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Abstract The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and

core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal

defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in

complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the

effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal

structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way,

suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative

RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism

of Pur-alpha’s unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the

importance of a highly conserved phenylalanine for Pur-alpha’s unwinding and neuroprotective

function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to

understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases.

DOI: 10.7554/eLife.11297.001

Introduction
Purine-rich element-binding protein A (Pur-alpha) plays a crucial role in postnatal brain development.

Pur-alpha-deficient mice appear normal at birth but develop severe neurological abnormalities after

2 weeks and die shortly after birth (Hokkanen et al., 2012; Khalili et al., 2003). These mice show

fewer cells in the brain cortex, hippocampus, and cerebellum as a consequence of decreased prolif-

eration of the precursor cells. Further studies indicated that Pur-alpha co-localizes with Staufen and

FMRP and that Pur-alpha (-/-) mice display dendritic mislocalization of both proteins (Johnson et al.,

2006). In support of its important neuronal function, point mutations in the human Pur-alpha gene

have been found to cause the so-called 5q31.3 microdeletion syndrome, which is characterized by

neonatal hypotonia, encephalopathy, and severe developmental delay (Lalani et al., 2014;

Hunt et al., 2014; Tanaka et al., 2015).

Pur-alpha is an ubiquitously expressed, multifunctional protein that binds to both DNA and RNA

and is known to regulate replication, transcription, and translation (Johnson et al., 2013). It has

been shown that Pur-alpha binds to single- and double-stranded nucleic acids that contain GGN
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motifs. Such regions are found at origins of DNA replication and enhancers of TATA-box lacking

genes, such as c-myc or the myelin-basic protein, which Pur-alpha regulates. Pur-alpha has also been

routinely purified from cytoplasmic kinesin-containing ribonucleoprotein particles (RNPs)

(Kanai et al., 2004; Ohashi et al., 2000), further supporting its role in mRNA localization and show-

ing that Pur-alpha is a core factor in localizing mRNPs.

Besides its ability to bind RNA and DNA, Pur-alpha possesses dsDNA-destabilizing activity in an

ATP-independent fashion (Darbinian et al., 2001). This function has been suggested as important

for DNA replication and transcription regulation. It was postulated that Pur-alpha, being a transcrip-

tion activator, contacts the purine-rich strand of promoter regions and displaces the pyrimidine-rich

strand, which would allow the binding of other proteins and activation of transcription

(Darbinian et al., 2001; Wortman et al., 2005). The role of Pur-alpha-dependent unwinding activity

in RNA localization and in RNA-based neuropathological disorders is currently unknown.

One particularly interesting interaction partner of Pur-alpha is the RNA helicase Rm62, the Dro-

sophila ortholog of p68. It is implicated in transcriptional regulation, pre-mRNA splicing, RNA inter-

ference, and nucleo-cytoplasmic shuttling (Qurashi et al., 2011). Thus, their joint function could be

the initial unwinding of short dsRNA regions by Pur-alpha followed by helicase-dependent melting

of larger regions for the regulation of RNA processing, translational control, and transport.

Nucleic acid-binding of Pur-alpha is mediated by three central PUR repeats (Graebsch et al.,

2010; Graebsch et al., 2009), which are N-terminally flanked by unstructured, glycine-rich sequen-

ces and C-terminally by glutamine- and glutamate-rich regions (Figure 1A; Johnson et al., 2013). In

the recently published crystal structure of Pur-alpha each of both PUR repeats I and II consist of a

four-stranded antiparallel beta-sheet, followed by a single alpha-helix (Graebsch et al., 2009).

Repeat I and II fold into an intramolecular dimer that serves as a DNA-/RNA-binding domain. The

third repeat leads to intermolecular dimerization (Figure 1A; Graebsch et al., 2009). Despite these

eLife digest Some proteins perform several different tasks inside cells. This is the case for a

protein called Pur-alpha, which is essential for neurons to work correctly. For example, Pur-alpha can

bind to DNA to regulate gene activity. It also binds to RNA molecules, which are copies of a gene,

and helps to distribute them within the neuron. In humans, there are several neurodegenerative

diseases in which Pur-alpha is involved. One example is the Fragile X-associated Tremor/Ataxia

Syndrome (FXTAS), which causes memory and movement problems.

Experiments with isolated proteins and double-stranded DNA show that Pur-alpha is able to

separate the two DNA strands. But it was not clear how this DNA unwinding occurs, and the

biological significance of this activity was unknown. Other questions also remained unanswered: how

does Pur-alpha recognize DNA and RNA? Does the loss of Pur-alpha’s binding to DNA and RNA

contribute to neurodegenerative diseases?

To address these questions, Weber et al. obtained Pur-alpha from the fruit fly and crystallized the

protein bound to DNA. A technique called X-ray crystallography was then used to determine the

three-dimensional structure of the Pur-alpha/DNA complex in fine enough detail to work out the

position of individual atoms.

Based on this structure, Weber et al. could introduce mutations that alter the DNA- and RNA-

binding region of the protein to investigate the binding mechanism. The crystal structure and

experiments with normal and mutant Pur-alpha protein revealed how it unwinds double-stranded

DNA: binding of Pur-alpha to DNA causes a strong twist of the DNA molecule, which contributes to

separating the strands. Further experiments in fruit flies revealed that both the DNA-unwinding

activity and the ability of Pur-alpha to bind DNA/RNA are needed for the protein to work correctly

in neurons.

Because Pur-alpha is involved in a range of different processes inside cells, a future goal is to

identify the DNA and RNA sequences it specifically binds to. This information, together with the

insights gained from Weber et al.’s study, should advance our understanding of why Pur-alpha is

essential for maintaining neurons.

DOI: 10.7554/eLife.11297.002
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Figure 1. Pur-alpha uses similar binding modes for DNA and RNA. (A) Schematic representation of the Drosophila Pur-alpha protein, comprising 274

amino acids. Cartoon shows PUR repeat I (green) and II (blue), forming the intramolecular DNA-/RNA-binding PUR domain, and PUR repeat III (grey)

mediating dimerization. The N-terminal unstructured, glycine-rich region and the C-terminal glutamine-/glutamate-rich region are indicated by Gly and

Gln/Glu, respectively. Numbers indicate amino-acid positions of domain boundaries. (B, C) Radioactive EMSA with Drosophila Pur-alpha repeat I-II. (B)

Pur-alpha repeat I-II binds to MF0677 ssDNA (left) and ssRNA (right) with similar affinities. (C) Pur-alpha repeat I-II binds to CGG-repeat ssDNA (left)

and RNA (right) also with similar affinity, but less strong than to the MF0677 sequence. Open arrowheads indicate free and filled arrowheads indicate

protein-bound DNA/RNA oligonucleotides. (D) Fluorescence-polarization experiments with full-length Pur-alpha and nucleic acids. The full-length

protein shows a twofold stronger binding to MF0677 ssRNA when compared to MF0677 ssDNA. (E) Binding of unlabeled GCGGA ssDNA and ssRNA to
15N-labeled Pur-alpha repeat I-II (50 mM) followed by NMR spectroscopy. (Left) Overlay of 1H,15N HSQC NMR spectra of free (black), DNA-bound (red,

1:1 ratio) and RNA-bound (cyan, 1:1 ratio) protein, respectively. (Right) Close-up on the dashed area with the same color code.

DOI: 10.7554/eLife.11297.003

The following figure supplements are available for figure 1:

Figure supplement 1. Purification and quality control of Drosophila Pur-alpha protein derivatives used in this study.

Figure 1 continued on next page
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insights, it remains unclear how Pur-alpha interacts with its nucleic-acid targets to mediate its cellular

functions. Furthermore, the mechanistic basis and physiological importance of its unwinding activity

remains unresolved.

Pur-alpha has been implicated in two so-called RNA repeat-expansion diseases, which have been

the focus of a number of recent studies. The first one contains expansions in the well-studied fmr1

gene. Individuals with 55 to 200 CGG repeats, termed pre-mutation, develop the neurodegenerative

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) (Hagerman et al., 2001), whereas healthy

individuals have less than 54 trinucleotide CGG repeats in their 5’-UTR region (Oostra and Willem-

sen, 2009). It is generally accepted that expression of FMR1 mRNA with abnormal trinucleotide-

repeat expansions are the main cause of FXTAS. The second Pur-alpha related disease is caused by

repeat expansions of G4C2-hexanucleotides in the first intron of the c9orf72 transcript. These repeat

expansions are considered as the most common genetic abnormality in amyotrophic lateral sclerosis

(ALS) and familial frontotemporal lobal degeneration (FTLD) (Stepto et al., 2014). The diseases

associated with both types of repeat expansions are accompanied by the formation of repeat RNA-

containing protein inclusions (Sareen et al., 2013; Stepto et al., 2014,; Xu et al., 2013), suggesting

sequestration of proteins as potential mechanism of pathology. Pur-alpha is incorporated into the

inclusions of both types of disease and associates directly with the repeat RNAs (Jin et al., 2007,;

Xu et al., 2013; Rossi et al., 2015). In fly and mouse models, the overexpression of Pur-alpha can

overcome repeat-dependent neurodegeneration of both diseases (Jin et al., 2007,; Xu et al.,

2013), suggesting a direct contribution of Pur-alpha to neuropathology.

Expression of 95 CGG repeats in human neuroblastoma-derived SK-N-MC cells not only induced

the formation of nuclear inclusions but also impairs the architecture of the nuclear laminar and acti-

vates DNA repair-associated histone variants (Hoem et al., 2011). The expression of G4C2-repeat

expansions cause nuclear trafficking defects, which contribute to neurotoxicity in ALS/FTLD

(Freibaum et al., 2015; Jovicic et al., 2015; Zhang et al., 2015). Recent studies also showed that

repeat-associated non-AUG (RAN) translation occurs from CGG- as well as from G4C2-repeat RNAs

and that the resulting proteins can form cytoplasmic aggregates, potentially contributing to pathol-

ogy (Mori et al., 2013; Todd et al., 2013). It is likely that a combination of RNA toxicity and RAN-

derived protein aggregates contribute to the full manifestation of FXTAS.

Here, we used NMR chemical shift titrations together with in vitro-binding assays to demonstrate

that the nucleic acid-binding domain of Pur-alpha binds RNA and DNA in the same manner. We

present the co-crystal structure of Pur-alpha with a CGG trinucleotide-repeat DNA, providing a

detailed structural explanation for nucleotide recognition. Pur-alpha interacts with this single-

stranded DNA fragment in a sequence-specific manner with guanines and additional contacts to the

phosphordiester backbone. The observed binding mode of Pur-alpha also explains its interaction

with G4C2-hexanucleotide repeats. Mutational analyses as well as determination of the complex stoi-

chiometry confirm that the DNA-/RNA-binding domain of Pur-alpha has two nucleic acid-binding

sites. The structure also revealed that a highly conserved phenylalanine causes disruption of the nor-

mal base stacking and leads to a strong torsion of the DNA strand, which plays a central role in Pur-

alpha’s dsDNA-unwinding activity. In vivo analyses of mutant proteins reveal that nucleic-acid bind-

ing and unwinding studied in vitro are both essential for Pur-alpha’s function in vivo. This information

together with the crystal structure of its C-terminal dimerization domain allows us to propose a

mechanism of how full-length Pur-alpha binds and unwinds dsDNA regions.

Figure 1 continued

DOI: 10.7554/eLife.11297.004

Figure supplement 2. 1H,15N HSQC NMR spectra showing NMR titrations of 15N-labeled Pur-alpha repeat I-II (50 mM) with increasing amounts of

unlabeled GCGGA ssDNA and RNA, respectively.

DOI: 10.7554/eLife.11297.005
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Results

Pur-alpha binds RNA and DNA with similar affinities
In order to assess if Pur-alpha has a binding preference for ssDNA or ssRNA, we performed electro-

phoretic mobility shift assays (EMSA) with the nucleic acid-binding domain of Drosophila Pur-alpha,

consisting of repeats I-II (PUR repeat I-II; Figure 1A; Figure 1—figure supplement 1A, B) and radio-

labeled DNA or RNA oligonucleotides (24 nt) of identical sequence. The MF0677 sequence was cho-

sen as a physiological Pur-alpha target found upstream of the human c-myc gene (Haas et al., 1993;

Haas et al., 1995). In addition, we used a CGG-repeat sequence because Pur-alpha binds to these

repeats in the 5’UTR of the FMR1 mRNA upon incorporation into FXTAS inclusions (Jin et al., 2007;

Sofola et al., 2007). In these EMSA, the affinity for the physiological Pur-alpha target MF0677 is

much higher (KD ~200 nM) than for the disease-related CGG-repeat sequence (KD ~2 mM)

(Figure 1B,C; KD estimated from EMSA). However, the binding affinities for ssDNA and ssRNA of

the same sequence showed no major differences.

Since full-length Pur-alpha contains a third PUR repeat, which mediates its dimerization, and addi-

tional N- and C-terminal sequences (Figure 1A), we also compared DNA and RNA binding of full-

length Pur-alpha (Figure 1—figure supplement 1E). For quantification of the nucleic acid-binding

affinity, we performed fluorescence-polarization experiments. Full-length Pur-alpha showed a two-

fold preference in binding to MF0677 ssRNA (KD = 0.7 mM) over MF0677 ssDNA (KD = 1.4 mM;

Figure 1D). Thus, sequences outside PUR repeats I-II seem to moderately affect nucleic-acid

binding.

NMR titration experiments reveal indistinguishable modes of RNA and
DNA binding
For a more comprehensive, residue-resolved comparison of ssDNA and ssRNA binding, we per-

formed NMR chemical shift titration experiments with 15N-labeled Drosophila Pur-alpha repeat I-II

(Figure 1—figure supplement 1C) and short unlabeled GCGGA (5 nt) DNA and RNA fragments.

The 1H,15N HSQC NMR spectrum of Pur-alpha alone shows well separated cross peaks (Figure 1E;

Figure 1—figure supplement 2A, B), indicating that the protein is correctly folded. Addition of

either ssDNA or ssRNA resulted in almost identical, well-localized chemical shift perturbations of

backbone and sidechain amide protons (Figure 1E; Figure 1—figure supplement 2A, B). Most

NMR signals of residues involved in binding disappeared upon addition of DNA/RNA, thus pointing

toward an intermediate exchange regime, which is characteristic for binding affinities in the high

nanomolar to micromolar range. In summary, the NMR titration experiments indicate identical bind-

ing modes of PUR repeat I-II for ssDNA and for ssRNA involving the same residues in both cases.

Crystal structure of Pur-alpha repeat I-II in complex with CGG-repeat
DNA
In order to obtain high-resolution structural information of Pur-alpha binding to nucleic acids, we

performed co-crystallization experiments of Pur-alpha repeat I-II with either CGG-repeat DNA or

RNA. Crystals of Pur-alpha repeat I-II with a GCGGCGG trinucleotide-repeat ssDNA diffracted to a

resolution of 2.0 Å. The structure was solved by molecular replacement and refined to Rwork and Rfree

of 16.3% and 21.5%, respectively (Table 1).

The DNA-bound protein shows the typical intramolecular dimer with two PUR repeats tightly

intertwined with each other, forming a globular PUR domain (Figure 2A; Video 1; Figure 2—figure

supplement 1A; Graebsch et al., 2009). Each PUR repeat consists of a N-terminal four-stranded

antiparallel beta sheet followed by an alpha helix. A superposition of the previously published Pur-

alpha repeat I-II apo-structure (PDB ID 3K44) (Graebsch et al., 2009) with the structure of the pro-

tein-DNA co-complex showed only a root-mean-square deviation (RMSD) of atomic positions of

1.14 Å (Figure 2—figure supplement 1B). When a flexible loop region from residues L107 to K120

was excluded, the RMSD improved to 0.83 Å. Thus, no major conformational changes occur in the

PUR domain upon nucleic-acid binding, which is consistent with the results obtained from NMR

chemical shift titrations.
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Pur-alpha repeat I-II has two binding sites for DNA
In the crystal structure, the DNA molecule 1 (DNA 1) is clamped between residues of PUR repeat I

and II (Figure 2A, B; Video 1). PUR repeat II binds DNA 1 with the residue K138 of its b-sheet, and

residues N140 and R142 of the short linker (Figure 2B, C), whereas PUR repeat I contacts the DNA

1 via residues Q52, S53, and K54 in its short linker (Figure 2B, D). Pur-alpha mainly binds to stacking

guanine bases, but also to one of the cytosines (C5) and to the sugar phosphate backbone

(Figure 2B).

Within the crystal lattice the first two bases (G1 and C2) of the 5’-end of DNA 1 are base pairing

with the 5’-end of the symmetry related DNA molecule (DNA 1’; Figure 2—figure supplement 2).

The cytosine C5 in the middle of the DNA 1 strand is twisted and does not stack with the

Table 1. Data collection/processing and refinement statistics (molecular replacement) for the two crystal structures of Drosophila Pur-

alpha repeat I-II/DNA co-complex and Pur-alpha repeat III alone.

Pur-alpha repeat I-II/DNA Pur-alpha repeat III

Data collection/processing

PDB ID
Beamline
Wavelength (Å)
Detector Distance (mm)
Number of images
Oscillation range (˚)
Space group

5FGP
ESRF ID23-2
0.8726
265.433
144
2.5
P21212

5FGO
ESRF ID14-1
0.9334
261.345
180
1.0
P 1 21 1

Cell dimensions

a, b, c (Å) 81.9, 40.2, 48.8 61.5, 55.5, 67.8

a, b, g (˚) 90.0, 90.0, 90.0 90.0, 95.7, 90.0

Resolution (Å) 50.0-2.0 (2.05-2.0) 50-2.6 (2.67-2.6)

Rsym or Rmerge 12.5 (79.3) 11.1 (68.0)

I / sI 18.85 (2.61) 10.4 (1.97)

Completeness (%) 99.4 (94.3) 96.5 (98.4)

Redundancy 13.1 (7.6) 1.9 (1.9)

Refinement

Resolution (Å) 41.9-2.0 47.7-2.6

No. reflections 11,349 14,001

Rwork / Rfree 16.3 / 21.5 20.6 / 28.9

No. atoms

Protein 1207 3144

Ligand/ion 145 -

Water 126 112

B-factors

Protein 24.8 12.5

Ligand 30.4 -

Water 35.2 9.55

R.m.s. deviations

Bond lengths (Å) 0.01 0.01

Bond angles (˚) 1.25 1.36

Ramanchandran plot
Allowed (%)
Additionally allowed (%)
Disallowed (%)

96.0
3.3
0.7

93.0
6.5
0.5

Values in parentheses are for highest-resolution shell.
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Figure 2. Crystal structure of Drosophila Pur-alpha repeat I-II in complex with the GCGGCGG ssDNA reveals that one molecule of Pur-alpha repeat I-II

can bind two molecules of ssDNA. (A) Cartoon representation of the backbone model of the DNA-/RNA-binding domain formed by PUR repeat I

(green) and II (blue) in complex with two DNA molecules (pink). Important protein residues involved in DNA interactions are depicted in red with side

chains. (B) Schematic representation of Pur-alpha interaction with DNA molecules 1 and 2. Both PUR repeats are involved in DNA binding. Pur-alpha

mainly binds to guanine bases, but also to one cytosine and the sugar phosphate backbone. (C–F) Detail of the protein-DNA interaction sites. (G)

Nitrocellulose filter (top) from binding assays showing the titration of Pur-alpha repeat I-II to a constant amount of MF0677 ssDNA. The measured

intensities from the filters were quantified. The graph (bottom) shows intensities from one representative binding assay, with the concentration of

saturation marked with a dashed line. Three independent filter-binding assays yielded a mean saturation of 1 : 0.58 ± 0.1 mM (ssDNA : Pur-alpha repeat

I-II).

DOI: 10.7554/eLife.11297.007

The following figure supplements are available for figure 2:

Figure supplement 1. Analysis of the structural model of Drosophila Pur-alpha repeat I-II in complex with DNA.

DOI: 10.7554/eLife.11297.008

Figure 2 continued on next page
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neighboring guanines (Figure 2E). Instead, F145 from the b-sheet of PUR repeat II stacks with the

neighboring guanine G4 and thereby blocks the space for the cytosine C5 (Figure 2E, Video 1).

In the crystal structure, an additional DNA-binding event was observed for PUR repeat I. The resi-

dues Y57, D59, K61, K70, and R80 of the b-sheet interact with the 3’-end of the second DNA mole-

cule (DNA 2) (Figure 2B, F; Video 1). This interface is similar but not identical to the DNA 1-binding

site on PUR repeat II. The three DNA-contacting amino acids K138, N140, and R142 of PUR repeat II

are also found in corresponding positions of PUR repeat I (Figure 2—figure supplement 3). How-

ever, in PUR repeat I only K61 but not N63 or R65 contact the DNA 2 molecule. Thus, although there

is a conservation of DNA-contacting residues on both PUR repeats, in the crystal structure their

modes of binding are not identical. This observation hints toward a potentially asymmetric binding

of nucleic acids on both protein surfaces of Pur-alpha I-II.

To test if Pur-alpha also interacts with two DNA oligonucleotides in solution, we performed filter-

binding assays with Pur-alpha repeat I-II and MF0677 ssDNA (24 nt). Pur-alpha repeat I-II was titrated

at near-stoichiometric concentrations to a constant amount (1 mM) of radiolabeled DNA and blotted

onto a nitrocellulose membrane (Figure 2G). Plots of the signal intensities against the protein con-

centrations yielded a mean saturation at 0.58 ± 0.1 mM (n=3) of Pur-alpha (Figure 2G). This indicates

a stoichiometric ratio of 1:2 (protein:DNA) and confirms that like in the crystal structure (Figure 2A)

Pur-alpha repeat I-II binds two molecules of ssDNA in solution.

Conserved surface patches in Pur-alpha repeat I-II contribute to DNA
and RNA binding
All amino acids involved in DNA binding within the crystal structure (Figure 2B) are conserved

(Figure 2—figure supplement 4A). To assess the importance of these contacts in solution, we

generated structure-guided mutations and tested their effect on DNA/RNA binding. The binding

motif consisting of K138, N140, R142, and F145 on PUR repeat II (KNR II and F II, respectively) is

also found on PUR repeat I (K61, N63, R65, and F68; KNR I and F I, respectively). Hence, these

residues were replaced by alanines and tested for nucleic acid-binding in vitro. For the QSK I –

KNR II mutant the residues Q52, S53, K54, were replaced by glycine and the residues K138, N140,

R142 by alanines, since a pure alanine mutant

tended to aggregate. Correct folding of all

generated Pur-alpha mutants was verified by

circular dichroism (CD) spectroscopy (Figure 1—

figure supplement 1B).

First, radioactive EMSA were performed with

CGG-repeat and MF0677 DNA/RNA oligomers

(24 nt). Except for Pur-alpha mutant F I, all other

mutants showed decreased binding to DNA and

RNA oligonucleotides with both motifs

(Figure 3A–E, G; Figure 3—figure supplement

1A–E). In order to quantify these interactions,

we performed fluorescence-polarization experi-

ments with fluorescein-labeled MF0677 DNA

and different variants of Pur-alpha. The effects

observed in EMSA of mutations in Pur-alpha I-II

were confirmed by these experiments

(Figure 3H; Figure 3—figure supplement 2).

Figure 2 continued

Figure supplement 2. Within the crystal structure the protein-bound DNA anneals with another symmetry-related DNA molecule.

DOI: 10.7554/eLife.11297.009

Figure supplement 3. The DNA-binding site consisting of K138, N140, and R142 (KNR II) on PUR repeat II has its equivalent at the positions K61, N63,

and R65 on PUR repeat I (KNR I).

DOI: 10.7554/eLife.11297.010

Figure supplement 4. Amino acid sequence alignment of Pur-alpha.

DOI: 10.7554/eLife.11297.011

Video 1. Movie of the crystal structure of Drosophila

Pur-alpha repeat I-II in complex with the GCGGCGG

ssDNA. Color-coding as in Figure 2A. Movie relates to

Figure 2A.

DOI: 10.7554/eLife.11297.012
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Figure 3. Mutations in Pur-alpha repeat I-II decrease nucleic-acid binding and dsDNA unwinding. (A–E) Radioactive EMSA with wild-type and mutant

Pur-alpha repeat I-II. All mutants show a decrease in binding affinity, except for the F I mutant in C. Open arrowheads indicate free and filled

arrowheads indicate protein-bound DNA/RNA oligonucleotides. (F) Unwinding assays with wild-type and mutant Pur-alpha repeat I-II. Protein was

titrated to a dsDNA substrate containing a GGN motif. Pur-alpha repeat I-II is able to separate the DNA strands, whereas mutations in both repeats

(QSK I – KNR II) (top) and the F II mutation (bottom) abolish the unwinding activity. (G) Summary of the results of all EMSA and unwinding experiments

of Pur-alpha derivatives and mutants. Original data are shown in Figure 3A–F and Figure 3—figure supplement 1. (H) Summary of the results of

fluorescence-polarization experiments of Pur-alpha derivatives and mutants with MF0677 ssDNA. Original data are shown in Figure 3—figure

supplement 2.

DOI: 10.7554/eLife.11297.013

The following figure supplements are available for figure 3:

Figure supplement 1. Drosophila Pur-alpha repeat I-II mutants show decreased binding affinity to DNA and RNA and decreased dsDNA-unwinding

activity.

Figure 3 continued on next page
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Of note, mutations in PUR repeat I (KNR I, F I) had less severe effects on DNA binding than muta-

tions in repeat II (KNR II, F II).

Phenylalanine F145 is required for unwinding activity
A large portion of the ssDNA 1 strand in the co-complex is stabilized in its conformation by aromatic

stacking of G1, C2, G3, G4 and G6, G7 (Figure 2C–F). F145 of Pur-alpha shows particularly unusual

characteristics by undergoing aromatic stacking with G4 (Figure 2E). This protein-DNA interaction

blocks additional DNA-base stacking events and forces the DNA to flip out its cytosine base (C5),

leading to a strong twist of the DNA 1 strand.

It was previously reported that Pur-alpha unwinds short stretches of dsDNA in an ATP-indepen-

dent manner (Darbinian et al., 2001). However, the molecular basis of this function has not been

understood to date. Since the sequence-specific interactions of Pur-alpha with DNA and the aro-

matic stacking of DNA with F145 seem incompatible with binding to dsDNA, we wondered which

interactions are of foremost importance for the unwinding of dsDNA. Using a previously described

unwinding assay (Darbinian et al., 2001), we compared ATP-independent unwinding activity of

wild-type and mutant Pur-alpha repeat I-II on a dsDNA substrate.

When the main binding sites on PUR repeat I and II were mutated (QSK I – KNR II) unwinding was

abolished (Figure 3F, G), most likely due to impaired DNA binding (Figure 3D, G; Figure 3—figure

supplement 1A). In contrast, mutation of F145 (F II) abolished the unwinding activity without a com-

plete loss of DNA binding (Figure 3E–G; Figure 3—figure supplement 1E). All other mutations

showed reduced DNA binding (Figure 3A–C, G; Figure 3—figure supplement 1B–D) and only

decreased unwinding (Figure 3—figure supplement 1F). Together these observations suggest that

the heterotypic stacking of DNA-bases with F145 in PUR repeat II stabilizes the single-stranded con-

formation of DNA and enforces a twist of the bases that is important for its unwinding activity.

Structure of PUR repeat III reveals a distinct function
To understand the role of the third repeat of Pur-alpha (Figure 1A; Figure 1—figure supplement

1D) for DNA/RNA binding, we determined its crystal structure. Initial datasets were obtained from

native crystals at 2.7 Å resolution, from which electron-density maps were calculated by molecular

replacement with the apo-structures of Pur-alpha from Borrelia and Drosophila as search templates

(PDB-IDs: 3NM7 and 3K44, respectively). The final structure model was obtained in the same way

from selenomethionine-derivatized crystals at 2.6 Å resolution (Table 1; Figure 4A; Figure 4—fig-

ure supplement 1). The structure consisting of two repeat III molecules shows the same overall fold

as repeat I-II with an RMSD of 1.5 Å, and only few differences in the amino acid composition of its

putative nucleic-acid-binding surface (Figure 4A; Figure 2—figure supplement 4B).

PUR repeat III was previously suggested to mainly mediate dimerization of Pur-alpha

(Graebsch et al., 2009). However to date, no binding of PUR repeat III to nucleic acids has been

measured. We therefore performed EMSA and observed that Pur-alpha repeat III bound with weaker

affinities to CGG repeats and to MF0677 than Pur-alpha repeat I-II (Figures 3G and 4B). Also in fluo-

rescence-polarization experiments, PUR repeat III bound MF0677 ssDNA over 30-times weaker than

PUR repeat I-II (Figure 3H; Figure 3—figure supplement 2). The main DNA/RNA interactions of

full-length Pur-alpha might therefore occur via the first two PUR repeats.

Although Pur-alpha repeat III does not have a phenylalanine in the corresponding position of

F145 of PUR repeat II, it also contains a conserved aromatic residue (Y219), which could potentially

undergo stacking with DNA bases and support dsDNA unwinding (Figure 2—figure supplement

4B). However, in unwinding assays almost no activity was observed for PUR repeat III (Figures 3G

and 4C). These observations confirm that PUR repeats I-II mediate the main nucleic-acid-binding and

unwinding activities and suggest that repeat III might predominantly mediate dimerization.

Figure 3 continued

DOI: 10.7554/eLife.11297.014

Figure supplement 2. Fluorescence-polarization measurements with wild type or various mutants of Pur-alpha I-II and MF0677 ssDNA.

DOI: 10.7554/eLife.11297.015
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Neuroprotection by Pur-alpha in FXTAS model requires its nucleic-acid-
binding and unwinding activities
To assess the physiologic relevance of our in vitro findings, we relied on a previously reported Dro-

sophila model. Overexpression of CGG-repeat RNA in the Drosophila eye induces neuronal degen-

eration and as a consequence the rough eye phenotype (compare Figure 5A with 5B; Jin et al.,

2003). Overexpression of Pur-alpha can rescue the eye phenotype in a dose-dependent manner,

suggesting that this protein is sequestered into the inclusions (Jin et al., 2007). We compared the

Figure 4. Crystal structure of PUR repeat III and assessment of its weak nucleic-acid-binding and unwinding activity. (A) Crystal structure of Drosophila

Pur-alpha repeat III. Two molecules (one depicted in brown, the other in yellow) of repeat III form a dimer with intertwined a-helices, very similar to Pur-

alpha repeat I-II. (B) Radioactive EMSA with PUR repeat III and the MF0677 DNA/RNA (top) and the CGG DNA/RNA oligonucleotides (bottom). Repeat

III shows only weak binding affinity to each of both sequences, regardless of whether they consist of DNA or RNA. Open arrowheads indicate free and

filled arrowheads indicate protein-bound DNA/RNA oligonucleotides. (C) Pur-alpha repeat III shows only weak dsDNA-unwinding activity compared to

PUR repeat I-II.

DOI: 10.7554/eLife.11297.016

The following figure supplement is available for figure 4:

Figure supplement 1. Analysis of the structural model of Drosophila Pur-alpha repeat III.

DOI: 10.7554/eLife.11297.017
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rescue by wild-type Pur-alpha with DNA-/RNA-binding and unwinding mutants. Whereas the wild-

type protein achieved a full rescue (Figure 5C), expression of the QSK I – KNR II mutant failed to

ameliorate the rCGG repeat-induced neuronal toxicity (Figure 5D). On the other hand, a previously

reported double mutant R80A/R158A (R I – R II) that impairs nucleic-acid binding (Figure 3H; Fig-

ure 3—figure supplement 2; Graebsch et al., 2009) was still able to suppress the rCGG repeat-

mediated toxicity (Figure 5E). Thus, there might be differences in the binding for ssCGG repeats

and the requirements for neuronal rescue. Most interestingly, however, is the observation that also

the mutant F II, which still binds DNA/RNA but fails to unwind dsDNA, is unable to rescue neurode-

generation (Figure 5F). Together these observations confirm the physiologic importance of the

nucleic-acid-protein contacts observed in the crystal structure. In addition, these findings formally

establish that the binding and unwinding of nucleic acids is required to modulate toxicity caused by

pathogenic CGG RNA.

Discussion
Pur-alpha repeat I-II shows strong and specific binding to its physiological target MF0677 DNA

located upstream of the c-myc gene (Bergemann et al., 1992), but much weaker binding to CGG-

repeat RNA (Graebsch et al., 2009). For this reason, it has been suggested that the binding of Pur-

alpha to DNA is stronger than to RNA and, as a consequence, that there might be differences in the

binding modes to both nucleic-acid targets. In this study, we directly compared Pur-alpha binding to

RNA and DNA oligonucleotides of the same sequence and found no major differences (Figure 1B–

D). This suggests that the higher affinity for MF0677 (KD ~200 nM; Figure 1B) over CGG repeats (KD

~2 mM; Figure 1C) is due to differences in sequence and not the absence of the 2’ OH group in the

DNA. This interpretation found further support from NMR titrations with 15N-labeled Pur-alpha

repeat I-II and oligonucleotides. The spectra showed similar chemical shift perturbations, regardless

of whether it was DNA or RNA, indicating that both nucleic acids are bound in the same way

(Figure 1E). Finally, the crystal structure of the Pur-alpha/DNA co-complex showed that a hydroxyl-

group on the 2’ position of the pentose ring of the RNA sugar backbone would not cause steric

clashes (Figure 2A,C-F). Together, our biochemical, NMR, and X-ray crystallographic insights indi-

cate that Pur-alpha binds DNA and RNA in the same way and thus will interact equally with both

types of nucleic acids in the cell. It is also consistent with the previously suggested Pur-alpha-depen-

dent gene regulation by competitive RNA binding (Tretiakova et al., 1998).

Previous findings implied that the positively charged b-sheets mediate DNA/RNAbinding,

whereas the amphipathic helices might contribute to protein-protein interactions (Graebsch et al.,

2009). The crystal structure of the protein-DNA co-complex confirms that the b-sheets, together

with their short linkers, are involved in DNA binding, in contrast to the a-helices that show no inter-

action (Figure 2A). A comparison of the Pur-alpha repeat I-II apo-structure (PDB ID 3K44) with the

Figure 5. Mutations in Pur-alpha’s nucleic-acid-binding domain abolish rescue of CGG RNA-mediated neurodegeneration. (A–F) Scanning electron

microscope pictures of the eyes of adult flies. (A) Wild-type fly, (B) flies expressing (CGG)90-EGFP/+ alone, together with wild-type Pur-alpha (C), with

the QSK I – KNR II mutant (D), with the previously published R I – R II mutant (E) (Graebsch et al., 2009) and with the F II mutant (F). Only wild-type

Pur-alpha and the R I – R II mutant can rescue the neurodegeneration induced by rCGG repeats.

DOI: 10.7554/eLife.11297.018
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co-structure presented here revealed no significant conformational changes (Figure 2—figure sup-

plement 1B).

In the crystal structure, Pur-alpha interacts with nucleic acids by clamping them between its two

repeats, mostly by interacting with the guanine bases (Figure 2A, B). Only R142 interacts with the

cytosine base C2. K54 and K138 additionally stabilize the DNA binding by interacting with the sugar

phosphate backbone of guanine G4 and cytosine C5, respectively (Figure 2B–D). Binding therefore

occurs sequence specifically and confirms the GGN-binding motif postulated before

(Bergemann and Johnson, 1992).

Mutation of the interacting residues resulted in a decreased binding affinity (Figure 3G, H) and

therefore confirmed the interaction sites seen in the crystal structure. Also mutation of the corre-

sponding KNR motif on PUR repeat I (KNR I) caused a decrease in affinity (Figure 3G, H). However,

in fluorescence-polarization experiments, the mutation of KNR I had a less severe effect on DNA

binding (KD = 1.3 mM) than mutation of KNR II (KD = 4.1 mM; Figure 3H). This is consistent with the

observation that in the crystal structure all three residues of KNR II make contacts with DNA 1

(Figure 2B, C), whereas in KNR I only a single amino acid binds to DNA 2 (Figure 2—figure supple-

ment 3). Also, the F I mutation in repeat I had a less severe effect on MF0677 ssDNA binding than

the F II mutation (Figure 3G, H). In summary, these observations suggest that the MF0677 ssDNA is

bound asymmetrically by PUR repeats I-II.

In FXTAS patients, Pur-alpha binds to CGG-repeat expansions that cause the formation of nuclear

inclusions and neurodegeneration (Oostra and Willemsen, 2003). Pur-alpha is also incorporated

into inclusion triggered by G4C2-repeat RNA of patients with ALS and FTLD. The nucleic-acid bind-

ing of Pur-alpha observed in the crystal structure can explain both binding events, as it makes

sequence-specific interactions with a GGC motif found in both repeat RNAs.

The structural model of Pur-alpha repeat I-II forming a PUR domain has two nucleic-acid-binding

surfaces. PUR repeats I and II share the identical binding motif (KNR), and adopt the same fold,

despite moderate sequence identity of about ~30% (Figure 2—figure supplement 4;

Graebsch et al., 2010; Graebsch et al., 2009). Consistent with this finding, we observed a stoichio-

metric ratio of 1:2 for the PUR domain with ssDNA in filter-binding assays (Figure 2G). Both binding

events appear at overlapping but non-identical surface regions (Figure 2A, B), which might prefer

different GGN-motifs (GGA, GGG, GGC, GGT) as has been previously suggested (Aumiller et al.,

2012). This might also explain why CGG repeats bind less strongly to Pur-alpha than the MF0677

sequence, which mostly consists of GGA and GGT motifs.

Pur-alpha has been previously reported to unwind dsDNA in an ATP-independent manner

(Darbinian et al., 2001; Wortman et al., 2005). However, so far, it has not been shown how unwind-

ing is achieved on a molecular level and that this function is physiologically relevant. The crystal

structure of our Pur-alpha/DNA co-complex offers a mechanistic explanation: phenylalanine in posi-

tion 145 of PUR repeat II undertakes base stacking with the guanine G4 and thereby blocks the

space for the neighboring cytosine C5 (Figure 2E). Thereupon, the cytosine flips out and the 3’-end

of the DNA strand becomes distorted. The interaction of K54 and K138 with the phosphate back-

bone upstream of the cytosine C5 enforces this strong turn (Figure 2B–D). F145 is highly conserved

throughout different species (Figure 2—figure supplement 4A) and its mutation (F II) abolishes

unwinding of dsDNA (Figure 3F, G).

Phenylalanine 145 has its structural counterpart in PUR repeat I in position F68. Although F68 is

also highly conserved, in the crystal structure the guanine base stacking is not mediated by this resi-

due. Instead, the conserved Y57 in repeat I stacks with G7 (Figure 2B, F). As mentioned before, the

two binding sites of Pur-alpha seen in the crystal structure are asymmetric and might account for

sequence-specific binding to nucleic acids with different GGN motifs.

To assess the physiological importance of the interactions observed in the crystal structure and

validated in vitro, we used the previously reported FXTAS fly model (Jin et al., 2007; Jin et al.,

2003). Expression of pre-mutation CGG-repeat RNA in Drosophila induces neurodegeneration,

which is easily detectable in abnormalities in the facet eye (compare Figure 5A with 5B). While we

observed that overexpression of wild-type Pur-alpha rescues the eye phenotype (Figure 5C), the

RNA-binding mutant QSK I - KNR II failed to do so (Figure 5D). Surprisingly, a second, previously

published RNA-binding mutant (Pur-alpha R I – R II), which showed strongly reduced MF0677 ssDNA

binding (Figure 3H), was able to fully rescue the eye phenotype (Figure 5E). This observation indi-

cates that arginine 80 and 158 are not required for the binding to nucleic acids important for
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neuroprotection. While the neuroprotection by the R I – R II mutant indicates flexibility in nucleic-

acid recognition, the loss of rescue by the QSK I - KNR II mutant formally establishes the require-

ment of nucleic-acid binding for Pur-alpha-dependent neuroprotection. Additionally, the F II muta-

tion of Pur-alpha, which abolishes its dsDNA-unwinding activity, also impairs the neuroprotective

function in the fly model (Figure 5F). These findings indicate that unwinding is important for neuro-

protection by Pur-alpha.

Recently, de novo mutations in Pur-alpha have been found to cause the so-called 5q31.3 microde-

letion syndrome. This disease is characterized by neonatal hypotonia, encephalopathy, and severe

developmental delay (Lalani et al., 2014; Hunt et al., 2014; Tanaka et al., 2015). Of the reported

mutations (Figure 6—source data 1), two missense mutations (A89P, K97E) are of particular interest

from a structure-to-function point of view (Lalani et al., 2014). Sequence alignment of Pur-alpha

from different species shows that the residues A89 and K97 of the human Pur-alpha protein corre-

spond to the residues A72 and R80 of the Drosophila protein, respectively. These residues are highly

conserved (Figure 2—figure supplement 4A). In the crystal structure of the protein/DNA co-com-

plex, A72 does not directly interact with the DNA molecule. Instead it forms backbone hydrogen

bonds between the b-strands of PUR repeat I to stabilize the nucleic-acid binding b-sheet

(Figure 6A, top) (this study and Graebsch et al., 2009). When A72 and its disease-causing counter-

part A98 in the human protein (Figure 6A, middle) are substituted by a proline, the backbone inter-

actions that stabilize the b-sheet very likely become disrupted (Figure 6A, bottom) and thus the

protein misfolds.

The Drosophila equivalent R80 of the disease-associated human K97 directly binds to the guanine

base G7 (Figure 2B, F and 6B, top) and its mutation results in reduced nucleic-acid binding

(Graebsch et al., 2009). It is therefore conceivable that a mutation of K97 to glutamate impairs

nucleic-acid interaction because of repulsive forces and causes dysfunction of Pur-alpha (Figure 6B,

middle, bottom). Although in our fly model the double mutant R80A/R158A (R I – R II) was still able

to rescue neurodegeneration (Figure 5E), the reported effect of the K97E mutation in the microdele-

tion syndrome indicates that nucleic-acid binding by this residue is important at least in humans.

Additional interesting disease-causing point mutations in human Pur-alpha are I188T and I206F (Fig-

ure 6—source data 1), which likely impair the intramolecular dimerization of PUR repeats I and II

(Hunt et al., 2014;, Tanaka et al., 2015). Taken together, the crystal structure of the Pur-alpha/

DNA co-complex presented in this study provides a molecular explanation for the effects of mis-

sense mutations in the 5q31.3 microdeletion syndrome.

Wild-type Pur-alpha binds to origins of replication and promoter regions (Bergemann and John-

son, 1992,; Bergemann et al., 1992) and regulates the transcription of more than 20 genes

(White et al., 2009). Pur-alpha’s ability to unwind dsDNA might therefore play an important role in

the initiation of replication and transcription. One recently reported interaction partner of Pur-alpha

that might play a role in this context is the RNA helicase Rm62 (Qurashi et al., 2011). In the light of

the dsDNA-unwinding activity an intriguing speculation is that Pur-alpha also unwinds dsCGG-repeat

RNA. This initial unwinding by Pur-alpha could allow interacting helicases to subsequently regulate

RNA processing, transport, and translation. Therefore, it will be important to assess Pur-alpha’s role

in unwinding of dsRNA and its interaction with Rm62.

Considering that Pur-alpha repeat I-II has two nucleic-acid-binding sites, it is conceivable that

each PUR repeat binds to one of the strands of a duplex DNA molecule thereby unwinding short

stretches of dsDNA (Figure 7A–C, top). The insertion of Pur-alpha between both DNA strands might

be achieved through spontaneous breathing of the dsDNA helix (Peyrard et al., 2009,; Jose et al.,

2012). Intercalating residues (phenylalanine, tyrosine) might cause further separation of the two

DNA strands via base stacking with the guanines and thereby causing the strong twist of the DNA

strands. The partly melted duplex DNA could then be further unwound by DNA helicases, which are

required for initiation of transcription and replication. In the crystal structure, base pairing is

observed between the 5’-G1-C2 bases of two symmetry-related DNA molecules (Figure 2—figure

supplement 2), indicating, that a PUR domain would unwind a short stretch of approximately four to

six bases.

We also solved the crystal structure of PUR repeat III (Figure 4A; Figure 4—figure supplement

1) and found that it binds only weakly to DNA/RNA (Figure 3G, H) and unwinds dsDNA only slightly

(Figure 4C). Since in the crystal structure the C-terminal end of PUR repeat I-II is located on the

opposite side of its nucleic-acid-binding surface (Figure 7A, B, bottom), it is unlikely that PUR repeat
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III causes steric clashes interfering with the nucleic-acid binding by PUR repeat I-II. Hence, PUR

repeat III might only facilitate dimerization, thereby guiding a second DNA-/RNA-binding domain

(PUR repeat I-II) to another GGN motif further upstream or downstream on the dsDNA, where addi-

tional DNA-unwinding events could take place (Figure 7C, bottom). How this effect of dimeric Pur-

alpha is achieved on a molecular level and if unwinding of longer dsDNA fragments requires its joint

action with helicases are main questions to be addressed in future.

Figure 6. Pur-alpha mutations found in the 5q31.3 microdeletion syndrome can be modeled into the crystal structure of Drosophila Pur-alpha repeat I-II

(green) in complex with DNA (cyan). (A) Residue A72 of the Drosophila protein (top) corresponds to the residue A89 (grey) of the human protein

modeled into the Drosophila crystal structure (middle). In both species, the alanines form backbone hydrogen bonds. In the microdeletion syndrome

A89 is mutated to proline, which disrupts backbone interactions (bottom). (B) Residue R80 of the Drosophila protein (top) corresponds to the residue

K97 (grey) of the human protein, which was modeled into the crystal structure (middle). Both R80 and K97 are positively charged residues. In Drosophila

R80 interacts with the guanine G7. The same interaction is likely to be mediated by K97. In the microdeletion syndrome, K97 is mutated to a glutamate,

which probably impairs nucleic-acid binding due to its negative charges (bottom). A list of all published mutations in human Pur-alpha leading to the

5q31.3 microdeletion syndrome is shown in Figure 6—source data 1. In this table, their predicted effects on the structure and function of Pur-alpha are

also indicated.

DOI: 10.7554/eLife.11297.019

The following source data is available for figure 6:

Source data 1. Mutations in the gene encoding for human Pur-alpha that result in the 5q31.3 microdeletion syndrome.

DOI: 10.7554/eLife.11297.020
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Materials and methods

Protein expression and purification
Escherichia coli BL21 (DE3) cells transformed with pGEX-6P-1::Pur-alpha fragments were grown at

37˚C in LB medium supplemented with 100 mg/ml ampicillin. For 15N-labeling of protein cells were

grown in M9 minimal medium supplemented with 0.5 g/l 15NH4Cl. For selenomethionine-substituted

protein, cells were grown in M9 minimal medium supplemented with an amino-acid mix of L-alanine,

L-arginine, L-aspartic acid, L-cysteine, L-glutamate, L-glycine, L-histidine, L-isoleucine, L-leucine, L-

lysine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine, and selenomethionine

(100 mg/l each).

After reaching an OD600 of 0.8, cell cultures were cooled down to 18˚C and expression was

induced by adding 0.25 mM IPTG. Cells were harvested after 18 hr of expression. GST-tagged pro-

teins were purified by GST-affinity chromatography (GE Healthcare, Munich, Germany). After prote-

ase cleavage, the GST tag was removed by a glutathione-sepharose column. Nucleic acids were

removed by using an anion-exchange Q column (GE Healthcare) followed by size exclusion chroma-

tography with buffer containing 250 mM NaCl, 20 mM Hepes pH 8.0. For cysteine-containing and

Figure 7. Model for unwinding of dsDNA by full-length Pur-alpha. (A, top) Electrostatic surface model of Pur-alpha repeat I-II in complex with one

ssDNA molecule (pink). Red and blue colorations of the surface indicate negative and positive electrostatic potentials, respectively. (B, top) Cartoon

shows in addition the structure model of PUR repeat I (green) and II (blue). DNA interaction sites, seen in the crystal structure, are shown as red sticks

and correspond to the residues highlighted in Figure 2A. (C, top) Model showing the most likely overall trajectory of dsDNA (pink) when bound to Pur-

alpha repeat I-II. The double-strand is locally unwound and the two separated strands bind to the two opposing binding sites on the protein. (A, B,

bottom) Representation as in (A, B, top), additionally showing the C-terminus connecting to PUR repeat III. PUR repeat III likely arranges at the

opposing site of the nucleic-acid-binding region. (C, bottom) Schematic drawing of an intermolecular Pur-alpha dimer bound to dsDNA (pink). PUR

repeat III (grey) mediates dimerization, potentially orienting both nucleic-acid-binding domains (repeat I, green and II, blue) to the dsDNA. There both

PUR domains could unwind larger regions of the DNA.

DOI: 10.7554/eLife.11297.021
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for selenomethionine-substituted proteins 2 mM DTT was added to the buffer. For NMR experi-

ments size exclusion chromatography was performed in 50 mM potassium phosphate buffer pH 7.0

and 200 mM NaCl (NMR buffer). Absence of nucleic-acid contamination was confirmed by measuring

the ratio of absorption at 260/280 nm (Edelmann et al., 2014).

Circular dichroism (CD) spectroscopy
To confirm proper protein folding of the Pur-alpha mutants CD spectra (wavelength 190–260 nm)

were recorded with a JASCO-715 spectropolarimeter at 5˚C in a 0.1-cm cuvette. Proteins were

diluted in buffer containing 250 mM NaCl, 20 mM Hepes pH 8.0, and 2 mM DTT to a final protein

concentration of 30 mM in 300 ml total volume. Five scans were taken with a speed of 50 nm/min.

Crystallization and structure determination of Drosophila melanogaster
Pur-alpha repeat I-II
Crystallization was carried out with freshly prepared selenomethionine-substituted Pur-alpha repeat

I-II (residues 40–185) in size exclusion buffer (250 mM NaCl, 20 mM Hepes pH 8, 2 mM DTT). The

protein was mixed with commercially purchased GCGGCGG ssDNA oligonucleotides, dissolved in

Milli-Q H2O at a ratio 1:2.2 (protein:DNA). The final protein concentration was 1.77 mg/ml. A drop

size of 3 ml and a 2:1 mixture of protein-DNA complex and crystallization solution were used for

hanging-drop vapor-diffusion at 21˚C using 24-well EasyXtal Crystal Support plates (Qiagen, Hilden,

Germany). The crystallization solution contained 50 mM MES pH 5.2, 500 mM (NH4)2SO4, 1 mM

TCEP, and 16% PEG400. The total reservoir volume was 500 ml. Rod-shaped crystals of 160 x 20 mm

size appeared within 4 days. Prior to data collection, crystals were cryoprotected in mother liquor

and flash frozen in liquid nitrogen. Native dataset was recorded at 100 K at beamline ID23-2 (Euro-

pean Synchrotron Radiation Facility [ESRF] Grenoble, France). Crystals diffracted up to 2.0 Å. Data

were integrated and scaled with XDS (Kabsch, 1993). Structure was solved by molecular replace-

ment with PHASER (McCoy et al., 2007) using the apo-structure of Drosophila Pur-alpha 40–185

(PDB ID 3K44) as template and model building was manually completed using COOT (Emsley et al.,

2010). Refinement of the native data was performed with PHENIX (Adams et al., 2010) using NCS

and TLS. The final model was analyzed with SFCHECK (Vaguine et al., 1999), PHENIX, and REFMAC

(Murshudov et al., 1997;, Terwilliger, 2002). Superpositioning of the apo-structure with the DNA-

complexed structure of Pur-alpha was performed with the superpose algorithm (Krissinel and Hen-

rick, 2004) of the program COOT. Images and movie of the crystal structure, superimpositions of

the co-complex and apo-structure, as well as electrostatic surface potentials were prepared with

PyMol (Version 1.7; Schrodinger LLC.; http://www.pymol.org/). All crystallographic software was

used from the SBGRID software bundle (Morin et al., 2013). Structural model and dataset is avail-

able http://www.rcsb.org (PDB-ID: 5FGP).

Crystallization and structure determination of Drosophila melanogaster
Pur-alpha repeat III
Selenomethionine-substituted crystals of Pur-alpha repeat III (residues 188–258) were grown at 4˚C
with a protein concentration of 0.5–2 mg/ml. The crystallization solution contained 50 mM MES pH

6.5, 200 mM NaCl, 16% PEG 3350, and 6% MPD. Plate-shaped crystals of approximately 70 � 70 �

10 mm size appeared within 2–4 days. For cryo-protection, crystals were shortly incubated in reser-

voir solution containing 30% ethylene glycol in two steps and then flash frozen in liquid nitrogen.

Native dataset was recorded at 100 K at beamline ID14-1 [ESRF]. Crystals showed good diffrac-

tion up to 2.6 Å and belonged to space group P21 (see Table 1). The data were integrated and

scaled with the XDS program package. Phases were obtained by molecular replacement using

PHASER together with Borrelia burgdorferi Pur-alpha and Drosophila melanogaster Pur-alpha repeat

I-II structures as a search model. Best results were achieved using a truncated version of the search

models lacking the loop regions and poly-serine as amino-acid sequence. Parts of the initial model

were built automatically with Buccaneer (Cowtan, 2006) and manually completed using COOT.

Refinement was performed with PHENIX using NCS with 6 monomers per asymmetric unit. Structural

model and dataset is available http://www.rcsb.org (PDB-ID: 5FGO).
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Isotopic labeling
For RNA-labeling RNase-free buffers, materials, and reagents were used. Ten picomol of chemically

synthesized DNA or RNA oligonucleotides were phosphorylated at the 5’-end with 10 pmol g-32P

ATP by T4 polynucleotide kinase (New England Biolabs, Frankfurt, Germany) with buffer A in a final

volume of 20 ml. Labeling reaction was carried out at 37˚C and stopped after 30 min by incubation

at 70˚C for 10 min. Labeled oligonucleotides were purified by a NucAwayÔ Spin column (Ambion,

Ulm, Germany) and stored at -20˚C.

Electrophoretic mobility shift assay
The protein-nucleic acid complexes were formed in RNase-free binding buffer containing 250 mM

NaCl, 20 mM Hepes pH 8.0, 3 mM MgCl2, 4% glycerol, 2 mM DTT). Serial protein dilutions and a

constant amount of radiolabeled nucleic acid (2.5 nM) were incubated in a total reaction volume of

20 ml for 20 min at 21˚C. DNA-binding experiments contained 25 mg/ml Salmon Sperm DNA, and

RNA-binding experiments contained 100 mg/ml yeast tRNA competitor. Ten microliter of the reac-

tions were loaded onto 6% TBE polyacrylamide gels. After electrophoresis (45 min, 100 V), gels

were incubated for 15 min in fixing solution ([v/v] 10% acetic acid, [v/v] 30% methanol), dried in a gel

dryer (BioRad, Munich, Germany) and analyzed with radiograph films in a Protec Optimax developer

(Hohmann, Hannover, Germany).

Sequences of oligonucleotides were as follows: MF0677 ssDNA/RNA, 5’-GGAGGTGGTGGAGG-

GAGAGAAAAG-3’; CGG ssDNA/RNA, 5’-(CGG)8–3’.

Fluorescence-polarization experiments
For fluorescence-polarization measurements, protein-nucleic acid complexes were formed in buffer

containing 500 mM NaCl, 20 mM Hepes pH 7.5, 3 mM MgCl2, 2 mM DTT). In comparison to EMSA,

higher salt concentrations were used (500 mM versus 250 mM) to allow for binding experiments at

higher protein concentrations without aggregation of Pur-alpha. Serial protein dilutions and a con-

stant amount of fluorescein-labeled MF0677 ssDNA or ssRNA (100 nM) were incubated for 20 min

at 21˚C in a total reaction volume of 40 ml. DNA-binding reactions contained 25 mg/ml Salmon

Sperm DNA and RNA-binding reactions contained 100 mg/ml yeast tRNA as competitor. Measure-

ments were performed on an Envision Multilabel reader (Perkinelmer). The excitation and emission

wavelengths were 485 nm and 535 nm, respectively. The dissociation constant was calculated by fit-

ting the data with the one-site binding model included in the program origin (OriginLab). The exper-

iment was performed as triplicates.

Equation for one-site binding: y=Bmax*x/(k1+x). y = specific binding, x = ligand concentration,

Bmax = maximum specific binding, k1 = equilibrium binding constant.

NMR experiments
All NMR spectra were recorded in NMR buffer with 5% D2O at 298 K using a Bruker Avance III spec-

trometer equipped with a TCI cryogenic probe head, at field strengths corresponding to 900 MHz

proton Larmor frequency. To study DNA/RNA binding 1H,15N HSQC NMR spectra were recorded of
15N-labeled protein (50 mM) titrated with nucleic acids with different stoichiometric ratio of protein:

nucleic acid (1:0.25, 1:0.5, 1:0.75, 1:1, 1:1.25, 1:1.5, 1:2.5, and 1:5). For every spectrum, 256 incre-

ments in the 15N indirect dimension with eight scans and an interscan delay of 1 s were acquired.

Spectra were recorded and processed with Topspin 3.2 (Bruker) and analyzed with CCPNMR analysis

(Vranken et al., 2005).

Unwinding assay
Unwinding assays were carried out according to reference (Darbinian et al., 2001). A dsDNA sub-

strate was prepared by annealing a complementary 18-mer oligonucleotide to a GGN motif of the

M13mp18 ssDNA plasmid. The 18-mer was labeled with g-32P ATP. Protein dilutions were added to

a constant amount of dsDNA substrate (100 ng) in binding buffer composed of 150 mM NaCl, 20

mM Hepes pH 8.0. Samples were incubated at 37˚C for 1 hr. The unwinding reaction was stopped

by adding SDS to a final concentration of (v/v) 0.3%. Samples were run on 9% native polyacrylamide

gels in 1x TBE buffer for 150 min at 200 V. Gels were incubated for 15 min in fixing solution ([v/v]
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10% acetic acid, [v/v] 30% methanol), dried and analyzed with radiograph films. The sequence of the

18-mer oligonucleotide was as follows: 5’-TCAGAGCCGCCACCCTCA-3’.

Filter-binding assay
Filter-binding assays were performed as described (Wong and Lohman, 1993). Protein was titrated

to a constant amount of 1 mM MF0677 ssDNA (thereof 2.5 nM radiolabeled) in a final volume of 80

ml and incubated for 20 min at 21 ˚C in binding buffer 150 mM NaCl, 20 mM Hepes pH 8.0. Nitrocel-

lulose filter (Roth, Karlsruhe, Germany) was presoaked for 10 min in 0.4 M KOH followed by intensive

washing with Milli-Q H2O. Nitrocellulose and nylon filters (Roth) were then equilibrated in binding

buffer for 15 min. Both filters (nitrocellulose, top; nylon filter, bottom) were placed into a dot-blot

apparatus (BioRad). Vacuum was applied and the wells were washed once with 80-ml binding buffer

before and after samples were loaded. The nitrocellulose filters were analyzed using a phosphor

imager system to measure the retained radiolabeled oligonucleotides on the nitrocellulose filter.

Quantification was done using the dot blot analyzer plug-in of the ImageJ 1.47v software (National

Institute of Health, USA).

Drosophila genetics
Transgenic flies expressing rCGG90 repeats were obtained as previously described (Jin et al., 2003).

The pUAST constructs were generated by cloning cDNA of full-length Drosophila Pur-alpha into the

pUAST transformation vectors. The constructs were confirmed by DNA sequencing and then

injected in a w1118 strain by standard methods. Fly lines were grown on standard medium with yeast

paste added. All crosses were performed at 25˚C.

Electron microscopy
For scanning electron microscopy (SEM) images, whole flies were dehydrated in ethanol, dried with

hexamethyldisilazane (Sigma-Aldrich, Hamburg and Seezle, Germany), and analyzed with an ISI DS-

130 LaB6 SEM/STEM microscope.
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