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Abstract . Giant DMPC-Ves ic les interacting with a supported D M P C -
bilayer are investigated by Reflection Interference Contrast Microscopy 
( R I C M ) . Spherical vesicles whose shape fluctnations are suppressed 
by osmotic pressure can be observed to fluctuate like Brownian parti-
cles above the Substrate. The interaction potential can be determined 
from the measured distribution function of distances. In the case of 
adhesion, the contact contour of deflated vesicles can be calculated. 
Contact roundings for of weak adhesion as well as contact angles for 
strong adhesion have been measured. 

1 Introduct ion 
The adhesion of vesicles to a wall has recently become of interest in the context 
of the variety of shape transformations that free vesicles exhibit [1]. Clearly, in 
the case of adhering vesicles the equilibrium shape and the dynamics of the fluid 
membrane is strongly dependent on the strength of the vesicle wall interaction 
[2]. We investigated repulsive vesicle wall interaction as well as vesicle adhesion. 

2 Experimental setup and methods 
The experimental setup is depicted in Fig. l . The vesicles are studied by reflec­
tion interference contrast microscopy. By this technique interference is observed 
between the object beam reflected at the membrane and the reference beam 
reflected at the glass-biifTer interface. In the case of an osmotically swollen, 
spherical vesicle the interference pattern are known as Newton rings and the 
absolute sphere-substrate distance can be measured from the position of the 
fringes. Consequently, fast image processing allows monitoring distance fluctu-
ations in real time [3]. 

Furthermore, the interference fringes at the edge of the contact zone of ad­
hering vesicles of arbitrary shape can be used to calculate the vesicle contour 
close to the surface. Thus the nature of the equilibrium shape of adhering 
vesicles in the contact zone can be studied; i.e. the contact angle for strongly 
adhering vesicles or smooth contact curvatures in the case of weak adhesion. 

Special thought must be given to the preparation of the surface of the Sub­
strate. Since optica! techniques require glass as the underlying Substrate, surface 
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Figure 1: Principle of the reflection in­
terference contrast microscopy. The in­
terference between the object beam 7o3 
and the reference beam I \ n is observed. 

roughness and unspecific electrostatic effects are considerable shortcomings in 
vesicle adhesion experiments. Most glass effects, however, are suppressed by 
silanizing the glass surface, i.e. chemically attaching C\s hydrocarbon chains 
to the surface and depositing a lecithin monolayer on top. Using this kind 
of Substrate supported monolayer has the advantage of studying the Symmetrie 
lecithin-lecithin interaction that has already been measured by other techniques. 

3 Repulsive interaction 
Prieve et al. [4] showed recently that the interaction of a sphere which by 
Brownian motion fluetuates above a repulsive surface can be measured by sam-
pling the distance distribution funetion of the ranclom motion. The distribution 
funetion of distances contains the interaction potential simply by the Boltz-
mann relation. Giant DMPC vesicles are observed not to adhere to DMPC 
supported monolayers at low ionic strength (< 20mA/) and osmotically swollen 
vesicles shovv distance fluctuations. The negative logarithm of the measured 
distance distribution is shown in Fig. 2. The solid line indicates a best fit 
to the theoretical mteraction potential including electrostatic, Van der Waals 
and gravitational forces. The figure also shows that under the same conditions 
but increased ionic strength the theoretical interaction becomes attractive as 
experimentally observed (dashed line). 
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Figure 2: The interaction potential obtained from the distance fluctuations of a 
spherical DMPC vesicle above a DMPC supported monolayer in lOOmM inositol 
plus 12mM NaCI. The solid line depicts the theoretical interaction potential for 

= \.%mV. Increasing the ionic strength to 25mM leads to adhesion due to 
Van der Waals forces as indicated bv the dashed line. 

159 



4 Weak adhesion 
Adhesion is observed, if the ionic strength in a system of DMPC vesicles on a 
DMPC supported monolayer surface is increased to 20mM. However, the ad­
hesion is weak vvhich is obvious from visible surface undulations on the vesicle. 
Fig. 3 depicts the contour of the vesicle in the contact zone. The shape exhibits 
a contact rounding that is fitted by a circle of contact radius R r (dashed line). 
The contact curvature has been predicted to depend on the ratio of bending to 
adhesion energy [6, 2] : 

RK = y/2Kc~h (1) 
Taking Kc to be 10~ 1 9J the adhesion energy turns out to be on the order 
of 1.2 • 10~8J/??72. This value is small compared to 10~5J/???2 measured by 
micropipette [6] and surface force technique [7]. However, in those cases tension 
is applied to the membranes, while in contrast at very low tension 7 is reduced 
due to steric repulsion of the undulating membrane [8]. 
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Figure 3: Calculated con­
tour from the interference 
fringes of a DM PC-vesicle on 
a DMPC supported mono­
layer. The contour rounding 
gives an estimate for the ad­
hesion energy. The dashed 
line depicts a circle of contact 
radius R k (distorted scale !). 

5 Strong adhesion 
Strong interaction is achieved by incorporating negative charges into the sup­
ported monolayer and positve charges into the vesicle. Fig. 4 shows an exam-
ple of a vesicle (SOPC:Chol:DODAB) (49:49:2 mol%) adhered to a supported 
monolayer (DMPCrPS) (98:2 mol%). It depicts the reconstructed profile of the 
vesicle. The vesicle is only slightly deflated and the contour is close to the 
spherical shape (dashed line). However, the contact zone exhibits sharp con­
tact angles. The equilibrium shape of adhering vesicles has been calculated by 
Seifert and Lipowsky [2]. In agreement with their predictions we also found the 
following shapes schematically depicted in figure 5. 
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Figure 4: Reconstructed 
contour of a strongly ad­
hering vesicle. The con­
tact zone shows a contact 
angle. 
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Figure 5: Schematic rep-
resentation of experimen-
tally found sliapes. 
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