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Accurate chromosome segregation during mitosis and meiosis is crucial for

cellular and organismal viability. Kinetochores connect chromosomes with

spindle microtubules and are essential for chromosome segregation. These

large protein scaffolds emerge from the centromere, a specialized region of

the chromosome enriched with the histone H3 variant CENP-A. In most eukar-

yotes, the kinetochore core consists of the centromere-proximal constitutive

centromere-associated network (CCAN), which binds CENP-A and contains

16 subunits, and of the centromere-distal Knl1 complex, Mis12 complex,

Ndc80 complex (KMN) network, which binds microtubules and contains

10 subunits. In the fruitfly, Drosophila melanogaster, the kinetochore underwent

remarkable simplifications. All CCAN subunits, with the exception of centro-

meric protein C (CENP-C), and two KMN subunits, Dsn1 and Zwint, cannot

be identified in this organism. In addition, two paralogues of the KMN subunit

Nnf1 (Nnf1a and Nnf1b) are present. Finally, the Spc105R subunit, homolo-

gous to human Knl1/CASC5, underwent considerable sequence changes in

comparison with other organisms. We combined biochemical reconstitution

with biophysical and structural methods to investigate how these changes

reflect on the organization of the Drosophila KMN network. We demonstrate

that the Nnf1a and Nnf1b paralogues are subunits of distinct complexes,

both of which interact directly with Spc105R and with CENP-C, for the latter

of which we identify a binding site on the Mis12 subunit. Our studies shed

light on the structural and functional organization of a highly divergent

kinetochore particle.
1. Introduction
Accurate chromosome segregation in dividing cells is of utmost importance for

the propagation of unicellular organisms, for organismal development and for

sexual reproduction [1]. Perturbations of this process have been associated with

congenital diseases, premature ageing and cellular transformation [2].

The mitotic spindle, a complex structure made of microtubules, microtubule-

associated proteins and molecular motors, is devoted to chromosome capture

and segregation [1]. Microtubules capture chromosomes at specialized and

evolutionarily conserved structures named kinetochores [3,4]. Kinetochores are

multi-protein assemblies that are built on a specialized chromatin domain called

the centromere [5]. The crucial and universal feature that distinguishes the centro-

mere from any other chromatin domain on chromosomes is the enrichment of a

variant of histone H3 named CENP-A (CID in Drosophila melanogaster; figure 1a)

[5]. In most organisms, this histone variant recruits the components of a consti-

tutive centromere-associated network (CCAN), a group of approximately
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Figure 1. Two Mis12 complexes in Drosophila melanogaster. (a) Schematic of the human kinetochore. Orthologues of the indicated subunits and complexes are
generally conserved in evolution, and are for instance also identified in S. cerevisiae. (b) A presentation of the constitutive subunits of the Mis12 complex in humans
and in Drosophila. Segments identified for their ability to interact with Knl1 or Ndc80 complex subunits [6,7] are indicated. (c) Summary of expression experiments.
‘Soluble’ or ‘insoluble’ indicates that the protein could/could not be identified in the bacterial cell lysate. (d ) A strategy for determining whether Nnf1a and Nnf1b
are part of the same or different complexes. (e) Size-exclusion chromatography (SEC) experiment on the DmMis12a and DmMis12b complex showing the two
complexes elute in a single peak and appear monodisperse. The vertical dashed bar is a reference indicating the elution volume of the dimeric constructs
shown in electronic supplementary material, figure S1A.
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16 proteins organized in different subcomplexes [8–12]. The

CCAN, in turn, recruits the components of a 10-subunit com-

plex named the KMN network (for Knl1 complex, Mis12

complex, Ndc80 complex, the three subcomplexes of which

the KMN network is composed) [13]. Within the KMN net-

work, the Ndc80 complex (Ndc80-C) has been implicated as

the microtubule receptor at the kinetochore [14,15]. The Knl1

complex (Knl1-C), on the other hand, has been implicated

in the coordination of the spindle assembly checkpoint, a
signalling mechanism that prevents premature mitotic exit in

the presence of unattached or incorrectly attached kinetochores

[16]. Finally, the Mis12 complex (Mis12-C, also known as the

MIND complex in Saccharomyces cerevisiae) acts as a ‘hub’ that

interacts with all other KMN complexes and that also mediates

the interaction with the inner kinetochore CCAN subunits

[6,17–31]. Furthermore, the Mis12 complex may increase

the binding affinity of the Ndc80 complex for microtubules,

possibly through an allosteric mechanism [32].

http://rsob.royalsocietypublishing.org/
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In certain organisms, including Drosophila melanogaster
and Caenorhabditis elegans, most CCAN subunits cannot be

identified, suggesting that these kinetochores underwent sig-

nificant structural simplifications in the course of evolution

[4,13,20,33–36]. To date, the only residual CCAN subunit to

be clearly recognizable in these organisms is CENP-C [37–40].

CENP-C, which is the largest CCAN subunit, has been shown

to act as a linker between CENP-A in the centromeric chromatin

and the Mis12-C in the outer kinetochore [19–21,23,41–44]. In

organisms that retained CCAN, CENP-C also contains binding

sites for other CCAN subunits, including the CENP-HIKM and

CENP-NL subcomplexes [45–49]. Finally, CENP-C has been

shown to participate in the cell-cycle-dependent deposition of

new CENP-A required to re-establish the CENP-A pool after

its halving during chromosome replication [50–60].

Besides the loss of most CCAN subunits in the inner kine-

tochore, in D. melanogaster additional evolutionary changes

affected the composition of the outer kinetochore, and in par-

ticular of the Mis12-C complex. These changes include the

apparent loss of the Dsn1 subunit, the appearance of two

paralogues of the Nnf1 subunit (Nnf1a and Nnf1b, also

named Nnf1R-1 and Nnf1R-2), and the loss of the Zwint sub-

unit in the Knl1-C, which therefore consists exclusively of the

Spc105R subunit (Spc105-related, homologous to human

Knl1/Blinkin/CASC5 and indicated here as Spc105RKnl1)

[17,26,31,33,34,61–63]. How these changes affect the overall

organization and stability of the outer kinetochore and of

its interactions with CENP-C is currently unclear. Here, we

used biochemical reconstitution and biophysical characteriz-

ation as an entry point to characterize the outer kinetochore

of D. melanogaster and its interaction with CENP-C. We

report the main conclusions of our effort.
2. Results and discussion
2.1. Reconstitution of two related Mis12 complexes in

Drosophila melanogaster
To gain insights into the organization of the DmMis12 complex,

we expressed recombinant versions of its subunits (figure 1b) or

their combination, as summarized in figure 1c. Mis12, Nnf1a,

Nnf1b and Kmn1 (the latter indicated as Kmn1Nsl1 to remind

readers that it is the Nsl1 orthologue) were all insoluble when

expressed in isolation in Escherichia coli (not shown). Co-

expression of different combinations of two subunits with the

pST44 vector [64] resulted in soluble complexes of Mis12 with

Nnf1a or Nnf1b, whereas binary combinations containing

Kmn1Nsl1 were insoluble (figure 1c; electronic supplementary

material, figure S1a; some data not shown). Overall, these

results suggest that Mis12 and Nnf1 can form a stable pair

within the Drosophila Mis12 complex, in line with previous

observations [18,25,28,63,65]. Solubilization of Kmn1Nsl1 was

only observed when it was co-expressed in combination with

Mis12 and Nnf1a or Nnf1b (figure 1c).

The Nnf1a and Nnf1b paralogues have been previously

shown to be functionally redundant, but their developmental

expression patterns are not identical [34,63]. It is unclear if

these proteins are incorporated in the same complex or in

separate complexes. The question is particularly relevant

in the specific case of the Drosophila Mis12-C, because no

Dsn1 has been identified in this organism, suggesting that

Mis12-C might have a different composition. To address
this question, we co-expressed Mis12, Nnf1a, Nnf1b and

Kmn1Nsl1, each fused to a distinct tag, in E. coli (figure 1d ).

Cleared cell lysates were incubated, in consecutive steps,

with affinity resins designed to interact with the affinity

tags of Nnf1a (Strep tag) and Nnf1b (polyhistidine), and

after elution each bound fraction was analysed by Western

blotting (figure 1d ). This showed that Nnf1a and Nnf1b are

both able to bind Mis12 and Kmn1Nsl1, but do not appear

to interact with each other in the same complex.

We reconstituted the Mis12a and Mis12b complexes by bac-

terial co-expression and purified them to homogeneity (see

Methods). Separation of these complexes by size-exclusion

chromatography (SEC, which separates based on shape and

molecular mass) demonstrated that both complexes are mono-

disperse and that they elute essentially identically, suggesting

similar shape and overall mass (figure 1e). Overall, these data

demonstrate that Nnf1a and Nnf1b form distinct and stoichio-

metric complexes with Kmn1Nsl1 and Mis12, which we define

as the DmMis12a and DmMis12b complexes, respectively.
2.2. Characterization of the DmMis12a and DmMis12b
complexes

By analytical ultracentrifugation (AUC) sedimentation vel-

ocity experiments, we observed molecular masses of the

DmMis12a and DmMis12b complexes of 64.5 and 67.1 kDa,

respectively (figure 2a and table 1). These values are in excel-

lent agreement with the predicted molecular masses if each

subunit was represented in a single copy (table 1). Frictional

ratios ( f/fo) of 1.7 indicate that both complexes are elongated.

This was confirmed by negative-stain electron micro-

scopy (EM) experiments on the DmMis12a complex

(figure 2b). In each field of view, the majority of single par-

ticles appeared elongated, with a thicker end and an overall

length of approximately 20 nm. The appearance of the

DmMis12a complex is largely comparable to that of the pre-

viously observed human and budding yeast complexes

[6,24,25,65]. Thus, loss of Dsn1 does not dramatically alter

the structure of the DmMis12 complex. However, despite

high purity, compositional homogeneity and monodispersity

of the Mis12 emerging from SEC experiments (figure 1e), we

observed more structural heterogeneity of the complex by

negative stain EM (figure 2b) than previously observed

with the human complex [6,24], complicating the calculation

of class averages. In summary, the EM and AUC analyses

indicated that the DmMis12 complex has an elongated

appearance, a feature previously observed with the human

and yeast complexes [6,19,24,25,65].

To gain additional insights into the organization of the

DmMis12a and DmMis12b complexes, we resorted to chemical

cross-linking with the bi-functional reagent BS2G (bis[sulfo-

succinimidyl]glutarate), which cross-links the primary amines

of lysine side chains within a distance compatible with the

length of the cross-linker (7.7 Å) (electronic supplementary

material, figure S1b), followed by protease digestion and mass

spectrometry (XL-MS) [66]. The analysis revealed a very exten-

sive network of interactions between the Mis12 and Nnf1a or

Nnf1b subunits, extending all along their sequences (figure 2c;

electronic supplementary material, figure S1c). Both subunits

also become extensively cross-linked to the N-terminal

region of Kmn1Nsl1, extending approximately to residue 120.

However, residues 130–183 in the C-terminal region were

http://rsob.royalsocietypublishing.org/
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Figure 2. Biophysical analysis of the DmMis12 complexes. (a) Sedimentation velocity absorbance profiles of the DmMis12a and DmMis12b complexes, with residuals
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Table 1. Summary of sedimentation velocity experiments. All predicted molecular masses assumed each subunit was present in a single copy.

complexes frictional ratio
observed molecular
mass (kDa)

predicted molecular
mass (kDa) S (20,w)

Mis12:Nnf1a:Kmn1 1.7 64.5 64.9 3.4

Mis12:Nnf1b:Kmn1 1.7 67.1 66.2 3.4

Mis12:Nnf1a:Kmn1:Cenp-C1 – 105 1.9 76.4 76.8 3.4

Mis12:Nnf1b:Kmn1:Cenp-C1 – 105 1.9 75.6 78.0 3.4

Mis12:Nnf1a:Kmn1:Spc105R1707 – 1960 1.7 93.3 95.2 4.3

Mis12:Nnf1b:Kmn1:Spc105R1707 – 1960 1.6 95.7 96.4 4.8

Mis12:Nnf1b:Kmn1-Spc105R1707 – 1960-Cenp-C1 – 105 1.8 106.5 109.3 4.4
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required for a stable interaction of Kmn1Nsl1 with the rest of the

DmMis12a complex, because their deletion (Kmn1D130 – 183)

generated an unstable mutant that failed to be incorporated

in a complex with Nnf1a and Mis12 (figure 2d ). Large C-term-

inal deletions of Mis12 and Nnf1a also strongly reduced the

stability of the binary Mis12:Nnf1a complex (figure 2d; some

data not shown).
2.3. DmMis12-C interacts directly with CENP-C
CENP-C, a subunit of the CCAN complex, interacts directly

with the specialized CENP-A nucleosome in the centromere

chromatin underlying the kinetochore (see Introduction).

Comparison of the overall organization of CENP-C in

Drosophila melanogaster and in other metazoans reveals

http://rsob.royalsocietypublishing.org/
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remarkable differences (figure 3a). For instance, DmCENP-C

is approximately 500 residues longer than HsCENP-C [38].

Within its N-terminal half, DmCENP-C sequence contains

two regions, the arginine-rich (R-rich) domain and the droso-

philids CENP-C homology (DH) domain [38], that cannot be

detected in the human sequence. It also contains two pre-

dicted AT-hooks domain (AT1 and AT2), which may

mediate interactions with DNA [38]. The function of all

these domains unique to the Drosophila sequence is currently

unclear. In humans, a region of CENP-C also located in the

N-terminal half of the protein has been recently implicated

in binding to CCAN subunits such as CENP-H, CENP-I

and others (figure 3a) [46,49]. Thus, divergence in the

N-terminal region of CENP-C may reflect the specific evol-

utionary history of Drosophila that led to the loss of

other CCAN subunits. On the other hand, the C-terminal

region of DmCENP-C, containing a CENP-C motif impli-

cated in CENP-A binding and a dimerization domain

[38,67], is related to metazoans’ (figure 3a).

In previous studies, we and others demonstrated that

Mis12-C binds directly to CENP-C in Drosophila, budding

yeast and humans [19,20,28]. In humans, as little as approxi-

mately 20 residues at the N-terminus of CENP-C are

sufficient to generate a relatively tight binding interaction

with Mis12-C, whereas longer CENP-C segments bind

more tightly [19]. Similar conclusions emerged from studies

in S. cerevisiae [28]. An alignment of the N-terminal region

of CENP-C in drosophilids, yeasts and vertebrates failed to

reveal strictly conserved features, although a possible fuzzy

pattern consisting of a stretch of positive charges followed
by hydrophobic stretches might be envisioned (electronic

supplementary material, figure S2).

Because the domain of DmCENP-C interacting with

the Mis12 complex has not been mapped in detail, we tested

binding of the DmMis12a complex to a fusion protein of maltose

binding protein (MBP) with residues 9–180 of CENP-C (CENP-

C9–180) in an SEC experiment (figure 3b). A clear shift

in the elution pattern of both species was indicative of a tight

interaction. Essentially identical results were obtained with

DmMis12b complex (electronic supplementary material,

figure S3a). Residues 1–8 of DmCENP-C are not conserved in

other drosophilids, but conservation increases significantly

in regions immediately C-terminal to this non-conserved

region (electronic supplementary material, figure S2). Indeed,

larger N-terminal deletions (DmCENP-C36–180) prevented an

interaction with both the Mis12a and Mis12b complexes (elec-

tronic supplementary material, figures S3b,c), indicating that

residues 9–35 contain essential interaction determinants.

We then tested the effects of C-terminal deletions from the

DmCENP-C N-terminal region. A construct corresponding to

DmCENP-C1–105 (devoid of affinity tags) interacted with the

DmMis12a and DmMis12b complexes stoichiometrically

(figure 3c; electronic supplementary material, figure S3d), and

so did an even shorter deletion mutant, DmCENP-C9–71 (also

devoid of tags; electronic supplementary material,

figure S3e,f ). Collectively, these results demonstrate that the

Mis12 complex binds directly to the N-terminal region of

CENP-C in Drosophila, similarly to what was previously

observed in humans and yeast [19,28], and despite the very

modest sequence identity in the CENP-C N-terminal region
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across species. The DmMis12a:DmCENP-C1–105 complex was

monodisperse in SEC runs and sedimented essentially as a

single peak in sedimentation velocity experiments (figure 3d),

with a predicted molecular mass of 76.4 (table 1), indicating

that the Mis12a complex and CENP-C interact with 1 : 1 stoichi-

ometry. Essentially identical results were obtained with the

Mis12b:CENP-C complex (table 1 and electronic supplementary

material, figure S4a). XL–MS experiments confirmed an inter-

action of CENP-C1–105 with the Mis12 subunit, but also

identified additional potential contacts with Nnf1 and

Kmn1Nsl1 (figure 3e and electronic supplementary material,

figure S4b).

2.4. A CENP-C binding site on the Mis12 subunit of the
Mis12 complex

The determinants of the Mis12 complex required to interact with

CENP-C are unknown, although a requirement for the Nnf1 sub-

unit in vitro has been described [20]. In our attempts (until now

unsuccessful; data not shown) to crystallize the D. melanogaster
Mis12 complex, we generated a version of the Mis12a complex

in which the first 15 residues of the Mis12 subunit had been

deleted. Unexpectedly, the deletion mutant failed to bind

CENP-C1–105 (electronic supplementary material, figure S5a).

The sequence of the first 15 residues of the Mis12 subunit is

evolutionarily conserved (figure 4a). Because removal of this

region does not appear to be grossly detrimental to the stability

of the Mis12 complex, we tested the role of three conserved

phenylalanine (F) residues, F12, F13 and F15, in the inter-

action with CENP-C1–105. A DmMis12a complex containing

mutations F12D, F13D and F15D in the Mis12 subunit was

monodisperse, as judged by its SEC elution profile (figure 4b).

In agreement with a role of the N-terminal region of Mis12 in

CENP-C binding, the mutant was unable to interact with

CENP-C1–105 in a SEC co-elution experiment, indicating that

the mutations disrupt the interaction of Mis12 with CENP-C

(figure 4b). Essentially identical results were obtained with a

DmMis12b complex expressing mutations F12D, F13D and

F15D (electronic supplementary material, figure S5b). Thus,

our results implicate the N-terminal region of the Mis12 subunit

as a necessary determinant of the interaction of the Mis12

complex with CENP-C.

2.5. The interaction of the Mis12 complex with Spc105R
Another interesting difference between the KMN network in

D. melanogaster and other eukaryotes lies in the Knl1 complex.

One of the two subunits of the complex, Zwint, has not

been identified in D. melanogaster (figure 5a). Conversely,

DmSpc105RKnl1, related to the Knl1/CASC5 subunit, is shorter

than in humans. Previously, it has been shown that the

C-terminal region of human Knl1 contains two consecutive

RWD (RING finger, WD repeat, DEAD-like helicases) domains

preceded by a coiled-coil region. The latter mediates the inter-

action with Zwint, which is also a coiled-coil protein, whereas

the former mediate binding to the C-terminal region of the

Nsl1 subunit of the human Mis12 complex, homologous to

Kmn1 in D. melanogaster [6,24,27] (figure 5a).

None of these features is evident in DmSpc105RKnl1. First,

program COILS [68] only identifies a short sequence (residues

1850–1890) with (limited) potential for forming a coiled-coil,

instead of the approximately 200-residue coiled-coil domain

identified in the human protein. Second, there is no evidence
that the C-terminal region of DmSpc105RKnl1 might contain

RWD domains like the human counterpart Knl1/CASC5.

For instance, BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

searches with the last approximately 200 residues of

DmSpc105RKnl1 fail to detect homologous proteins beyond

drosophilids (not shown). Additionally, three-dimensional

modelling with the Phyre2 server [69] failed to identify struc-

tural homology of the C-terminal region of DmSpc105RKnl1

with structures deposited in the protein data bank, which

include several structures of RWD domains, including those

present in Knl1/CASC5 [24] (not shown). Nevertheless, sec-

ondary structure prediction servers, including JPRED4

(http://www.compbio.dundee.ac.uk/jpred/index_up.html)

and PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) [70,71],

identify a succession of secondary structure elements for

residues 1850–1960 of DmSpc105RKnl1 that is, in principle,

compatible with the presence of an RWD domain (data

not shown). Thus, the detailed structural organization of the

C-terminal region of DmSpc105RKnl1 remains uncertain.

Despite possible evolutionary changes, however, previous evi-

dence demonstrated that an approximately 600-residue

construct containing the C-terminal region of DmSpc105RKnl1

can interact with Kmn1Nsl1 in a yeast two-hybrid (Y2H) exper-

iment [17]. This suggests that the C-terminal regions of the

human and fly sequences are, if not evolutionary conserved,

at least functionally related.

To shed light on the interaction of DmSpc105RKnl1 with the

Mis12 complex, we co-expressed several recombinant segments

encompassing the C-terminal region of Spc105RKnl1 with the

Mis12a or Mis12b complexes. Constructs approximately

encompassing the predicted coiled-coil region (comprised in

the segment 1852–1889), including Spc105R1707–1882 and

Spc105R1707–1890, were insoluble. Constructs containing the

C-terminal region downstream from the predicted coiled-

coil, including Spc105R1887–1960, Spc105R1875–1960 and

Spc105R1890–1960, were insoluble. Finally, constructs containing

the predicted coiled-coil and the C-terminal region, including

Spc105R1847–1960 and Spc105R1810–1960, were also insoluble.

The only segment of Spc105RKnl1 that could be co-expressed

in a soluble form with the Mis12a and Mis12b complexes was

Spc105R1707–1960. In both cases, an apparently monodisperse

and stoichiometric complex formed (figure 5b,c), whose behav-

iour in AUC sedimentation velocity experiments predicted a

Mis12 complex:Spc105R1707–1890 stoichiometry of 1 : 1 (table 1;

electronic supplementary material, figure S6a,b). Both the

Mis12a:Spc105R1707–1890 and the Mis12b:Spc105R1707–1890

complexes further interacted with CENP-C1–105 in single

monodisperse complexes (figure 5b,c). In agreement with this

observation, AUC sedimentation velocity analysis of the

Mis12a:Spc1051707–1960:CENP-C1–105 complex revealed a

stable 1 : 1:1 assembly (table 1 and figure 5d).

2.6. Conclusion
Owing to the considerable array of interactions it mediates,

the Mis12 complex is viewed as a ‘hub’ of kinetochore assem-

bly and function. Biochemical reconstitution of the yeast and

human Mis12 complexes has shed considerable light on

their organization, revealing a conserved set of intra- and

intercomplex interactions [6,7,24,28,65]. A detailed, high-

resolution structural characterization of the Mis12 complex,

however, has been missing, possibly because of the inherent

flexibility of some of its domains.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.compbio.dundee.ac.uk/jpred/index_up.html
http://www.compbio.dundee.ac.uk/jpred/index_up.html
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
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Our work on the Drosophila Mis12 complex was motivated

by its considerable simplification in comparison with its

counterparts in other organisms, with one of the four subunits,

Dsn1, having apparently disappeared from the Drosophila
genome. Furthermore, because CCAN subunits are absent in

Drosophila (with the exception of CENP-C), it may be surmised

that the Drosophila Mis12 complex does not require stabilization

through additional protein–protein interactions at the kineto-

chore. By way of example, the yeast Mis12/MIND complex

was found to interact with the COMA complex, consisting of

the Ctf19, Okp1, Mcm21 and Ame1 subunits (and homologous

to CCAN subunits CENP-O, CENP-P, CENP-Q and CENP-U

of humans) [28], none of which is identified in Drosophila.
Similarly, the human Mis12 complex has been proposed to

interact with the CCAN subunit CENP-T [22,23,42]. The latter

additionally interacts with the Ndc80 complex, contributing

to its recruitment and to a general stabilization of the outer

kinetochore [7,21,42,72–76].

We identify two distinct Drosophila Mis12 complexes, con-

taining either the Nnf1a or the Nnf1b subunit. Our extensive

biochemical and biophysical analyses failed to reveal signifi-

cant differences in the behaviour of these complexes. In each

of the complexes, the Mis12 and Nnf1 subunits (a or b) form a

tight dimer and create the binding site for Kmn1Nsl1, which in

turn creates a binding site for Spc105RKnl1. Furthermore, both

complexes interact tightly with the N-terminal region of

http://rsob.royalsocietypublishing.org/
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CENP-C and with the C-terminal region of Spc105RKnl1,

suggesting that they have similar or indistinguishable inter-

action potentials. However, previous studies demonstrated

different developmental expression patterns for Nnf1a and

Nnf1b, suggesting the possibility of functional specialization

of the two complexes [34,63].

Despite considerable sequence divergence of the DmCENP-C

and DmSpc105Knl1 binding regions, the interactions theyentertain

with the Mis12 complex engage topologically equivalent regions

of their primary structure (near the N-terminus of CENP-C

and the C-terminus of Spc105RKnl1). Our mutational analysis

identifies the N-terminal region of the Mis12 subunit as a primary

determinant of CENP-C binding. An overall conclusion emerg-

ing from these studies, therefore, is that kinetochores display

considerable evolutionaryand structural plasticity. How this plas-

ticity can be accommodated in the structure of the Mis12 complex

remains unclear, and our future work will aim to address this

urgent question by direct structural analysis.
3. Methods
3.1. cDNAs and DNA constructs
The cDNA for DmSpc1051707–1960 was amplified by the poly-

merase chain reaction (PCR) from the pOT2 vector containing

the full-length DmSpc105RKnl1 sequence (isoform A; a generous

gift of Christian Lehner’s Lab in University of Zurich) and

subcloned into the fourth cassette of pST44 [64]. Optimized
(for E. coli) coding sequences for DmMis12, DmNnf1a,

DmNnf1b, DmKmn1 and full-length DmCenp-C were obtained

from GeneArt. DmCenp-C fragments were amplified by PCR

and subcloned into the pETDuet-MBP8His, a modified version

of pETDuet vector (Novagen) generated in house. Sequences

encoding variant versions of the DmMis12 complexes were

generated in the pST44 system using standard restriction

enzyme-based cloning procedures. The QuikChange mutagen-

esis kit (Agilent Technologies) was used to generate all mutant

versions of the plasmids.

3.2. Protein expression and purification Escherichia coli
BL21(DE3) Rosetta cells were used to express all recombinant

proteins. Cells were grown in Terrific broth at 378C to an

OD600 of about 0.8. Protein expression was induced by addition

of 0.1 mM IPTG at 208C, and cells were incubated overnight.

Cell pellets were resuspended in binding buffer (20 mM Tris/

HCl pH 8.0, 300 mM NaCl, 5% (v/v) glycerol, 1 mM EDTA,

1 mM TCEP), lysed by sonication and cleared by centrifugation

at 10 000g for 30 min. The cleared lysate was purified through

a succession of His-Trap HP, HP ResourceQ and Superdex

200 10/300 columns (GE Healthcare).

3.3. Analytical size-exclusion chromatography
Analytical size-exclusion chromatography experiments were

performed on calibrated Superdex200 5/150 column (GE

http://rsob.royalsocietypublishing.org/
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Healthcare). All samples were eluted under isocratic conditions

at 48C in size-exclusion chromatography buffer (20 mM Tris,

150 mM NaCl, 1 mM TCEP) at a flow rate of 0.2 ml min21.

Elution of proteins was monitored at 280 nm. The loading

volume for each injection was 50 ml. In order to detect complex

formation, proteins were mixed at 1 : 1 (molar ratio) and incu-

bated for 2 h on ice. SDS–PAGE, followed by Coomassie

staining, was used to detect proteins.

3.4. Negative-stain electron microscopy
The Mis12 complex was diluted to 15 nM for EM grid prep-

aration. About 4 ml of protein sample was adsorbed onto

glow-discharged carbon-coated grids for 1 min at 258C, prior

to negative staining with 0.07% uranyl formate (SPI supplies/

Structure Probe). Samples were imaged with a JEOL1400 micro-

scope equipped with a LaB6 cathode operating at 120 kV.

Images were recorded at low-dose conditions at a magnification

of 67 200 on a 4 � 4 k charge-coupled device (CCD) camera

(TVIPS GmbH).

3.5. Sedimentation velocity analytical
ultracentrifugation

Sedimentation velocity experiments were performed in an

Optima XL-A analytical ultracentrifuge (Beckman Coulter,

Palo Alto, CA) with Epon charcoal-filled double-sector quartz

cells and an An-60 Ti rotor (Beckman Coulter). Samples were

dialysed against buffer (20 mM Tris pH 8, 0.15 M NaCl and

1 mM TCEP) that was used as a reference. Samples were centri-

fuged at 42 000 rpm at 208C, and 500 radial absorbance scans at

280 nm were collected with a time interval of 1 min. The data

were analysed using the SEDFIT software [77] in terms of
continuous distribution function of sedimentation coefficients

(c(S)). The protein partial specific volume was estimated from

the amino acid sequence using the program SEDNTERP. Data

were plotted using the program GUSSI.

3.6. Cross-linking/mass spectrometry
About 0.8 mg ml21 DmMis12a was mixed with 0.6 mM BS2G-

H6/D6 (Creative Molecules, www.creativemolecules.com) in a

final volume of 50 ml. After incubation for 30 min at 378C, the

reaction was quenched by adding 100 mM ammonium bicar-

bonate and incubating 15 min at 378C. Cross-linked proteins

were digested, and the cross-linked peptides were enriched

and analysed by liquid chromatography coupled to tandem

mass spectrometry using a hybrid LTQ-Orbitrap Elite

instrument (Thermo Fisher Scientific, Waltham, MA) [66].

Cross-links were identified by the dedicated software xQUEST

[78]. False discovery rates (FDRs) were estimated using

xPROPHET [78], and results were filtered according to the follow-

ing parameters: FDR , 0.05, min delta score ¼ 0.90, MS1

tolerance window of 24 to 4 ppm, Id-score . 22. Cross-links

were visualized using the xVis web server [79].
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