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Abstract In a recent paper we showed that the electroweak
chiral Lagrangian at leading order is equivalent to the con-
ventional κ formalism used by ATLAS and CMS to test
Higgs anomalous couplings. Here we apply this fact to fit
the latest Higgs data. The new aspect of our analysis is a sys-
tematic interpretation of the fit parameters within an EFT.
Concentrating on the processes of Higgs production and
decay that have been measured so far, six parameters turn
out to be relevant: cV , ct , cb, cτ , cγ γ , cgg . A global Bayesian
fit is then performed with the result cV = 0.98 ± 0.09,
ct = 1.34 ± 0.19, cb = 0.78 ± 0.18, cτ = 0.92 ± 0.14,
cγ γ = −0.24 ± 0.37, cgg = −0.30 ± 0.17. Additionally,
we show how this leading-order parametrization can be gen-
eralized to next-to-leading order, thus improving the κ for-
malism systematically. The differences with a linear EFT
analysis including operators of dimension six are also dis-
cussed. One of the main conclusions of our analysis is that
since the conventional κ formalism can be properly justified
within a QFT framework, it should continue to play a central
role in analyzing and interpreting Higgs data.

1 Introduction

The first run of the LHC has witnessed the discovery of a
Higgs-like particle and the determination of its prominent
couplings with a typical precision of 10–20 %, with no sig-
nificant deviations from the standard model (SM). The main
tool to measure Higgs couplings at Run 1 has been the so-
called κ formalism, a signal-strength parametrization at the
level of the decay rates and production cross sections. The κ

formalism was intended as a first tool to capture large devia-
tions from the SM, and expected to be superseded by a more
refined, QFT-based approach. One of the main goals of the
second run is to increase the precision to the 5 % level and
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explore shapes. In this context an upgrade of the κ formalism
appears to be necessary.

In a recent paper [1] we have shown that the κ formalism
is actually the natural outcome of the nonlinear effective field
theory (EFT) at leading order (LO). In order to make the EFT
connection more transparent one needs to trade parameters
that are nonlocal at the electroweak scale for those that are
local. This applies in particular to loop-induced processes
like h → γ γ and h → Zγ . Since Lagrangian parameters
are local, it is clear that this should help interpret the exper-
imental results within theoretical frameworks. In particular,
this choice of parameters also facilitates the incorporation of
radiative corrections.

In this paper we will illustrate this aspect of the LO non-
linear EFT by performing a fit to the latest Higgs data.
Compared to previous fits [2–16], our emphasis here is on
the systematics: an EFT-based framework allows us to use
Bayesian methods with priors supported by power-counting
arguments, thereby allowing a consistent implementation of
model-independent dynamical information into the fitting
procedure.

The fact that a signal-strength analysis of Higgs decays
can be embedded into an EFT framework means that it is
possible to go to next-to-leading order (NLO) in the expan-
sion. This can be seen as the natural extension of the κ for-
malism, where now parameters have to be defined at the
amplitude level. Interestingly, what one finds is that NLO
operators contribute to the shapes, thus making our EFT for-
malism suitable for analyses of Run 2 data and beyond. The
set of parameters needed to go to NLO experimentally is
discussed in Sect. 4. However, one of the conclusions of the
EFT analysis is that deviations from the SM in the shapes are
suppressed by roughly two orders of magnitude with respect
to those in the rates. Thus, if the present 10–20 % uncer-
tainty in the rates turns out to hide NP effects of similar size,
the same dynamics will affect the shapes only at the per-
mille level, well out of the scope of the LHC even in its final
stage.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4086-9&domain=pdf
mailto:gerhard.buchalla@lmu.de


233 Page 2 of 13 Eur. Phys. J. C (2016) 76 :233

This paper will be organized as follows: in Sect. 2 we will
spell out the structure of the chiral Lagrangian together with
its underlying dynamical assumptions. The set of leading-
order parameters relevant to Higgs decays are fit to Run 1
data in Sect. 3. In Sect. 4 we discuss how the analysis should
be extended to NLO together with a comparison between the
linear and nonlinear realizations. Conclusions are given in
Sect. 5 while technical aspects of the fitting procedure are
relegated to the appendix.

2 Effective Lagrangian

In [1] we proposed a parametrization of anomalous Higgs-
boson couplings based on the leading-order electroweak chi-
ral Lagrangian [17–26]. It is an important aspect of this
parametrization that it provides us with a consistent EFT
justification of the usual κ formalism [27].

The starting point of a systematic derivation is the effective
Lagrangian at leading order, which can be written as [26]

L2 = −1

2
〈GμνG
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2
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− 1

4
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with U = exp(2iφaT a/v) the Goldstone-boson matrix, T a

the generators of SU (2), and P± = 1/2 ± T3. Here

FU (h)=
∞∑
n=1

fU,n

(
h

v

)n

, V (h)=v4
∞∑
n=2

fV,n

(
h

v

)n

. (2)

The right-handed quark and charged-lepton singlets are writ-
ten as u, d, e. q (l) denote the left-handed and r (η) the right-
handed quark (lepton) doublets. Generation indices have
been suppressed. The Y f , Y (n)

f are matrices in generation
space.

Let us summarize the essential properties of this Lagrang-
ian:

• The nonlinear EFT is organized in terms of a loop expan-
sion or, equivalently, in terms of chiral dimensions. The
assignment of chiral dimensions is 0 for boson fields and

1 for derivatives, weak couplings and fermion bilinears
[24]. A chiral dimension of 2L + 2 for a term in the
Lagrangian corresponds to loop order L . All the terms in
(1) have a chiral dimension of 2.

• The anomalous couplings fU,n and fV,n are, in general,
arbitrary coefficients of order 1. They generalize the SM,
in which the non-zero values are

fU,1 = 2, fU,2 = 1, fV,2 = fV,3 = m2

2v2 ,

fV,4 = m2

8v2 , (3)

wherem = 125 GeV is the Higgs mass and v = 246 GeV
the electroweak vev. If the relative deviations from the
SM can be considered to be smaller than unity, it is conve-
nient to parametrize them by a quantity ξ ≡ v2/ f 2 < 1.
f corresponds to a new scale, which would represent,
e.g., the Goldstone-boson decay constant in typical mod-
els of a composite Higgs [28–32]. From experiment, val-
ues of ξ = O(10 %) are currently still allowed. A series
expansion can be performed in ξ if it is small enough.
This corresponds to an expansion of the effective theory
in terms of canonical dimensions. Using the coefficients
of the chiral Lagrangian in (1) implies a resummation
to all orders in ξ , at leading chiral dimension. Through-
out this paper we will often call a deviation from the
SM to be of O(ξ) in the sense that it starts at this order
and understanding that all orders in ξ are included in the
chiral Lagrangian coefficients. An illustration of the sys-
tematics is provided in Fig. 1. As mentioned above, for
tree-level processes, deviations from the SM in the distri-
butions arise at NLO and are suppressed by roughly two
orders of magnitude with respect to the LO effects in the
rates. It is important to stress that this is a dynamical fea-
ture, not a kinematical one: deviations in the shapes are
suppressed not based on phase space considerations but
merely as a prediction of the underlying dynamics of the
EFT. In other words, the nonlinear EFT dynamically sep-
arates rates as LO-sensitive and shapes as NLO-sensitive
observables.1 This is unlike the linear EFT, where devia-
tions from the SM in rates and shapes are both expected
at the few-percent level.

• The Yukawa couplings Y f , Y (n)
f may formally all be con-

sidered to be of order unity as far as the chiral counting
is concerned. This is realistic only for the top quark. The
other Yukawa couplings come with a strong numerical
suppression from flavour physics, a priori unrelated to
chiral counting. As usual, this suppression can be used
to make corresponding approximations in the applica-

1 An important qualification of this generic statement is discussed at
the end of this section.
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Fig. 1 Loop order vs. expansion in ξ

tions. Note that since Y (1) is in general independent of Y ,
flavour-changing couplings of the Higgs to fermions can
naturally be accommodated by (1). In the SM one has
Y (1)
f = Y f , corresponding to the usual Yukawa matrices,

while the remaining Y (n)
f are zero. Similar to the discus-

sion in the previous item, deviations from the SM can be
described by the parameter ξ .

• In writing (1) we have assumed that custodial symme-
try is respected by the (strong) dynamics underlying the
Higgs sector, and is only violated by weak perturbations.
Such perturbations then come with a weak coupling, e.g.,
from gauge or Yukawa interactions, which carries chiral
dimension [33]. The operators violating custodial sym-
metry are then shifted to higher order in the chiral expan-
sion. For instance, the operator

v2λ2
c〈T3UDμU

†〉2(1 + Fβ1(h)) (4)

(related to the electroweak T -parameter) breaks custo-
dial symmetry due to the presence of T3 under the trace.
If T3 is associated with a weak coupling λc, the chiral
dimension of (4) is four in total, corresponding to a next-
to-leading order effect. For this reason the two-derivative
operator in (4) does not have to be included in (1).

• The leading-order Lagrangian (1) consistently describes
anomalous Higgs interactions, with potentially sizable
deviations from the SM. By contrast, the gauge interac-
tions are exactly as in the SM at this order. A pictorial
summary of the general Higgs couplings contained in (1)
is given in Fig. 2.

A special consideration is required for the application of
the chiral Lagrangian to processes that arise only at one-
loop level in the SM. Important examples are h → gg and
h → γ γ . In this case local terms at NLO will also become
relevant, in addition to the standard loop amplitudes with

h h h
V

V

f

f ′

Fig. 2 The Higgs vertices from the leading-order Lagrangian L2 in
unitary gauge. They are represented by a black dot and may deviate
sizably from the SM. The pair of dashed lines with dots in between
signifies any number of Higgs lines. The massive vector bosons are
denoted by V = W, Z . f = f ′ if flavour conservation is assumed to
hold at leading order. All other couplings are identical to the SM

modified couplings from (1). This is because those terms can
lead to deviations of the amplitude from the SM at the same
order, ∼ ξ/16π2.

There is exactly one CP-even NLO operator contributing
a local h → gg vertex,

OXh3 = g2
s 〈GμνG

μν〉 FXh3(h) (5)

in the notation of [26].
For h → γ γ the following three operators from the com-

plete basis in [26] are relevant:

OXh1 = g′2BμνB
μν FXh1(h),

OXh2 = g2〈WμνW
μν〉 FXh2(h),

OXU1 = g′gBμν〈WμνUT3U
†〉 (1 + FXU1(h)). (6)

They induce four couplings of a single Higgs to a pair of
gauge bosons, which in the physical basis with photon (Fμν),
Z -boson (Zμν) and charged W (W±

μν) fields are given by

e2FμνF
μνh, eg′Fμν Z

μνh; g′2Zμν Z
μνh,

g2W+
μνW

−μνh. (7)

Since the four terms in (7) arise from only three independent
operators (6), their four coefficients are related [see (14)].

The first two terms in (7) give leading contributions to
the loop-induced processes h → γ γ and h → Zγ , respec-
tively, and have to be retained in a LO analysis. On the other
hand, the last two terms yield only subleading contributions,
of O(ξ/16π2), to the tree-level amplitudes for h → Z Z
and h → W+W−, which receive new-physics corrections of
O(ξ) from (1). They can thus be neglected in a first approx-
imation (see Sect. 4 for the discussion of NLO effects).

We add the following remarks:

• In the full basis of the chiral Lagrangian at NLO [26] a
further operator

OXU2 = g2〈WμνUT3U
†〉2(1 + FXU2(h)) (8)

could be written, in the same class as the operators in
(6). However, this operator breaks custodial symmetry
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through the presence of the generator T3, which is unre-
lated to the factors of Wμν and the associated coupling g.
Since we assume that the breaking of custodial symmetry
through T3 is due to weak perturbations, it has to come
with another weak coupling of chiral dimension one. The
operator then acquires in total a chiral dimension of six
and is subleading to the terms in (6).

• CP-odd structures corresponding to (5) and (6) of the type
εμνλρ〈WμνWλρ〉 are part of the complete basis and could
also be considered. We will assume that CP symmetry in
the Higgs sector is only broken by weak interactions. The
CP-odd terms are then of higher order in the EFT and can
be consistently neglected. It would be straightforward to
relax this assumption and to take those terms into account.

To summarize, the Higgs couplings from NLO operators
that are relevant for a LO analysis of loop-induced processes
are illustrated in Fig. 3.

Based on the preceding discussion, we can now define
anomalous Higgs couplings for specific classes of inter-
actions, corresponding to the leading-order approximation
within the chiral Lagrangian framework.

An important example are interactions involving a single
Higgs field. Focusing on these terms, and working in unitary
gauge, (1) supplemented by the local NLO terms for h →
γ γ , Zγ and gg, implies the interaction Lagrangian

L = 2cV

(
m2
WW+

μ W−μ + 1

2
m2
Z ZμZμ

)
h

v

−
∑
i, j

(y(1)
u,i j ūLi uR j + y(1)

d,i j d̄Li dR j + y(1)
e,i j ēLi eR j + h.c.)h

+ e2

16π2 cγ γ FμνF
μν h

v
+ eg′

16π2 cZγ ZμνF
μν h

v

+ g2
s

16π2 cgg〈GμνG
μν〉h

v
(9)

Neglecting flavour violation, the very small Yukawa cou-
plings to light fermions, and concentrating on those Higgs
processes that have already become accessible at the LHC,
the parametrization reduces to a simple set of six anomalous
couplings, described by [1]

h h h
g

g

γ γ

Zγ

Fig. 3 Higgs vertices from the NLO Lagrangian L4, represented by
black squares, that contribute to gg, γ γ and Zγ amplitudes. Since the
latter arise only at one-loop order from the interactions of L2, the NLO
couplings give relative corrections of the same order in this case and
have to be retained

L = 2cV

(
m2

WW+
μ W−μ + 1

2
m2

Z ZμZ
μ

)
h

v
− ct yt t̄ th

− cb ybb̄bh − cτ yτ τ̄ τh + e2

16π2 cγ γ FμνF
μν h

v

+ g2
s

16π2 cgg〈GμνG
μν〉h

v
(10)

where y f = m f /v. The SM at tree level is given by cV =
ct = cb = cτ = 1 and cgg = cγ γ = 0. Deviations due to
new physics are expected to start at O(ξ).

The minimal version in (10) can be generalized to include
more of the couplings contained in (9), such as h → Zγ ,
h → μμ, or the lepton-flavour violating h → τμ.

The treatment can be further extended, for instance to
double-Higgs production, where additional couplings with
two or three h-fields from (1) need to be considered.

We would like to emphasize an important aspect of the
nonlinear EFT at leading order. The anomalous couplings
ci are able to account for deviations of O(1) from the SM.
It is then consistent to retain the terms quadratic in these
couplings when computing cross sections and rates. This is
in contrast to the linear case, where a linearization in the
dimension-6 corrections has to be performed at this level of
accuracy.

A final remark concerns the above-mentioned distinction
between LO coefficients, affecting the rates, and NLO terms,
modifying decay distributions. Such a correspondence holds
for tree-level induced reactions such as h → Zl+l−. By
contrast, loop-induced processes have the property to exhibit
non-standard distributions even at leading order in the chiral
description. An interesting example is the pT -distribution of
highly boosted Higgs in gluon–gluon fusion. As discussed in
[34–37], this observable has the potential to yield important
independent information on the coefficients ct and cgg in
(10), while the inclusive gg → h rate only constrains their
sum.

3 Fitting the Higgs data

We perform a global Bayesian inference analysis for the
parameters {cV , ct , cb, cτ , cγ γ , cgg} defined in (10). We are
interested in the posterior probability density function (pdf),
which gives the conditional probability of the parameters,
given the data. In Bayesian inference the posterior pdf is given
by the normalized product of the likelihood (conditional
probability of the data, given the parameters) and the pri-
ors [38]. The publicly available code Lilith-1.1.3 [39]
is used to extract the likelihood from experimental results in
which the production and decay modes have been unfolded
from experimental categories. We take into account the lat-
est determination of the Higgs signal strengths by the Teva-
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tron and the LHC collaborations contained in the Lilith
database DB 15.09 [40]:

• ATLAS and CMS measurements of the Higgs-boson
production and decay rates using

√
s = 7 and 8 TeV

data [41–50], considering the main Higgs decay chan-
nels: bb, ττ , γ γ , Z Z∗ and WW ∗.

• Measurement of the associated production rate V H →
Vbb̄ by the Tevatron [51].

Deviations from the SM of O(10–20 %) are allowed in gen-
eral by current Higgs data [41,51], corresponding to a scale
of the strong dynamics f ∼500–1000 GeV. New physics
contributions to the parameters {cV , ct , cb, cτ , cγ γ , cgg}
are expected to be of order O(ξ) due to the general
power-counting arguments discussed in the previous sec-
tion. Bayesian inference methods allow us to incorporate this
knowledge in a systematic way through the application of
Bayes’ theorem and an appropriate choice of priors. For our
analysis we use flat priors within the ranges cV ∈ [0.5, 1.5],
c f =t,b,τ ∈ [0, 2], cγ γ ∈ [−1.5, 1.5] and cgg ∈ [−1, 1].2
These priors allow for deviations in the parameters ci to be
as large as ∼ 10×O(ξ). At the same time, they exclude addi-
tional disconnected solutions involving very large deviations
from the SM for some of the parameters ci . The fact that
Bayesian methods make the inherent ambiguity in defining
priors explicit is a useful feature when analyzing Higgs data
within EFT, rather than being a disadvantage. More sophisti-
cated treatments of the priors in which the notion of O(ξ) is
parametrized by nuisance parameters can be naturally imple-
mented in the Bayesian framework [52,53], though this is
beyond the scope of our work.

We find that the posterior pdf attains its maximum value
at

{cV , ct , cb, cτ , cγ γ , cgg} = {0.96, 1.38, 0.69, 0.92,

−0.35,−0.38}. (11)

In Fig. 4 we show the marginalized pdf for each of the param-
eters in (10). For convenience we plot�χ2 = χ2−χ2

min with

χ2 ≡ −2 log(pdf). Since the posterior pdf is well approxi-
mated by a normal distribution around the maximum of the
pdf, isocontours of �χ2 = 1, 4, 9, shown in Fig. 4 as dashed
lines, correspond to 68, 95, 99.7 % Bayesian credible inter-
vals to a very good approximation. The marginalized mean
values and standard deviations obtained from the posterior
pdf, together with the correlation matrix, are

2 Flat priors for the Higgs couplings have also been used in previous
Bayesian analyses of Higgs data [10–16].

⎛
⎜⎜⎜⎜⎜⎜⎝

cV
ct
cb
cτ

cγ γ

cgg

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.98 ± 0.09
1.34 ± 0.19
0.78 ± 0.18
0.92 ± 0.14

−0.24 ± 0.37
−0.30 ± 0.17

⎞
⎟⎟⎟⎟⎟⎟⎠

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0 0.01 0.67 0.37 0.41 0.1
. 1.0 0.02 −0.05 −0.36 −0.81
. . 1.0 0.58 0.02 0.37
. . . 1.0 −0.05 0.26
. . . . 1.0 0.30
. . . . . 1.0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12)

Figure 5 shows isocontours of �χ2 for the two-dimensio-
nal marginalized pdf for several combinations of parame-
ters. Isocontours of �χ2 = 2.3, 5.99 correspond to 68, 95 %
Bayesian credible regions to a good accuracy. The minimum
of the χ2 (maximum of the marginalized pdf) and the SM
point are shown in each case. A particularly strong anticor-
relation is obtained between ct and cgg since the associated
contributions to the Higgs-production cross section via gluon
fusion interfere constructively and have a similar size; see
Appendix A. Significant correlations are also obtained for
cV − cb and cb − cτ , as seen in Eq. (12). The results of the
fit show that deviations from the Standard Model are within
1–2 σ , which corresponds to an O(10 %) uncertainty in the
Higgs couplings.

The priors used for {cV , ct , cb, cτ , cγ γ , cgg} in the pre-
vious analysis have played the role of uninformative pri-
ors, only excluding values of the ci that would be unnatu-
rally large within the EFT. The posterior pdf is controlled
in this case by the likelihood function. The relevance of the
Bayesian analysis becomes manifest when we address the
stability of the fit and consider modifications of Higgs cou-
plings for which the experimental information is scarce at
the moment.

Our fit can naturally be extended by including modifica-
tions of the Higgs couplings to light fermions and a local
contribution to h → Zγ , all of which enter at leading
order and should therefore be taken into account together
with the set {cV , ct , cb, cτ , cγ γ , cgg}. Including in the fit
modifications of the Higgs coupling to muons (cμ) and a
local contribution to h → Zγ (cZγ ) will not affect the
joint pdf for the variables {cV , ct , cb, cτ , cγ γ , cgg} given
the current experimental bounds from h → μμ and h →
Zγ [41]. The marginal distributions for cμ and cZγ will,
however, be strongly sensitive to the prior choice given
that the data is not sensitive yet to O(10–20 %) devia-
tions in these couplings. Extending the analysis by con-
sidering modifications of the additional Higgs couplings
to light fermions (e, u, d, c, s) would potentially lead to
overfitting and make the fit highly unstable on the other
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Fig. 4 �χ2 distribution for the one-dimensional marginalized posterior pdf

hand. By imposing priors that restrict these couplings to
be of natural size within the EFT, the stability of the fit
is recovered and the joint pdf for {cV , ct , cb, cτ , cγ γ , cgg}
remains basically unaffected.3 A generic discussion of the
use of Bayesian priors and the problem of overfitting in
the EFT parameter estimation has been given recently in
Ref. [53].

The naturalness priors on the low-energy constants are
also crucial for estimating the truncation error associated with
higher-order contributions in the EFT expansion. The latter
can be considered negligible given the current precision on
the extraction of the leading contributions; see Sect. 4 for a
discussion of these corrections.

We end this section by commenting on the κ formalism
adopted by the ATLAS and CMS collaborations for the inter-

3 We have verified these points by probing the posterior pdf with a
Markov Chain Monte Carlo.

pretation of Higgs data [27,41].4 Higgs coupling modifiers
are defined in the κ formalism such that κ2

j = σ j/σ
SM
j

(κ2
j = � j/�SM

j ) for a given production process (decay
mode). In the SM all the κ j are equal to unity by defini-
tion. Considering only third generation fermion Higgs cou-
plings and custodial invariance one arrives at a set of six cou-
pling modifiers, {κV , κt , κb, κτ , κγ , κg} [27,41]. The indi-
vidual Higgs coupling modifiers κV,t,b,τ correspond to our
parameters cV,t,b,τ . An expression for the effective coupling
modifiers κg,γ in terms of our parameters can be read from
(A.4) in the appendix.

To the best of our knowledge the experimental collabo-
rations have not yet reported the results of a global fit of
{κV , κt , κb, κτ , κγ , κg} including the full covariance matrix.
We performed a global Bayesian inference analysis using

4 We refer specifically to the κ formalism as defined in Sect. 10.3.7 of
[27] with κW = κZ ≡ κV .
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Fig. 5 �χ2 isocontours for the
two-dimensional marginalized
posterior pdf
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the parameters κ j with a flat prior in the ranges κV ∈
[0.5, 1.5], κt,b,τ ∈ [0, 2] and κγ,g ∈ [0.5, 1.5]. Neglecting
the small absorptive parts of the loop functions with light
internal fermions in �(h → gg, γ γ ), the relation between
the κ j and the c j variables amounts to a linear transformation.
We approximate the posterior pdf obtained for the κ j by a
multivariate normal distribution. We are then able to recover
our results in (12) to a reasonable accuracy by performing
the corresponding change of variables.

Based on the previous analysis, we find recent criticism
of the κ formalism unjustified. As explained in the previous
section, the κ formalism has a solid theoretical interpretation
within the electroweak chiral Lagrangian [1]. In no way it
should be considered a mere phenomenological parametriza-
tion, with no relation to field theory. On the contrary, it is
rooted in EFT and it thus allows systematic improvements
(higher-order QCD, electroweak, and new-physics correc-
tions) to be incorporated.

4 NLO corrections

4.1 Nonlinear EFT beyond LO

The fact that the Lagrangian in (10) can be mapped onto
the leading-order chiral Lagrangian (in the unitary gauge)
means that (10) is embedded in a systematic expansion. In
particular, this implies that the results we presented in the
fit of the previous section are accurate up to corrections of
relative order ξ/16π2. In this section we will discuss how
one can include NLO new-physics effects systematically in
each of the Higgs decay modes. Within the chiral Lagrangian
these are corrections of order ξ/16π2 � 0.1 %, well beyond
the precision levels expected for Higgs couplings at the LHC,
even in its final stages. Our discussion is therefore meant to
illustrate how the systematics of the expansion works and
aimed at eventual future colliders. For illustration we will
concentrate on Higgs decays.

Since nonlinear EFTs are based on loop expansions, NLO
counterterms and one-loop diagrams made of tree-level ver-
tices contribute at the same order. The full set of operators
needed for the Higgs decays h → Zl+l−, h → f f̄ or
h → Zγ up to NLO is

L =
(
m2

WW+
μ W−μ + 1

2
m2

Z ZμZ
μ

) (
2cV

h

v
+ 2cV 2

h2

v2

)

+ δcm
2
Z ZμZ

μcV
h

v

− c3
h3

v3 −
∑
f

y f f̄ f

(
c f h + c f 2

h2

v

)

+ Zμ�̄γ μ
[
gV − gAγ5

]
� + h

v
Zμ�̄γ μ

[
gVh − gAhγ5

]
�

+
(
gWWμ�̄γ μν + gWh

h

v
Wμ�̄γ μν + h.c.

)

+ e2

16π2 cγ γ FμνF
μν h

v
+ eg′

16π2 cZγ ZμνF
μν h

v

+ cZ Z
g′2

16π2 Zμν Z
μν h

v
+ cWW

g2

16π2 W
+
μνW

−μν h

v

+ g2
s

16π2 cgg〈GμνG
μν〉h

v
, (13)

which are the relevant operators of the chiral Lagrangian up
to NLO in unitary gauge,5 with W±

μν ≡ ∂μW±
ν − ∂νW±

μ . If
custodial symmetry breaking is induced by the weak sector,
then the following relation holds:

cZ Z s
2
W − 1

2
cWW + cZγ s

3
W + cγ γ s

4
W = 0, (14)

so that one of the couplings can be expressed in terms of the
others. Renormalization of fields and couplings is implicitly
assumed, such that the LO Higgs couplings are now of the
form

cV, f = 1 + O(ξ) + O
(
ξ/16π2

)
, (15)

whereas the gauge couplings are

gV,A,W = g(0)
V,A,W + δgV,A,W (16)

where g(0)
V,A,W are the SM values and δgV,A,W ∼ O (

ξ/16π2
)

can be computed from the NLO operators of the chiral
Lagrangian. Note that while at LO custodial symmetry was
preserved, and therefore cW = cZ = cV , the inclusion of
NLO effects generically breaks custodial symmetry at the
per-mille level, in agreement with LEP bounds. The param-
eter δc ∼ O(ξ/16π2) captures this effect.

4.2 Higgs decays at NLO and comparison with the linear
EFT

We first consider the process h → Zl+l−. The set of dia-
grams contributing to this decay is listed in Fig. 6. The upper-
left diagram is the leading contribution, which contains the
SM and O(ξ) deviations from it. NLO corrections consist
of: (i) SM loops without Higgs internal lines, namely the W
and top loop contributions, which are proportional to cV and
c f , respectively (Fig. 6b, d); (ii) SM loops with Higgs inter-
nal lines, a representative of which is depicted in Fig. 6c,
proportional to cV cV 2, c3cV 2, c3c2

V and c3
V ; and (iii) NLO

counterterms listed in the second row. All NLO contribu-
tions are consistently of O(ξ/16π2). As discussed in [57],

5 The gauge interactions in the second line are restricted to leptons but
can be trivially extended to include quarks.
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cV (1 + δc)

(a)

cV , cf

(b)

c3 cV 2

(c)

cV

(d)

cZZ,Zγ

(e)

δgZ
cV

(f)

gZh

(g)

Fig. 6 Diagrams contributing to h → Zl+l− up to NLO in the non-
linear EFT expansion, O(ξ/16π2). The blobs are the SM loop contri-
butions [54–56]. The black circles (squares) are vertices from the LO
(NLO) Lagrangian, where δc is a NLO effect. Pure SM gauge-boson

propagator and vertex corrections exist for diagram (a), which are not
explicitly shown. cRepresentative of loop diagrams with internalHiggs
lines. The Z -boson line in (d) may also be attached to the external
fermion lines

a remarkable feature of the nonlinear EFT is that the decay
rate is sensitive to LO new-physics effects, while differen-
tial distributions probe the NLO corrections. Accordingly,
while deviations from the SM in the decay rates can easily
be expected to reach the 10 % level, new-physics effects in
asymmetries are typically expected at the per-mille level.6

At this point it is instructive to compare with the same
process in the EFT with linearly realized EWSB [58–63].
In this case new-physics effects enter at NLO (dimension
6) and are proportional to v2/�2 ≡ ε. If � ∼ 1 TeV, then
ε > (16π2)−1 and new-physics contributions are bigger than
SM loop effects. A larger � (�3 TeV) spoils this numerical
hierarchy, while a smaller � (<1 TeV) jeopardizes the con-
vergence of the EFT expansion and might eventually be in
conflict with exclusion limits. Most of the studies with the
linear EFT are done assuming, implicitly or explicitly, this
fiducial window for the new-physics scale �.

In [64,65] it was argued that, if UV completions are
assumed to be weakly coupled and renormalizable, a loop
counting on the NLO operator basis can be applied on top of
pure dimensional power counting. Then NLO operators that
can be tree-level generated in a UV completion are generi-
cally more relevant than the ones that can only be loop gen-
erated, which can be neglected. For h → Zl+l−, the argu-
ment amounts to dropping the diagram in Fig. 6e, of order
ε/16π2, while keeping diagrams 6f, g, of order ε. This is
the approach taken for instance in [61]. In some analyses it
is further argued that these remaining contributions can be

6 Actually, they happen to be enhanced at the low percent level [57]
due to the smallness of gV for the electron.

dropped based on LEP constraints [66]. Leaving aside how
legitimate this assumption might be,7 if gauge corrections are
assumed to be suppressed, the dominant new-physics effects
are contained in the shift contributions to cV ,

cV = 1 + O(ε). (17)

It is important to stress that the simple picture that comes
out of (17) follows from adopting dimensional counting sup-
plemented by a number of additional assumptions, namely:

(a) dimension six operators dominate over Standard Model
loops, ε > (16π2)−1;

(b) a (UV-based) loop counting is added on top of the (IR-
based) power counting;

(c) there are additional suppressions based on phenomeno-
logically motivated considerations.

The overall effect of (a), (b) and (c) is to generate addi-
tional hierarchies not present in the EFT power counting:
new-physics effects over SM loops and Higgs observables
over LEP-probed ones. Internal consistency of the EFT in
any case limits the new-physics effects to be around the few-
percent level. In contrast, in the nonlinear case: (i) the differ-
ent hierarchies are dynamically imprinted in the power count-
ing: corrections in the gauge sector are expected at ξ/16π2

and the current experimental pattern of 1–2 orders of mag-
nitude between Higgs and electroweak precision is realized

7 See e.g., [57] for a discussion of why dropping the hZ�+�− diagram
is not justified and [67] for a more general discussion of how LEP
precision constraints translate into constraints on EFT coefficients.
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cZγ
cV , cf

Fig. 7 Diagrams contributing to h → Zγ up to NLO in the nonlinear
expansion, O(ξ/16π2)

parametrically; and (ii) the new-physics effects can naturally
accommodate O(10 %) deviations in the Higgs sector with-
out jeopardizing the convergence of the expansion.8

It is worth emphasizing that in the nonlinear EFT cW =
cZ = cV holds to leading chiral order, i.e., to all orders in
ξ , while custodial symmetry breaking terms will in general
break this degeneracy at NL chiral order, cW −cZ ∼ ξ/16π2.
Within the linear EFT cW − cZ ∼ ε unless one assumes
custodial symmetry breaking to be numerically small.

Let us now turn our attention to loop-induced processes.
In this case we restrict our consideration to the level of
O(ξ/16π2) corrections. These are NLO terms in view of
the global loop counting, although they are only leading-
order effects of O(ξ) relative to the SM one-loop amplitude.
Consider for instance the leading contributions to h → Zγ

within the nonlinear EFT, which are summarized in Fig. 7.
The first diagram collects the SM W and top quark loop
contributions multiplied, respectively, by cV and c f and the
second one the NLO counterterm. Since cV, f ∼ 1 + O(ξ)

and cZγ ∼ ξ/16π2, the new-physics piece is consistently
of order ξ/16π2. In the linear EFT with the additional
assumptions (a) and (b) mentioned above one finds the same
topologies, with all contributions homogeneously of order
ε/16π2. Again, if O(ε) corrections to the Z couplings to
fermions are dropped using phenomenological arguments,
the leading-order new-physics effects enter as a shift effect on
cV, f = 1 +O(ε) and through the local term cZγ ∼ ε/16π2.
This is formally similar to the nonlinear EFT, however, only
at the price of additional assumptions. It is interesting to
note that in h → γ γ gauge corrections are absent altogether
because of electroweak gauge invariance, and there is no need
to resort to LEP bounds.

In comparing the linear and nonlinear EFT parametriza-
tions in loop-induced processes, one should keep in mind
that in the nonlinear case the new-physics corrections appear
already at LO, of order ξ/16π2, while in the linear EFT they

8 Notice that ε ∼ �−2 is necessarily linked to new-physics thresholds,
while ξ ∼ f −2 is just a symmetry breaking scale. In this context, it
is interesting to note that a scenario where the scale f is populated
by new-physics states [31,32] is within the applicability range of the
nonlinear EFT, provided f is sufficiently large with respect to v. This
scenario has a number of phenomenologically interesting aspects, some
of which have been discussed in a previous paper [33].

are a NLO effect, of order ε/16π2. Moreover, the previous
considerations only apply if the scheme suggested in [59]
is adopted, corresponding to the assumptions (a)–(c) above.
If pure dimensional counting is employed in the linear EFT
without additional assumptions, the number of diagrams con-
tributing to h → γ γ or h → Zγ at leading order in new-
physics corrections is substantially larger and the global pic-
ture gets more complicated [62,63]. Consequences for the
connection with the conventional κ formalism are discussed
below.

Let us finally comment on h → f̄ f . The relevant dia-
grams are collected in Fig. 8. The leading-order new-physics
corrections of order ξ stem from the first diagram. NLO cor-
rections can be divided into (i) SM-like topologies without
Higgs internal lines (second diagram), with contributions of
order 1/(16π2)(1+O(ξ)) and (ii) diagrams with Higgs inter-
nal lines, proportional to c3

f , c f c f 2, c3c2
f and c3c f 2. The

latter is a genuine nonlinear contribution of order ξ/16π2.
A local counterterm is absent. Within the linear EFT frame-
work of [64,65], the main contribution comes from a local
dimension-6 operator, which can be absorbed in an effective
vertex with coupling c f = 1 +O(ε) [59]. The leading new-
physics corrections are again expected at the few-percent
level.

4.3 Conventional κ formalism as limit of an EFT
description

An interesting observation can be made on the relation
between the EFT formulations and the conventional κ for-
malism. While the nonlinear EFT reproduces, and therefore
justifies, the phenomenological κ formalism at leading order
in the chiral expansion [1], there is no parametric limit in
which this is the case for the linear EFT at the level of
dimension-6 corrections. The decay h → Zγ in Fig. 7 may
serve as an example. If dimension-6 insertions in the loop
diagrams are retained, corrections unrelated to LO Higgs
couplings, e.g., from t̄ t Z , are also present. If these inser-
tions are neglected, only the contact term modifies the SM. If
the contact term is assumed to be loop suppressed, of order
ε/16π2, it has to be dropped as well in the same approx-
imation. None of these cases reproduces the conventional
κ framework. Similar comments apply to h → Zl+l−. A
related discussion of the linear EFT and its connection with
the κ framework has been given in [68].

4.4 QCD loops vs. LO nonlinear EFT

In general, the systematics of the nonlinear EFT dictates that
one-loop diagrams with vertices from the LO Lagrangian
come at the same order as the NLO local terms. This is par-
ticularly true for the Higgs and electroweak sector, where the
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cf cV , cf c3 cf2

Fig. 8 Diagrams contributing to h → f̄ f to order ξ/16π2. The left diagram contains the LO contribution, the central diagram shows some of
the SM loop topologies and the right diagram the genuine chiral loops (c3

f , c f c f 2 and c3c2
f contributions are also to be taken into account)

inclusion of loop effects beyond a LO description requires the
simultaneous consideration of NLO operators, thus increas-
ing the number of free parameters.

On the other hand, it is possible to keep a LO treatment
of Higgs couplings and still consistently include higher-
order QCD radiative corrections. This is because the LO
Lagrangian (1), even in the form (10) with the effective
h → gg coupling, is renormalizable under QCD. Also, the
expansion in the QCD coupling is parametrically different
from the chiral expansion and can be considered separately.
This feature is useful in practice, since large radiative effects
from QCD can be taken into account, while otherwise work-
ing at LO in the nonlinear EFT. An interesting example is
provided by the discussion of double-Higgs production in
gluon–gluon fusion, gg → hh in [69], where anomalous
couplings are treated at LO in the nonlinear EFT, but higher-
order QCD corrections are also included.

4.5 Pseudo-observables

Pseudo-observables (POs) have been proposed in order
to provide a general and model-independent link between
experimental data and theoretical predictions. The main strat-
egy is to identify, at the amplitude level, the most gen-
eral set of independent parameters for each physical process
based on a multiple-pole expansion. A crucial assumption
in the PO analysis, similar to the EFT, is that there are no
light undetected particles, i.e., a mass gap exists between
the electroweak and the TeV scale. As of this writing, the
pseudo-observable program has only been developed for
Higgs decays [61,70], working by analogy with what was
done at LEP for Z-pole observables [71].

By construction, the identification of pseudo-observables
requires only kinematical considerations, leaving the dynam-
ics unspecified. In order to interpret the values for the pseudo-
observables one needs to resort to a dynamical scheme, be
it a model or EFTs. The nonlinear EFT has the features and
advantages discussed in [1] and in the present paper. It is
clear that any PO can be expressed within this EFT in terms
of its parameters. In particular, the expected size of the new-
physics impact on the PO can be predicted based on the EFT

power counting. For example, the decay rate for h → Zl+l−
has been considered as a PO for h → 4l in [68]. An analysis
of this PO within the nonlinear EFT can be found in [57].

5 Conclusions

The main results of this paper can be summarized as follows:

• We have reviewed the electroweak chiral Lagrangian as
a consistent EFT framework to describe new-physics
effects at electroweak energies in a model-independent
way. The emphasis has been on the leading-order (LO)
approximation of the nonlinear EFT, which is equivalent
to the conventional κ formalism. The latter thus receives
a proper quantum-field theory justification.

• The main benefits of the nonlinear EFT at LO are: (i) It
allows one to focus systematically on anomalous cou-
plings of the Higgs particle, which could potentially
exhibit the largest new-physics effects in the electroweak
sector. (ii) The limited number of parameters (as opposed
to the full set of dimension-6 corrections) is of consider-
able practical importance and will facilitate the interpre-
tation of the data. (iii) The LO approximation (in new-
physics effects) is well adapted to the precision foreseen
for LHC Run 2.

• Concentrating on the processes of Higgs production and
decay that have been measured so far, six parameters
of the leading-order EFT describing anomalous Higgs
couplings, are relevant: cV , ct , cb, cτ , cγ γ , cgg . Using
the Lilith code, a fit of these parameters has been
performed to current data within a Bayesian approach.
The results agree with the SM to within 10–20 %. The
detailed fit results can be found in Sect. 3. The new aspect
of our analysis is that it is based on a systematic EFT
interpretation of the fit parameters.

• We have shown how the LO parametrization can be
generalized to the NLO of the nonlinear EFT. Addi-
tional parameters appear at this level, which, however,
are subleading according to the EFT power counting. The
systematics has been illustrated through various Higgs
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decays such as h → Zl+l− or h → f f̄ . The differences
with the case of the linear EFT including operators of
dimension six have also been discussed.

Further important processes that will become accessible
in the future, such as h → Zγ or double-Higgs produc-
tion, can be analyzed in the same way, based on the LO
nonlinear EFT, at the expense of introducing a (small) num-
ber of additional couplings. Our analysis emphasizes the fact
that the conventional κ framework has a firm foundation as
the leading-order approximation of the nonlinear EFT of the
physics at the Terascale. It will therefore continue to be a
powerful and systematic tool to analyze the physics of the
Higgs boson at Run 2 of the LHC and beyond.
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Appendix A: Higgs signal strengths

The experimental collaborations have provided on-shell
Higgs data in the form of signal strengths. These are defined
for the different production X ∈ {ggF,WH/ZH, V BF,

t t H} and decay channels Y ∈ {bb, ττ,WW, Z Z , γ γ } as

μ = σ(X) × Br(h → Y )

σ (X)SM × Br(h → Y )SM
(A.1)

The leading modifications of the Higgs properties within
the nonlinear effective theory, encoded in (10), amount to a
rescaling of the relevant Higgs-production cross sections and
partial decay widths. The relevant Higgs-production cross
sections are given by

σ(VH)

σ (VH)SM
= c2

V
σ(VBF)

σ (VBF)SM
= c2

V

σ(ttH)

σ (ttH)SM
= c2

t
σ(ggF)

σ (ggF)SM
 �(h → gg)

�(h → gg)SM
. (A.2)

The ratio of the branching ratios can be expressed as

Br(h → Y )

Br(h → Y )SM
= �Y /�Y

SM∑
j (Br(h → j)SM × � j/�

j
SM)

. (A.3)

The branching ratios of the SM are taken from [27] for mh =
125 GeV and are given to the highest available order in QCD;
see [72]. The tree-level decay rates for h → VV ∗ (VV =
W+W−, Z Z) and h → f f̄ get rescaled compared with the
SM by c2

V and c2
f , respectively. For the loop-induced decays

[73]

�(h → γ γ )

�(h → γ γ )SM

=
∣∣∣∑q

4
3 NC Q2

qcq A1/2(xq )η
q,γ γ
QCD + 4

3 cτ A1/2(xτ ) + cV A1(xW ) + 2cγ γ

∣∣∣2

∣∣∣∑q
4
3 NC Q2

q A1/2(xq )η
q,γ γ
QCD + 4

3 A1/2(xτ ) + A1(xW )

∣∣∣2

�(h → gg)

�(h → gg)SM
=

∣∣∣∑q
1
3 cq A1/2(xq )η

q,gg
QCD + 1

2 cgg
∣∣∣2

∣∣∣∑q
1
3 A1/2(xq )η

q,gg
QCD

∣∣∣2 (A.4)

with xq = 4m2
q/m

2
h . The loop functions are defined as [74,

75]

A1/2(x) = 3

2
x [1 + (1 − x) f (x)]

A1(x) = −[2 + 3x + 3x(2 − x) f (x)]. (A.5)

Here

f (x) =
⎧⎨
⎩

arcsin2(1/
√
x) , x � 1,

−1

4

[
ln

(
1+√

1−x
1−√

1−x

)
− iπ

]2
, x < 1.

(A.6)

We take into account O(αs) corrections due to the exchange
of hard gluons and quarks in production and decay. To this
order, the QCD corrections factorize for tree-level amplitudes
of production and decay and therefore cancel in the ratios.
They do not cancel for h → γ γ, gg, where we included
η
t,gg
QCD = 1 + 11αs/4π and η

t,γ γ
QCD = 1 − αs/π for the top

loop [73–77]. The effects of QCD corrections on other quark
loops were checked to be negligibly small. We have neglected
non-factorizing electroweak corrections, which are expected
to be small.
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