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Vesicle-Substrate Interaction
Studied by Reflection Interference Contrast Microscopy

J. Réadler and E. Sackmann

Physik Department, Biophysics Group E22, Technische Universitit Miinchen,
James Franck-Str., W-8046 Garching, Fed. Rep. of Germany

Abstract. Giant DMP C-Vesicles interacting with a supported DMPC-
bilayer are investigated by Reflection Interference Contrast Microscopy
(RICM). Spherical vesicles whose shape fluctuations are suppressed
by osmotic pressure can be observed to fluctuate like Brownian parti-
cles above the substrate. The interaction potential can be determined
from the measured distribution function of distances. In the case of
adhesion, the contact contour of deflated vesicles can be calculated.
Contact roundings for of weak adhesion as well as contact angles for
strong adhesion have been measured.

1 Introduction

The adhesion of vesicles to a wall has recently become of interest in the context.
of the variety of shape transformations that free vesicles exhibit [1]. Clearly, in
the case of adhering vesicles the equilibrium shape and the dynamics of the fluid
membrane is strongly dependent on the strength of the vesicle wall interaction
[2]. We investigated repulsive vesicle wall interaction as well as vesicle adhesion.

2 Experimental setup and methods

The experimental setup is depicted in Fig.1. The vesicles are studied by reflec-
tion interference contrast microscopy. By this technique interference is observed
between the object beam reflected at the membrane and the reference beam
reflected at the glass-buffer interface. In the case of an osmotically swollen,
spherical vesicle the interference pattern are known as Newton rings and the
absolute sphere-substrate distance can be measured from the position of the
fringes. Consequently, fast image processing allows monitoring distance fluctu-
ations in real time [3].

Furthermore, the interference fringes at the edge of the contact zone of ad-
hering vesicles of arbitrary shape can he used to calculate the vesicle contour
close to the surface. Thus the nature of the equilibrium shape of adhering
vesicles in the contact zone can be studied; i.e. the contact angle for strongly
adhering vesicles or smooth contact curvatures in the case of weak adhesion.

Special thought must be given to the preparation of the surface of the sub-
strate. Since optical techniques require glass as the underlying substrate, surface
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Figure 1: Principle of the reflection in-
terference contrast microscopy. The in-
terference between the object beam Io3
and the reference beam I+ is observed.

vesicle

roughness and unspecific electrostatic effects are considerable shortcomings in
vesicle adhesion experiments. Most glass eflects, however, are suppressed by
silanizing the glass surface, i.e. chemically attaching C;3 hydrocarbon chains
to the surface and depositing a lecithin monolayer on top. Using this kind
of substrate supported monolayer has the advantage of studying the symmetric
lecithin-lecithin interaction that has already been measured by other techniques.

3 Repulsive interaction

Prieve et al. [4] showed recently that the interaction of a sphere which by
Brownian motion fluctuates above a repulsive surface can be measured by sam-
pling the distance distribution function of the random motion. The distribution
function of distances contains the interaction potential simply by the Boltz-
mann relation. Giant DMPC vesicles are observed not to adhere to DMPC
supported monolayers at low ionic strength (< 20m ) and osmotically swollen
vesicles show distance fluctuations. The negative logarithm of the measured
distance distribution is shown in Fig. 2. The solid line indicates a best fit
to the theoretical interaction potential including electrostatic, Van der Waals
and gravitational forces. The figure also shows that under the same conditions
but increased ionic strength the theoretical interaction becomes attractive as
experimentally observed (dashed line).

= 0
T A 12mM NaCl
£ -2 25mM NaCl
s |
g
_4 — ' .
Jd
1 I | I I 1
0 20 40 60 80 100

distance / nm
Figure 2: The interaction potential obtained from the distance fluctuations of a
spherical DMPC vesicle above a DMPC supported monolayer in 100mNM inositol
plus 12mM NaCl. The solid line depicts the theoretical interaction potential for
¥ = 1.8mV. Increasing the ionic strength to 25mM leads to adhesion due to
Van der Waals forces as indicated by the dashed line.
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4 Weak adhesion

Adhesion is observed, if the ionic strength in a system of DMPC vesicles on a
DMPC supported monolayer surface is increased to 20mM. However, the ad-
hesion is weak which is obvious from visible surface undulations on the vesicle.
Fig. 3 depicts the contour of the vesicle in the contact zone. The shape exhibits
a contact rounding that is fitted by a circle of contact radius Ry (dashed line).
The contact curvature has been predicted to depend on the ratio of bending to

adhesion energy [6, 2] :
Rk = /2Kc/v (1)

Taking K¢ to be 1071 the adhesion energy turns out to be on the order
of 1.2 -1078J/m?. This value is small compared to 107°J/m® measured by
micropipette [6] and surface force technique [7]. However, in those cases tension
is applied to the membranes. while in contrast at very low tension « is reduced
due to steric repulsion of the undulating membrane [§].

Figure 3: Calculated con-
tour from the interference
fringes of a DMPC-vesicle on

§_0-25 a DMPC supported mono-
= layer. The contour rounding
gives an estimate for the ad-

0.00

hesion energy. The dashed
line depicts a circle of contact
x/pum radius Ry (distorted scale !).

5 Strong adhesion

Strong interaction is achieved by incorporating negative charges into the sup-
ported monolayer and positve charges into the vesicle. Fig. 4 shows an exam-
ple of a vesicle (SOPC:Chol:DODAB) (49:49:2 mol%) adhered to a supported
monolayer (DMPC:PS) (98:2 mol%). It depicts the reconstructed profile of the
vesicle. The vesicle is only slightly deflated and the contour is close to the
spherical shape (dashed line). However, the contact zone exhibits sharp con-
tact angles. The equilibrium shape of adhering vesicles has been calculated by
Seifert and Lipowsky [2]. In agreement with their predictions we also found the
following shapes schematically depicted in figure 5.

08— O a
E . d
= 047 nCP Figure 4: Reconstructed
0.0_- contour of a strongly ad-
T T T T T hering vesicle. The con-
-4 -2 0 2 4 tact zone shows a contact
X/ pm angle.
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Figure 5: Schematic rep-

O m "\ resentation of experimen-

tally found shapes.
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