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1 Introduction

In General Relativity the Lorentz group is realized as a local symmetry of the tangent

manifold. There exists no spinor representations of the diffeomorphisms and this dictates

the use of this local symmetry in curved space-time. Usually the dimension of the tan-

gent space is taken to be equal to the dimension of the curved manifold and the Lorentz

symmetry is then simply a manifestation of the equivalence principle for spaces without

torsion. Considering the group of local Lorentz transformations in tangent space, we can

reformulate General Relativity as a gauge theory where the gauge fields are the spin-

connections. If the dimensions of space time and tangent space are the same, the gauge

fields (spin-connections) simply encode the same amount of information about dynamics of

the gravitational field as the affine connections and nothing more. However, the dimension

of the tangent group must not necessarily be the same as the dimension of the manifold [1].

In [2] we have shown that the metricity condition have unambiguous solution also in the

case when the tangent space of 4d manifold is five dimensional and corresponds to the

de Sitter group (5d Lorentz group). In such case the theory is also completely equivalent

to General Relativity. In this paper we consider the tangent space with more than five

dimensions and show that this allows us to unify gauge theories with gravity in terms of

higher dimensional gauged Lorentz groups. The gauge transformations are then realized

as subgroup of the tangent Lorentz group and the spinors describing matter are “unified”

all being in the fundamental representation of this higher dimensional Lorentz group. The

realistic group which unifies all particles within one family is SO(1, 13) and naturally leads

to Einstein gravity with the SO (10) gauge group being, however, not entirely equivalent

to the SO (10) grand unified theory.

2 Tangent group

Let us consider a 4-dimensional manifold and assume that at every point of this manifold

there is real N -dimensional tangent space spanned by linearly independent vectors vA,
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where A = 1, 2 . . . N. Assuming that N ≥ 4, the coordinate basis vectors eα ≡ ∂/∂xα,

where α = 1, . . . 4, span 4-dimensional (sub)space in this space. Next we define the scalar

product in the tangent space and take vectors vA to be orthonormal with respect to the

“Minkowski matrix” ηAB (−,+, . . . ,+)

vA · vB = ηAB. (2.1)

The Lorentz transformations

ṽA = Λ B
A vB, Λ C

A ηCDΛ D
A = ηAB (2.2)

preserve the orthogonality of the basis vectors vA , ṽA · ṽB = ηAB. The scalar product of

coordinate basis vectors, which also reside in the tangent space, induces the metric in the

4-dimensional manifold

eα · eβ = gαβ(xγ). (2.3)

Expanding eα in vA-basis we have

eα = eAαvA, (2.4)

where the coefficients of the expansion eAα are the vielbiens (or soldering forms). Substi-

tuting in (2.3) we obtain the following expression for the metric gαβ

gαβ = eAαe
B
β ηAB = eAαeAβ . (2.5)

Hereafter, we always raise and lower tangent space indices with Minkowski metric ηAB.

Next we consider parallel transport on the manifold relating vectors in the “nearby” tangent

spaces. The affine and spin-connections determining the rules of parallel transport for

coordinate basis vectors and vielbiens are defined by

∇eβeα ≡ ∇βeα = Γναβeν , ∇βvA = −ω B
βA vB, (2.6)

where ∇β is the derivative along a coordinate basis vector eβ . For example when ∇β is

applied to a scalar function f it gives ∇βf = ∂f/∂xβ . Notice that ηAB and gαβ as defined

in (2.1) and (2.3) must be considered as the sets of scalar functions and, hence, ∇βηAB = 0,

∇γgαβ = ∂gαβ/∂x
γ ≡ ∂γgαβ1.

Given ηAB, gαβ and eAα let us derive the consistency (metricity) conditions for the

connections. Taking derivative of equation (2.1) and using (2.6) we obtain

(∇αvA) · vB + vA · (∇αvB) = −ωβAB − ωβBA = ∇αηAB = 0, (2.7)

i.e., the spin-connection should be antisymmetric in tangent indices, ωβAB = −ωβBA.

Applying ∇β to

eAα = (vA · eα) , (2.8)

one gets

∂βeAα = (∇βvA) · eα + vA · (∇αeα) , (2.9)

1We use the notations and methods of Misner, Thorne, Wheeler [4], in particular, Chapters 9 and 10.
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or using definitions in (2.6)

∂βeAα = −ω B
βA eBα + ΓναβeAν . (2.10)

Hereafter we assume that the space-time is torsion-free, that is, Γναβ = Γνβα. In this case,

16N equations (2.10) can be solved to express 40 affine connections Γναβ and 2N (N − 1)

spin-connections ωβAB in terms of the derivatives of the soldering forms ∂βeAα. The

number of equations matches the number of connections to be determined only if the

dimension of the tangent space is equal either to N = 4 or N = 5 [2]. For N > 6

the number of equation in (2.10) is less than the number of unknown connections and

2N2 − 18N + 40 = 2 (N − 4) (N − 5) variables remain undetermined by soldering forms.

Let N = n + 4, then the number of unconstrained components of the spin-connections

ω B
βA is 2n (n− 1) which matches the number of SO(n) gauge fields. As we will see this

allows us to account for the gauge transformations which become unified with gravity for

higher dimensional gauged Lorentz group of the tangent space. Considering

∂γgαβ = ∂γ
(
eAαeAβ

)
=
(
∂γe

A
α

)
eAβ + eAα (∂γeAβ) , (2.11)

and substituting in the right hand side the expression for ∂γe
A
α from (2.10) we find

Γναγgνβ + Γνβγgαν = ∂γgαβ . (2.12)

In the absence of torsion, Γναβ = Γνβα, these equations are solved unambiguously, to give

the well known Christoffel connection

Γγαβ =
1

2
gγσ (gασ,β + gσβ,α − gαβ,σ) , (2.13)

where gγσ is inverse to gαβ , that is, gασgσβ = δαβ . We would like to stress that the affine con-

nections are determined unambiguously irrespective of the dimension of the tangent space.

For constructing gauge invariant Lagrangians we will also need eαA defined as

eαA = gαγeAγ , (2.14)

which can be easily seen to satisfy the metricity condition

∂βe
α
A = −ω B

βA eαB − Γαβνe
ν
A. (2.15)

The soldering form eαA is inverse to eBβ only if the number of dimensions of the tangent

space and manifold match each other. The contraction over the tangent space indices gives

eαAe
A
β = gαγeAγe

A
β = gαγgγβ = δαβ , (2.16)

however, eαAe
B
α 6= δAB. To prove this, let us introduce N − 4 orthonormal vectors nĴ or-

thogonal to the subspace spanned by eα, that is, nĴ · eα = 0 and nĴ · nÎ=δĴ Î , where

Ĵ , Î = 5, 6, . . . , N . The vectors nĴ , eα form a complete basis in tangent space and there-

fore vA can be expanded as

vA = vαAeα + nĴAnĴ . (2.17)
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Taking into account (2.8) we have

eAγ = (vA · eγ) = vαAgαγ , (2.18)

and hence, vαA = gαγeAγ = eαA, that is, the coefficients vαA in (2.17) coincide with soldering

form eαA. Taking this into account one gets

ηAB = vA · vB = vαAv
β
Bgαβ + nJ̃AnJ̃B = eαAeαB + nĴAnĴB, (2.19)

or after raising the tangent space index B we obtain

eαAe
B
α = δBA − nĴAnBĴ ≡ P

A
B (2.20)

where PAB is a projection operator: PAC P
C
B = PAB . The components nĴA satisfy the following

relations

nA
Ĵ
eαA = 0, nA

Ĵ
nÎA = δÎ

Ĵ
. (2.21)

To verify these relations let us consider the expansion

nĴ = lB
Ĵ
vB (2.22)

Substituting this expression into nĴA =
(
nĴ · vA

)
we obtain nĴA = lB

Ĵ
ηBA and hence

lB
Ĵ

= nB
Ĵ

; therefore

nĴ = nB
Ĵ
vB = nB

Ĵ

(
eαBeα + nÎBnÎ

)
, (2.23)

from which (2.21) follows immediately.

In vielbiens formalism the soldering form eαA is a fundamental quantity which is required

to be invariant under the group of local Lorentz transformations (2.2), where Λ B
A =

Λ B
A (x) . Under Lorentz transformations the basis vectors vA transform as

vA → ṽA = Λ B
A vB, (2.24)

and correspondingly

eα = eBαvB = eBα
(
Λ−1

) A

B
ṽA = ẽAα ṽA. (2.25)

It then follows that

eAα → ẽAα = eBα
(
Λ−1

) A

B
, eαA → ẽαA = Λ B

A eαB. (2.26)

The transformation law for the spin-connection follows from its definition:

ω̃ B
βA ṽB = −∇βṽA (2.27)

Substituting ṽB = Λ C
B vC and taking into account (2.6) we deduce that

ω B
βA → ω̃ B

βA =
(
ΛωβΛ−1

) B

A
+
(
Λ∂βΛ−1

) B

A
, (2.28)

where Λ and Λ−1 are the matrices corresponding to Lorentz transformation and its inverse.
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3 Curvature

To introduce the curvature for the spin-connection, consider the spinors ψ which transform

in tangent space according to

ψ → exp

(
1

4
λABΓAB

)
ψ, (3.1)

where ΓAB = 1
2 (ΓAΓB − ΓBΓA) are generators of the Lie algebra in the spinor representa-

tion and ΓA are N Dirac matrices satisfying{
ΓA,ΓB

}
= 2ηAB, Γ†A = Γ0ΓAΓ0. (3.2)

The Dirac action ∫
d4x
√
g ψiΓCeαCDαψ, (3.3)

where

Dα ≡ ∂α +
1

4
ωABα ΓAB (3.4)

is invariant under transformations (2.26), (2.28) and (3.1). Notice that hermiticity of the

Dirac action in (3.3) is guaranteed by the metricity condition (2.10).

Next construct the spin-connection curvature by considering the commutator of Dirac

operators

[Dα, Dβ ] =
1

4
R AB
αβ ΓAB, (3.5)

where

R AB
αβ (ω) = ∂αω

AB
β − ∂βω AB

α + ω AC
α ω B

βC − ω AC
β ω B

αC . (3.6)

Under Lorentz transformations this spin curvature transforms as

(Rµν) B
A →

(
ΛRΛ−1

) B

A
. (3.7)

To relate the spin-connection curvature to the affine connection curvature consider the

identity

∂β∂αeAγ − ∂α∂βeAγ = 0. (3.8)

Substituting here the expression for ∂e from (2.10) and using this metricity condition one

more time to express ∂e which appear after taking the derivative, we immediately arrive

at the following relation

R AB
αβ (ω) eBγ = Rργαβ (Γ) eAρ , (3.9)

where

Rργαβ (Γ) = ∂αΓρβγ − ∂βΓραγ + ΓρακΓκβγ − ΓρβκΓκαγ , (3.10)

is the Riemann curvature. Taking (2.16) into account, we can express the 4d Riemann

curvature from (3.9) in terms of R AB
αβ (ω) as

Rσγαβ (Γ) = eσAR
AB

αβ (ω) eBγ (3.11)
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irrespective of the number of dimensions of the tangent space. Inversely we can express

R AB
αβ (ω) in terms of Rσγαβ (Γ) by using (2.20) to obtain

R AB
αβ (ω) = R AC

αβ (ω)nÎCn
B
Î

+Rργαβ (Γ) eAρ e
Bγ . (3.12)

Next we will show that the first term on the right hand side of this equation can be entirely

expressed in terms of the spin-connections defining the parallel transport of vectors nĴ in

the subspace of tangent space orthogonal to those part spanned by the four coordinate

basis vectors eα. These connections, which we denote by A Î
βĴ

for the reasons which will

become clear later, are defined as

∇αnĴ = −A Î
αĴ

nÎ +B β

αĴ
eβ (3.13)

where indices Ĵ and Î run over values 5, 6, . . . , N. These indices are also raised and lowered

with the Minkowski metric ηÎ Ĵ . We now show that B β

αĴ
= 0 and derive the metricity

conditions for A Î
αĴ

. On one hand

∇αvA = −ω B
αA vB = −ω B

αA

(
eγBeγ + nÎBnÎ

)
, (3.14)

where we have used (2.17) in the last equality, while on the other hand

∇αvA = ∇α
(
eγAeγ + nÎAnÎ

)
=
(
∂αe

γ
A + eβAΓγαβ

)
eγ

+
(
∂αn

Î
A − nĴAA Î

αĴ

)
nÎ + nÎAB

β

αÎ
eβ (3.15)

Using (3.14), (3.15) and (2.15) we deduce that

B β

αÎ
= 0. (3.16)

Thus, the affine connection of the vector nĴ lies entirely in the subspace spanned by the

basis vectors nĴ . Moreover, as it follows from (3.14) and (3.15) that

∂αn
Î
A = nĴAA

Î
αĴ
− ω B

αA nÎB. (3.17)

Next let us define

Dα (ω)nÎA ≡ ∂αnÎA + ω C
αA nÎC , (3.18)

and consider the commutator

[Dα (ω) , Dβ (ω)]nÎA = R C
αβA (ω)nÎC (3.19)

On the other hand according to (3.17)

Dα (ω)nÎA = nĴAA
Î

αĴ
(3.20)

and therefore

[Dα (ω) , Dβ (ω)]nÎA = Dα (ω)
(
nĴAA

Î
βĴ

)
− (α↔ β) = nĴAF

Î
αβĴ

(A) , (3.21)
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where

F Î Ĵ
αβ (A) = ∂αA

Î Ĵ
β − ∂βAÎ Ĵα +AÎL̂α A Ĵ

βL̂
−AÎL̂β A Ĵ

αL̂
. (3.22)

Thus comparing (3.21) and (3.19) we conclude that

R C
αβA (ω)nÎC = nĴAF

Î
αβĴ

(A) (3.23)

and using this result in (3.12) we finally obtain

R AB
αβ (ω) = F Ĵ Î

αβ (A)nA
Ĵ
nB
Î

+Rργαβ (Γ) eAρ e
Bγ . (3.24)

To get the Lagrangian for the theory we have to build curvature invariants out of R AB
αβ (ω)

and eγA. Contracting the tangent space index in R AB
αβ with eσA always removes the F term

in (3.24) thanks to (2.21). There exist only one scalar invariant in the linear order in

curvature

R AB
αβ (ω) eαAe

β
B = R (Γ) , (3.25)

where R (Γ) is the usual scalar curvature of 4d manifold which gives us the Einstein action.

Second order invariants in curvature which are obtained by contracting R AB
αβ R CD

γδ with

four soldering forms eAeBeCeD in all possible combinations of indices αβγδ give us the

space-time curvature invariants

R2 (Γ) , Rαβ (Γ)Rαβ (Γ) , Rαβγδ (Γ)Rαβγδ (Γ) , (3.26)

and only the contraction of tangent space indices with themselves generate kinetic terms

for AÎ Ĵβ :

gαγgβδR AB
αβ (ω)RγδAB (ω) = gαγgβδ

(
F Î Ĵ
αβ (A)FγδÎĴ (A)

)
+Rαβγδ (Γ)Rαβγδ (Γ) .

(3.27)

In this last expression the Yang-Mills kinetic term appears as part of the gravitational

curvature square term.

To summarize, the most general action, up to quadratic order in curvature is given by

I =

∫
d4x
√
−g
[

1

16πG
R AB
αβ (ω) eαAe

β
B

+R AB
αβ R CD

γδ

(
aeαAe

β
Be

γ
Ce

δ
D + beαAe

β
Ce

γ
Be

δ
D + ceαCe

β
De

γ
Ae

δ
B

)
− 1

4
gαγgβδR AB

αβ (ω)RγδAB (ω)

]
(3.28)

=

∫
d4x
√
−g
[

1

16πG
R (Γ) + aR2 (Γ)− bRαβ (Γ)Rαβ (Γ)

+

(
c− 1

4

)
Rαβγδ (Γ)Rαβγδ (Γ)− 1

4
gαγgβδF Î Ĵ

αβ (A)FγδÎĴ (A)

]
(3.29)

where a, b, and c are dimensionless constants. We note that it is possible to avoid the ghost

in the graviton propagator by choosing the Gauss-Bonnet combination of the curvature

square terms which corresponds to the choice a = b
4 = c− 1

4 .
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The easiest way to understand the above results which showed that the SO(1, N − 1)

invariants split into SO(1, 3) and SO(N − 4) invariants, is to work in a special gauge. We

first split the constraint (2.15) for A = a = 1, . . . , 4 and A = Î = 5, . . . N :

0 = ∂µe
ν
a + ω b

µa eνb + ω Î
µa eν

Î
+ Γνµρe

ρ
a (3.30)

0 = ∂µe
ν
Î

+ ω a
µÎ

eνa + ω Ĵ
µÎ

eν
Ĵ

+ Γνµρe
ρ

Ĵ
(3.31)

The vielbeins eµA transform under SO(1, N − 1) transformations according to

eµA → ẽµA = ΛABe
µB. (3.32)

In particular,

eµ
Î
→ ẽµ

Î
= ΛÎae

µa + ΛÎ Ĵe
µĴ . (3.33)

The action, by construction, is invariant under SO(1, N − 1) rotations. Thus, it is possible

to use the gauge invariance and the freedom in the choice of gauge parameters ΛÎa to set

eµ
Î

to zero

eµ
Î

= 0. (3.34)

This leaves the gauge parameters Λab and ΛÎ Ĵ arbitrary, corresponding to invari-

ance under the subgroup SO(1, 3) × SO(N − 4). With this gauge choice we see that

equation (3.31) implies

ω a
µÎ

= 0, (3.35)

assuming that eµa is invertible. The remaining equation (3.30) can now be solved to give

the usual expression for ω b
µa in terms of eµa and its derivative. In this special gauge

ω Ĵ
µÎ

= A Ĵ
µÎ

and

R aÎ
µν = 0, (3.36)

while nonvanishig components of the curvature R ab
µν and R Î Ĵ

µν are responsible for the

gravity and gauge fields respectively.

Thus, the gauge groups can be considered as subgroup of the Lorentz group of a higher

dimensional tangent space. The connections AÎ Ĵα transform under SO (N − 4) rotations in

a subspace orthogonal to the space spanned by coordinate tangent vectors. The gauge

fields come unified with gravity within SO (1, N − 1) Lorentz group. In case N = 5,

the connection A55
α vanishes and there are no extra gauge fields in addition to gravity

in agreement with [2]. For N = 6 the connection A56
α is a Maxwell field and the local

gauge group SO (2) is obviously isomorphic to the U (1) group of electrodynamics. Thus,

electromagnetism is unified with gravity in SO (1, 5) tangent space group. The realistic

group which can allow us to unify all known interactions is SO (1, 13) . In this case in

addition to gravity, the theory describes 45 dynamical gauge fields AÎ Ĵα which transform

under SO (10) group.
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4 Fermions

The matter content of the theory, described by fermions, must be in the fundamental

spinor representation of the corresponding Lorentz group SO (1, N − 1) . At this point, it

is useful to make a scan of possible unification groups by considering various dimensions

of the tangent space in four dimensional manifold.

When the tangent space have only one extra dimension compared to the dimension

of space-time the tangent group is the de Sitter group SO (1, 4). In this case ω5̂5̂
µ = 0

because ωABµ is skew-symmetric in tangent indices and there is no gauge group in addition

to the gravity. The spinors are defined in the SO(1, 4) tangent space, where the Majorana

condition can be imposed. This case is completely identical to General Relativity with

SO(1, 3) tangent group.

For N = 6 the gauge group is SO(2) and it describes the Maxwell field. The spinors

are in the SO (1, 5) tangent space, where a symplectic-Majorana or Weyl condition can be

imposed. The Clifford algebra is then Cl (1, 5) = H (4) and the spinor is of dimension 8.

It reduces to two independent spinors when the symplectic-Majorana or Weyl condition is

imposed, which are equivalent to a Dirac spinor, or a pair of Majorana spinors with respect

to SO(1, 3).

In a seven dimensional tangent space (N = 7) the gauge group is SO (3), which is locally

isomorphic to SU (2) . The Clifford algebra of the SO (1, 6) tangent group is Cl (1, 6) = C (8)

and the spinor is of dimension 8. No further conditions can be imposed in this case to reduce

the number of independent components. The spinor is of the form ψαi with i = 1, 2 in the

spinor representation of SO (3) and it is a Dirac spinor with respect to the index α.

When N = 8, the gauge group is SO (4) and the tangent group is SO (1, 7) . The Clifford

algebra for this tangent group is Cl (1, 7) = R (16) and the spinor is of dimension 16. It can

be subject to the Weyl condition, thus, reducing the number of independent components

to 8. Since SO (4) is locally isomorphic to SU (2)×SU (2) the spinor is of the form ψαi and

ψαi′ where i = 1, 2 and i′ = 1, 2 are in the spinor representations of the two SU (2) .

Continuing this consideration to higher N we find that the smallest rotation group

that has SU(3)×SU(2)×U(1) gauge group of the Standard Model as a subgroup is SO(10)

and a good candidate for the realistic model which unifies gravity with gauge interactions is

G = SO(1, 13) (4.1)

local symmetry group of the tangent space in the four dimensional manifold. A spinor ψα̂
in the fundamental representation of SO(1, 13) has 27 = 128 components on which one can

impose a Weyl condition

(Γ15)
β̂
α̂ ψβ̂ = ψα̂ (4.2)

where Γ15 = Γ0Γ1 · · ·Γ13 satisfies (Γ15)
2 = 1 and Γ0,Γ1, . . . ,Γ13 are fourteen 27×27 gamma

matrices that satisfy the Clifford algebra Cl (1, 13). The Weyl condition reduces the number

of independent components of the spinor to 1
2 (128) = 64. This corresponds to a Dirac

SO (1, 3) spinor in the 16s + 16s representation of SO(10). The 64 independent component

spinor describes 32 two components Weyl fermions. Thus, the number of fermions in
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the fundamental spinor representation of SO (1, 13) is twice more than in the Standard

Model, where one family contains only 16 Weyl fermions. Majorana condition cannot be

imposed in this case and the only way to avoid direct contradiction with experiments is

to make half of the fermion very massive using Brout-Englert-Higgs mechanism. This can

be easily done by breaking the SO(1, 13) symmetry of tangent group spontaneously to

SO(1, 3)× SO (4)× SO(6) via “scalar” fields which are in the appropriate representations

of SO(1, 13). These fields must be coupled to the spinors. One can write few possible such

couplings contracting antisymmetric tensors with elements of the Clifford algebra, as for

example ([3]),

ψα̂

(
Cα̂β̂φ−

(
CΓABCD

)α̂β̂
HABCD

)
ψ
β̂

(4.3)

where Cα̂β̂ is the charge conjugation matrix for SO(1, 13), φ is a scalar field and HABCD is

totally antisymmetric. Let us add to the total action kinetic terms for φ and for HABCD

gµν∂µφ∂νφ, FABCDEF
ABCDE , (4.4)

where FABCDE = D[AHBCDE], and a potential term which has a minimum at

〈φ〉 = v (4.5)

〈Habcd〉 =
v

4!
εabcd, (4.6)

〈Hı̃p̃m̃ñ〉 =
v′

4!
εı̃p̃m̃ñ, (4.7)

and 〈HABCD〉 is zero otherwise; here the indices a, b, c, d take the values 0, 1, 2, 3 of SO(1, 3)

group and ı̃, p̃, m̃, ñ are SO (4) indices. As a result the symmetry SO(1, 13) is broken to

SO(1, 3) × SO (4) × SO (10). Note that SO (4) is isomorphic to SU (2)R × SU (2)L. This

insures that the projection (1 − γ5)ψα̂ becomes massive, with a Majorana mass which one

can take to be of order of the unification scale, for instance, near the Planck scale. The

other combination (1 + γ5)ψα̂ which is a 16s spinor of SO (10) remains massless. After

that, we can use a Higgs representation of the form ΓABHAB with the vacuum expectation

value (vev)

〈HIJ〉 = v”
(
δ5I δ

6
J + δ7I δ

10
J + δ8I δ

9
J

)
− I ↔ J (4.8)

to break the Pati-Salam group SU (4) to SU (3)c × U (1)c . A further breaking occurs via

the field ΓABCDEHABCDE , which acquires vev

〈HIJKLM 〉 = µ
(
δ2[I δ

4
JδKδ

9
Lδ

10
M ] + i (2→ 3) + i (5→ 6)− i (9→ 8)

)
(4.9)

and breaks SU (2)R × U (1)c to U (1)Y . The surviving symmetry is that of the Standard

Model SU (3)c × SU (2)L × U (1)Y . The symmetry breaking at the last stage to obtain

SU (3)c × U (1)γ is done by using the fields

ΓAHA, ΓABCHABC , ΓABCDEHABCDE , (4.10)

which as a result produces the low energy physics.
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5 Conclusions

We have shown that one can unify gauge interactions with gravity by considering higher

dimensional tangent spaces in a four dimensional space-time. The gauged tangent space

Lorentz group describes simultaneously the symmetry groups of gravity and gauge inter-

actions, provided a metricity condition is satisfied. The spin-connections of the higher

dimensional tangent space fully incorporate information on the affine connection of space-

time as well as the gauge fields. Those connections which are responsible for gravity are

“composite” because they satisfy extra constraints which allow to express them in terms

of the derivatives of the vielbeins. On the other hand the spin-connections responsible for

gauge interactions do not obey any constraints and hence are independent. The complete

geometric unification of gravity and gauge interactions is realized by writing the action of

the theory just in terms of curvature invariants of the tangent group which contains the

Yang-Mills action for gauge fields.

The realistic group which unifies the gravity with gauge interactions and contains the

Standard Model is SO (1, 13) in a fourteen dimensional tangent space. It corresponds to

SO (10) grand unified theory concerning the gauge fields content, however, it has double

the number of fermions, half of which can be made very massive via Brout-Englert-Higgs

mechanism. The SO (1, 13) is then broken first to SO (1, 3)× U (1) × SU (2) × SU (3) and

then to SO (1, 3) × U (1)em × SU (3) by using Brout-Englert-Higgs mechanism. Since the

Dirac operator plays a fundamental role in this setting, it is natural to look for connections

between this construction and that of noncommutative geometry. In addition, the need

to add Higgs scalar fields suggests that a total unification of gravity, gauge and Higgs

fields within one geometrical setting, should be possible by replacing the continuous four-

dimensional manifold by a noncommutative space which has both discrete and continuous

structures [5]. This possibility and others will be the subject of future investigations.

Notes added:

• After this paper was submitted we were informed by R. Percacci of his work in

references [6–8]. In reference [6] a GL(4, R) model is considered with torsion and a

connection with non-metricity. In reference [7] this is generalized to GL (N,R) broken

spontaneously to O (1, N − 1) . In reference [8] the issue of chiral fermions in a gauged

SO (3, 11) model broken to SO (3, 1)×SO (10) where the Majorana-Weyl condition is

imposed to avoid mirror fermions. This model does suffer from the presence of ghosts

for scalar Higgs fields and whenever the Minkowski metric is used an odd number of

times. Although the methods in these works are similar to the ones presented here,

there is little overlap.

• Michel Dubois-Violette, communicated to us the following. In 1970, R. Greene has

proved that a 4-dimensional Lorentzian manifold admits locally an isometric smooth

free embedding in Minkowski space M(1, 13) [9]. There is a similar result proved

the same year for the Euclidean signature in M.L. Gromov and V.A. Rokhlin [10].

This means that one can include an arbitrary deformation of the four-manifold in the

same flat space and eventually expect to quantize space-time in the fixed Minkowski

space M(1, 13).
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