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1 Introduction

A few recent papers [1, 2] have investigated the relation between the Wess-Zumino-Witten-

like open superstring field theory of Berkovits [3, 4] and a new form of open superstring

field theory based on A∞ algebras [5].1 The first issue one encounters in this regard is that

the A∞ theory uses a string field in the small Hilbert space, while the Berkovits theory uses

a string field in the large Hilbert space. The large Hilbert space comes with an additional

gauge symmetry associated with the eta zero mode, on top of the usual gauge symmetry

associated with the BRST operator. In earlier works, this discrepancy was resolved by

fixing the eta part of the gauge invariance [10], so that the remaining degrees of freedom of

the Berkovits theory could be described by a single string field in the small Hilbert space.

Then one can compare the gauge-fixed field of the Berkovits theory to the string field of

the A∞ theory.

Here we take a complementary approach. Instead of partially gauge fixing the Berkovits

theory, we lift the field of the A∞ theory to the large Hilbert space, producing a new gauge

1For corresponding investigations in heterotic string field theory [6, 7], see [8, 9].
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symmetry associated with the eta zero mode. This can be done as follows. One substitutes

the original string field ΨA in the A∞ action with a new dynamical field ΦA in the large

Hilbert space according to

ΨA = ηΦA, (1.1)

where η = η0 is the eta zero mode. The lifted A∞ theory automatically possesses an

additional gauge symmetry

Φ′A = ΦA + ηΩA, (1.2)

since the action only depends on ΦA in the combination ηΦA. Therefore we can search

for a field redefinition relating the lifted field ΦA to the string field ΦB of the Berkovits

theory. No gauge fixing is required. The field redefinition we propose comes in the form

of a “Wilson line” which relates a path through field space in the Berkovits theory to

a path through field space in the lifted A∞ theory. When the actions are expressed in

Wess-Zumino-Witten-like form, this reduces their equivalence to an identity.

One advantage of this approach is that it gives a clearer understanding of the relation

between the gauge symmetries of the two theories. This question is more difficult to

study in the small Hilbert space since the partially gauge-fixed Berkovits theory does not

exhibit a cyclic A∞ structure.2 We show that the η gauge transformations of the two

theories map into each other, while the BRST gauge transformation in one theory maps

into a combination of BRST, η, and trivial gauge transformations in the other. Another

consequence of our analysis is a new perspective on the algebraic structure underlying

the Wess-Zumino-Witten-like (WZW-like) action. We show that the “potentials” which

appear in the WZW-like action are generally part of a hierarchy of higher-form potentials

which together provide a solution to a certain Maurer-Cartan equation. Maurer-Cartan

gauge transformations implement field redefinitions and relate equivalent realizations of

the WZW-like action. In this sense, the Maurer-Cartan equation plays a role in the large

Hilbert space somewhat analogous to the role of cyclic A∞ algebras in the small Hilbert

space. These results may be a useful step towards a better understanding of the role

of the large Hilbert space in superstring field theory, and in particular the problem of

quantization [11–15].

2 Recap

This section contains a repository of definitions and formulae that we will need in our calcu-

lations. See earlier works for a more extended introduction to the formalism, especially [2],

whose conventions we follow.

In this paper, string fields are always elements of the Neveu-Schwarz state space H
of an open superstring quantized in the RNS formalism, including bc and bosonized su-

perconformal ghosts η, ξ, eφ [16]. A string field A is in the small Hilbert space if ηA = 0,

otherwise it is in the large Hilbert space. The degree of a string field A, denoted deg(A),

2The full nonlinear gauge invariance of the partially gauge-fixed Berkovits theory has recently been

derived in [15], and it would be interesting to investigate the relation to the A∞ gauge invariance.
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is defined to be its Grassmann parity ε(A) plus one:

deg(A) = ε(A) + 1 mod Z2. (2.1)

When using the degree grading, it is natural to work with a 2-product m2 and a symplectic

form ωL related, respectively, to Witten’s open string star product and the BPZ inner

product by a sign:

m2(A,B) = (−1)deg(A)A ∗B, (2.2)

ωL(A,B) = (−1)deg(A)〈A,B〉L. (2.3)

We will often drop the star when writing the star product, that is AB ≡ A ∗ B. The

subscript L denotes the BPZ inner product and symplectic form computed in the large

Hilbert space. We will also encounter the symplectic form in the small Hilbert space

denoted ωS(A,B). We will omit the subscript S or L for equations that hold for symplectic

forms in both the large and small Hilbert space. The definition of the A∞ theory requires

an operator built from the ξ ghost

ξ ≡
∮
|z|=1

dz

2πi
f(z)ξ(z), (2.4)

where f(z) is a function which is holomorphic in the neighborhood of the unit circle, ξ is

BPZ even, and [η, ξ] = 1.3 Using this operator, the symplectic form in the small Hilbert

space can be related to the symplectic form in the large Hilbert space by

ωS(A,B) = ωL(ξA,B), (2.5)

where A and B are string fields in the small Hilbert space.

An n-string product cn(A1, . . . , An) can be viewed as a linear map from n copies of

the state space H into one copy:

cn : H⊗n → H. (2.6)

We write

cn(A1, . . . , An) = cnA1 ⊗ . . .⊗An, (2.7)

where the right hand side is interpreted as the linear map cn acting on the tensor product

of states A1⊗ . . .⊗An. The degree of cn is defined to be the degree of its output minus the

sum of the degrees of its inputs. We consider the tensor algebra TH generated by taking

sums of tensor products of states:

TH = H⊗0 ⊕ H ⊕ H⊗2 ⊕ . . . . (2.8)

Here H⊗0 consists of scalar multiples of the identity element of the tensor algebra 1TH,

satisfying

1TH ⊗A = A⊗ 1TH = A, (2.9)

3In contrast to [2], in this paper we set the open string coupling constant to 1.
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for any A ∈ TH. Suppose we have a list consisting of a 0-string product D0, a 1-string

product D1, a 2-string product D2 and so on so that all products are either degree even or

degree odd. From this data we define an operator on the tensor algebra called a coderivation

D =

∞∑
`,m,n=0

(I⊗` ⊗Dm ⊗ I⊗n)π`+m+n. (2.10)

Here πn denotes the projection onto the n-string component of the tensor algebra and

I⊗n is the identity operator on H⊗n. The tensor product of linear maps acts on tensor

products of states as follows. If bk,m is a linear map H⊗m → H⊗k and c`,n is a linear map

H⊗` → H⊗n, then their tensor product is defined to acts as

(bk,m ⊗ c`,n)A1 ⊗ . . .⊗Am+n = (−1)deg(c`,n)(deg(A1)+...+deg(Am))(bk,mA1 ⊗ . . .⊗Am)

⊗ (c`,nAm+1 ⊗ . . .⊗Am+n). (2.11)

A product cn defines a coderivation cn constructed by taking Dn = cn and Dm 6=n = 0.

Now suppose we have a list of degree even products H0, H1, H2, . . .. With this data we can

define an operator on the tensor algebra called a cohomomorphism

Ĥ = π0 +
∞∑
`=1

∞∑
k1,...,k`=0

(Hk1 ⊗ . . .⊗Hk`)πk1...+k` . (2.12)

A typical example of a cohomomorphism is the identity operator on the tensor algebra ITH,

which is defined by taking H1 = I and the remaining Hk to vanish. Given a degree even

string field A, we can define an element of the tensor algebra called a group-like element :

1

1−A
≡ 1TH +A+ (A⊗A) + (A⊗A⊗A) + . . . . (2.13)

In our calculations we will often need to act coderivations and cohomomorphisms on group-

like elements. We note the formulas

D
1

1−A
=

1

1−A
⊗
(
π1D

1

1−A

)
⊗ 1

1−A
, (2.14)

Ĥ
1

1−A
=

1

1− π1Ĥ
1

1−A
. (2.15)

By taking variations we can obtain several useful generalizations. For example, if we define

the variation δA = B, then taking the variation of both sides of (2.14) gives

D
1

1−A
⊗B ⊗ 1

1−A
=

1

1−A
⊗
(
π1D

1

1−A

)
⊗ 1

1−A
⊗B ⊗ 1

1−A
(2.16)

+
1

1−A
⊗
(
π1D

1

1−A
⊗B ⊗ 1

1−A

)
⊗ 1

1−A

+ (−1)deg(D)deg(B) 1

1−A
⊗B ⊗ 1

1−A
⊗
(
π1D

1

1−A

)
⊗ 1

1−A
.
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Other formulas can be derived similarly. A symplecitc form ω is a linear map from two

copies of the state space into complex numbers:

〈ω| : H⊗2 → C. (2.17)

which is graded antisymmetric upon interchange of its arguments:

ω(A,B) = −(−1)deg(A)deg(B)ω(B,A). (2.18)

We write 〈ω|A ⊗ B = ω(A,B). An n-string product cn is cyclic with respect to the

symplectic form ω if its coderivation cn satisfies

〈ω|π2cn = 0. (2.19)

Likewise, a cohomomorphism Ĥ is cyclic if it satisfies

〈ω|π2Ĥ = 〈ω|π2. (2.20)

This summarizes most of what we need from the coalgebra formalism. At the margins, a few

computations are helped by introducing the coproduct. We will review this in appendix A.

Now let’s review the A∞ superstring field theory. The dynamical string field ΨA is

in the Neveu-Schwarz (NS) sector,4 is degree even, lives in the small Hilbert space, and

carries ghost number 1 and picture number −1. The action is

SA =
1

2
ωS(ΨA, QΨA)+

1

3
ωS(ΨA,M2(ΨA,ΨA))+

1

4
ωS(ΨA,M3(ΨA,ΨA,ΨA))+ . . . , (2.21)

where Q ≡ QB is the BRST operator and Q,M2,M3, . . . are a sequence of degree odd

multi-string products in the small Hilbert space which satisfy the relations of a cyclic A∞
algebra. The products Q,M2,M3, . . . define a coderivation

M = Q + M2 + M3 + . . . . (2.22)

The statement that the products are in the small Hilbert space can be expressed by the

equation5

[η,M] = 0, (2.23)

where η is the coderivation corresponding to the eta zero mode. The statement that the

products form an A∞ algebra is expressed by the equation

M2 = 0. (2.24)

In addition, the products form a cyclic A∞ algebra because

〈ω|π2M = 0. (2.25)

4In this paper we only discuss the NS sector. The generalization to the Ramond sector [17–21] will be

considered in [22].
5Commutators of products and coderivations are always graded with respect to degree. Commutators of

string fields, with the multiplication defined by Witten’s open string star product, are always graded with

respect to Grassmann parity.
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A key property of the A∞ superstring field theory is that the coderivation M can be

related to Q using a similarity transformation in the large Hilbert space. The similarity

transformation is provided by an invertible, cyclic cohomomorphism Ĝ

〈ωL|π2Ĝ = 〈ωL|π2 (2.26)

satisfying [1, 5]

M = Ĝ−1QĜ, η−m2 = ĜηĜ−1, (2.27)

where m2 is the coderivation corresponding to the open string star product m2. The

construction of Ĝ requires the operator ξ in (2.4), and is described in [5].

3 A∞ action in the large Hilbert space

In this section we reformulate the A∞ superstring field theory by replacing ΨA in the small

Hilbert space with a new dynamical field ΦA in the large Hilbert space via the substitution

ΨA = ηΦA. (3.1)

We then reexpress the action in Wess-Zumino-Witten-like form. The key aspects of the

derivation follow [1], but we will make some refinements.

The n-string vertex in the A∞ action takes the form

1

n
ωS(ΨA,Mn−1(ΨA, . . . ,ΨA)). (3.2)

It will be convenient to eliminate the multiplicative factor of 1/n. This can be done with the

following trick. Introduce a 1-parameter family of string fields ΨA(t), t ∈ [0, 1] satisfying

the boundary conditions

ΨA(0) = 0; ΨA(1) = ΨA. (3.3)

We refer to ΨA(t) as an interpolating field, or simply interpolation. We can write the action

as an integral of a total derivative with respect to t:

SA =

∫ 1

0
dt

d

dt

[
1

2
ωS
(
ΨA(t), QΨA(t)

)
+

1

3
ωS
(
ΨA(t),M2(ΨA(t),ΨA(t))

)
+ . . .

]
. (3.4)

Acting the t-derivative on the n-string vertex produces n terms containing a factor of

Ψ̇A(t) = dΨA(t)/dt. Since the vertices are cyclic, each of these terms are equal, canceling

the factor of 1/n. Using cyclicity to place Ψ̇A(t) in the first entry of the symplectic form,

we can therefore write the action

SA =

∫ 1

0
dt
[
ωS
(
Ψ̇A(t), QΨA(t)

)
+ ωS

(
Ψ̇A(t),M2(ΨA(t),ΨA(t))

)
+ . . .

]
, (3.5)

which can be written more compactly as

SA =

∫ 1

0
dt ωS

(
Ψ̇A(t), π1M

1

1−ΨA(t)

)
. (3.6)
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Since this form of the action was obtained from the integral of a total derivative, by

construction it only depends on the value of ΨA(t) at t = 1.

The next step is to lift to the large Hilbert space by making the substitution

ΨA(t) = ηΦA(t), (3.7)

where ΦA(t) is an interpolating 1-parameter family of string fields subject to the boundary

conditions

ΦA(0) = 0; ΦA(1) = ΦA, (3.8)

and ΦA is the new dynamical string field in the large Hilbert space. The new field ΦA is

degree odd (but Grassmann even) and carries ghost and picture number zero. The action

becomes

SA =

∫ 1

0
dt ωL

(
ξηΦ̇A(t), π1M

1

1− ηΦA(t)

)
, (3.9)

where we replaced the small Hilbert space symplectic form by the large Hilbert space

symplectic form. The action only depends on the value of ΦA(t) at t = 1 (in fact, it only

depends on the value of ηΦA(t) at t = 1), and has a new gauge invariance related to the

eta zero mode

δηΦA = ηΩA, (3.10)

where the gauge parameter ΩA is degree even, ghost number −1 and picture number 1.

The infinitesimal BRST gauge transformation is

δQΦA = π1M
1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA
, (3.11)

where the gauge parameter ΛA is degree even, ghost number −1 and picture 0. Acting η

on both sides of this equation produces the standard A∞ gauge transformation of ΨA =

ηΦA, with gauge parameter −ηΛA. Note that in the action (3.9), the second entry of the

symplectic form is in the small Hilbert space. Therefore in the first entry of the symplectic

form we can replace ξη with ξη + ηξ = 1 at no cost. We can therefore write

SA =

∫ 1

0
dt ωL

(
Φ̇A(t), π1M

1

1− ηΦA(t)

)
. (3.12)

To simplify further, recall from [1] that a cyclic cohomomorphism Ĥ satisfies the identity

ω

(
π1D1

1

1−A
, π1D2

1

1−A

)
= ω

(
π1ĤD1

1

1−A
, π1ĤD2

1

1−A

)
, (3.13)

where A is a string field and D1 and D2 are arbitrary coderivations. We provide another

proof of this identity in appendix A. Since the cohomomorphism Ĝ is cyclic with respect

to ωL, this identity allows us to write

ωL

(
Φ̇A(t), π1M

1

1− ηΦA(t)

)
= ωL

(
π1ĜΦ̇A(t)

1

1− ηΦA(t)
, π1ĜM

1

1− ηΦA(t)

)
, (3.14)
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where Φ̇A(t) is the coderivation corresponding to the string field Φ̇A(t) regarded as a zero-

string product. We can further write

π1ĜΦ̇A(t)
1

1− ηΦA(t)
= π1Ĝ

1

1− ηΦA(t)
⊗ Φ̇A(t)⊗ 1

1− ηΦA(t)
, (3.15)

π1ĜM
1

1− ηΦA(t)
= π1QĜ

1

1− ηΦA(t)
. (3.16)

The action (3.12) therefore becomes

SA =

∫ 1

0
dt ωL

(
π1Ĝ

1

1− ηΦA(t)
⊗ Φ̇A(t)⊗ 1

1− ηΦA(t)
, Qπ1Ĝ

1

1− ηΦA(t)

)
. (3.17)

Now we define “potentials”

At ≡ π1Ĝ
1

1− ηΦA(t)
⊗ Φ̇A(t)⊗ 1

1− ηΦA(t)
, (3.18)

Aη ≡ π1Ĝ
1

1− ηΦA(t)
. (3.19)

The potential At is degree odd but Grassmann even. The potential Aη is degree even but

Grassmann odd. Switching to the Grassmann grading the action is therefore expressed

SA = −
∫ 1

0
dt 〈At, QAη〉L. (3.20)

This is the Wess-Zumino-Witten-like action for the lifted A∞ theory. Note that with this

definition of At and Aη we will not be able to express the action in the standard WZW-like

form

SA 6= −
1

2
〈Aη, AQ〉L

∣∣∣
t=1
− 1

2

∫ 1

0
dt 〈At, [Aη, AQ]〉L. (3.21)

A similar obstruction prevents the action of heterotic string field theory from being ex-

pressed in standard WZW-like form [6]. The action (3.20) turns out to be more general,

and will be the basis of our computations.

The above embedding of the A∞ theory into the large Hilbert space is trivial — the

action only depends on the large Hilbert space field in the combination ηΦA. One might ask

whether there is a more interesting extension of the A∞ theory to the large Hilbert space. In

this regard it is useful compare to the partially gauge-fixed Berkovits theory [2, 10], whose

extension to the large Hilbert space should apparently be Berkovits’ open superstring field

theory. If ΨB is the field of the partially gauge-fixed Berkovits theory, we can attempt

to replace it with a field ΦB in the large Hilbert space in the same way as we did for the

A∞ theory:

ΨB = ηΦB ? (3.22)

However, the resulting theory in the large Hilbert space is not Berkovits’ superstring field

theory. To get the Berkovits theory we must do something more refined. First we start with

the potentials expressed in terms of the star product, ξ, and ΨB. Then, for every instance

where ξ operates on ΨB, we should substitute ξΨB with ΦB, and for every other case we

– 8 –
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should substitute ΨB with ηΦB. The resulting potentials define the WZW-like action for

Berkovits’ superstring field theory. In principle, we can follow the same procedure for the

A∞ theory, producing a string field theory in the large Hilbert space with a nonlinear η

gauge invariance. However, for the Berkovits theory this procedure has a special property:

it allows one to eliminate all instances of ξ from the partially gauge-fixed action, so that

the theory in the large Hilbert space can be expressed solely in terms of Q, η and the star

product. In the A∞ theory the same procedure does not eliminate all insertions of ξ, since

in some cases ξ acts on products of fields rather than the field itself. The upshot is that we

do not know of a nontrivial embedding of the A∞ theory in the large Hilbert space which

is more “natural” than the trivial one. The trivial embedding is sufficient for our purposes,

and will be the focus for the remainder of the paper.

3.1 Potentials and field strengths

The structure of the WZW-like action can be understood in terms of the properties of

potentials and field strengths. Suppose that we have a collection of graded derivations of

the open string star product which commute. We write the derivations ∂I with I ranging

over an index set, and they satisfy

[∂I , ∂J ] = 0, (3.23)

where the commutator [, ] is graded with respect to Grassmann parity. In particular, if ∂I
is Grassmann odd we have ∂2

I = 0. Suppose that for each ∂I we have an associated string

field AI with the same Grassmann parity, ghost and picture number. We refer to AI as

the potential corresponding to the derivation ∂I . The field strength is defined

FIJ ≡ ∂IAJ − (−1)ε(I)ε(J)∂JAI − [AI , AJ ], (3.24)

where ε(I) denotes the Grassmann parity of ∂I , and the commutator of string fields is

computed with the star product and is graded with respect to Grassmann parity. The field

strength is graded antisymmetric:

FIJ = −(−1)ε(I)ε(J)FJI . (3.25)

Note that diagonal elements of the field strength do not necessarily vanish. If the derivation

∂I is Grassmann odd, we have

FII = 2(∂IAI −AI ∗AI), ε(I) = 1 mod Z2. (3.26)

It is useful to define a gauge covariant derivative

∇IΨ ≡ ∂IΨ− [AI ,Ψ]. (3.27)

We have the identities

∂IAJ = (−1)ε(I)ε(J)∇JAI + FIJ (3.28)

and

[∇I ,∇J ]Ψ = −[FIJ ,Ψ]. (3.29)

In particular, covariant derivatives commute if the associated field strength vanishes.
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When computing the variation of the WZW-like action we need four derivations of the

star product, with associated potentials:

η ↔ Aη, ε(η) = 1, (3.30)

d/dt ↔ At, ε(d/dt) = 0, (3.31)

δ ↔ Aδ, ε(δ) = 0, (3.32)

Q ↔ AQ, ε(Q) = 1. (3.33)

The variational derivative δ denotes an arbitrary variation of the interpolating field ΦA(t).

In the lifted A∞ theory, the potentials are naturally defined by

Aη(t) ≡ π1Ĝ
1

1− ηΦA(t)
, (3.34)

At(t) ≡ π1Ĝ
1

1− ηΦA(t)
⊗ Φ̇A(t)⊗ 1

1− ηΦA(t)
, (3.35)

Aδ(t) ≡ π1Ĝ
1

1− ηΦA(t)
⊗ δΦA(t)⊗ 1

1− ηΦA(t)
, (3.36)

AQ(t) ≡ π1Ĝ
1

1− ηΦA(t)
⊗ aQ(t)⊗ 1

1− ηΦA(t)
, (3.37)

where in the last equation the string field aQ(t) is defined

aQ(t) ≡
∫ t

0
ds π1M

1

1− ηΦA(s)
⊗ Φ̇A(s)⊗ 1

1− ηΦA(s)
. (3.38)

A comment about notation: the potentials, field strengths, and related objects are functions

of the interpolating variable t. To avoid clutter, we will often leave this implicit. When

the dependence is not explicitly indicated, we will always assume that the interpolating

variable has been set equal to t. So, for example, Aδ should be interpreted as Aδ(t), and ∇η
should be interpreted as ∇η(t). The exception to this rule will be the dynamical string field

and gauge parameters, where the dependence on t is always indicated except when t = 1.

The key property of the potentials (3.34)–(3.37) is that the associated field strengths

vanish along the η direction:

Fηη = 0, (3.39)

Ftη = 0, (3.40)

Fδη = 0, (3.41)

FQη = 0. (3.42)

As we will review in a moment, this property implies the expected formula for the variation

of the WZW-like action. Therefore, the vanishing of these field strengths is the basis for the

claim that the lifted A∞ action can be written in WZW-like form. It is not difficult to show

that these field strengths vanish by direct substitution of the provided definitions [1], but

it will be helpful to give a slightly more general argument. Suppose the list derivations ∂I
includes η and other derivations which we denote collectively as ∂i (with a lower case index):

∂I ↔ η , ∂i. (3.43)

– 10 –



J
H
E
P
0
2
(
2
0
1
6
)
1
2
1

For example, ∂i should include Q, d/dt and δ. We assume that the ∂is commute among

themselves and with η. For each ∂i there is a natural associated potential in the lifted A∞
theory:

Ai(t) ≡ π1Ĝ
1

1− ηΦA(t)
⊗ ai(t)⊗

1

1− ηΦA(t)
, (3.44)

The string field ai(t) will be called the little potential, and is defined

ai(t) ≡
∫ t

0
ds π1Di

1

1− ηΦA(s)
⊗ Φ̇A(s)⊗ 1

1− ηΦA(s)
, (3.45)

where the coderivation Di is the image of ∂i under mapping with Ĝ:

∂iĜ = ĜDi, (3.46)

and ∂i is the coderivation corresponding to ∂i. This definition agrees with aQ(t) given

in (3.38), while in the t and δ directions it simplifies to

at(t) = Φ̇A(t), aδ(t) = δΦA(t), (3.47)

since d/dt and δ happen to commute with Ĝ. The little potential satisfies the identity

ηai(t) + (−1)deg(i)+1π1Di
1

1− ηΦA(t)
= 0, (3.48)

where deg(i) = ε(i) is the degree of ∂i. To see that this identity holds, note that η commutes

with the Dis:

[η,Di] = Ĝ−1[η−m2,∂i]Ĝ = 0, (3.49)

since the ∂is commute with η and are derivations of the open string star product. By a

similar argument it follows that [Di,Dj ] = 0. Now act η on the little potential ai and

compute:

ηai(t) = (−1)deg(i)

∫ t

0
ds π1Di

1

1− ηΦA(s)
⊗ ηΦ̇A(s)⊗ 1

1− ηΦA(s)
, (3.50)

= (−1)deg(i)

∫ t

0
ds

d

ds
π1Di

1

1− ηΦA(s)
, (3.51)

= (−1)deg(i)π1Di
1

1− ηΦA(t)
. (3.52)

Now let us demonstrate that the field strength Fiη vanishes. Compute

∇ηAi = π1(η−m2)Ĝ
1

1− ηΦA(t)
⊗ ai(t)⊗

1

1− ηΦA(t)
, (3.53)

= π1Ĝη
1

1− ηΦA(t)
⊗ ai(t)⊗

1

1− ηΦA(t)
, (3.54)

= π1Ĝ
1

1− ηΦA(t)
⊗ ηai(t)⊗

1

1− ηΦA(t)
. (3.55)
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Plugging in (3.48),

∇ηAi = (−1)deg(i)π1Ĝ
1

1− ηΦA(t)
⊗
(
π1Di

1

1− ηΦA(t)

)
⊗ 1

1− ηΦA(t)
, (3.56)

= (−1)deg(i)π1ĜDi
1

1− ηΦA(t)
, (3.57)

= (−1)deg(i)∂iπ1Ĝ
1

1− ηΦA(t)
, (3.58)

= (−1)deg(i)∂iAη. (3.59)

Therefore, the field strength Fiη = ∂iAη − (−1)ε(i)∇ηAi vanishes as claimed. The proof

that Fηη vanishes is a different but straightforward computation, given in [1].

Berkovits’ open superstring field theory is defined by a dynamical field ΦB in the

large Hilbert space with the same quantum numbers as ΦA. The action is defined by the

potentials

Bη(t) ≡ (ηeΦB(t))e−ΦB(t), Bt(t) ≡
(
d

dt
eΦB(t)

)
e−ΦB(t),

Bδ(t) ≡ (δeΦB(t))e−ΦB(t), BQ(t) ≡ (QeΦB(t))e−ΦB(t). (3.60)

For a general derivation ∂i the potential is

Bi(t) ≡ (∂ie
ΦB(t))e−ΦB(t). (3.61)

All field strengths in the Berkovits theory vanish. By contrast, except along the η direction,

field strengths in the lifted A∞ theory do not vanish. However, they satisfy the Bianchi

identity:

∇IFJK + (−1)ε(I)(ε(J)+ε(K))∇JFKI + (−1)ε(K)(ε(I)+ε(J))∇KFIJ = 0. (3.62)

Suppose we choose ∂I to be η. Then the second two terms in this equation vanish, and we

find that the nonvanishing field strengths are covariantly constant in the η direction:

∇ηFtδ = 0, ∇ηFtQ = 0, ∇ηFδQ = 0, ∇ηFQQ = 0. (3.63)

We will have more to say about the nonvanishing field strengths later, but for now we have

all the ingredients needed to compute the variation of the WZW-like action and establish

gauge invariance.

3.2 Variation of the action and gauge invariance

Consider the variation of the integrand of the WZW-like action:

δ〈At, QAη〉L = 〈δAt, QAη〉L + 〈At, QδAη〉L,
= 〈∇tAδ, QAη〉L + 〈Fδt, QAη〉L + 〈Q∇ηAδ, At〉L, (3.64)

where in the second step we applied (3.28) to express the variation in terms of Aδ. The

term with the field strength actually vanishes because

〈Fδt, QAη〉L = −〈Fδt,∇ηAQ〉L, (3.65)
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and the field strength is annihilated by ∇η. Pulling Q and the ∇η off the Aδ in the last

term of (3.64), we therefore have

δ〈At, QAη〉L = 〈∇tAδ, QAη〉L − 〈Aδ,∇ηQAt〉L. (3.66)

Now apply (3.28) again in the second term to replace Q by a t derivative:

δ〈At, QAη〉L = 〈∇tAδ, QAη〉L − 〈Aδ,∇η(∇tAQ + FQt)〉L. (3.67)

Again the field strength does not contribute since it is annihilated by ∇η. Moreover, we

can commute ∇η and ∇t since Ftη = 0. Therefore

δ〈At, QAη〉L = 〈∇tAδ, QAη〉L − 〈Aδ,∇t∇ηAQ〉L,
= 〈∇tAδ, QAη〉L + 〈Aδ,∇tQAη〉L,

=
d

dt
〈Aδ, QAη〉L. (3.68)

Integrating t from 0 to 1, we obtain

δSA = − 〈Aδ, QAη〉L|t=1 . (3.69)

This is the expected variation of a WZW-like action.

We would now like to use this formula to prove that the lifted A∞ theory has the

expected gauge invariances. First consider the η gauge invariance (3.10). For this trans-

formation, the potential Aδ takes the form

Aδη |t=1 = π1Ĝ
1

1− ηΦA
⊗ ηΩA ⊗

1

1− ηΦA
,

= π1Ĝη
1

1− ηΦA
⊗ ΩA ⊗

1

1− ηΦA
,

= π1(η−m2)Ĝ
1

1− ηΦA
⊗ ΩA ⊗

1

1− ηΦA
,

= ∇ηΩB|t=1 , (3.70)

where for later reference we define

ΩB ≡ π1Ĝ
1

1− ηΦA
⊗ ΩA ⊗

1

1− ηΦA
. (3.71)

Plugging in we find

δηSA = − 〈∇ηΩB, QAη〉L|t=1 = 0, (3.72)

since QAη is annihilated by ∇η. This proves that the action is invariant under this gauge

symmetry. Next consider the BRST gauge invariance (3.11). For this transformation, the

– 13 –



J
H
E
P
0
2
(
2
0
1
6
)
1
2
1

potential Aδ takes the form

AδQ |t=1 = π1Ĝ
1

1− ηΦA
⊗
(
π1M

1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA

)
⊗ 1

1− ηΦA
,

=

(
π1ĜM

1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA

)
−
(
π1Ĝ

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA

)
−
(
π1Ĝ

1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA

)
,

= Q

(
π1Ĝ

1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA

)
−
(
π1Ĝ

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA

)
−
(
π1Ĝ

1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA

)
,

= QΛB − µB, (3.73)

where we have defined

ΛB ≡ π1Ĝ
1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA
, (3.74)

µB ≡ π1Ĝ

(
1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA

+
1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA

)
. (3.75)

The QΛB term vanishes when contracted with QAη|t=1 since Q is nilpotent. Substituting

the µB term into the variation, while switching to the degree grading, we obtain the

expression:

δQSA = −〈ωL|
[
π1Ĝ

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA

]
⊗
[
π1Ĝ

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA

]
− 〈ωL|

[
π1Ĝ

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA

]
⊗
[
π1Ĝ

1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA

]
, (3.76)

where we substituted

QAη|t=1 = π1Ĝ
1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
, (3.77)
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and used graded antisymmetry of the symplectic form. Equation (3.76) can be further

simplified to

δQSA = −〈ωL|π2Ĝ

[
1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
⊗ ΛA

⊗ 1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA

]
. (3.78)

We will prove this in appendix A. Note that we can drop the factor of Ĝ from (3.78) because

Ĝ is cyclic. Then the projector π2 acts directly on the object in parentheses. However,

the object in parentheses has no two-string component — it contains at minimum a tensor

product of three string fields. Therefore

δQSA = 0. (3.79)

and the action contains the expected BRST gauge symmetry.

3.3 Higher potentials and the Maurer-Cartan equation

We would now like to get a better understanding of the nonvanishing field strengths of the

lifted A∞ theory. We already know that they are covariantly constant in the η direction.

But since Fηη vanishes, the covariant derivative ∇η is nilpotent. In fact, it turns out that

the field strengths are trivial in the ∇η cohomology:

Ftδ = −∇ηAtδ,
FtQ = −∇ηAtQ,
FδQ = −∇ηAδQ,
FQQ = −∇ηAQQ. (3.80)

More generally,

Fij = (−1)(ε(i)+1)ε(j)+1∇ηAij , (3.81)

where the sign is chosen for later convenience. The string field Aij will be called the

2-potential, and is given by the formula

Aij(t) ≡ π1Ĝ

[
(−1)(deg(i)+1)(deg(j)+1) 1

1−ηΦA(t)
⊗ ai(t)⊗

1

1−ηΦA(t)
⊗ aj(t)⊗

1

1−ηΦA(t)

+
1

1−ηΦA(t)
⊗ aj(t)⊗

1

1−ηΦA(t)
⊗ ai(t)⊗

1

1−ηΦA(t)

+
1

1−ηΦA(t)
⊗ aij(t)⊗

1

1−ηΦA(t)

]
. (3.82)
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The string field aij(t) will be called the little 2-potential, and is defined

aij(t) ≡
∫ t

0
ds

[
(−1)(deg(i)+1)(deg(j)+1)π1Di

(
1

1−ηΦA(s)
⊗ Φ̇A(s)⊗ 1

1−ηΦA(s)
⊗ aj(s)

⊗ 1

1−ηΦA(s)
+(−1)deg(j)+1 1

1−ηΦA(s)
⊗aj(s)⊗

1

1−ηΦA(s)
⊗Φ̇A(s)⊗ 1

1−ηΦA(s)

)
+ π1Dj

(
1

1−ηΦA(s)
⊗ Φ̇A(s)⊗ 1

1−ηΦA(s)
⊗ ai(s)⊗

1

1−ηΦA(s)

+(−1)deg(i)+1 1

1−ηΦA(s)
⊗ ai(s)⊗

1

1−ηΦA(s)
⊗ Φ̇A(s)⊗ 1

1−ηΦA(s)

)]
. (3.83)

Interestingly, the 2-potential Aij looks like a two-index generalization of the potential Ai
given in equation (3.44), and the little 2-potential aij looks like a two-index generalization

of the little potential ai given in equation (3.45). Computing ∇ηAij reproduces the field

strength Fij as a result of the identity

0 = ηaij(t) + (−1)(deg(i)+1)deg(j)π1Di
1

1−ηΦA(t)
⊗ aj(t)⊗

1

1−ηΦA(t)

+ (−1)deg(j)+1π1Dj
1

1−ηΦA(t)
⊗ ai(t)⊗

1

1−ηΦA(t)
, (3.84)

which is a kind of two-index generalization of the identity (3.48). The 2-potentials have not

played a role so far since they do not appear in the action. But there are other expressions

for the action where 2-potentials do appear. For example, if we try to express the action

in the standard WZW-like form (3.21), we find an additional term proportional to the

2-potential AtQ:

SA = −1

2
〈Aη, AQ〉L

∣∣∣
t=1
− 1

2

∫ 1

0
dt 〈At, [Aη, AQ]〉L −

1

2

∫ 1

0
dt〈AtQ, Aη ∗Aη〉L. (3.85)

A similar generalization of the standard WZW-like action has also been discussed in the

context of heterotic string field theory [6].

It turns out that the story does not end with 2-potentials. By factoring ∇η out of the

Bianchi identity for the nonvanishing field strengths, we learn that the 2-potentials must

satisfy the identity:

∇iAjk + (−1)ε(j)(ε(i)+ε(k))+ε(j)+ε(k)∇jAki + (−1)ε(i)(ε(j)+ε(k))+ε(i)+ε(j)∇kAij
+ (−1)(ε(i)+1)(ε(j)+ε(k)+1)∇ηAijk = 0, (3.86)

where Aijk is a new object called the 3-potential. Acting on this equation with the covariant

derivative ∇i and symmetrizing, one can further introduce a 4-potential, and so on. To

clarify the structure of the hierarchy, it is helpful to invoke the language of differential

forms.6 For each derivation ∂i we formally introduce a corresponding basis 1-form:

∂i ↔ dxi. (3.87)

6The author would like to thank S. Konopka for discussion which clarified the nature of this hierarchy.
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Note that we do not introduce a 1-form dual to η. The basis 1-forms carry Grassmann

parity and degree

ε(dxi) ≡ deg(dxi) ≡ ε(i) + 1, mod Z2, (3.88)

and ghost and picture number

gh(dxi) ≡ 1− gh(∂i),

picture(dxi) ≡ −1− picture(∂i). (3.89)

We consider the algebra of “string field-valued” differential forms, defined in the obvious

way by tensoring the wedge product with the open string star product, with the appropriate

signs from (anti)commutation of string fields and forms. We define the exterior derivative

d ≡ dxi∂i. (3.90)

The exterior derivative is nilpotent and commutes with η, since the ∂is commute among

themselves and with η. Also, d acts as a derivation of the wedge/star product. Next, we

introduce differential forms corresponding to the n-potentials:7

A(0) ≡ Aη, A(1) ≡ dxiAi, A(2) ≡ 1

2!
dxi ∧ dxjAij , A(3) ≡ 1

3!
dxi ∧ dxj ∧ dxkAijk, . . . .

(3.91)

Note that Aη is a scalar, while Ai are components of a 1-form. Therefore Aη can be

interpreted as the 0-potential and Ai as the 1-potential, and the pattern completes to

higher potentials. Accounting for the Grassmannality, ghost and picture number of the

basis 1-forms, the n-potentials and exterior derivative are Grassmann odd, carry ghost

number 1 and picture −1. On the basis of previous calculations it is easy to check that the

potentials satisfy

0 = ηA(0) −A(0) ∗A(0), (3.92)

0 = dA(0) + ηA(1) − [A(0), A(1)], (3.93)

0 = dA(1) + ηA(2) − [A(0), A(2)]−A(1) ∗A(1), (3.94)

0 = dA(2) + ηA(3) − [A(0), A(3)]− [A(1), A(2)], (3.95)

... .

The first two identities are equivalent to the statement that the field strengths vanish in the

η direction. The third is equivalent to the statement that the nonvanishing field strengths

are trivial in the ∇η cohomology, and the fourth is implied by factoring ∇η out of the

Bianchi identity. It is clear that these identities arise as components of a Maurer-Cartan

equation:

(d+ η)A−A ∗A = 0, (3.96)

7The field strength as defined in (3.24) does not have the right symmetry properties in the odd directions

to define a 2-form. This can be fixed by multiplying the field strength by the appropriate sign, but we did

not bother since it would contradict the definition used in previous papers. This is the origin of the sign

factor relating the 2-potential and the field strength in (3.81).
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where A is given by the formal sum

A ≡ A(0) +A(1) +A(2) +A(3) + . . . . (3.97)

We will call A the multi-potential. The Maurer-Cartan equation can be thought of as an

“equation of motion” which determines the potentials and their higher-form descendants

as functionals of the interpolation Φ(t). Once we have solved this equation, we can write

down a WZW-like action. Actually, for this purpose we need to assume an additional

regularity condition: an arbitrary variation of the dynamical field Φ produces an arbitrary

Aδ at t = 1:

Regularity Condition : arbitrary δΦ → arbitrary Aδ|t=1. (3.98)

This needs to be true, otherwise the variation of the WZW-like action (3.69) does not imply

the correct equations of motion. Thus, for example, A = 0 would not be a regular solution

for the purposes of defining a WZW-like action. At least perturbatively, the potential Bδ
of the Berkovits theory and the potential Aδ of the lifted A∞ theory are regular, since, to

leading order in the string field, they are proportional to δΦB(t) and δΦA(t), respectively.

Berkovits’ superstring field theory provides a solution to the Maurer-Cartan equation

in the form

B = Bη + dxiBi. (3.99)

Since the field strengths vanish, the higher potentials can be set to zero. In the lifted

A∞ theory the solution to the Maurer-Cartan equation is more interesting. We introduce

differential forms corresponding to the little potentials:

a(0) ≡ ηΦA(t), a(1) ≡ dxiai, a(2) ≡ 1

2!
dxi ∧ dxjaij , a(3) ≡ 1

3!
dxi ∧ dxj ∧ dxkaijk, . . . .

(3.100)

For convenience we have defined the little 0-potential to be a(0) = ηΦA(t). All little n-

potentials are degree even, ghost number 1 and picture −1 once we account for the basis

1-forms. We define the little multi-potential as the formal sum

a ≡ a(0) + a(1) + a(2) + a(3) + . . . , (3.101)

and postulate a solution to the Maurer-Cartan equation in the form

A = π1Ĝ
1

1− a
. (3.102)

Here the tensor algebra of “string-field-valued” differential forms is defined in the obvious

way by tensoring the wedge product of the basis 1-forms with the tensor product of string

fields, with the appropriate signs from (anti)commutation of the string fields and forms.

Note that (3.102) agrees with our earlier expressions for Aη, Ai, Aij once we extract the

zero, one and two form components. The Maurer-Cartan equation for the multi-potential

A translates into an equation for the little multi-potential a:

π1(η + D)
1

1− a
= 0, (3.103)
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where D ≡ dxiDi. Note that this produces (3.48) and (3.84) when we extract the 1-form

and 2-form components. The solution to this equation is not unique, but extrapolating

from the expressions for ai and aij , we propose a solution of the form

a(t) =

∫ t

0
ds π1(η + D)

1

1− a(s)
⊗ Φ̇A(s)⊗ 1

1− a(s)
. (3.104)

This defines the little potentials and their higher-form descendants recursively; the n-form

component determines the little n-potential in terms of products of little k-potentials for

k < n. To show that this formula solves (3.103), take the t derivative of the left hand side

of (3.103) and substitute

ȧ(t) = π1(η + D)
1

1− a(t)
⊗ Φ̇A(t)⊗ 1

1− a(t)
. (3.105)

This gives

d

dt
π1(η + D)

1

1− a
= π1(η + D)

1

1− a
⊗
(
π1(η + D)

1

1− a
⊗ Φ̇A(t)⊗ 1

1− a

)
⊗ 1

1− a
,

= π1(η + D)2 1

1− a
⊗ Φ̇A(t)⊗ 1

1− a
,

− π1(η + D)
1

1− a
⊗
(
π1(η + D)

1

1− a

)
⊗ 1

1− a
⊗ Φ̇A(t)⊗ 1

1− a

+ π1(η + D)
1

1− a
⊗ Φ̇A(t)⊗ 1

1− a
⊗
(
π1(η + D)

1

1− a

)
⊗ 1

1− a
.

(3.106)

Note that (D+η)2 vanishes since d and η are nilpotent and mutually commuting derivations

of the star product. Bringing the last two terms to the other side of the equation gives

0 =
d

dt
π1(η + D)

1

1− a
+ π1(η + D)

1

1− a
⊗
(
π1(η + D)

1

1− a

)
⊗ 1

1− a
⊗ Φ̇A ⊗

1

1− a

− π1(η + D)
1

1− a
⊗ Φ̇A ⊗

1

1− a
⊗
(
π1(η + D)

1

1− a

)
⊗ 1

1− a
. (3.107)

This is a first order homogeneous differential equation in the string field π1(η + D) 1
1−a .

Since π1(η + D) 1
1−a vanishes at t = 0 (because ΦA(t) vanishes at t = 0), it must vanish

for all t. Therefore (3.103) is satisfied, and (3.102) gives a solution to the Maurer-Cartan

equation.

One advantage of the Maurer-Cartan equation is that it gives a clearer understanding

of the symmetries implicit in the choice of potentials used to express the action in WZW-like

form. In particular, solutions can be modified by an infinitesimal “gauge transformation”

δmcA = (d+ η)Λ− [A,Λ], (3.108)

where Λ is a sum of n-form gauge parameters

Λ = Λ(0) + dxiΛi +
1

2!
dxi ∧ dxjΛij +

1

3!
dxi ∧ dxj ∧ dxkΛijk + . . . . (3.109)
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In general Λ can be a functional of the interpolation Φ(t), and is Grassmann even, ghost

and picture number zero. Note that this “gauge transformation” alters the choice of the

potentials — not the dynamical string field on which the potentials implicitly depend. It

is interesting to see how this transformation effects the WZW-like action. For this purpose

it is enough to consider how the 0- and 1-potentials transform:

δmcAη = ∇ηΛ(0),

δmcAi = ∇iΛ(0) +∇ηΛi. (3.110)

Following a similar computation as in the previous section, it is not difficult to show that

the WZW-like action changes as

δmc

∫ 1

0
dt〈At, QAη〉L = 〈Λ(0), QAη〉L|t=1. (3.111)

From this we make two observations. First, while the 1-form parameter Λi alters the

potentials, it does not change the action. Second, the 0-form parameter Λ(0) changes the

action in the same way as a variation of the field. Thus the action after the transformation

is the same as the original action with the replacement Φ → Φ+δΦ, where δΦ is determined

by solving the equation

Aδ = Λ(0). (3.112)

Thus the Maurer-Cartan gauge transformation alters the WZW-like action at most by a

field redefinition, and then only if the zero-form component of the transformation parameter

is nonvanishing. Furthermore, it is clear that a Maurer-Cartan gauge transformation of

the form

Λ(0)|t=1 = QΛB +∇ηΩB (3.113)

will leave the action invariant. By equating this with Aδ, this determines an infinitesimal

gauge transformation of the fields. In this sense, the Mauer-Cartan equation plays a role

for the WZW-like action somewhat analogous to the role of cyclic A∞ algebras in the A∞
action: it is an algebraic structure that is covariant under field redefinition and implies the

existence of a gauge invariant action.

The interpretation of the WZW-like action suggested by the Maurer-Cartan equation

is slightly different from the earlier interpretation in terms of potentials and field strengths.

For example, from the Maurer-Cartan perspective Aη is a scalar, and so should not define

components of a field strength. Nevertheless, the statement that the field strengths vanish

in the η direction is a convenient way to characterize the essential information in the

Maurer-Cartan equation for the purposes of writing the action. We will translate back and

forth between both interpretations as convenient.

3.4 Little potentials

The action of the lifted A∞ theory can be formulated in a different way using little poten-

tials. In (3.12) the lifted A∞ action was expressed in the form

SA =

∫ 1

0
dt ωL

(
Φ̇A(t), π1M

1

1− ηΦA(t)

)
. (3.114)
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Note that the little potentials satisfy

at(t) = Φ̇A(t), ηaQ(t) = −π1M
1

1− ηΦA(t)
, (3.115)

where the second equality follows from (3.48). Thus the A∞ action can be expressed

SA = −
∫ 1

0
dt ωL(at, ηaQ). (3.116)

This is reminiscent of a WZW-like action, but note that the little potentials do not come

from a solution to the Maurer-Cartan equation. Instead, the relevant equation for the little

potentials is (3.103).

To make the description in terms of little potentials more familiar, we can define a few

objects by analogy with the potentials and field strengths of the WZW-like action. First,

define the little potential in the η direction to be the little 0-potential:

aη ≡ a(0) = ηΦA(t). (3.117)

Second, we define a “little field strength:”

fij ≡ (−1)(deg(i)+1)deg(j)+1ηaij . (3.118)

Unlike the WZW-like formulation, it does not make sense to define components of the little

field strength in the η direction, for reasons that will be clear in a moment. The little field

strength is graded antisymmetric,

fij = −(−1)deg(i)deg(j)fji, (3.119)

and constant in the η direction:

ηfij = 0. (3.120)

Recall that the potentials and field strengths satisfy (3.28)

∂IAJ = (−1)ε(I)ε(J)∇JAI + FIJ . (3.121)

Little potentials satisfy analogous identities which allow us to swap the index of a coderiva-

tion with the index of the little potential. In particular, (3.84) can be expressed

π1Di
1

1− aη
⊗ aj ⊗

1

1− aη
= (−1)deg(i)deg(j)π1Dj

1

1− aη
⊗ ai ⊗

1

1− aη
+ fij , (3.122)

where switching i and j adds the little field strength fij . Meanwhile (3.48) can be expressed

ηai = (−1)deg(i)π1Di
1

1− aη
. (3.123)

Note that this last identity is not a special case of the previous one after choosing Di to

be η and setting fij to zero. This is why it doesn’t make sense to define components of the
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little field strength in the η direction. Except for this small difference, the formulation is

quite similar to that of the WZW-like action.

Now let’s compute the variation of the action. Take the variation of the integrand:

δ ωL(at, ηaQ) = ωL(δat, ηaQ) + ωL(at, ηδaQ), (3.124)

= ωL(ȧδ + fδt, ηaQ) + ωL

(
at, η

(
π1M

1

1− aη
⊗ aδ ⊗

1

1− aη
+ fδQ

))
,

where in the second step we used (3.122). Note that the identities (3.122) and (3.123)

simplify quite a bit in the case of the derivations δ and d/dt since they commute with

the cohomomorphism Ĝ. We can drop the little field strengths fδt and fδQ since they are

constant in the η direction (in fact fδt already vanishes identically). Moving η in the second

term onto the first entry of the symplectic form and using (3.123) gives

δ ωL(at, ηaQ) = ωL(ȧδ, ηaQ) + ωL

(
ȧη, π1M

1

1− aη
⊗ aδ ⊗

1

1− aη

)
. (3.125)

Using cyclicity of M one can show that

ωL

(
ȧη, π1M

1

1− aη
⊗ aδ ⊗

1

1− aη

)
= −ωL

(
π1M

1

1− aη
⊗ ȧη ⊗

1

1− aη
, aδ

)
. (3.126)

We prove this in appendix A. Therefore

δ ωL(at, ηaQ) = ωL(ȧδ, ηaQ)− ωL
(
π1M

1

1− aη
⊗ ȧη ⊗

1

1− aη
, aδ

)
,

= ωL(ȧδ, ηaQ)− ωL
(
d

dt
π1M

1

1− aη
, aδ

)
,

= ωL(ȧδ, ηaQ) + ωL (ηȧQ, aδ) ,

=
d

dt
ωL(aδ, ηaQ). (3.127)

Integrating from 0 to 1 gives the variation of the action

δSA = −ωL(aδ, ηaQ)|t=1. (3.128)

This implies that the equations of motion can be expressed

ηaQ|t=1 = 0, (3.129)

which using (3.123) is equivalent to

π1M
1

1−ΨA
= 0. (3.130)

This is the standard expression for the A∞ equations of motion. By contrast the WZW-like

action gives the equations of motion in a “Berkovits-like” form

Q

(
π1Ĝ

1

1−ΨA

)
= 0. (3.131)

These two formulations are related by conjugation with the cohomomorphism Ĝ.

– 22 –



J
H
E
P
0
2
(
2
0
1
6
)
1
2
1

4 Field redefinition

We now search for a field redefinition relating the dynamical field ΦA of the lifted A∞
theory to the dynamical field ΦB of the Berkovits theory. This field redefinition should

transform the WZW-like action of the lifted A∞ theory

SA = −
∫ 1

0
dt 〈At, QAη〉L, (4.1)

into to the WZW-like action of the Berkovits theory

SB = −
∫ 1

0
dt 〈Bt, QBη〉L, (4.2)

where the potentials Bt and Bη for the Berkovits theory were defined in (3.60).

In earlier work, the relation between the Berkovits and A∞ theories was described by

partially gauge fixing the Berkovits theory to the small Hilbert space. In this context, the

field redefinition between the theories was given by equating the respective η potentials [1]:

Bη|t=1 = Aη|t=1. (4.3)

Unfortunately this condition is not enough to specify a field redefinition between ΦA and

ΦB in the large Hilbert space. It leaves a residual ambiguity related to an overall η gauge

transformation. There are a number of ways to fix this ambiguity. We will take a particular

approach which at first seems orthogonal but has interesting implications. Instead of

equating the η potentials, we will equate the t potentials:

At = Bt. (4.4)

In doing this, we cannot only be talking about the fields ΦA and ΦB at t = 1. In fact,

in a sense we will describe, this equation provides a field redefinition between the entire

interpolations ΦA(t) and ΦB(t).

4.1 From A∞ to Berkovits

Let us solve equation (4.4). Substituting Bt we obtain a differential equation for ΦB(t):

d

dt
eΦB(t) = At e

ΦB(t). (4.5)

The solution is provided by a Wilson line

g(t2, t1) =
←−
P exp

[∫ t2

t1

dsAt(s)

]
, (4.6)

where
←−
P denotes the path ordered exponential in sequence of decreasing s. To emphasize

this, we have written g(t2, t1) so that the left-most argument t2 is viewed as a later time

than the right-most argument t1. Thus we have

eΦB(t) = g(t, 0) =
←−
P exp

[∫ t

0
dsAt(s)

]
, (4.7)
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and, at t = 1

eΦB = g(1, 0) =
←−
P exp

[∫ 1

0
dsAt(s)

]
. (4.8)

This is our proposed field redefinition between ΦA and ΦB.

To make sense of this field redefinition we must clarify an important point of interpre-

tation. At face value, the Wilson line (4.8) expresses ΦB as a function of the entire path

ΦA(t), not only of ΦA at t = 1. Therefore we need to be more specific about the meaning

of ΦA(t) when t 6= 1. We will assume ΦA(t) is given as some time-dependent function of

the dynamical field ΦA:

ΦA(t) = fA(t,ΦA), (4.9)

which is subject to boundary conditions

fA(0,ΦA) = 0, fA(1,ΦA) = ΦA. (4.10)

Under this assumption, then indeed the Wilson line (4.8) expresses ΦB as a function of ΦA.

However, for this to be a valid field redefinition, it must be invertible. To simplify analysis

of this question, we will make an additional assumption about the interpolating function.

The interpolating function will have an expansion in powers of the string field:

fA(t,ΦA) = f0(t) + f1(t)ΦA + f2(t)ΦA ⊗ ΦA + . . . , (4.11)

where the linear maps fn(t) : H⊗n → H are n-string products. We will assume that the

zero string product in this expansion vanishes:

f0(t) = 0. (4.12)

Using this, we can compute the proposed field redefinition out to first order in the fields.

To first order, the t potential of the lifted A∞ theory takes the form

At = ḟ1(t)ΦA + higher orders. (4.13)

Therefore, to first order, the proposed field redefinition takes the form

1 + ΦB + higher orders = 1 +

∫ 1

0
ds ḟ1(s)ΦA + higher orders,

= 1 +
(
f1(1)− f1(0)

)
ΦA + higher orders. (4.14)

The boundary condition (4.10) implies f1(1) = I and f1(0) = 0. Therefore the proposed

field redefinition is simply

ΦB = ΦA + higher orders. (4.15)

This is obviously invertible at first order, and small corrections in higher powers of the

field will not change this fact. Therefore, at least perturbatively, the Wilson line (4.8)

is a valid field redefinition between ΦA and ΦB. If we relax the assumption (4.12), the

proposed field redefinition will map the vacuum configuration ΦA = 0 to a finite, pure
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gauge configuration for ΦB. The question of invertibility in this case is more complicated,

and we will not consider it.

Now let’s return to equation (4.7), which determines the Berkovits field ΦB(t) when

t 6= 1. With a given choice of interpolating function for ΦA(t), equation (4.7) expresses

ΦB(t) as a function of ΦA. In turn, we can express ΦA as a function ΦB by inverting the

field redefinition, so in fact (4.7) gives an interpolating function for the Berkovits theory,

ΦB(t) = fB(t,ΦB), (4.16)

which implicitly depends on the choice of interpolating function fA(t,ΦA) of the lifted A∞
theory. This is the sense that the equation At = Bt provides a “field redefinition” between

the interpolations ΦA(t) and ΦB(t).

For the sake of being concrete, let us compute the field redefinition between ΦA and ΦB

out to second order in the string field. Expanding eΦB and the path ordered exponential

to second order gives the expression

ΦB = ΦA+

∫ 1

0

ds
(
µ2

(
ηf1(s)ΦA, ḟ1(s)ΦA

)
+ µ2

(
ḟ1(s)ΦA, ηf1(s)ΦA

)
+
(
ḟ1(s)ΦA

)
f1(s)ΦA

)
− 1

2
Φ2
A

+ higher orders, (4.17)

where µ2 is the gauge 2-product of the A∞ theory [5] and f1(t) is the 1-string product in

the interpolating function (4.11). Let us restrict to a particular class of field redefinitions

which can be written exclusively in terms of ξ, η and the open string star product. This

implies that f1(t) can take the form

f1(t) = x(t)I + y(t)ξη, (4.18)

where x(t), y(t) are number-valued functions of t satisfying boundary conditions x(0) =

y(0) = 0 and x(1) = 1 and y(1) = 0. While there are an infinite number of possible choices

of x(t) and y(t), reparameterization invariance of the field redefinition implies that most

choices are equivalent. By inspection of (4.17), it is clear that the only reparameterization

invariant quantity that can appear at second order is

C =

∫ 1

0
ds x(s)ẏ(s), (4.19)

since the other possible combinations xẋ and yẏ are total derivatives which are fixed by

boundary conditions. Explicitly, we find that the field redefinition takes the form

ΦB = ΦA +
1

3

(
1

2
+ C

)(
ξ[ηΦA,ΦA]− [ξΦA, ηΦA]

)
− C

3
ξ[ηΦA, ξηΦA]

+
1

3

(
1

2
− 2C

)
[ξηΦA,ΦA] + higher orders. (4.20)

If we change the constant C, the field redefinition will change by a term proportional to

ξ[ηΦA,ΦA]− [ξΦA, ηΦA]− ξ[ηΦA, ξηΦA]− 2[ξηΦA,ΦA]. (4.21)
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One can check that this term is annihilated by η, and therefore represents an η gauge trans-

formation. It is interesting to note that the field redefinition is not completely arbitrary,

despite having a free parameter C. The most general field redefinition at second order

constructed out of η, ξ, and the star product actually has five free parameters (only four if

we require that the fields are equal at linear order).

Perhaps the most significant appeal of this approach is that it gives the simplest

possible proof of equivalence of the actions. All we have to do is prove that the η potentials

are equal:

Bη = (ηeΦB(t))e−ΦB(t),

=
(
ηg(t, 0)

)
g(t, 0)−1,

=

[∫ t

0
ds g(t, s)

(
ηAt(s)

)
g(s, 0)

]
g(t, 0)−1,

=

[∫ t

0
ds g(t, s)

(
d

ds
Aη(s)− [Aη(s), At(s)]

)
g(s, 0)

]
g(t, 0)−1,

=

[∫ t

0
ds

d

ds

(
g(t, s)Aη(s)g(s, 0)

)]
g(t, 0)−1,

= Aη(t)g(t, 0)g(t, 0)−1,

= Aη. (4.22)

Since At = Bt and Aη = Bη, the actions are identical.

According to the discussion of section 3.3, the field redefinition must be equivalent

to a Maurer-Cartan gauge transformation of the potentials. Here we should note that

Maurer-Cartan gauge transformations do not transform the fields — rather they transform

the potentials, and therefore the action, while keeping the string field fixed. But the net

effect is equivalent to keeping the action fixed while transforming the string field. With

this understanding, the field redefinition between the Berkovits and lifted A∞ theories is

equivalent to a finite Maurer-Cartan gauge transformation

B′ =
[
(d+ η)U

]
U−1 + UBU−1, (4.23)

where B is the multi-potential of the Berkovits theory and B′ is the transformed multi-

potential, and the finite gauge parameter U is

U(t) =
←−
P exp

[∫ t

0
dsAt[ΦB](s)

]
e−ΦB(t), (4.24)

where At[ΦB](t) is the t-potential of the lifted A∞ theory evaluated on the Berkovits string

field. The net effect of this transformation is to replace the group-like element parameter-

ized by eΦB with the group-like element parameterized as
←−
P exp

[∫ t
0 dsAt[ΦB](s)

]
. The

Berkovits action will then be replaced with the lifted A∞ action

SB[ΦB] → SA[ΦB], (4.25)

after which we may as well rename ΦB as ΦA. Note that because U only has a zero form

component, the Maurer-Cartan gauge transformation does not generate expectation values
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for the higher potentials. Therefore the transformed multi-potential B′ gives a representa-

tion of the WZW-like action for the lifted A∞ theory where all field strengths vanish.

4.2 From Berkovits to A∞

So far we have described the field redefinition between the Berkovits and lifted A∞ theories

by equating the t-potentials. However, an equivalent characterization can be found by

equating the little t-potentials. This naturally leads to a formula for the field redefinition

which inverts the Wilson-line of the previous section.

First we need to describe the little potentials of the Berkovits theory. They are defined

implicitly by the formula

B = π1Ĝ
1

1− b
, (4.26)

where the little multi-potential b is a sum of little n-potentials

b ≡ b(0) + b(1) + b(2) + b(3) + . . . , (4.27)

which can be described using the basis 1-forms dxi as

b(0) = bη, b(1) = dxibi, b(2) =
1

2!
dxi∧dxj bij , b(3) =

1

3!
dxi∧dxj ∧dxk bijk, . . . . (4.28)

This is precisely analogous to (3.102) of the lifted A∞ theory. We can invert (4.26) to

express b in terms of the multi-potential of the Berkovits theory:

1

1−B
=

1

1− π1Ĝ
1

1−b
,

= Ĝ
1

1− b
. (4.29)

Multiplying this equation by Ĝ−1 and projecting onto the 1-string component of the tensor

algebra gives

b = π1Ĝ
−1 1

1−B
. (4.30)

Important special cases are

bη = π1Ĝ
−1 1

1−Bη
, (4.31)

bt = π1Ĝ
−1 1

1−Bη
⊗Bt ⊗

1

1−Bη
, (4.32)

bδ = π1Ĝ
−1 1

1−Bη
⊗Bδ ⊗

1

1−Bη
, (4.33)

bQ = π1Ĝ
−1 1

1−Bη
⊗BQ ⊗

1

1−Bη
. (4.34)

Note that the higher little potentials of the Berkovits theory do not vanish, even though

the higher potentials do. The little multi-potential satisfies

π1(η + D)
1

1− b
= 0, (4.35)

by analogy with (3.103).
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Next let us explain how to express the Berkovits action in terms of little potentials.

Consider the integrand

−〈Bt, QBη〉 = ωL(Bt, QBη),

= ωL

(
π1Bt

1

1−Bη
, π1Q

1

1−Bη

)
, (4.36)

where Bt is the coderivation corresponding to Bt regarded as a zero-string product. Since

the cohomomorphism Ĝ−1 is cyclic, we can use (3.13) to write

−〈Bt, QBη〉 = ωL

(
π1Ĝ

−1Bt
1

1−Bη
, π1Ĝ

−1Q
1

1−Bη

)
,

= ωL

(
π1Ĝ

−1 1

1−Bη
⊗Bt ⊗

1

1−Bη
, π1MĜ−1 1

1−Bη

)
,

= ωL

(
π1Ĝ

−1 1

1−Bη
⊗Bt ⊗

1

1−Bη
, π1M

1

1− π1Ĝ−1 1
1−Bη

)
,

= ωL

(
bt, π1M

1

1− bη

)
, (4.37)

where we substituted the definition of the little potentials. Next we use (4.35) to note that

π1M
1

1− bη
= −ηbQ. (4.38)

Integrating t from 0 to 1 therefore expresses the Berkovits action in the form

SB = −
∫ 1

0
dt ωL(bt, ηbQ). (4.39)

This is the Berkovits action expressed in terms of little potentials.

Now it turns out that equating the t-potentials of the Berkovits and lifted A∞ theories

is equivalent to equating the little t potentials. To see this, note that

1

1−Aη
⊗At ⊗

1

1−Aη
=

1

1−Bη
⊗Bt ⊗

1

1−Bη
. (4.40)

where we used the fact that At = Bt implies Aη = Bη. The left hand side can be expanded

as follows

1

1−Aη
⊗At ⊗

1

1−Aη
=

1

1− π1Ĝ
1

1−ηΦA(t)

⊗
(
π1Ĝ

1

1− ηΦA(t)
⊗ Φ̇A(t)⊗ 1

1− ΦA(t)

)
⊗ 1

1− π1Ĝ
1

1−ηΦA(t)

,

= Ĝ
1

1− ηΦA(t)
⊗ Φ̇A(t)⊗ 1

1− ΦA(t)
,

= Ĝ
1

1− aη
⊗ at ⊗

1

1− aη
. (4.41)

Therefore

Ĝ
1

1− aη
⊗ at ⊗

1

1− aη
=

1

1−Bη
⊗Bt ⊗

1

1−Bη
. (4.42)

Multiplying this equation by Ĝ−1 and projecting onto the 1-string component then implies

at = bt. (4.43)
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T (t,0)

fA(t,ΦA)g(t,0)

fB(t,ΦB)

Figure 1. A diagram showing the maps which relate the fields and interpolations of the Berkovits

and lifted A∞ superstring field theories.

Since at(t) = Φ̇A(t) this equation is easily integrated to express ΦA in terms of ΦB. The

solution of this equation is defined by the integral

T (t2, t1) ≡
∫ t2

t1

ds bt(s). (4.44)

The interpolating field of the lifted A∞ theory is therefore,

ΦA(t) = T (t, 0) =

∫ t

0
ds bt(s), (4.45)

and the field redefinition from the Berkovits to the lifted A∞ theory is

ΦA = T (1, 0) =

∫ 1

0
ds bt(s). (4.46)

Similar to the previous section (but in reverse), this expresses ΦA as a function of an entire

path ΦB(t) in the Berkovits theory. For this to be a field redefinition between ΦA and ΦB,

we assume that ΦB(t) is specified by an interpolating function fB(t,ΦB) whose zero-string

product vanishes. Equation (4.45) determines the interpolating function fA(t,ΦA) of the

lifted A∞ theory in terms of the interpolating function fB(ΦB, t) of the Berkovits theory.

We summarize the different fields, interpolations, and mappings between them in figure 1.

We should emphasize that this is the same as the Wilson line field redefinition of the

previous section, but inverted. To see this, suppose we express the Berkovits interpolation

ΦB(t) in terms of the lifted A∞ interpolation ΦA(t) using the Wilson line (4.7). This allows

us to write Bt = At and Bη = Aη, and substituting into (4.45) gives

ΦA(t) =

∫ t

0
ds π1Ĝ

−1 1

1−Aη(s)
⊗At(s)⊗

1

1−Aη(s)
,

=

∫ t

0
ds π1Ĝ

−1Ĝ
1

1− ηΦA(s)
⊗ Φ̇A(s)⊗ 1

1− ηΦA(s)
,

=

∫ t

0
ds Φ̇A(s),

= ΦA(t), (4.47)

which is the string field we started with.
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4.3 Okawa’s approach

Let us describe an unrelated proposal for the field redefinition suggested by Y. Okawa.8

This approach does not consider the interpolations ΦA(t) and ΦB(t), but focuses on the

dynamical fields ΦA and ΦB at t = 1. The starting point is the condition

Bη|t=1 = Aη|t=1. (4.48)

As mentioned before, this relation does not fully constrain the field redefinition. However,

this can be remedied with a few additional choices. Equating the η-potentials is equivalent

to equating the little η-potentials:

aη|t=1 = bη|t=1. (4.49)

Since aη|t=1 = ηΦA, this gives

ηΦA = bη|t=1. (4.50)

Suppose we assume that the lifted A∞ field satisfies the gauge condition ξΦA = 0. Then

the above relation implies that the lifted A∞ field satisfies

ΦA = ξbη|t=1 if ξΦA = 0. (4.51)

This is not quite a field redefinition between ΦA and ΦB since it is not invertible — the field

ΦA always satisfies the gauge condition ξΦA = 0. We can fix this by adding the η-closed

term ηξΦB, so the proposed field redefinition is

ΦA = ηξΦB + ξbη|t=1. (4.52)

Taking η of this expression implies aη|t=1 = bη|t=1, as desired. A nice property of this

field redefinition is that it is compatible with the natural gauge fixing to the small Hilbert

space. In particular, fixing ξΦA = 0 in the lifted A∞ theory fixes ξΦB = 0 in the Berkovits

theory, and vice-versa:

ξΦA = 0 ←→ ξΦB = 0. (4.53)

This is not generally true for the field redefinition based on the Wilson line.

Expanding the field redefinition to second order gives

ΦB = ΦA +
1

3
ξ[ξηΦA, ηΦA]− 1

2
ξ[ΦA, ηΦA] + higher orders. (4.54)

Note that this is not a special case of (4.20) for some choice of the constant C. Therefore

the field redefinition cannot be realized as the endpoint of a pair of interpolations ΦA(t)

and ΦB(t) related by At = Bt. This makes the proof of equivalence of the actions less

direct. First let us generalize the field redefinition to intermediate t by taking

ΦA(t) = ηξΦB(t) + ξbη(t). (4.55)

8The author would like to thank him for sharing this idea.
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With this identification the η-potentials are equal for intermediate t

Aη(t) = Bη(t), (4.56)

but the t-potentials are not the same. Instead we have

At = B̃t, (4.57)

where B̃t is defined

B̃t ≡ π1Ĝ
1

1− bη
⊗
(
ηξΦ̇B(t) + ξḃη

)
⊗ 1

1− bη
, (4.58)

which is not the same as Bt. Therefore applying the field redefinition to the lifted A∞
action gives

SB = −
∫ 1

0
dt 〈B̃t, QBη〉L. (4.59)

This is not the Berkovits action as it is usually written. However, as noted in [1], B̃t
differs from Bt by a term which is annihilated by ∇η, so in fact (4.59) is the same as the

usual Berkovits action. Another way to understand this observation is that (4.59) is an

expression of the Berkovits action using a nonstandard set of potentials, related to the

usual Berkovits potentials by a finite Maurer-Cartan gauge transformation

B̃ =
[
(d+ η)eΛ(1)

]
e−Λ(1)

+ eΛ(1)
Be−Λ(1)

, (4.60)

where the 1-form gauge parameter Λ(1) is

Λ(1) = dtΛt. (4.61)

This Maurer-Cartan gauge transformation leaves Bη invariant, while it transforms Bt
into B̃t:

B̃t = Bt +∇ηΛt. (4.62)

We can compute the gauge parameter Λt as follows. Consider

B̃t −Bt = π1Ĝ
1

1− bη
⊗
(
ηξΦ̇B(t) + ξḃη

)
⊗ 1

1− bη
−Bt,

= π1Ĝ
1

1− bη
⊗
(
ηξΦ̇B(t) + ξηbt

)
⊗ 1

1− bη
−Bt, (4.63)

where in the second step we traded ḃη with ηbt. Now pull η out so it acts on the entire

expression:

B̃t −Bt = π1Ĝ
1

1− bη
⊗
(
ηξ(Φ̇B(t)− bt) + bt

)
⊗ 1

1− bη
−Bt,

= π1Ĝη
1

1− bη
⊗ ξ(Φ̇B(t)− bt)⊗

1

1− bη
+ π1Ĝ

1

1− bη
⊗ bt ⊗

1

1− bη
−Bt,

= π1(η−m2)Ĝ
1

1− bη
⊗ ξ(Φ̇B(t)− bt)⊗

1

1− bη
. (4.64)
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In the second step the second term cancels with Bt by the definition of the little potentials.

What remains can be interpreted as ∇ηΛt, where Λt is

Λt = π1Ĝ
1

1− bη
⊗ ξ(Φ̇B(t)− bt)⊗

1

1− bη
. (4.65)

Therefore relating the interpolations through (4.55) and performing a Maurer-Cartan gauge

transformation turns the WZW-like action of the lifted A∞ theory into the standard WZW-

like action of the Berkovits theory.

It is interesting to contrast the variety of field redefinitions we find in the large Hilbert

space with the seeming uniqueness of the field redefinition found in the small Hilbert

space [1, 2]. The reason for this discrepancy is that the operations η, ξ,m2 used to construct

the field redefinition in the large Hilbert space can also implement η gauge transformations

of the field redefinition. In the small Hilbert space the η gauge invariance is not present,

and ξ and m2 alone cannot implement interesting gauge transformations in the small

Hilbert space.

5 Mapping gauge invariances

We will now use the field redefinition to determine how the gauge symmetries of the lifted

A∞ theory map into the Berkovits theory, and vice versa.

Let us first consider the Wilson line field redefinition (4.8). To get the information

we’re after, we must compute the change of the Berkovits field ΦB induced by a change in

the lifted A∞ field ΦA and/or the interpolating function fA(t,ΦA). Taking the variation

of (4.8) produces

δeΦB =

∫ 1

0
dt g(1, t)δAt g(t, 0). (5.1)

Using (3.28) we can switch the variation with a time derivative:

δeΦB =

∫ 1

0
dt g(1, t)

(
∇tAδ + Fδt

)
g(t, 0),

=

∫ 1

0
dt

d

dt

(
g(1, t)Aδg(t, 0)

)
+

∫ 1

0
dt g(1, t)Fδt g(t, 0),

= Aδ|t=1e
ΦB − eΦBAδ|t=0 +

∫ 1

0
dt g(1, t)Fδt g(t, 0). (5.2)

This is the expected formula for the variation of a Wilson line. We assume that Aδ vanishes

at t = 0 because the interpolating function is required to satisfy the boundary condition

fA(0,ΦA) = 0. Let us see what to do with the field strength integrated along the curve.

We can express the field strength in terms of the 2-potential∫ 1

0
dt g(1, t)Fδt g(t, 0) = −

∫ 1

0
dt g(1, t)

(
∇ηAtδ

)
g(t, 0),

= −eΦB

∫ 1

0
dt g(t, 0)−1

(
∇ηAtδ

)
g(t, 0), (5.3)

= −eΦB

∫ 1

0
dt η
(
g(t, 0)−1Atδ g(t, 0)

)
. (5.4)
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Therefore, the variation of the field redefinition is

δeΦB = Aδ|t=1e
ΦB − eΦBη

(∫ 1

0
dt g(t, 0)−1Atδ g(t, 0)

)
, (5.5)

Consider specifically variations of the interpolating function fA(t,ΦA). In this case Aδ|t=1

is constrained to vanish by boundary conditions, and (5.5) simplifies to

δeΦB = −eΦBη

(∫ 1

0
dt g(t, 0)−1Atδ g(t, 0)

)
. (5.6)

Right multiplication of eΦB by an η-closed string field is an infinitesimal gauge transforma-

tion in the Berkovits theory. Therefore, a change of the interpolation only effects the field

redefinition between ΦA and ΦB by an η gauge transformation. This is consistent with

what we found in (4.21).

Now let us see how ΦB responds to gauge transformations in the lifted A∞ theory.

First consider the η gauge transformation δη in (3.10). We obtain

δηe
ΦB = Aδη |t=1e

ΦB − eΦB

∫ 1

0
dt η
(
g(t, 0)−1Atδη g(t, 0)

)
. (5.7)

We can simplify the first term using equation (3.71):

Aδη |t=1 = ∇ηΩB|t=1,

= g(1, 0)η
(
g(1, 0)−1ΩB g(1, 0)

)
g(1, 0)−1. (5.8)

Plugging in we obtain

δηe
ΦB = eΦB η

(
g(1, 0)−1ΩB g(1, 0)−

∫ 1

0
dt g(t, 0)−1Atδη g(t, 0)

)
. (5.9)

Therefore, the η gauge invariance of the lifted A∞ theory maps into the η gauge invariance

of the Berkovits theory. Now consider the BRST gauge transformation δQ in (3.11). From

the computation of (3.73), we find

δQe
ΦB =

(
QΛB − µB

)
eΦB − eΦBη

(∫ 1

0
dt g(t, 0)−1AtδQ g(t, 0)

)
. (5.10)

Left multiplication of eΦB by a BRST closed string field is an infinitesimal gauge transfor-

mation in the Berkovits theory. It follows from the computation at the end of subsection 3.2

that left multiplication of eΦB by µB is also a symmetry of the action, even though µB
is not BRST closed. However, note from (3.75) that µB vanishes when the equations of

motion are satisfied:

π1M
1

1− ηΦA
= 0. (5.11)

Therefore left multiplication by µB must represent a trivial gauge transformation [23].

The upshot is that the BRST gauge transformation of the lifted A∞ theory maps into a
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combination of a BRST gauge transformation, an η gauge transformation, and a trivial

gauge transformation in the Berkovits theory.

Now let’s consider the reverse question, namely, how the gauge invariances of the

Berkovits theory map into those of the lifted A∞ theory. For this purpose it is useful

to consider the inverse field redefinition as described in section 4.2. Taking the variation

of (4.46), one finds that a change of the Berkovits field and/or interpolation changes the

lifted A∞ field through

δΦA =

∫ 1

0
dt δbt,

=

∫ 1

0
dt

(
d

dt
bδ − ηbδt

)
,

= bδ|t=1 − η
(∫ 1

0
dt bδt

)
, (5.12)

where we used (4.35) to interchange δ with a d/dt, which produces a term proportional to

the little 2-potential. If we change the interpolating function of the Berkovits theory, the

boundary term at t = 1 drops out and what remains is an η gauge transformation of ΦA.

The BRST and η gauge transformations of the Berkovits theory can be written

δQe
ΦB =

(
QΛB

)
eΦB , δηe

ΦB = eΦBη
(
e−ΦBΩBe

ΦB
)
, (5.13)

Before ΛB and ΩB were defined as functions of ΦA and the gauge parameters ΛA and ΩA

of the lifted A∞ theory, but now we view them as independent variables defining the gauge

parameters of the Berkovits theory. The potentials corresponding to these variations are

BδQ |t=1 = QΛB, Bδη |t=1 = ∇ηΩB|t=1. (5.14)

Let us first compute the little potential bδη |t=1 from (4.33):

bδη |t=1 = π1Ĝ
−1 1

1−Bη
⊗Bδη ⊗

1

1−Bη

∣∣∣∣
t=1

,

= π1Ĝ
−1 1

1−Bη
⊗∇ηΩB ⊗

1

1−Bη

∣∣∣∣
t=1

,

= π1Ĝ
−1(η−m2)

1

1−Bη
⊗ ΩB ⊗

1

1−Bη

∣∣∣∣
t=1

,

= η π1Ĝ
−1 1

1−Bη
⊗ ΩB ⊗

1

1−Bη

∣∣∣∣
t=1

. (5.15)

Plugging this into (5.12), we find

δηΦA = η

(
ΩA −

∫ 1

0
dt bδηt

)
, (5.16)

where

ΩA ≡ π1Ĝ
−1 1

1−Bη
⊗ ΩB ⊗

1

1−Bη

∣∣∣∣
t=1

. (5.17)
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Therefore the η gauge invariance of the Berkovits theory maps into the η gauge invariance

of the lifted A∞ theory. Note that (5.17) is the inverse of the formula (3.71) expressing

ΩB as a function of ΩA. Therefore we have a “field redefinition” relating the η gauge

parameters in the two theories. Now consider the BRST gauge symmetry:

bδQ = π1Ĝ
−1 1

1−Bη
⊗BδQ ⊗

1

1−Bη

∣∣∣∣
t=1

, (5.18)

= π1Ĝ
−1 1

1−Bη
⊗QΛB ⊗

1

1−Bη

∣∣∣∣
t=1

,

= π1Ĝ
−1Q

1

1−Bη
⊗ ΛB ⊗

1

1−Bη

∣∣∣∣
t=1

− π1Ĝ−1
(

1

1−Bη
⊗QBη⊗

1

1−Bη
⊗ΛB⊗

1

1−Bη
− 1

1−Bη
⊗ΛB⊗

1

1−Bη
⊗QBη⊗

1

1−Bη

)∣∣∣∣
t=1

,

= π1MĜ−1
1

1−Bη
⊗ΛB⊗

1

1−Bη

∣∣∣∣
t=1

− π1Ĝ−1
(

1

1−Bη
⊗QBη⊗

1

1−Bη
⊗ΛB⊗

1

1−Bη
− 1

1−Bη
⊗ΛB⊗

1

1−Bη
⊗QBη⊗

1

1−Bη

)∣∣∣∣
t=1

,

= π1M
1

1−π1Ĝ−1 1
1−Bη

⊗
(
π1Ĝ

−1 1

1−Bη
⊗ΛB⊗

1

1−Bη

)
⊗ 1

1−π1Ĝ−1 1
1−Bη

∣∣∣∣∣
t=1

− π1Ĝ−1
(

1

1−Bη
⊗QBη⊗

1

1−Bη
⊗ΛB⊗

1

1−Bη
− 1

1−Bη
⊗ΛB⊗

1

1−Bη
⊗QBη⊗

1

1−Bη

)∣∣∣∣
t=1

Using

ηΦA = π1Ĝ
−1 1

1−Bη

∣∣∣∣
t=1

, (5.19)

we therefore obtain

δQΦA =

(
π1M

1

1− ηΦA
⊗ ΛA ⊗

1

1− ηΦA

)
− µA − η

(∫ 1

0
dt bδQt

)
, (5.20)

where

ΛA ≡ π1Ĝ
−1 1

1−Bη
⊗ ΛB ⊗

1

1−Bη

∣∣∣∣
t=1

, (5.21)

µA ≡ π1Ĝ
−1

(
1

1−Bη
⊗QBη ⊗

1

1−Bη
⊗ ΛB

⊗ 1

1−Bη
+

1

1−Bη
⊗ ΛB ⊗

1

1−Bη
⊗QBη ⊗

1

1−Bη

)∣∣∣∣
t=1

. (5.22)

Note that (5.21) is the inverse of the formula (3.74) expressing ΛB in terms of ΛA. Also note

that µA vanishes on shell, and so must represent a trivial gauge transformation. Therefore

the BRST gauge transformation of the Berkovits theory maps into a combination of a

BRST, an η, and trivial gauge transformations in the lifted A∞ theory. Similar conclusions

follow using the field redefinition proposed by Okawa, since in this case the variation takes

the form

δΦA = bδ|t=1 + ηξ
(
δΦB − bδ|t=1

)
. (5.23)

which, aside from unimportant differences in the η closed term, is equivalent to (5.12).
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A Some computations involving cyclicity

In this appendix we provide a few missing calculations referred to in the text, in particular

as pertains to cyclicity of the A∞ products and cohomomorphism Ĝ. These calculations

are simplified with the help of the “triangle formalism” of the product and coproduct,

introduced in appendix A of [2]. Here we review this formalism and provide the missing

calculations in the text.

The tensor algebra has a coproduct, which is a coassociative linear map from the tensor

algebra into a pair of tensor algebras:

4 : TH → TH⊗′ TH, (A.1)

where we use the symbol ⊗′ to distinguish from the tensor product used to construct TH.

The coproduct is coassociative

(4⊗′ ITH)4 = (I⊗′ 4)4, (A.2)

and acts on tensor products of states as

4A1 ⊗ . . .⊗An =

n∑
k=0

(A1 ⊗ . . .⊗Ak)⊗′ (Ak+1 ⊗ . . .⊗An), (A.3)

where at the extremes of summation ⊗′ multiplies the identity of the tensor product 1TH.

Note that 1TH is not the identity with respect to ⊗′. Coderivations and cohomomorphisms

satisfy

4D = (D⊗′ ITH + ITH ⊗′ D)4, (A.4)

4Ĥ = (Ĥ⊗′ Ĥ)4, (A.5)

and group-like elements satisfy

4 1

1−A
=

1

1−A
⊗′ 1

1−A
. (A.6)

By taking variations we can derive the action of the coproduct on more general states. In

addition, the tensor algebra has a product

4
: TH⊗′ TH → TH, (A.7)

which operates by replacing the primed tensor product ⊗′ with the ordinary tensor product

⊗. The central formula of the triangle formalism is an expression for the projector πm+n

onto the (m+ n)-string component of the tensor algebra:

πm+n =
4 [

πm ⊗′ πn
]
4. (A.8)

For further elaboration, see appendix A of [2].
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A.1 Proof of (3.13)

Now let us revisit the derivation of (3.13), which is also featured in appendix A of [1]. A

cyclic cohomomorphism Ĥ satisfies

〈ω|π2Ĥ = 〈ω|π2. (A.9)

Consider this formula acting on a particular element of the tensor algebra:

1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A
, (A.10)

where A is degree even and B,C are arbitrary string fields. We find

〈ω|π2Ĥ

(
1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)
= 〈ω|π2

(
1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)
,

= 〈ω|B ⊗ C. (A.11)

On the other hand, we can replace π2 =
4 [

π1 ⊗′ π1

]
4 on the left hand side and act with

the coproduct:

〈ω|π2Ĥ

(
1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)
= 〈ω| 4

[
π1 ⊗′ π1

]
4Ĥ

(
1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)
,

= 〈ω| 4
[

(π1 ⊗′ π1)(Ĥ⊗′ Ĥ)

]
4
(

1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)
,

= 〈ω| 4
[

(π1 ⊗′ π1)(Ĥ⊗′ Ĥ)

(
1

1−A
⊗′ 1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

+
1

1−A
⊗B ⊗ 1

1−A
⊗′ 1

1−A
⊗ C ⊗ 1

1−A
+

1

1−A
⊗B ⊗ 1

1−A
⊗ C⊗ 1

1−A
⊗′ 1

1−A

)]
,

= 〈ω| 4
[(

π1Ĥ
1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)
⊗′
(
π1Ĥ

1

1−A

)
+

(
π1Ĥ

1

1−A
⊗B ⊗ 1

1−A

)
⊗′
(
π1Ĥ

1

1−A
⊗ C ⊗ 1

1−A

)
+

(
π1Ĥ

1

1−A

)
⊗′
(
π1Ĥ

1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)]
,

= 〈ω|
(
π1Ĥ

1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)
⊗
(
π1Ĥ

1

1−A

)
+ 〈ω|

(
π1Ĥ

1

1−A
⊗B ⊗ 1

1−A

)
⊗
(
π1Ĥ

1

1−A
⊗ C ⊗ 1

1−A

)
+ 〈ω|

(
π1Ĥ

1

1−A

)
⊗
(
π1Ĥ

1

1−A
⊗B ⊗ 1

1−A
⊗ C ⊗ 1

1−A

)
. (A.12)
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The first and last terms cancel by antisymmetry of the symplectic form. The second term,

however, remains. We have therefore shown

ω

(
π1Ĥ

(
1

1−A
⊗B ⊗ 1

1−A

)
, π1Ĥ

(
1

1−A
⊗ C ⊗ 1

1−A

))
= ω(A,B). (A.13)

Now suppose that the string fields A and B happen to take the form

A = π1D1
1

1−A
, B = π1D2

1

1−A
, (A.14)

for some coderivations D1 and D2. Plugging into the above formula then gives

ω

(
π1ĤD1

(
1

1−A

)
, π1ĤD2

(
1

1−A

))
= ω

(
π1D1

(
1

1−A

)
, π1D2

(
1

1−A

))
, (A.15)

which reproduces (3.13).

A.2 Proof of (3.78)

Now let’s prove the equivalence of equations (3.78) and (3.76). The left hand side of (3.78) is

〈ωL|π2Ĝ

[
1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA
⊗Λ⊗ 1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA

]
.

(A.16)

Replacing π2 =
4 [

π1 ⊗′ π1

]
4 and acting with the coproduct produces the expression

〈ωL|
4

(π1⊗′π1)(Ĝ⊗′Ĝ) (A.17)

×
[

1

1−ηΦA
⊗′ 1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA
⊗Λ⊗ 1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA

+
1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA
⊗′ 1

1−ηΦA
⊗Λ⊗ 1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA

+
1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA
⊗Λ⊗ 1

1−ηΦA
⊗′ 1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA

+
1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA
⊗Λ⊗ 1

1−ηΦA
⊗
(
π1M

1

1−ηΦA

)
⊗ 1

1−ηΦA
⊗′ 1

1−ηΦA

]
.

The first and last term simplify to

ωL

(
π1Ĝ

1

1− ηΦA
, π1Ĝ

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
⊗Λ

⊗ 1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA

)
+ ωL

(
π1Ĝ

1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
⊗Λ

⊗ 1

1− ηΦA
⊗
(
π1M

1

1− ηΦA

)
⊗ 1

1− ηΦA
, π1Ĝ

1

1− ηΦA

)
, (A.18)

and they cancel by antisymmetry of the symplectic form. Meanwhile, the second and

third terms in (A.18) produce equation (3.76). This fills the missing steps between (3.76)

and (3.78).
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A.3 Proof of (3.126)

Now let’s prove (3.126):

ωL

(
ȧη, π1M

1

1− aη
⊗ aδ ⊗

1

1− aη

)
= −ωL

(
π1M

1

1− aη
⊗ ȧη ⊗

1

1− aη
, aδ

)
. (A.19)

For this purpose consider the identity

0 = 〈ωL|π2M
1

1− aη
⊗ ȧη ⊗

1

1− aη
⊗ aδ ⊗

1

1− aη
, (A.20)

which vanishes because M is cyclic with respect to the large Hilbert space symplectic form.

Replacing π2 =
4 [

π1 ⊗′ π1

]
4 and acting with the coproduct gives

0 = 〈ωL|
4

(π1⊗′π1)(M⊗′ ITH+ITH⊗′M)

[
1

1− aη
⊗′ 1

1− aη
⊗ ȧη ⊗

1

1− aη
⊗ aδ ⊗

1

1− aη

+
1

1−aη
⊗ȧη⊗

1

1−aη
⊗′ 1

1−aη
⊗aδ⊗

1

1−aη
+

1

1−aη
⊗ȧη⊗

1

1−aη
⊗aδ⊗

1

1−aη
⊗′ 1

1−aη

]
.

(A.21)

Some cross terms drop out since π1 acts on the tensor product of two or more states. What

is left is

0 = 〈ωL|
(
π1M

1

1− aη
⊗ ȧη ⊗

1

1− aη

)
⊗ aδ

+ 〈ωL|
(
π1M

1

1− aη
⊗ ȧη ⊗

1

1− aη
⊗ aδ ⊗

1

1− aη

)
⊗ aη

+ 〈ωL|aη ⊗
(
π1M

1

1− aη
⊗ ȧη ⊗

1

1− aη
⊗ aδ ⊗

1

1− aη

)
+ 〈ωL|ȧη ⊗

(
π1M

1

1− aη
⊗ aδ ⊗

1

1− aη

)
. (A.22)

The second and third terms cancel out by antisymmetry of the symplectic form, while the

first and last terms reproduce (3.126).
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