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Ensemble-based approximation of observation impact

using an observation-based verification metric

By MATTHIAS SOMMER* and MARTIN WEISSMANN, Hans-Ertel Centre for Weather

Research, Ludwigs-Maximilians-Universität, Munich, Germany

(Manuscript received 16 March 2016; in final form 1 June 2016)

ABSTRACT

Knowledge on the contribution of observations to forecast accuracy is crucial for the refinement of observing

and data assimilation systems. Several recent publications highlighted the benefits of efficiently approximating

this observation impact using adjoint methods or ensembles. This study proposes a modification of an existing

method for computing observation impact in an ensemble-based data assimilation and forecasting system and

applies the method to a pre-operational, convective-scale regional modelling environment. Instead of the

analysis, the modified approach uses observation-based verification metrics to mitigate the effect of correlation

between the forecast and its verification norm. Furthermore, a peculiar property in the distribution of individual

observation impact values is used to define a reliability indicator for the accuracy of the impact approximation.

Applying this method to a 3-day test period shows that a well-defined observation impact value can be appro-

ximated formost observation types and the reliability indicator successfully depicts where results are not significant.

Keywords: data assimilation, forecast sensitivity to observations, FSO

1. Introduction

Maintaining an operational observing network is an intri-

cate and expensive task. It is therefore essential to evaluate

the contribution of various components of the network

and potential new observing systems to forecast accuracy.

This contribution, traditionally referred to as observation

impact, can in principle be evaluated by parallel numerical

data denial experiments, often named observing systems

experiment (OSEs) (e.g. Harnisch et al., 2011; Weissmann

et al., 2011). Given the computational expense of such ex-

periments, however, this approach is only feasible for few

configurations of an observing network and limited periods.

In view of an operational observation impact assessment, it

is therefore desirable to approximate the impact efficiently

without additional numerical experiments.

The first approximation method emerged in the frame-

work of developing adjoint models and four-dimensional

variational data assimilation systems: Baker and Daley

(2000) described a method of propagating the forecast

sensitivity to the observations (FSO), building upon earlier

research that developed the sensitivity of a forecast as-

pect (error) to the analysis (Langland and Rohaly, 1996).

Langland and Baker (2004) linked this FSO to the impact

of observations and by this performed the last step for the

adjoint approximation of the forecast impact of observa-

tions (referred to as forecast sensitivity observation impact

or FSOI). Building upon these developments, several studies

calculated the FSOI to assess the contribution of com-

ponents of the operational observing network (Langland,

2005; Cardinali, 2009; Gelaro et al., 2010; Baker et al., 2014)

or special field campaign observations (Weissmann et al.,

2012). A systematical comparison of FSOI with data denial

results can be found in Gelaro and Zhu (2009).

More recently, an analogous to the FSOI method has

been proposed by Liu and Kalnay (2008), Li et al. (2010)

and Kalnay et al. (2012) for ensemble data assimilation

systems, specifically for a Localised Ensemble Transform

Kalman Filter (LETKF). In support of the notation FSOI

for the adjoint-based approximation of observation im-

pact, the ensemble-based approximation could be named as

EnFSOI. Ota et al. (2013) applied the EnFSOI to assess the

impact of the components of the global observing network

and Kunii et al. (2012) to evaluate the impact of observa-

tions on tropical cyclone forecasts. Sommer and Weiss-

mann (2014) first applied the method in a convective-scale

modelling environment and demonstrated that the approxi-

mated impact agrees reasonably well with parallel numer-

ical (data denial) experiments.
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All studies mentioned above used later analyses for the

quantification of forecast error and its reduction by ob-

servations. In both, the adjoint and the ensemble approach,

the approximation is limited to comparably short lead times

(about 12�24 hours on the global scales and 3�6 hours on

the convective scale) due to underlying linearity assump-

tions. For these lead times, however, the later analysis is still

highly correlatedwith the forecast as information is cycled to

later analyses through the use of a short-range forecast as

first-guess in the data assimilation procedure. Cardinali et al.

(2004), for example, estimated that the influence of the first-

guess on the subsequent analysis is about 85 %, whereas all

assimilated observations only contribute 15 % of the infor-

mation in a 12-hour window 4D-Var assimilation system

(Rabier et al., 2000). In contrast, later observations can

always provide an independent verification (for observing

systems that are not assimilated) or a comparably indepen-

dent verification (for observing systems that are assimilated).

A further limitation of the impact approximation is that

it works reliably on a statistical basis, but not necessarily

for a single observation or a small group of observations

in a single assimilation cycle. This has been highlighted

in several previous studies, but little knowledge exists on

the statistical properties of observation impact estimates

that determine the reliability of the method, the consequent

averaging requirements and lead time limitations. Likely

the reliability depends on the observation type, the region,

the weather situation and the scales of interest as well as the

properties and settings of the data and modelling assimila-

tion system (e.g. ensemble size). To address this case- and

system-dependent variation in reliability, it would therefore

be advantageous to estimate statistical reliability together

with the approximation of observation impact.

The study is outlined as follows: Section 2 describes the

approximation and the proposed modification. Section 3

presents results of the observation impact approximation in

the convective-scale pre-operational ensemble system of

Deutscher Wetterdienst (DWD), discusses statistical prop-

erties of observation impact values and derives a reliability

indicator to estimate the accuracy of the approximation.

Finally, Section 4 provides conclusions of the study.

2. Method

Following Hunt et al. (2007), the LETKF analysis for an

ensemble with Ne members at grid point j is computed as:

�xaj ¼ Xbj
~PaðjÞYT

bR
�1ðjÞðyo � ybÞ þ �xbj : (1)

As usual, the subscript b stands for a background state

(short-term forecast) from a previous analysis, a for an

analysis state and f for a forecast to the next analysis time.

With this convention, everything below applies to a given

analysis time and therefore no time indices are necessary.

The following notation is used here:

xa: Analysis ensemble mean state vector

xb: Background ensemble mean state vector

Xb: Background ensemble perturbations

Yb: Background ensemble perturbations in observation

space

~PaðjÞ ¼ ðNe � 1Þ
q

1Ne
þYbT

R�1ðjÞYb

� ��1

2 R
Ne�Ne

Analysis covariance matrix in ensemble space at grid

point j

r: Multiplicative inflation parameter

R(j): (Diagonal) observation covariance matrix localized

around grid point j

d ¼ yo � yb: Observation innovation vector

yo: Observations

yb: Ensemble mean of background in observations space

Let d be the vector of all available observation innova-

tion vector and d? be the innovation vector of a small subset

of observations whose impact one is interested in. For

notational simplicity, the lengths of d and d? are made

equal, by setting the unobserved components in d? to zero.

In the following, the superscript d stands correspondingly

for the set of observations that have been used to compute

the analysis or to initialise the forecasts. As in Kalnay

et al. (2012), the impact of observations d? is given by the

difference in the respective forecast errors:

Jðd0Þ ¼ ed
f

��� ���2� ed�d0

f

��� ���2¼ ed
f þ ed�d0

f

� �
� ed

f � ed�d0

f

� �
(2)

where ed
f is the error of the forecast initialised with

observations d defined in eq. (3) and the scalar product

dot is defined in eq. (4). Contrary to Kalnay et al. (2012),

we suggest to use observations (indexed l) for verification

instead of the analysis. Verification with observations is

seen as a superior approach, since in contrast to the analysis,

observations can be expected to be independent or at least

comparably independent from the forecast. One limitation

of this approach that needs to be kept in mind is that the

observational coverage is inhomogeneous in time and space,

in particular if only specific observation types are used for

verification.

The forecast error is therefore defined relative to the

verifying observations

ed
f ¼ Hveriðxd

f Þ � yveri; (3)

where Hveri stands for the observation operator into the

verification space and the overbar for the ensemblemean.As

mentioned before, the superscript stands for the observations

that have been used for the initialisation of the forecast. The

length of vector ed
f is the number of verifying observations.
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The scalar product in eq. (2) is defined through a metric that

includes a normalisation with the observation error ro and

the number of verifying observations Nveri:

ed
f � ed

f ¼ ed
f

��� ���2¼ 1

Nveri

XNveri

l¼1

ed
f

ro

 !2

l

: (4)

The normalisation with the number of verifying observa-

tions is included here to give comparable weight to situations

with differing observational density.

The goal is now to find an approximation to eq. (2) that

avoids the necessity to compute the forecast error ed�d0

f

��� ��� of
an experiment neglecting the observations d?. For small d?,
J can be approximated by the linearisation around 0:

Jðd0Þ ¼ Jð0Þ þ d

dd0

����
d0¼0

Jðd0Þd0 þ O d0j j2
� �

: (5)

Note that J is defined in eq. (2) as a function of the omitted

observations. The above expression is therefore not a line-

arisation around an assimilation with zero observations but

rather a linearisation around omitting zero observations

from the full set of observations. The first term in eq. (5)

vanishes by definition and applying the derivative to the

first factor in eq. (2) leaves the second vanishing. Therefore

the only remaining expression gives

Jðd0Þ � �2ed
f �Hveri

d

dd0

����
d0¼0

xd�d0

f

� �
d0 (6)

� 2

Ne � 1
ed

f �Yd
f Y

dT
a R�1d0: (7)

The last step has been approximated analogously to Kalnay

et al. (2012). However, two changes have been applied here:

� Since the aim here is to use observations for

verification, the model forecast ensemble Xd
f has

been replaced by its analogue in observation space

Yd
f ¼ HveriX

d
f .

� Instead of approximating first the impact of all

available observations d relative to no observations

and then deriving the case where some observations

are omitted, here we suggest to directly linearise the

exact expression [eq. (2)]. The first factor ed
f þ e0

f

� �
in Kalnay et al. (2012) has thus been corrected to

2ed
f , which is a more accurate approximation. It has

also the practical advantage that no forecast x0
f

initialised without any observations is needed.

Equation (7) only requires quantities that are already com-

puted in the data assimilation and the ensemble forecasting

system. It has been implemented in the Km-scale ENsemble

DataAssimilation (KENDA, Schraff et al. 2016) system that

is currently in development at DWD and in the framework

of the Hans-Ertel Centre for Weather Research (HErZ)

(Weissmann et al., 2014). KENDA is an implementation

of an LETKF combined with the non-hydrostatic limited-

area COSMO-DE forecast model (Baldauf et al., 2011) with

2.8 km horizontal grid spacing and 50 vertical levels. The

model domain covers approximately 1200�1200 km of

central Europe centred overGermany. Boundary conditions

were taken from a special 20-member ensemble run of the

global model of the European Centre for Medium Range

Forecasts (ECMWF) with horizontal resolution increased

to T1279 (�16 km). These 20 members were doubled using

a time-lagged approach as in Harnisch and Keil (2015).

Besides different boundary conditions and an increased

ensemble size of 40members, the experimental set-up used in

the present study was largely the same as in Sommer and

Weissmann (2014). In the experimental period from 10 June

2012 12 UTC until 13 June 2012 15 UTC, an analysis has

been computed every 3 hours which served as the initialisa-

tion for a 6 hours forecast. The verification then used all

observations in the interval between 3 and 6 hours forecast

lead time.

The development of forward operators for the assimila-

tion of remote sensing data in KENDA, for example, for

visible and near-infrared satellite reflectance (Kostka et al.,

2014), satellite-derived cloud products (Schomburg et al.,

2015), global navigation satellite systems (GNSS) total

delay or radar reflectivity and radial velocity, is not yet

completed. Thus, the present study only assimilates conven-

tional observations consisting of four groups: Temperature

and wind observations from aircraft (AIREP), wind profiler

observations (PROF), temperature, wind and humidity ob-

servations from synoptic surface stations (SYNOP) and

temperature, wind and humidity observations from radio-

sondes (TEMP). Following the standard KENDA set-up at

DWD, surface station wind observations were only assimi-

lated in areas with an elevation lower than 100m as higher

orography often causes large representativity errors. As a

result, only 17 656 surface station wind observations are

assimilated, compared to 61 814 temperature and humidity

observations. Surface stations pressure was excluded from

the assimilation as it is not fully resolved yet how to localise

such integral observations in the vertical. It is clear that this

issue needs to be resolved in order to achieve reasonable

forecast skill suitable for operational use. In this context, it

should also be noted that systematic errors cause a problem

for the evaluation of observation impact. However, this is

independent of the impact evaluation derived here and work

with the pre-operational version of KENDA which includes

surface pressure observations is currently ongoing. If not

stated otherwise, all assimilated observation types were used

also for verification.

As in Sommer and Weissmann (2014), the same localisa-

tion is used for the assimilation and the calculation of

observation impact (Gaspari-Cohn function with length

ENSEMBLE-BASED APPROXIMATION OF OBSERVATION IMPACT 3



scales 100 kmhorizontally and 0.2 ln(p) vertically). Research

for more sophisticated localisation methods that con-

sider the propagation of impact with forecast lead time is

ongoing (e.g. Gasperoni and Wang 2015), but Sommer and

Weissmann (2014) demonstrated that using a static localisa-

tion leads to reasonable results for lead times up to 6 hours.

Different concepts exist for quantifying the influence

of observations at analysis time, that is, without taking

into account the time development. Common methods

are degrees of freedom per signal (Wahba et al., 1995),

influence matrix diagnostics (Cardinali et al., 2004),

analysis sensitivity (Liu et al., 2009) and variance reduction

(Brousseau et al., 2013). To obtain a rough estimate of this

influence here, the ratio of background error (represented

by ensemble spread in observation space) and observation

error rb

ro
is computed as an approximation. This ratio deter-

mines the weight of observations in the analysis. However,

this estimate of observations influence does not account

for the spatial distribution of observations; that is, the

influence of observations in data-sparse regions is higher

than in data-rich regions. The sum of this quantity, evalu-

ated for each observation will be referred to as ‘sb/so’ in

the following.

3. Results

3.1. Approximated observation impact

Figure 1(a) shows the approximated observation impact

(EnFSOI) of the four observation types computed as

described in the previous section accumulated over the

3 d experimental period. All observation types show a

negative (i.e. beneficial) impact. Surface stations (SYNOP)

exhibit the largest impact followed by wind profilers

(PROF), aircraft (AIREP) and radiosondes (TEMP). The

impact of different observation types is clearly related to

the number of individual observations provided by differ-

ent systems [Fig. 1(c)] and the corresponding sb/so ratio

[Fig. 1(b)] approximated as described in Section 2.

The number of observing stations varies considerably

between observation types and it is straight forward to

compute the impact per observing station. In fact, the

comparably expensive wind profiler station has by far the

largest impact followed by radiosondes, surface stations

and aircraft. The exact relations are shown in Table 1, that is,

the number of observations of a given type whose impact

equals that of one wind profiler. These numbers could easily

be converted to an impact per cost estimate if the expenses

of the observing systems were known. For decisions on

removing or adding components of the observing system,

however, it needs to be kept in mind that observing systems

often serve multiple purposes besides numerical weather

prediction (e.g. climate monitoring or local forecasting) and

that results are very sensitive to the applied verification

metric (see Section 3.2). The current configuration with a

comparably sparse network of observations for verification

to some extent favours temporally continuous observation

types (profilers and surface stations) as those always have

spatially nearby observations for verification.

To gain further insights into the contribution of different

observation types, Fig. 2 shows the impact of all observa-

tion types and variables divided by the respective number of

observations. The corresponding approximated sb/so ratio

is also shown. Radiosonde and surface station temperature

observations show the largest impact per individual ob-

servation. The impact of radiosonde and aircraft wind com-

ponents is, on average, slightly smaller than the impact of

corresponding temperature observations. Generally, the

impact of zonal wind components is clearly higher than

that of meridional components, which is not surprising

given the location of the model domain in the mid-latitudes

with stronger zonal than meridional winds. Surface station

temperature observations show a comparably large impact,

AIREP PROF SYNOP TEMP
−0.06

−0.04

−0.02

0(a)

(b)

(c)
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2
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Fig. 1. Sums over the 3-days experimental period. (a): Approxi-

mated observation impact. (b): sb/so. (c): Number of observations.

AIREP: Aircraft, PROF: Wind profiler, SYNOP: Surface stations,

TEMP: Radiosondes. Verified with all quality-controlled observa-

tions between 3 and 6 hours forecast lead time.

Table 1. Number of stations that correspond to one wind profiler

in the sense of observation impact

AIREP SYNOP TEMP

134 73 16
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yet they are not yet assimilated in the pre-operational

version of KENDA at DWD (Schraff et al. 2016). This

indicates that they are potentially beneficial observations,

but quality control routines likely need to be developed for

situations with strong surface inversions to assimilate them

in an operational context. Radiosonde humidity only shows

a very small impact. In this context however, it needs to be

mentioned that there are hardly any tropospheric humidity

observations in the verification metric and results might

change significantly if additional observations of humidity,

clouds or precipitation would be included for verification.

While the total impact per observing system is very

similar to the corresponding sb/so ratio (Fig. 1), differ-

ences of sb/so ratio and forecast impact are apparent for

some of the variables (Fig. 2). Most strikingly, surface wind

observations exhibit a much lower forecast impact than

their sb/so ratio, which may indicate an imperfect use

of the observations in the KENDA system, for example,

due to an inappropriate assigned error, imperfect quality

control procedures, inappropriate spread of the ensemble

at the surface or a potential model bias. The investigation

of improved settings for the assimilation of surface ob-

servations in KENDA is therefore the focus of subsequent

research. Differences are also apparent for surface humid-

ity observations, but, as mentioned above, those may be

related to the low weight of humidity in the verification

norm. In contrast to the forecast impact, both wind com-

ponents show a similar sb/so ratio and the influence of

each wind component is comparable to that of temperature

observations for radiosondes and aircraft. Furthermore,

the impact of aircraft observations is 2�3 times smaller

than that of radiosondes while both systems show a com-

parable sb/so ratio.

Breaking up the total impact for the individual observing

stations results in Fig. 3. For aircraft, the first transmitting

location was used. Most stations show a neutral (green) or

beneficial (blueish) impact. Overall, the total impact value is

dominated by fairly few stations with large negative values.
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Fig. 2. Relative impact of different observed variables: Total impact for each observed variable divided by the respective number of

observations and by the impact of all observations. Additionally red bars show the corresponding negative sb/so.
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Fig. 3. Total impact summed over the experimental period for each observing station.
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For instance, one wind profiler in the Netherlands, where

several showers occurred in the experimental period, con-

tributes most of the total wind profiler impact in the whole

period (refer to discussion in 3.3 though). In the same region,

several surface stations and one aircraft show a detrimental

(reddish) impact. Another systematic feature seems to be

a number of surface stations with beneficial (blueish) im-

pact near the northern Alpine rim in southern Germany

and northern Switzerland. However, as further discussed in

Section 3.3, results summed over only a few observations

(here a few 100 per station) are error-prone. It is therefore

unclear if for example the detrimental impact of the radio-

sonde in Payerne, Switzerland, is a meaningful result.

3.2. Sensitivity to verification

So far all active observation types in the assimilation

have been used for verification but obviously the results

can change with a different set of verifying observations.

Exemplified, Fig. 4 shows the impact per observation type

when verified individually with one of the four observation

types. Since each impact value is weighted by the number of

verifying observations following eq. (4), the sum of the

impact in this figure does not equal Fig. 1(a). As expected,

each observation type has the largest impact when verified

with the same type and significantly less impact when other

types are used for verification. In other words, radiosondes

are the best observing system when the forecast is verified

against radiosondes and correspondingly for the other ob-

servation types. Nevertheless, most observation types also

show a beneficial impact when other observation types are

used for verification. The only exceptions are the profiler

impact verified against surface station and vice versa the

surface station impact verified against profilers. This de-

pendence on verification is also a reason why it may be

dangerous to actually exclude data that has disadvanta-

geous impact in a specific verification metric; the situation

may look different in an other metric.

As mentioned before, time-continuous observation types

as surface station and profiler are likely favoured in this

context as there is always a verifying observation at the

same location after 3-h lead time, whereas aircraft are not

necessarily at the same location and radiosondes are usually

only launched every 12 or 24 hours. While the sensitivity

to the verification norm and the inhomogeneity and sparsity

of the verification norm needs to be kept in mind, veri-

fication with observations is still seen as a superior ap-

proach given the correlation of the subsequent analysis

with the previous forecast. In particular in the presence

of model biases and systematic model deficiencies, the

use of analyses for verification is potentially dangerous �
particularly if observation impact estimates are actively

used for excluding observations through pro-active quality

control as proposed by Hotta (2014). Compared to the

experimental assimilation system with only conventional

observations used in the present study, more advanced

systems that also include different types of remote sensing

observations can provide a more homogeneous verification.

In general, it is desirable to use a verification norm that

represents the most complete description of the atmos-

phere that is available, but caution should be given when

including potentially biased or correlated observations as,

for example, radiances or atmospheric motion vectors (see

e.g. Weissmann et al., 2013). In consequence, the choice of

the optimal verification norm may be a trade-off between

completeness and reliability provided by independent ob-

servations that do not require calibration. Furthermore,

a user may prefer to use a verification norm representing

a limited set of primary forecast variables (which are

often precipitation and surface variables for regional

modelling systems).

The previous evaluation used all assimilated observation

types for verification and the weight of verifying observa-

tions was proportional to their expected errors. Alterna-

tively, a verification norm can be defined that reflects the

user quantities of interest (e.g. precipitation, wind gusts and

surface temperature) and weighs different variables by the

interest for the user or the reliability of the observation

type. For example, let JAIREP
SYNOP be the impact of surface

stations when verified with AIREP and correspondingly for

AIREP PROF SYNOP TEMP
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Im
pa

ct

Verification with AIREP
Verification with PROF
Verification with SYNOP
Verification with TEMP

Fig. 4. Approximated observation impact summed over the experimental period using different observation types for verification.
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the other groups. To give equal weights to the different

verification groups, this can be normalised by the total

impact from the AIREP verification: JAIREP
SYNOP /JAIREP

TOTAL.

For the total normalised surface station impact J̃SYNOP,

one would then sum over the four verification groups.

Introducing weights a for the different verification types

leads to:

JA
B : Impact of A when verified with B

~J
A

a ¼
a AIREP

J TOTAL
AIREP

JA
AIREP þ

a PROF

J TOTAL
PROF

JA
PROF

þ a SYNOP

J TOTAL
SYNOP

JA
SYNOP þ

a TEMP

J TOTAL
TEMP

JA
TEMP

(8)

Table 2 shows the observation impact estimates using

different verification norms: (i) all observations as defined

in eq. (7); (ii) equal weights of 0.25 for all four observation

types; (iii) weights of 0.3 for AIREP/PROF/SYNOP

and 0.1 for less frequent radiosonde observations. The

latter two norms significantly decrease the dominant

impact of surface station observations leading to a fairly

similar impact of aircraft, profiler and surface station.

Radiosondes still show a lower impact than other observa-

tion types and its impact is reduced further when the

verification weight for radiosondes is set to 0.1. In this

context, it should be noted that the assigned observation

error (and thus the weight) in the verification need not be

the same as the one in the assimilation.

Observational norms can also include quantities that are

not assimilated but quality controlled, e. g. surface pressure

from synoptic stations, radar observations or integrated

water vapour derived from GNSS total delay. An example

of results using verification with surface pressure observa-

tions is shown in Table 2. Using this norm, the impact

estimates are significantly different. Surface stations still

exhibit the largest impact, but the impact of radiosondes

and aircraft increases, whereas profilers show a slightly

detrimental impact. The higher impact of aircraft and

radiosondes, particularly by temperature observations of

these systems, obviously reflects the direct correlation of

the temperature (mass) field with surface pressure. Wind

and humidity observations in contrast can only have an

indirect effect in this verification norm.

In order to compare results to earlier publications,

the approximated impact using a dry total energy metric

(Rabier et al. 1996) in model space for verification is

shown in Fig. 5. In other words, the error definition eq. (3)

is replaced by the difference between the forecast and a new

analysis and the norm eq. (4) is replaced by the dry total

energy norm. Several features create doubts about the

reliability of these results: While it is clear that with the

model space based verification metric profile observations

like radiosondes (TEMP) may get a higher impact, the value

obtained here seems exaggerated. Aircraft show a surpris-

ingly small impact. Furthermore there is a very strong inter-

cycle variability, so that the summed impact depends heavily

on exactly howmany cycles are considered (not shown). The

reasons for these issues are likely associated with the strong

correlation of the forecast with its verifying analysis.

3.3. Distribution and reliability

Since individual observation impact values exhibit a wide

distribution compared to the mean impact of an observa-

tion type, it is important to investigate the robustness of

results such as the ones shown before. Figure 6 shows semi-

logarithmic histograms of all individual observation impact

values (green lines). The distribution is obviously highly

non-Gaussian and centred around or near zero. The ratio

of numbers of negative to positive impact is approximately

48:52, comparable with results of Lorenc and Marriott

(2013) and Sommer and Weissmann (2014). It is, however,

not only this ratio that determines the total impact but also

the amplitude of the individual values. The mean value is

very close to zero but still negative (beneficial) for all

observation types. The difficulty here is to accurately

estimate the mean of a distribution that is very wide

compared to the small distance between zero and the mean.

It is therefore necessary to check whether it is reliably

sampled by the method applied to a 3-day test period.

Empirically, one finds that the distributions of impact

values in Fig. 6 are well approximated by stretched

exponentials of the form

pðJÞ � e�b
ffiffi
J
p
þc;

Table 2. Impact estimates using different verification norms based on eqs. (4) and (7) and surface pressure observations ( JPS). Numbers in

subscript denote the verification weights a [eq. (8)] for AIREP/PROF/SYNOP/TEMP

Verification norm AIREP impact PROF impact SYNOP impact TEMP impact

J (7) 11.90 % 27.29 % 53.07 % 7.73 %
~J25=25=25=25 (8) 26.72 % 31.09 % 29.70 % 12.49 %
~J30=30=30=10 (8) 29.14 % 33.91 % 32.40 % 4.54 %

JPS 36.58 % �1.35 % 48.74 % 16.03 %

ENSEMBLE-BASED APPROXIMATION OF OBSERVATION IMPACT 7



where J is the impact of a single observation and b, g are

parameters to be fitted for positive and negative J sepa-

rately. This fitted probability distribution is also displayed

in Fig. 6 (blue lines). All of these fits are remarkably close to

the distribution of impact values � with the exception of

negative wind profiler impact values that differ consider-

ably. Assuming the true distribution for a sufficiently large

sample size to be a stretched exponential, the deviation from

it can serve as a measure for the reliability of the estimate.

To this goal, the unfitted total impact (balance point of the

area under the green line) is set in relation to the fitted

impact (correspondingly for the blue line) (cf Table 3). By

doing this, the variability is not taken into account but the

interest is to obtain a meaningful measure for the misfit

between the two distributions. We propose to use this ratio

as a reliability indicator for the estimate. As a suggestion, a

ratio lower than 0.8 or higher than 1.2 may be an indication

that the true distribution is not well-sampled and a larger

sample size (i.e. a longer experimental period) is required

for reliable results. Following this, the large value of the

ratio of profiler impact and its fitted impact is an indication

that these results are not reliable, whereas the ratios for the

other three observation types are close to one and indicate

reliable estimates. It should be noted that a ‘good’ value of

the reliability indicator is only a necessary but not sufficient

condition for a reliable estimate.

Another way of addressing this issue is by looking at the

cumulative distribution function (CDF) of the individual

impact values, that is,

CDFðJÞ ¼
X
JlBJ

Jl : (9)
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Fig. 5. Same as figure 2, but using verification in model space.
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Fig. 6. Histogram of observation impact values (green) with mean value (red) and fitted stretched exponential (blue).
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Here, all individual impact values Jl smaller than a given

J are summed up. The results for the four observation types

are shown in Fig. 7. Extreme positive and negative values are

very scarce and do not contribute much to the total impact:

The curve becomes saturated. The distributions of aircraft,

surface stations and radiosondes impact values seem well-

sampled in this experiment up to their saturation. In

agreement with the results in Table 3, we therefore expect

the results to be reliable estimates. For wind profilers, few,

but large negative values cause a difference between the

experimental and the fitted distribution. Therefore, the

reliability of the estimate for this observation type is

questionable as mentioned above. Looking at the spatial

distribution of impact values (Fig. 3), almost all profiler

impact comes from only one wind profiler located at

Cabauw, Netherlands. The time series of the impact at this

location (Fig. 8) shows that all very large negative impact

values occurred in just two assimilation cycles during which

heavy showers moved over the observing site (not shown).

Given that observation departures (and consequently ana-

lysis and forecast impact) during such an event can be

extremely large, it should be ensured that not too many of

these events distort the statistics, even when considering a

longer experimental period. The assessment of the impact of

such extreme events remains thus a difficult, yet interesting

problem, since theymay inparticular cases represent the crucial

information for obtaining accurate forecasts.

In order to verify the approximation, data denial ex-

periments for the four assimilated observation types verified

using the same observation-based metric as for the approxi-

mated impact have been conducted and are compared to the

impact estimates in (Fig. 9). The order and relative magni-

tude of the estimated impact of surface station, aircraft and

radiosondes is also reflected by their impact in data denial

experiments. The impact of profilers, however, differs

significantly and the data denial experiments even show a

detrimental impact in contrast to the impact estimates. This

is a further indication that a larger sample size would be

required to assess the impact of wind profiler observations

which include observations with very large impact values

during a short period of convective precipitation at the

Cabauw profiler site. In addition, this deviation of estimated

and data denial impact is in accordance with the deviation of

estimated impact and its fitted stretched exponential that is

proposed as reliability indicator for the estimate.

4. Conclusion

The method of Kalnay et al. (2012) provides an efficient

way of assessing the value of observations in a combined

Table 3. Unfitted impact, fitted impact and their ratio

AIREP PROF SYNOP TEMP

Unfitted impact �0.0094491 �0.021665 �0.042126 �0.0061346

Fitted impact �0.0094963 �0.0095535 �0.042357 �0.0072236

Ratio 0.99503 2.2677 0.99455 0.84924

−1 0 1

x 10–4

−0.06

−0.04

−0.02

0

J (Impact)

C
D

F
(J

)

AIREP

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10–4

−0.1

−0.05

0

J (Impact)

C
D

F
(J

)

PROF

−1 0 1 2 3

x 10–4

−0.2

−0.15

−0.1

−0.05

0

J (Impact)

C
D

F
(J

)

SYNOP

−1 0 1

x 10–4

−0.03

−0.02

−0.01

0

J (Impact)

C
D

F
(J

)

TEMP

Fig. 7. Cumulative distribution function of observation impact from experiment (green) and fit (blue).
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LETKF-forecast system. We refined this method to use

observations for forecast verification instead of the sub-

sequent analysis to avoid the correlation of forecasts and

their verification norm. In particular in presence of model

biases and systematic deficiencies, the use of observations

for verification is seen as advantageous approach. Based on

the user interest, different weight can be given to different

verifying observation types and also independent observa-

tions that are not assimilated can be used for verification.

However, it needs to be kept in mind that observations are

not spatially homogeneous and results are very sensitive to

the applied verification norm.

We applied the refined approach in the convective-scale

ensemble data assimilation system of DWD, compared

results of the 6-hours forecast impact of conventional

observation types using different verification norms and

compared differences between estimated impact and data

denial experiments in a 3-day experimental period. The

largest impact per observed variable was provided by radio-

sonde and surface station temperature observations, fol-

lowed by radiosonde wind component observations, wind

profilers and aircraft observations. The largest impact per

observation type was provided by surface stations as they

exhibit the largest fraction of all observations.

Impact estimates verified with model analyses using a

dry total energy norm showed significantly different results.

A strong inter-cycle variability, however, raises concerns

regarding the reliability of these estimates and a larger

effect of spurious correlations using this metric.

All observation types exhibited the largest impact when

the same observation type was used for verification. This is

not surprising given the short forecast lead time. To some

extent, this favours time-continuous observations as surface

stations and profilers in contrast to temporally or spatially

varying radiosondes and aircraft observations.Nevertheless,

all types also showed a beneficial impact in the verification

with other observations except profilers verified with surface

stations and vice versa.

In a comparison with a model space based verification

metric used in earlier publications, strong inconsistencies

were found and associated to the correlations between

forecast and the verifying analysis.

An important issue when estimating observation impact

is that of the reliability of its estimate. Generally, a

larger sample size and longer experimental period leads to

more reliable results, but it is not yet clear how large the

sample needs to be. Furthermore, the averaging require-

ments likely depend on the observation type and weather

situation.

We found that the probability distribution of drawing

a certain impact value for a single observation is an asym-

metrically stretched exponential centred on the origin. By

computing a fitted impact distribution function and compar-

ing it to the unfitted one, a statement about the reliability

of results can be made and a corresponding reliability

indicator has been developed. This measure indicated that

only the wind profilers are uncertain and probably need a

larger sample size, whereas the estimates for the other ob-

servation types are reliable. In accordance, a data denial

experiment for wind profiler observations showed a clear

deviation from the estimated impact, whereas the results for

the other observation types were overall similar for impact

estimates and data denial experiments. For the experiments

using the model analysis for verification, the reliability

indicator also showed large values, indicating that the results

are not trustworthy as derived above. This emphasises that

the derived reliability indicator is a useful measure for the

soundness of the estimate.

11 Jun 00 UTC 12 Jun 00 UTC 13 Jun 00 UTC
−0.1

−0.05

0

0.05

0.1

Fig. 8. Time series of the impact of the Cabauw wind profiler

(PROF).
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Fig. 9. Unfitted, fitted and data denial (OSE) observation impact summed over the experimental period.
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