions equation (70) result in

(loc) VF2 1 VEMea 2/3 (loc) VFZ VEM :
Lea ~ EeaKa 5—2"') ~ feaKUé T > Lep ~ Z_)_ ~ gep 7 . (71)
ea ™0 0
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Assuming £, ~ &, and me, ~ m, we obtain

L (loc) D 4/3
e? ~ Kyl — < 1. (72)
Lép"c) Vpm

This demonstrates that the strong suppression of localization can occur in the EP phase where the helical
symmetry is broken.

We note that the scaling exponent of D(x) is the same as in the case of non-interacting 1d fermions but
suppression of localization in the EP phase is reflected by the additional large factor vgm/D in the expression for
the localization radius Lg’c). We further note that unlike for free fermions our flow starts at the correlation
length vr/m, notat the lattice constant §,. However, for characteristic length scales §, < | < &, ¢
not relevant and the flow of our system mimics that of free fermions in the absence spinful impurities. The flow

only begins to differat/ ~ &, /., such that we should compare to free fermions with a cutoff &, /.-

the massis

5.2.4. Alternative approach to disorder
In this section we present an alternative approach which confirms the previous results on disorder. The main
idea is to integrate out the massive modes before averaging over disorder. We will focus on the main steps and

neglect unimportant prefactors. Let us start again at equation (57). In the EA case, we perform a shift
& — & — a/+/2. Thisshiftleads to

Vi = g(x)el V(I ® 7V + h.c., (73)

such that the field « couples to the potential disorder. Let us integrate out the massive fermions. The leading
term (in powers of the disorder) in the Lagrangian is then

Lais ~ %ofdx [geff (x)eiZa + h.c.], (74)

where we introduced the non-Gaussian effective disorder
1
Lt (00) ~ == f dyg (x + y/2)g (x — y/2)e- "/ (75)
F

the exponential stems from real space Green’s function of fermions with mass m°. Equation (75) is valid for large
distances y > vg/m.
In the EP case, before integrating out the massive fermions, we shift their phase ®. by /2 o/4:

Vi = fdx (g (x)ei“/zRfLT + g(x)e“/?R[L; + h.c]. (76)

Each term describes a coupling of a gapped fermion from the first helical sector with a gapless one from the
second helical sector and with a low-energy angle . Upon integrating out the gapped fermions, the disorder
generates the following contribution to the low energy effective Lagrangian:

4 5 [dxlg Rl + hel, (77)

where g (x) is of the form of equation (75)°.

Thus, both in EA and EP, we obtain gapless particles coupled to an effective disorder.

To order v%m’ only the first and second moment of the distribution function of g contribute (see
appendix E). This is equivalent to the statement that the non-Gaussianities of the distribution of g are
irrelevant in our approximation.

Theleading order contributions of the effective disorder to thelocalization may then be estimated similarly
to the diagrammatic approach. Upon integrating over the disorder (and assuming it is a Gaussian distribution),
we obtain

/. D? + /
S~ 3 [drdr d-— Ol 1) O 7)) (78)
ij

where the operator O is given by

EA: Oix, 7) = gieizw’ﬂ, (79)
0

Note that equation (74) corresponds to figures 5(c) and (d): the fermionic lines are contracted to a single point and the two disorder lines
are merged into one line corresponding to g.g.

? Equation (77) corresponds to contracting the internal fermion lines in figures 7(b) and (c), and then merging the two disorder lines into a
single lines described by g, .
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EP: Oi(x, 7) = €R] Li;. (80)

This yields the same scaling and, thus, the same localization radius equation (71) as in the diagrammatic
approach.

The advantage of this approach is that the order of approximations follows the ordering of the relevant
energy scales. We first eliminate the highest energy (/) and only then approach the much smaller pinning
energy. The price is the non-Gaussianity of the effective disorder. However, since higher moments of the
effective disorder are suppressed by additional factors of V%, the non-Gaussianities only enter in higher orders
that we do not consider here.

6. Spin correlation functions and order parameter

Let us consider the spin correlators (S*(1) S®(2)) and see which correlation function reflects the broken Z,
symmetry.

Before computing the correlators, we note the following: the low energy physics of both phases is captured by
two uncorrelated U(1) Luttinger liquids and by a set of fast angles. The slow component of the spins (in the basis
where Sy, ||€3) depends on the angles via

§*/s = —cos aycos oy cos cosp + cosqysinay sint) + sin oysin f cos 1); (81a)
§¥/s = —cos aycos ay cos B sinyy — cos qysin oy cosyp + sin qysin 6 sin ¢); (81b)
§?/s = cosqycos ay sin @ + sin oy cos 6. (81¢)

The effective low energy physics is generated at oy =~ 0. Therefore, equation (81) simplifies to

S§*/s = —cosay cosf cosy + sinqy sin; (82a)
S§V/s = —cosay cosB siny) — sinay cos; (82b)
S$?/s = cosay sinb; (82¢)

where we neglect fast fluctuations of oy around its ground state value. We will also need the correlation functions
(for large distances) in a Luttinger liquid described by the field p with Luttinger parameter K and velocity v:

(sin(p(x) £ p(x))) =05 (cos(p(x) + p(x))) = 05 (sin(p (x))cos(p(x))) = 05 (83a)

(sin(p (x))sin(p(x2))) = (cos(p (x1))cos(p (%))
K/2

= 3 {cos(p(x) = p())) = T §0§2 oy (83b)

Here, (cos(p (%)) + p(%))) = 0dueto ‘electroneutrality’ [39].

6.1. Spin correlation functions; EA
In the case of the EA anisotropy, the physics at energies smaller that J, — J, isgoverned by 6 ~ /2 (fast
fluctuations are again neglected). At these energies the spin components become

§*/s = sinqy sinty, §’/s = —sinqy cos), S?/s = cosqy. (84)

Then the transverse spin correlators are given by
(*(1)S*(2))/s* = (9 (1) (2)) [s* = ((sin oy sin) (1) (sin ey sinh)(2)) + OO — 7/2, oy, (85)

where (j) denotes (7}, x;). Since ¢ and avare not correlated, the correlation function factorizes. The correlation
function of the oy component can be written as

(sinay (1)sin oy (2)) = —%[(cos(ka(xl + %) + al) + a2)) — (coskp(x1 — %) + (1) — a2))].
(86)
Combining equations (86) and (83) leads to
(S*(1)$*(2))/s* = iCOS[ZkF(xl — x)](cos(a(l) — a(2)))(cos(¥ (1) — ¥ (2)))

Ko 1

& ’ & :
= 2k N 87
COS( Fx)[ \/(TV&)Z + x2 ] [\/(TVP)Z + xZ ] ( )

where we introduced x = x; — x and 7 = 7§ — 7. The transverse spin correlation function of xand y
components is
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2 Posmon/(2/k ) Posmon/(2/k )

Figure 8. A travelling spin wave in the EA (left) and EP (right) setup. Since S* and §” in the EA case are uncorrelated to leading order,
we only show one contribution.

(S*(1)SY () /52 ~ f (@) (sin ¢ (D)cos 1) (2)) = 0. (88)

Equation (88) shows that there is no spin rotation in xy-plane, see figure 8. In particular, this implies that the
Fourier-transform of the dynamical in-plane spin susceptibility

($TMS™(2)/s* = 2($*()S*(2)) /5% (89)

has peaks both at 2kp and —2kg.
The correlators of S spin components are given by

($7(1)§7(2)) /s* = ((cos ar) (1) (cos ) (2)) + O — 7/2, )

Ko

= COS (kax)[%] . (90)
TV X

They decay more slowly than the transverse spin correlator equation (88) because the S, component couples
more strongly to the localized electrons. The correlation function between the axis and the plane ($%S*) vanishes.
Thus, all cross-correlation functions are zero in the EA case.

6.2. Spin correlation functions; EP
In the case of the EP, the asymptotics of the spin correlation functions are determined by  ~ 0, or § ~ 7. Letus
choose § = 0. Then the spin operators become

S$*/s = —cosqy cosp + sinay siny = —cos(a + ¥); o1
S§V/s = —cosqy sinty — sinay cosy = —sin(ay + ¥); (92)
S?/s = 0. (93)

In our notations: oy = 2kgx + avand @ — a — v in the EP case. Thus, the transverse spin correlation
function reads as

(§*(1)S*(2)) /s* = ([cos (2kex + a)](1)[cos(2kex + )](2))
K./2
_ §o
= COS (2k1:x)[m] . (94)

Due to SO(2)-symmetry in the x—y-plane, this is the same as the (S7S”) correlation function. The transverse spin
rotation correlation function is

K./2
(SF(1)S7(2))/s? = sin(ZkFx)[L] . (95)

Jv)H?E + x2
(o3

Equation (95) reveals the spin rotation (helical configuration) in the EP case, see figure 8. Contrary to the EA
case, the Fourier transform of the dynamical in-plane spin susceptibility

Jv)?E + 2
(o3

has a peak only at 2kg. The longitudinal spin correlator (S2S%) is zero in our accuracy (at fixed § = 0, oy = 0).

K./2
(ST()S™(2))/s* = 2((S*(1)S*(2)) — i(§*8))/s* = eXP(_iZkFx)[#] (96)
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6.3. Order parameter
We have shown that the low energy spin excitations of the EA case are planar spin oscillations, whereas in the EP
case the spins form a helix, see figure 8.

The transverse spin correlation function ($* (1) S” (2)), which reflects rotations of the spins, is zero in the
non-helical phase (EA), but nonvanishing in the helical one (EP). Thus we suggest to use it as an order
parameter. In analogy with antiferromagnetic ordering [41], we define the two-point order parameter

Ac = €abc <Sa(1)sb(1 + §O)>’ (97)

which is non-vanishing only in the helical phase, where there is alow-energy helical mode propagating within
the dense chain of the magnetic impurities.

7. Conclusion

Low-energy properties of an anisotropic KC away from half-filling are governed either by the Kondo screening
or by the RKKY interaction generated by the backscattering of electrons on the spins. The latter process becomes
dominant when the concentration of the spins is sufficiently large and when the repulsive electron—electron
interactions are sufficiently strong. Then the RKKY interaction opens a gap in the quasiparticle spectrum,
equation (24), which further suppresses the Kondo screening. Depending on the anisotropy of the exchange
interaction, the backscattering processes may either lead to a formation of the CDWs and the SDWs (EA
anisotropy), equation (28), or generate the helical low energy modes (EP anisotropy), equation (41). The
appearence of such modes is related to spontaneous breking of the Z,(helical)-symmetry. We have shown that
the order parameter characterizing the corresponding quantum phase transition is the average of the vector
product of neighboring spins A, = e, (S7(1)SP (1 + &,)). The helical nature of the modes is also manifest in
the asymmetry between the +2kg and — 2k peaks in the in-plane spin susceptibility (STS™), equation (96). The
ideal charge transport supported by the gapless helical modes is robust: it remains ballistic even if a weak random
potential of static impurities is present. This protection requires the spin the U(1) symmetry and exists up to the
parametrically large scale, see equation (71). We have shown that short-range electron—electron interactions mix
the two helical sectors, but cannot gap out any low-energy modes, such that for weak interactions the qualitative
description in terms of the helical modes remains valid.

Even though the helical modes may be reminiscent of the edge modes of topological insulators, we
emphasize that, in our case, they are generated by the many-body interactions in one spacial dimension.
Experimentally, the helical modes could be detected in samples exhibiting one-dimensional structure with spin
impurities. As we have discussed in Introduction, promising candidates are ladder-type Fe-selenides, where
almost completely filled bands of electrons might serve as spin impurities [21], or single-wall carbon nanotubes
functionalized by magnetic ions [18]. Since the advent of the cleaved edge overgrowth method [42], quantum
wires on the edge of GaAs heterostructures are also viable candidates.

Usually, one cannot control the anisotropy of real materials. Therefore, one needs an experimental evidence
that the charge transport in a given system with the dense array of the Kondo impurities is supported by modes
with a broken helical symmetry. The cleanest signature could be provided by the local spin susceptibility
(equations (89) and (96)), which clearly provides a smoking gun signature for the helical order. The local spin
susceptibility may be experimentally accessible through nitrogen-vacancy based STM measurements if the
Kondo array is made as a one-dimensional wire [43].

Another experimental signature of the helical phase is frequency-resolved charge transport. We remind the
readers that in our model the charge is carried either by the collective mode a (EA), or by the collective mode «
and the helical fermion (EP) with the velocity of the a-excitations being always small (equations (29) and (40)). If
asufficiently clean sample of a finite size is adiabatically connected to leads, its dc conductance remains ideal,
2¢%/h [44]. However, the frequency resolved conductance is expected to show a substantial decrease at
we ~ 1/t where t§) ~ L/v, is the Thouless time associated with the mode c. Since the a-modes are very
slow w, is small. For frequencies larger than wy, the slow collective modes cannot contribute and the
conductance drops either to zero (EA) or to e?/h (EP). The latter jump would confirm that the system is in the
helical phase which is robust against localization effects.

A similar transition could also be detected at w = 0 in the temperature dependence of the conductance. We
expect that at finite temperature domains of different helicity develop. At temperatures above the energy of a
domain-wall (T' > Egomain wa) the quasiparticles do not contribute to the dc transport any longer and a
crossover of the conductance from 2e?/h to e2/h is expected with increasing T. Hence, the T-dependence of the
conductance at very small temperatures (possibly less than 5 mK reached in [45]) should be studied.

In order to check that the reduction of the conductance is related to the presence of the localized spins, one
may repeating the measurements on samples where the magnetic atoms are not present. If the spin-spin
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interaction is important the presence or absence of the additional localized spins will have a strong influence on
the conductance. Finally, we have shown that the helical transport is partially protected from localization effects.
This means that the conductance will not change even if the sample length becomes longer than the mean-free
path of the material.

The theory of the frequency and temperature dependent conductance of the KC requires further
theoretical work.
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Appendix A. Derivation of the low-energy Lagrangian

In this section we give a short derivation of the form of the electron-spin interactions in terms of the fast and slow
angular variables (o, o, 0, and v)). Thus, consider the interaction term

Hie = Ja & %8 (m) & (A1)
m

Using the representation of the fermions in terms of left- and rightmovers, equation (9), this term splits into
forward and backward scattering contributions

Hint = Hforward + Hvackwards (A2)
At oA A At oA a
Hforward = Z](f Rm O.as“(m) R, + Z]af Lm O.usa (m) Ly, (A3)
m m
Hiadoward = +Z]ube2ikpx R 598 (m) L + Z];e—zikpx LA,Z 58 (m) R, (Ad)
m m

where the superscript f (b) denotes forward (backward) scattering contributions. Using the low-energy spin
Sit ||es and taking the dense impurity limit, we obtain

. ° - . . . . A_
L = sp e2ikexgt { 5 [He™(—cos ayjcos oy cos O — icos oysincy + sinaysin6)&

+ e ¥ (—cos aycos a cosf + icos oy sinay + sin oy sin0)5+]
+ ]f & (sin ay cos 6 + cos oy cos oy sin 9)} L + h.c.. (A5)
This expresses the back-scattering part of the electron-spin interaction in terms of the angular variables and the

fermions. To obtain the low-energy part, we first shift oy — a/(x) + 2kgx. Then, neglecting all quickly
oscillating terms (~e*k*), equation (A5) reduces to

s cos(a . y A
L C) — —; H)pSRT {h [e”" sinZ(g)&’— e v c0s2(§)5+] + L Sin(a)&z}Lem

+hc;  §=scos(aqp. (A6)
The forward-scattering part of the action is obtained by following the same procedure with Hyyarq:

ﬁ(sl) (fs) _ S Sin(a\l)ps

(sh ; R {J! sinf[eo~ + e o] + 2Jf cos 57} R + (R — L). (A7)

Appendix B. Bosonization and the RG equations

Here we briefly remind readers of the bosonization identity used throughout, and the derivation of the RG
equations. We only derive one RG equation explicitely, but the other RG equations may be obtained by the same
procedure.
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The bosonization formula is

1 . i[O _0
v, = - U, eirkpxe— 7 ilr®—Oc+o (rd 05)]’ (B1)
TQ

where . (®;) and ©, (6;) are dual fields belonging to the charge (spin) density wave, r distinguishes right- and
left-moving and ¢ is the spin. The Klein factors U, are real coordinate independent fermionic operators obeying
the anticommutation relations { U, U/} = 8,4

After bosonization equation (B1), the electron-spin interaction contains the terms

f
L= JIS,(RTo,R + Lo, L) = — 2 Sz]—zax@s,
Y
f
L =71S (Rlo,R + L'o L) = S_]—g exp(—~2i60,) (exp(V2i®,) + exp(—+2id)),
TSo
f
L5 = IS, (RioR + Lio L) = SJ—E exp(V2i0,) (exp(—V2i®) + exp(V2idy)),

TSo
f
L0 :=J°S,(Rfo,L + L'o,R) = S, 2]2 exp (—2ikpx) exp (V2 i®,) (exp (V2id;) — exp(—~/2i®,)) + h.c.,
TSo
f
L = JP(S_Rfo L + S, Lo R) = s_]—g exp(—2ikpx)exp (V2i(® — ©y)) + h.c.,
TSo

f
LY :=J*(SRfo L + S L'oR) = 5#—2 exp(—2ikpx)exp (V21(®: + ©y)) + h.c..
0
(B2)

The flow of the coupling constants is obtained by integrating out high energy modes. To do so, one must split
d,, 6, and Szinto fast (superscript >) and slow (superscript <) modes:

D =P, + P, O,=0;+06;, S$=S+S5;. (B3)
The measure of the path integral splits into fast and slow modes as well. We then perform the integral over the
fast modes in a perturbative series in J and reexponentiate the result. The first order in Jleads to the one-loop RG

equations. As in the bosonization treatment of the Kondo impurity, we will treat the spins as constant during the
RG flow. Thus, we need to compute

fD{cb, @}exp(—SLL[CP, o] — dedeaSafa(tb, e)), (B4)

where Sy is the Luttinger liquid action for ® and © and f,, is a function which can be read off from (B2). Note that
there is space—time UV cutoff ¢, (or equivalently an energy—momentum cutoff A). Let us consider as an example
the term proportional to J:

f D{®”, 0 Jexp (=S [P~, ©7]) f drdxP SIf2 (@7 + @<, 67 + O%)

= dedx]zbS;fD{Cb>, 0> }exp (=S [P, ©7]) ! exp (—2ikpx)exp (V21(®7 + &)
27,
X (exp (V2i(®] + &) — exp(—2i(®] + ¥)))) + hc. (B5)

The components @~ (©~) and @< (O<) are of high and low energy, such that the energy of > (©~) lies in the
interval [X, A]. Using the equalities (e¥2i%7) = (X' /A)®/2and (e¥21€7)., = (N /A)/®X), we can perform the
average over fast modes. This yields

fD{cI>>, O Jexp (— 1[0, ©7]) dedestjfj @ + &<, 07 + 09
/
- f drdx]zbs;(A
A

Since the cutoff was changed from A’ to A, we need to rescale x and 7 to recover the original expression.
Reexponentiating (B6) yields

T(KH+Ko)
) @<, 9. (B6)

(B7)

P\ EAK)—2
A )

JP(N) = sz(A)(

The RG equation is obtained expressing equation (B7) as a differential equation in the parametrization
N = Ae =9 where dlis an infinitesimal number:
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e = [ 2K, + Ko — 2] (BS)

Appendix C. The shift of the angles in the EA case

We present a short, alternative derivation of the action after the shift eliminiating the angles aand v from the
interaction vertices, equation (22). This proof is based on abelian bosonization. Upon bosonization,
equation (B1), the free part of the Lagrangian are a spin and charge Tomonaga—Luttinger liquid:

L = Lo1,dual[Pe> O] + Lr1,duat [ D5, O5], (ChH
with
Ll 0,1 = ~10,0,0.8, + (4K 0,07 + £ 0.2)7) ()
™ 2T K
We use a description in terms of fields @ and their duals ©. The shift equation (19) is in bosonic language
O — D+ a/V2,0, - 0, — /2. (C3)
Performing this shift also in the Tomonaga—Luttinger liquid equation (C1), we obtain the new terms of the form
Lmmixing ~ —10;00,0: — 0,00,P. — 10:10,D, — 0,10, 6. (C4)
and terms of the type
Lrauale/~N2, O 4 Lrvaua [P ¥/V2]. (C5)

Since after bosonization spatial derivatives of . (O 5) correspond to the charge/spin density (current),
equation (C4) contains precisely the terms of equation (21), and may be neglected by the same arguments. After
averaging over the dual fields © and @, equation (C5) is the same as the Tomonaga—Luttinger anomaly
equation (20). We thus have obtained the same expression as in the main text, without explicitely using the
Tomonaga—Luttinger anomaly.

Appendix D. Accounting for interactions

In this section we show how to obtain equation (47). We start from the bosonized Lagrangian of interacting
electrons

L=-to000 + i(ucKc (0002 + ﬂ(@ﬂ%)Z) ~ 19.0,0,0 + i(usKs@x@s)Z + ﬁ(my).
™ 2w K. T 2w K;

(D1)
In order to rewrite equation (D1) in terms of helical fields, we define
o)y = (@ - 0), O, =10 D), (D2a)
Bp, = 5 (@ +0), O, = (O + P). (D2b)
This choice stems from the identities
V2
pf = Tax(ec - (I)c - (65 - (I)s)))
V2
pi =0~ — & — O, — ). (D3)

If there are no particles of one specific helical sector (e.g. R| and L1), then both of these densities should vanish.
This is guaranteed if there are no fluctuations in ®;; and ©j,. Thus, the fields ®;, and O}, correspond to the
helical sector containing R and L.

Inserting equation (D2a) into equation (D1), we obtain

2L = — %ax(@hl + @hz)a‘r(q)hl + (I)hz) + i(ucKc (8x(9h1 + @hz))z + %(ax(q)/ﬁ + (I)hz))z)

- %ax(_'@h] + @hz)af(_@hl + @hz) + i(”sKs (8x(_q)h1 + (I)hz))z + %Z(ax(_ghl + Ghz))z)
(D4)
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— 220,010 @) + (Ko + £)@.007 + (2 + k) O.,)?)
= 220,00, @) + (Ko + £) 0,017 + (& + wK) 0,217

+ i(Z(ucKc - Z—Z)ax@hz 0<On, + 2(; - “sKs)ax‘th ax‘bhl)' (D3)

The shift equation (35), which keeps the second helical sector invariant, corresponds to ®;,, — &5, + «/2. After
neglecting couplings between gapless modes and derivatives of the first helical sector, we find in addition to the
free part L1 of o

L=— %@9}” 0-®y, + i((ucKc + z—i)(ax@hl)z + (Z_i + ”SKS)(ax(Dhl)z)

~ 10:01,0:0 + - ((ueke + )00 + (3 + wk)@renr)

. (? - uSKS)axq)hzaxa. (D6)

2

Introducing

~ 1 cHs
il = Z\/uc2 + usz + u.u K K + I':Ju(s , (D7)

equation (D6) may be written as

L= 100),0:0), + L (aR©0.01) + i (0:P1))

™

— 10.04,0,0, + 1 (AR(O:OW) + 5 (OcP1))

+ %(? - usKs)axCI)hzaxa. (D8)

Appendix E. Non-Gaussianities in the effective disorder

In this appendix, we demonstrate that the higher moments of the effective disorder g, distribution function in
the alternative approach to disorder are of higher order in % < 1. Thus, in our accuracy, we may safely neglect
F

the non-Gaussianities of the effective disorder.

We have assumed that the distribution of the 2kr Fourier components of the original disorder potential is
Gaussian, however the distribution of g ¢ (x) is not Gaussian. To investigate the effect of the non-Gaussianity of
the distribution function of the effective disorder g, we consider its moments. The first moment is zero:

(etr () ais ~ <L Jargee+ /2806 - y/2>em'y'/“‘> =0, (E1)
VE dis

because gis distributed according to the GUE. The second moment is given by

(geff(x)geff(x'»dis ~ <% fdydfg(x +y/2)gx —y/2)g(x" +7/2)g(x" — )7/2)e’”(|J’|+|)"|)/VF> =0,
F

dis
(E2)
and
(8etr ()85 (X )ais ~ v1_§<f dydj g(x + y/2)g (x — y/2)g* ' + 7/2)g*x' — 7 /2)e- Ui+ /e >d.
2
~ %fdyd?(é(x +y/2—x 47/ —y/2—x —§/2)
F
+o(x+y/2 — x — /260G — y/2 — PO )7/2))e*m(|)'|+|5/|)/v1:
~ %6(36 _ x/)‘
(E3)

Higher moments contain additional contractions, reflecting the non-Gaussianity of the distribution of g . As
an example, consider the fourth moment
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(et ) Lt (N (D) 25 (W) s ~ Vl—é <f dx'dy’dz'dw’ g(x + x'/2)g(x — X' /2)g(y + ¥ /2)g(y — ¥'/2)

x g¥z + 2//2g¥z — 2'/2)g"(w + W'/ g¥w — w'/2)

Xe—m(IX’I+|y’|+IZ’I+IW’|)/vF> .
dis
(E4)

There are two distinct kinds of contractions: Gaussian ones (contractinge.g. (g (x + x'/2)g*(z + 2'/2)),

(gx — x'/2)g*(z — 2/ /) (g (y + ¥ /2)g*(w + w'/2)),and (g (y — y'/2)g*(w — w'/2))) and non-Gaus-
sian ones, e.g. contracting (g (x — x'/2)g*(z — 2'/2)), (g (x + x'/2)g*(w + w'/2)),

(g(y +y'/2)g* @z + 2/ /2)),and (g (y — y'/2)g*(w — w'/2)). Thelatter yields:

(St (&t (N 85D & (W) atis D %fdxldy'dz'dw'é(x —x'/2—z47/2)6x+x'/2 —w—w/2)

X6(y+y'/2—z=2/D6(y —y' /2 —w+w'/2)

’ ! ’ !
X e m(|x |+ y |+ 12 [+ w'])/ve

~ %fdx/dy'dz’dw'é(z’ —y+x—y/2—-x/D6(W — x

+y—y'/2-%/2)
X6(x —2w+2z—yNo(z+w—x—y)

’ ’ ’ ’
w e MUK+ HwD/ve

D* 1 —m(2w—2z+y'|+1y |+ |y = 2z+2y|+[2w—2y+y'])/
~ 2o W,x,y)fdyemw 2y 1Y 1+l =224 2+ w2+ D/ ve
(E5)

In addition to the phase space factor of vg/m, we obtain an exponential suppression of lengths (w — z) etclarger
than vy/m. Theleading order for large distances may be extracted by formally taking the limit 71 — co. The
exponential may then be approximated by a 6-function: ¢ (x) = lim,, . (m/vg)exp(—m|x|/vg). Note that in
the case of multiple terms in the exponent some of them might be spurious, i.e.

exp(—m(|x| + |x|)/ve) ~ (vg/m)6 (x). Taking this into account the large-distance limit of equation (E5) leads
to

i 3
(€oir () gosr (y)gjff(z)g:;f(w) Yis ™~ —754 o(z+w—x—1y) —VF3 6(z—w)b(y — w). (E6)
¥ m

Higher moments are suppressed in a similar fashion. Thus, we have proven that the non-Gaussian

2
contributions are supressed by at least the factor (vD—m)Z‘
F
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