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Abstract

The23speciesofmycoheterotrophicorexoparasitic landplants (from15generaand6families) studiedso farall retainaminimal setof

17 of the normally 116 plastome genes. Only Rafflesia lagascae, an endoparasite concealed in its host except when flowering, has

been reported as perhaps lacking a plastome, although it still possesses plastid-like compartments. We analyzed two other endo-

parasites, the African Apodanthaceae Pilostyles aethiopica and the Australian Pilostyles hamiltonii, both living inside Fabaceae.

Illumina and 454 data and Sanger resequencing yielded circularized plastomes of 11,348 and 15,167 bp length, with both species

containing five possibly functional genes (accD, rps3, rps4, rrn16, rrn23) and two/three pseudogenes (rpoC2 in P. aethiopica and rpl2

and rps12 in both species; rps12 may be functional in P. hamiltonii). Previously known smallest land plant plastomes contain 27–29

genes,makingtheseApodanthaceaeplastomes themost reduced insizeandgenecontent.Asimilarextentofdivergencemighthave

caused the plastome of Rafflesia to escape detection. The higher plastome degeneration in both these families of endoparasites,

Rafflesiaceae and Apodanthaceae, of similar high age, compared with exoparasites points to a difference of plastome function

between those two modes of parasitic life.
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INTRODUCTION

The loss of photosynthesis has occurred in parasitic lineages

ranging from algae to angiosperms, but is not necessarily

accompanied by a loss of plastid genomes (reviewed in

Krause 2012). Which plastid genes may persist in nonphotosyn-

thetic land plants has been studied in 24 parasitic or

mycoheterotrophic Cuscuta, Orobanchaceae, Rafflesiaceae,

Aneuraceae, Orchidaceae, Petrosaviaceae, and Triuridaceae

(Wolfe et al. 1992; Funk et al. 2007; McNeal et al. 2007;

Wickett et al. 2008; Delannoy et al. 2011; Logacheva et al.

2011; Barrett and Davis 2012; Wicke et al. 2013, Barrett

et al. 2014; Logacheva et al. 2014; Molina et al. 2014; Lam

et al. 2015; Schelkunov et al. 2015; table 1). Comparison of

these 24 plastomes (table 1) shows that 23 of them still contain

the same 17 genes (ten ribosomal proteins, four ribosomal

RNAs, and three transfer RNAs), either because of global or

lineage-dependant selective pressure or by inertia. The

exception is R. lagascae in which no putative plastid sequences

have intact reading frames (Molina et al. 2014; and see Smith

and Lee 2014 for a possible loss of the plastome in the algae

Polytomella). This species is the only endoparasitic land plant

investigated so far and seems to completely lack a functional or

pseudogenized plastome (Molina et al. 2014). All the other

parasitic land plants analyzed are exoparasites, meaning they

connect to the host via haustoria from the outside or via fungal

hyphae. Endoparasites, such as Rafflesia, instead live perma-

nently inside the host as a network of parenchyma cells

(Heide-Jorgensen 2008; Molina et al. 2014). Endoparasitism

has evolved four times in land plants, namely in Rafflesiaceae

(34 species in three genera), Cytinaceae (~10 species in two

genera), Mitrastemonaceae (one or two species in one genus),

and Apodanthaceae (10 species in two genera, Apodanthes

and Pilostyles). The stem lineage of Rafflesiaceae is about 95

Myr old (Bendiksby et al. 2010), those of Cytinaceae 72 Myr,

GBE

� The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Genome Biol. Evol. 8(1):189–201. doi:10.1093/gbe/evv251 Advance Access publication December 12, 2015 189

Deleted Text: -
Deleted Text: -
Deleted Text: a
Deleted Text: Lam et&nbsp;al., 2015; 
Deleted Text: <italic>Rafflesia</italic> 
Deleted Text: ca. 
Deleted Text: ca. 
http://creativecommons.org/licenses/by-nc/4.0/


Mitrastemonaceae 78 Myr, and Apodanthaceae about 100

Myr (Naumann et al. 2013).

Apodanthaceae occur in North and South America, Africa,

Iran, and Australia (Bellot and Renner 2014b), and based on

mitochondrial and nuclear sequences they belong in the

Cucurbitales (Filipowicz and Renner 2010). Like other endo-

parasites, they lack leaves and stems, emerging only as small

flowers that break through the host’s bark once a year (fig. 1).

No chloroplasts have ever been observed in their tissues

(Rutherford 1970: Pilostyles thurberi; Dell et al. 1982; P. hamil-

tonii), although plastid-like compartments have been reported

for P. hamiltonii (Dell et al. 1982). The plant’s body consists of

cell clusters inside their hosts, which are Fabaceae for Pilostyles

in the Americas, Africa, Iran, and Australia, but Salicaceae for

Apodanthes in South America.

In this study, we investigate the African Pilostyles aethiopica

and the Australian P. hamiltonii, endoparasites that diverged

from each other about 23–33 Myr ago and that live inside

Fabaceae (Bellot and Renner 2014a), to test if they retain a

Table 1

Plastome Content of Nonphotosynthetic Land Plants, and Age of Parasitism/Mycoheterotrophy

Name Type of Parasitism Number

of Functional

Genes/RNAsa

Source Age of Parasitism

or Mycoheterotrophyb(Myr)

Pilostyles aethiopica (Apodanthaceae) Endo-holoparasite 5? This study < 81 (62-98), Bellot and Renner 2014b

Pilostyles hamiltonii (Apodanthaceae) Endo-holoparasite 5? This study < 81 (62-98), Bellot and Renner 2014b

Rafflesia lagascae (Rafflesiaceae) Endo-holoparasite Plastome

not found

Molina et al. 2014 < 95 (83-109), Bendiksby et al. 2010

Aneura mirabilis (Aneuraceae, Liverworts) Exo-holomycotroph 92 Wickett et al. 2008 ?

Corallorhiza var. maculata (Orchidaceae) Exo-holomycotroph 89 Barrett et al. 2014 � 49, Epidendroideae; Lovisa et al. 2010

Corallorhiza var. occidentalis (Orchidaceae) Exo-holomycotroph 88 Barrett et al. 2014 � 49, Epidendroideae; Lovisa et al. 2010

Corallorhiza mertensiana (Orchidaceae) Exo-holomycotroph 90 Barrett et al. 2014 � 49, Epidendroideae; Lovisa et al. 2010

Corallorhiza striata (Orchidaceae) Exo-holomycotroph 82 Barrett and Davis 2012 � 49, Epidendroideae; Lovisa et al. 2010

Epipogium aphyllum (Orchidaceae) Exo-holomycotroph 38 Schelkunov et al. 2015 � 49, Epidendroideae; Lovisa et al. 2010

Epipogium roseum (Orchidaceae) Exo-holomycotroph 30 Schelkunov et al. 2015 � 49, Epidendroideae; Lovisa et al. 2010

Neottia nidus-avis (Orchidaceae) Exo-holomycotroph 59 Logacheva et al. 2011 � 49, Epidendroideae; Lovisa et al. 2010

Petrosavia stellaris (Petrosaviaceae) Exo-holomycotroph 72 Logacheva et al. 2014 � 49, Epidendroideae; Lovisa et al. 2010

Rhizantella gardneri (Orchidaceae) Exo-holomycotroph 32 Delannoy et al. 2011 � 49, Epidendroideae; Lovisa et al. 2010

Sciaphila densiflora (Triuridaceae) Exo-holomycotroph 28 Lam et al. 2015 � 90-50 Triuridaceae; Mennes et al. 2013

Boulardia latisquama (Orobanchaceae) Exo-holoparasite 54 Wicke et al. 2013 < 32 (13-52) Naumann et al. 2013

Cistanche deserticola (Orobanchaceae) Exo-holoparasite 62 Li et al. 2013 < 32 (13-52) Naumann et al. 2013

Cistanche phelypaea (Orobanchaceae) Exo-holoparasite 60 Wicke et al. 2013 < 32 (13-52) Naumann et al. 2013

Conopholis americana (Orobanchaceae) Exo-holoparasite 49 Wicke et al. 2013 < 32 (13-52) Naumann et al. 2013

Cuscuta gronovii (Convolvulaceae) Exo-holoparasite 89 Funk et al. 2007 < 35 (13-57) Naumann et al. 2013

Cuscuta obtusiflora (Convolvulaceae) Exo-holoparasite 92 McNeal et al. 2007 < 35 (13-57) Naumann et al. 2013

Epifagus virginiana (Orobanchaceae) Exo-holoparasite 51 Wolfe et al. 1992 < 32 (13-52) Naumann et al. 2013

Myzorrhiza californica (Orobanchaceae) Exo-holoparasite 78 Wicke et al. 2013 < 32 (13-52) Naumann et al. 2013

Orobanche crenata (Orobanchaceae) Exo-holoparasite 63 Wicke et al. 2013 < 32 (13-52) Naumann et al. 2013

Orobanche gracilis (Orobanchaceae) Exo-holoparasite 58 Wicke et al. 2013 < 32 (13-52) Naumann et al. 2013

Phelipanche purpurea (Orobanchaceae) Exo-holoparasite 60 Wicke et al. 2013 < 32 (13-52) Naumann et al. 2013

Phelipanche ramose (Orobanchaceae) Exo-holoparasite 57 Wicke et al. 2013 < 32 (13-52) Naumann et al. 2013

aThe number of genes in a typical angiosperm is 116 (from Barrett et al. 2014), whereas for photosynthetic Aneura it is 121 (Wickett et al. 2008).
bThe age of parasitism/mycoheterotrophy is younger than the stem age of the respective parasite/mycoheterotrophic clade.

FIG. 1.—Flowers of Pilostyles aethiopica emerging from the host

Julbernardia globiflora (Fabaceae) in Harare, Zimbabwe. Scale bar is

5 mm. Photo S. Bellot.
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functional plastome. We used three kinds of evidence to infer

the genomic location of any plastome-like DNA region: BLAST

searches, flanking regions, and read depth differences. In

normal photosynthetically active plants, copy number of plas-

tome sequences is expected to be one to two orders of mag-

nitude higher than that of mitochondrial sequences and two

to four orders higher than that of nuclear sequences (Zoschke

et al. 2007), although those proportions may change in

nonphotosynthetic tissues.

MATERIALS AND METHODS

Taxon Sampling, DNA Sequencing, and Genome Size
Measurements

Flower tissue from a female individual of P. aethiopica (vou-

cher S. Bellot 28, deposited in the herbarium of Munich) was

collected in the Mukuvisi woodlands of Harare, Zimbabwe on

February 29, 2012 and kept frozen until DNA isolation with

the kit DNeasy Plant Maxi Kit (Qiagen), following the manu-

facturer’s protocol. One microliter of the DNA (17.2 ng/ml)

was sent to Eurofins MWG Operon for precipitation and se-

quencing. One genomic shotgun library of insert sizes 160–

310 bp was sequenced in one channel of Illumina HiSeq 2000,

yielding 236,404,172 paired-end reads of 101 bp. The same

DNA sample was also submitted by the same company to a

run of pyrosequencing using a GS FLX+ sequencer (454 Life

Science, Roche), yielding 864,474 reads of 640 bp in average,

already trimmed based on quality.

DNA from silica-dried flowers of male and female P.

hamiltonii collected near Perth in October 2010 (voucher

K. Dixon 1039 in the herbarium PERTH) was isolated using

the same approach, and the DNA was sent to the University

of Vienna (C. Schlötterer’s lab) for Illumina sequencing on a

Genome Analyzer IIx platform. This yielded 80,223,076

paired-end reads of 101 bp.

The 1C values of P. aethiopica and P. hamiltonii were

determined with flow cytometry, using the same batch of

flowers as used for DNA sequencing. Flow cytometry relied

on propidium iodide as the DNA stain and Solanum

pseudocapsicum as the standard, following the protocol of

Temsch et al. (2010). A CyFlow ML flow cytometer (Partec,

Muenster, Germany) equipped with a green laser (100 mW,

532 nm, Cobolt Samba, Cobolt, Stockholm, Sweden) was

used for the fluorescence measurements, with 5,000 parti-

cles measured per run and three runs performed per plant

preparation. The C value was calculated according to the

formula: 1C valueObject = (mean G1 nuclei fluorescence

intensityObject/mean G1 nuclei fluorescence intensity

Standard)*1C valueStandard.

Quality Control, Preprocessing, and Assembly of Reads

For P. aethiopica, following quality control of the Illumina

reads with PRINSEQ (Schmieder and Edwards 2011) and

FASTQC (Andrews, http://www.bioinformatics.babraham.

ac.uk/projects/fastqc/, last accessed December 27, 2015),

adaptors were removed when necessary, using fastx-toolkit

(http://hannonlab.cshl.edu/fastx_toolkit/, last accessed

December 27, 2015), and sequences were trimmed at

both ends using PRINSEQ to remove polyA/T tails greater

than 5 nt and all bases with a quality score less than 20,

stopping at the first base with a quality greater than 20. The

few sequences shorter than 60 bp were then removed as

were sequences of a mean quality score less than 30, or

greater than 1% of Ns, or an entropy less than 70. This left

180,443,106 reads. For P. hamiltonii, adaptors were re-

moved from the reads using Cutadapt (Martin 2011), and

the reads were then filtered and trimmed using PRINSEQ

with similar stringency thresholds as for P. aethiopica. This

left 69,000,257 reads.

De novo assemblies of the cleaned total reads of P. aethio-

pica and P. hamiltonii were performed on the CLC Genomics

Workbench 7 (http://www.clcbio.com, last accessed

December 27, 2015) using different word and bubble sizes,

of which the automatic ones provided the best results, and

improved with SSPACE (Boetzer et al. 2011), which remaps

reads using the included Bowtie assembler and scaffolds the

resulting contigs using the paired-end information. This pro-

duced 952,874 de novo contigs for P. aethiopica and 270,940

for P. hamiltonii, with N50 of 601 and 446 bp, and a maxi-

mum contig size of 61,798 and 33,472 bp. The 454 reads of

P. aethiopica were also assembled with CLC, producing

54,793 contigs with a N50 of 558 bp and a maximum size

of 37,200 bp.

Isolating and Assembling Reads with a Reference Plastid
Genome

The Illumina reads of P. aethiopica and P. hamiltonii were

mapped with low stringency against the plastome of

Cucumis sativus (supplementary table S1, Supplementary

Material online, lists all plastid genomes used in this

study). For each gene, rRNA, or tRNA, the corresponding

reads were extracted, as well as reads matching adjacent

intergenic regions until the first gap in the mapping. Reads

were then de novo assembled with Geneious R7

(Biomatters, http://www.geneious.com/, last accessed

December 27, 2015), using the highest stringency to

allow the separation of similar sequences mapping to the

same region. Contigs were checked for ambiguities, and

weakly covered consensuses (with at least 3, 20, 40, or

80 reads, depending on the length of the region) were

retained to avoid losing plastome-like nuclear regions or a

plastid genome that might be present in a low copy

number. In many cases, multiple contigs corresponded to

a given gene. All retained contigs were aligned against

the plastome of C. sativus, keeping only contigs with an

e-value <0.00001 (BLASTn command of BLAST+ version

Smallest Plastomes GBE
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29; Camacho et al. 2008; ftp://ftp.ncbi.nlm.nih.gov/blast/ex-

ecutables/blast+/2.2.29/, last accessed December 27, 2015).

This reduced the number of plastome-like contigs from

3,755 to 313 for P. aethiopica and from 873 to 215 for

P. hamiltonii. Finally, we kept the de novo contigs (previous

section) overlapping those reference-based contigs as possi-

ble candidates for forming a plastome.

Finding More Divergent Plastome-Like Sequences

Because the reference genome approach did not recover a

Pilostyles plastid genome (Results), we used a second strat-

egy, which consisted in blasting the de novo contigs of

Pilostyles against the plastid genes of 701 organisms (includ-

ing the nonphotosynthetic apicomplexan Babesia microti) for

which plastomes were available on GenBank in January

2015, using low stringency (maximum e-value of 10, max-

imum number of target sequences equal to total number of

genes, and “-task” option set to BLASTn with default word-

size of 11, as was the case for the BLASTn analyses de-

scribed below) and keeping all contigs to which at least

one gene (or a tRNA or a rRNA) matched along �50% of

its length, sometimes in multiple high scoring pairs (gapped

alignment). This allowed us to retrieve 60 more de novo

contigs as plastome gene candidates in P. aethiopica and

two more in P. hamiltonii, resulting in 176 and 121 candi-

dates, respectively. In an even more conservative approach,

the same analysis was conducted using tBLASTx and keep-

ing all contigs matching with an e-value �0.01, no matter

the length of the match. The flanking regions of the plas-

tome-like regions were retrieved using custom scripts,

BEDtools (Quinlan and Hall 2010), and SAMtools (Li et al.

2009). Mean read depth was retrieved for every de novo

contig after stringent (99% overlap, 99% identity) remap-

ping of the reads using CLC and following removal of reads

possibly resulting from polymerase chain reaction (PCR) du-

plicates (as inferred from their mapping coordinates) using

SAMtools (command “rmdup” option “–S”). To confirm

that borders between flanking and plastome-like regions

were not unusually covered compared with the rest of the

contig, we used the “Coverage analysis” option available in

CLC, using a conservative minimum length (6 bp) and P

value (0.05), which allowed identification of even small re-

gions of low/high coverage (normal coverage being as the

global coverage of the contig). From this analysis, we

pooled the reads belonging to possibly misassembled con-

tigs containing plastome-like regions with the reads from

contigs selected as plastome candidates (Results), and reas-

sembled them de novo using Geneious R7 at low, medium,

and high stringency to check for alternative assemblies that

would produce different plastome candidates. For P. aethio-

pica, the 454 reads were mapped to the borders when

available, and they all matched perfectly whenever CLC in-

ferred a normal coverage (data not shown).

Genomic and Phylogenetic Origin of Plastome-Like DNA
Fragments

To infer the genomic placement of the candidate plastome

contigs of both species of Pilostyles, each plastome-like region

was aligned against the NCBI nucleotide database using

BLASTn, with a maximum e-value of 10 and a maximum

number of target sequences set to 5,000. Custom Python

scripts were written to record hits bitscores and genomic com-

partments. Flanking regions of the plastome-like regions were

submitted to the same analysis, and results were doubled-

checked manually. The genomic location of plastome-like con-

tigs was also inferred from their read depth in comparison to

that of contigs known to belong to the mitochondrial and

nuclear genomes. Mitochondrial contigs were identified by

blasting all contigs against the mitochondrial genes of

Citrullus lanatus (NC_014043), Cucurbita pepo (NC_014050;

Alverson et al. 2010), and C. sativus (NC_016004,

NC_016005, and NC_016006; Alverson et al. 2011), and

keeping for each gene the contig matching with the highest

bitscore, some of them carrying multiple mitochondrial genes.

Nuclear contigs were identified the same way, using as a ref-

erence the nuclear protein-coding genes of C. sativus pub-

lished by Li et al. (2011) and available in GenBank

(BioProject number PRJNA80169).

The high divergence and short length of most sequences

made their phylogenetic placement difficult, regardless

whether using BLAST or alignments and trees searches. We

used a script (http://seqanswers.com/forums/showthread.

php?t=40975, last accessed December 27, 2015) to extract

GenBank’s taxonomic classification information for each se-

quence and then recorded the bitscore of its first hit to

Cucurbitales (the order of the parasite family

Apodanthaceae), Fabales (the order of the host), Fagales or

Rosales (the four orders form a monophylum), or to other

orders. Contigs with parts most similar to Fabales were kept

even when they were globally more similar to another order

(including Cucurbitales) because they could represent cases of

horizontal gene transfer from the hosts. Contigs that comple-

tely matched bacteria or Fabales (the order to which all African

and Australian host species belong) were removed from fur-

ther analyses after we had made sure that they could not

represent parts of the Pilostyles plastome by looking at their

gene content. We are confident that these removed contigs

do not form part of any Pilostyles plastome because all their

reads were included in the iterative remapping analyses per-

formed to extend plastome candidates (next section); none of

them allowed further extension. The genes found in the plas-

tomes of P. aethiopica and P. hamiltonii (Results) were aligned,

and we then performed maximum likelihood phylogenetic

analyses to infer their relationships with other Viridiplantae,

using 37–39 representative lineages of land plants and green

algae as outgroups (supplementary table S1, Supplementary

Material online). Alignments were generated with Geneious
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R7 and MAFFT 7.017 (Katoh et al. 2002), and tree searches

were conducted in RAxML 7.2.8 (Stamatakis 2006) with the

GTR + G substitution model and 100 bootstrap replicates, all

through Geneious R7.

Extension and Concatenation of the Plastome-Like
Contigs

For each Pilostyles species, all reads were remapped iteratively

at low stringency (requiring only 30% of length to match at

100%) onto the candidate plastome contigs (Results), using

CLC. The ends of each contig were checked manually for

possible further extension and/or alternative ends that

would allow concatenation. After each extension, contigs

were blasted against the pooled de novo contigs, to ensure

that no plastid contig was missed, especially divergent

noncoding regions.

To confirm the sequence of a few low-complexity repeated

regions and the closure of the plastome of P. aethiopica, the

genomic DNA used for the next-generation sequencing was

used for PCRs using standard protocols (as in Bellot and

Renner 2014a) and Sanger sequencing relying on the Big

Dye Terminator cycle sequencing kit (Applied Biosystems,

Foster City, CA) and an ABI 3130-4 automated capillary se-

quencer. The same procedure was also applied to join the

plastome contigs of P. hamiltonii, on a DNA sample (voucher:

K. Thiele 4527, herbarium PERTH) collected at the same local-

ity as the sample used for next-generation sequencing. We

also designed a pair of primers to amplify the whole plastome

of P. aethiopica by long-range PCR performed on the DNA

used for Illumina sequencing, using the following conditions:

25 ml of LongAmp Hot Start Taq 2X Master Mix (New England

BioLabs), 2 ml of each primer, 1 ml (120 ng) of DNA, and 20 ml

of H2O yielding an individual reaction volume of 50 ml.

Termocycling conditions were 30s at 94 �C + 30 * (30 s at

94 �C + 60 s at 46 �C + 9 min at 65 �C) + 10 min at 65 �C. The

primers were designed using Primer3Plus v. 2.3.6 (Untergasser

et al. 2012) and are listed at the end of supplementary table

S1, Supplementary Material online.

In Silico Assessment of Plastid Gene Functionality

Contigs bearing plastome-like regions were annotated using

DOGMA (Wyman et al. 2004; http://dogma.ccbb.utexas.edu/

html/cite.html, last accessed December 27, 2015) at the

lowest possible stringency (threshold of 25% identity,

gapped and nongapped alignment), and amino acid or nucle-

otide sequences of all gene and rRNA fragments identified

were aligned with the corresponding genes of Cucumis, man-

ually compared for identity and searched for frameshifts and

stop-codons (for protein-coding genes). For the plastomes,

the results of DOGMA were refined using ORF Finder online

(Tatusov and Tatusov; http://www.ncbi.nlm.nih.gov/gorf/

orfig.cgi, last accessed December 27, 2015) as well as

manual BLASTn, tBLASTx, and BLASTp against Genbank. In

addition, the two plastomes were searched for tRNAs using

tRNAscan-SE 1.21 (Lowe and Eddy 1997) at low stringency

(Cove score 15), and secondary structure of the candidate

tRNAs was investigated using the online program RNAfold

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi, last accessed

December 27, 2015).

RESULTS

Genome Size, Sequencing Coverage, and Genomic
Location of Plastome-Like Regions

The 1C value of P. aethiopica is 1.5 pg, that of P. hamiltonii

5 pg, which corresponds to, respectively, 1.467

(1.50.978*109) and 4.89 Gb. Pilostyles aethiopica has a chro-

mosome number of n = 29 (Bellot 2015); the chromosome

number of P. hamiltonii is unknown. The results from blasting

the de novo contigs of P. aethiopica and P. hamiltonii against

Genbank (Material and Methods) are presented in table 2 and

tables S2 and S3, Supplementary Material online. To confirm

or clarify the genomic locations inferred from blasting, we

used coverage information (fig. 2). The length of the assem-

bled P. aethiopica contigs is 498,766,256 bp, that of P. hamil-

tonii 117,704,350 bp, representing ca. 34% and 2.4% of

their respective genomes; the expected read depth is thus

36 and 59 discounting copy number variation. Figure 2

shows the read depths of the mitochondrial and nuclear con-

tigs as well as that of plastome-like contigs located in the

mitochondrial genome as inferred from their flanking regions.

For both species, the latter have a read-depth similar to that of

contigs known to be mitochondrial. In a second step, the

contigs of unclear location were assigned to a genomic com-

partment on the basis of expected differences in read depths

and by performing further read mappings (supplementary

tables S2 and S3, Supplementary Material online, provide de-

tails about the assignment of particular contigs). In P. aethio-

pica, 48 plastome-like regions are located in the chondriome,

nine in the nucleus, and one contig may be part of the plas-

tome. In P. hamiltonii, 55 plastome-like regions are located in

the chondriome, seven in the nucleus, three may be in either

the chondriome or the nuclear genome, and three may form a

plastome (table 2).

Do the Plastome-Like Contigs in the Two Species of
Pilostyles Form a Plastome?

The only plastid contig found in P. aethiopica (contig 177;

arrow in fig. 2) had a mean read depth of 174, higher than

any of the other de novo contigs. Contig 177 matches first to

an rrn16 region (supplementary table S2, Supplementary

Material online) with high identity to those amplified by PCR

from P. hamiltonii (Thiele et al. 2008) and P. thurberi (Nickrent

et al. 1997). Read remapping as well as blasting of contig 177

at low stringency to all de novo contigs did not allow further

extension, and showed homogeneous coverage except at the
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Table 2

Contigs of Pilostyles hamiltonii and Pilostyles aethiopica Containing Plastome-Like Regions, with Their Genomic Location, Read Depth, and Gene

Content

De Novo Contig Genomic

Location

Mean Coverage

(in reads by bp)

Protein-Coding

Genes

De Novo Contig Genomic

Location

Mean Coverage

(in reads by bp)

Protein-Coding

Genes

Pham_scaffold_3 MT 67.6 Paet_scaffold_1 MT 129.7 orf42*

Pham_scaffold_5 MT 68.9 Paet_scaffold_4 MT 131.6 accD*, atpA*,

psbT*

Pham_scaffold_9 MT 87.1 psbD* Paet_scaffold_5 MT 125.7

Pham_scaffold_10 MT 87.1 rpl23* Paet_scaffold_8 MT 127.3

Pham_scaffold_16 MT 73.5 Paet_scaffold_10 MT 129.7 psbE

Pham_scaffold_17 MT 86.5 Paet_scaffold_13 MT 126.0

Pham_scaffold_22 MT 79.4 rpoC1* Paet_scaffold_17 MT 127.9

Pham_scaffold_23 MT 81.8 Paet_scaffold_20 MT 128.7

Pham_scaffold_25 MT 65.0 Paet_scaffold_24 MT 126.2

Pham_scaffold_26 MT 84.5 Paet_scaffold_28 MT 128.7

Pham_scaffold_29 MT 60.7 Paet_scaffold_29 MT 130.0

Pham_scaffold_32 MT 79.5 ndhC*, ndhK* Paet_scaffold_31 MT 128.6

Pham_scaffold_34 MT 116.3 Paet_scaffold_37 MT 128.4 rpl23*

Pham_scaffold_37 MT 72.6 infA* Paet_scaffold_42 MT 122.5

Pham_scaffold_38 MT 84.5 petB*, petD*,

psbH, rpoA*, rps11

Paet_scaffold_50 MT 133.8 ccsA*, cemA*

Pham_scaffold_40 MT 79.5 Paet_scaffold_51 MT 120.0 atpB, psbC*,

psbZ, rps7*

Pham_scaffold_41 MT 95.6 Paet_scaffold_67 MT 131.5 accD*, atpA*,

atpF*, atpI*

Pham_scaffold_42 MT 77.1 Paet_scaffold_70 MT 127.8 atpB, atpE*

Pham_scaffold_44 MT 74.8 Paet_scaffold_72 MT 129.1

Pham_scaffold_46 MT 79.5 rbcL* Paet_scaffold_73 MT 117.3

Pham_scaffold_50 MT 84.8 rpoC1* Paet_scaffold_84 MT 126.5

Pham_scaffold_58 MT 88.3 Paet_scaffold_85 MT 122.7

Pham_scaffold_62 MT 67.3 cemA* Paet_scaffold_93 MT 131.7

Pham_scaffold_65 MT 74.9 Paet_scaffold_95 MT 132.2 rps2*

Pham_scaffold_66 MT 65.4 Paet_scaffold_106 MT 129.5 accD*

Pham_scaffold_69 MT 95.3 psbE*, psbF*, psbJ,

psbN*, rpl20*, ycf1*

Paet_scaffold_107 MT 136.9

Pham_scaffold_70 MT 76.5 Paet_scaffold_108 MT 134.6

Pham_scaffold_72 MT 100.1 Paet_scaffold_122 MT 136.4

Pham_scaffold_78 MT 67.1 orf56 Paet_scaffold_125 MT 138.8 accD*, atpB,

ndhJ*, ndhK*,

rbcL*, rps4*

Pham_scaffold_80 MT 79.5 psaA* Paet_scaffold_126 MT 134.9

Pham_scaffold_81 MT 87.5 Paet_scaffold_136 MT 133.7 petA*

Pham_scaffold_83 MT 73.8 atpH* Paet_scaffold_157 MT 125.8

Pham_scaffold_88 MT 60.1 Paet_scaffold_166 MT 123.3 petG

Pham_scaffold_113 MT 79.1 Paet_scaffold_177 CP? accD, rpl2*,

rps3,rps4, rps12*,

rrn16, rrn23

Pham_scaffold_158 MT 76.7 Paet_scaffold_189 MT 126.1

Pham_scaffold_160 MT 68.3 psaC Paet_scaffold_213 MT 136.5

Pham_scaffold_163 MT 59.4 psaA* Paet_scaffold_226 MT 126.8 rpoC1*

Pham_scaffold_175 MT 69.3 psbB*, psbT* Paet_scaffold_243 MT 124.6

Pham_scaffold_180 MT 90.0 rpoC2* Paet_scaffold_245 MT 113.8

Pham_scaffold_198 MT 48.9 Paet_scaffold_267 MT 120.5 psbA*

Pham_scaffold_203 MT or NC 45.9 ndhJ* Paet_scaffold_286 MT 117.2

Pham_scaffold_205 MT 80.0 Paet_scaffold_299 MT 130.6 psbN*

Pham_scaffold_207 CP? 111.6 rpl2*, rrn23 Paet_scaffold_319 MT 123.4

(continued)
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beginning and end of the contig and in two other small sec-

tions (supplementary fig. S2A, Supplementary Material

online). Circularization of contig 177 of P. aethiopica is sup-

ported in silico by eight Illumina reads and 24 paired-end reads

having one mate mapping to the start of the contig and one

mate mapping to its end. Sanger sequencing using primers

matching the ends of this contig was successful, confirming

the existence of plastomes in which the ends are adjacent

(supplementary fig. S2B, Supplementary Material online).

Finally, long-range PCR using a primer pair designed on

contig 177 (fig. 2A) yielded a product size of approximately

11 kb, corresponding to the size of contig 177 (supplementary

fig. S2B, Supplementary Material online, inset). The contig

with the highest read depth obtained from the assembly of

the 454 data was identical to contig 177, with the same pat-

tern of coverage distribution, albeit not opened (linearized) at

the same place but instead in a well-covered repeated region.

By Sanger resequencing we checked the assembly of contig

177 (supplementary fig. S2C, Supplementary Material online).

These different types of evidence support that contig 177

forms the complete plastome of P. aethiopica, although it is

probably not always circular.

The plastid contigs found in P. hamiltonii (contigs 207, 261,

and 706) align to different regions of the plastome of

P. aethiopica and have read depths of, respectively, 112, 89,

and 117, about the same as mitochondrial contigs (table 2

and fig. 2). Contigs 207 and 706 match to Plasmodium and

green algae and then to angiosperm plastomes, and contig

261 matches the rrn16 sequences of P. hamiltonii found in

GenBank (EF446141 to EF446144 and EU512418 to

EU512420; Thiele et al. 2008). Blasting of the de novo contigs

of P. hamiltonii to the plastome of P. aethiopica, as well as

iterative remappings of all the reads (Material and Methods),

revealed six more contigs that overlapped contigs 207, 261,

and 706 by at least a few reads. Those six contigs had mean

read depths between 31 and 77, and two of them showed

similarities with known plastid genes (below). PCR amplifica-

tion and Sanger sequencing (supplementary fig. S2D,

Supplementary Material online) suggest that all nine contigs

form a circular plastome, collinear to that of P. aethiopica.

Possibly Functional Genes in the Plastomes of Pilostyles

The plastomes of P. aethiopica and P. hamiltonii are repre-

sented in figure 3. Mapping of the reads to the plastomes

Table 2 Continued

De Novo Contig Genomic

Location

Mean Coverage

(in reads by bp)

Protein-Coding

Genes

De Novo Contig Genomic

Location

Mean Coverage

(in reads by bp)

Protein-Coding

Genes

Pham_scaffold_241 MT 61.4 Paet_scaffold_346 MT 137.6

Pham_scaffold_244 MT or NC 52.7 Paet_scaffold_377 MT 129.9 atpA*, ycf1*

Pham_scaffold_251 MT or NC 59.8 Paet_scaffold_420 MT 133.1

Pham_scaffold_261 CP? 89.3 rrn16 Paet_scaffold_512 MT 118.8

Pham_scaffold_266 MT 71.2 Paet_scaffold_908 MT 118.6 psbD*, rpoB*

Pham_scaffold_270 MT 68.5 clpP* Paet_scaffold_1807 NC 7.3

Pham_scaffold_315 MT 67.8 rps12* Paet_scaffold_2390 MT 128.9

Pham_scaffold_462 MT 71.7 Paet_scaffold_19077 NC 5.4

Pham_scaffold_491 MT 75.6 Paet_scaffold_53779 NC 7.2 psaA*

Pham_scaffold_503 MT 60.0 Paet_scaffold_77278 NC 7.6

Pham_scaffold_506 MT 42.9 Paet_scaffold_113062 NC 5.3 accD*

Pham_scaffold_508 MT 48.7 Paet_scaffold_149204 NC 22.9

Pham_scaffold_706 CP? 116.9 accD Paet_scaffold_164148 NC 3.0 atpH*

Pham_scaffold_775 MT 92.5 psaB*, rps14* Paet_scaffold_277960 NC 4.7

Pham_scaffold_2613 NC 64.5 Paet_scaffold_605245 NC 4.4

Pham_scaffold_14490 MT 63.6

Pham_scaffold_22113 MT 134.5 psbA*

Pham_scaffold_33324 NC 8.4

Pham_scaffold_49221 NC 5.6

Pham_scaffold_50886 NC 4.9 ycf4*

Pham_scaffold_79191 NC 1.6

Pham_scaffold_90224 NC 4.8

Pham_scaffold_148584 MT 89.7 rpl36

Pham_scaffold_220160 MT 78.2

Pham_scaffold_223261 NC 4.6

NOTE.—Genes marked with an asterisk are pseudogenes, whereas the others may be functional as inferred only from the DNA sequence (see supplementary table S4,
Supplementary Material online, for details). Contigs without plastid genes show similarities with very small plastid gene fragments or with uncoding plastid regions. Genomic
location of the plastid regions in contigs in bold was inferred from their flanking regions whereas for the others, it required coverage analysis and read remappings (see
supplementary tables S2 and S3, Supplementary Material online, for details). MT, mitochondrial; NC, nuclear; CP?, possibly part of a chloroplast genome.
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at various stringencies did not reveal the presence of the typ-

ical inverted repeat. In total, the plastome of P. aethiopica is

11,348 bp long, of which 52% (5,901 bp) are recognizable as

functional or pseudogenized genes and rRNAs. The plastome

of P. hamiltonii is 15,167 bp long, of which 41.6% (6,314 bp)

are functional or pseudogenized genes; its larger size is thus

mostly due to an increase of non-coding DNA. The mean GC

content of the plastome of P. aethiopica is 24.2% and that of

P. hamiltonii is 22.7% (fig. 3).

We found the genes accD, rpl2, rps3, rps4, rps12, rrn16,

and rrn23 in both species, and rpoC2 only in P. aethiopica. At

least rpl2 and rpoC2 are pseudogenes judging from their short

size and lack of start codons, whereas accD, rps3 and rps4

may be functional because they have long open reading

frames (supplementary table S4, Supplementary Material

online, provides details on the inference of gene function).

The rRNAs are as long as in other plants, and BLAST searches

of the rrn23 and rrn16 of P. hamiltonii, and rrn23 of

P. aethiopica against P. thurberi transcriptome data (Matasci

et al. 2014; https://www.bioinfodata.org/Blast4OneKP/, last

accessed December 27, 2015) recovered a hit for each of

them. The rrn16 of P. aethiopica, however, failed to match

anything despite its similarity to P. hamiltonii (fig. 3). The rps12

gene from both plastomes is as long as in photosynthetic

plants, but consists of one piece instead of having three

exons; it has a start codon in P. hamiltonii but apparently

not in P. aethiopica.

The tRNA-like sequences found in the plastomes of

P. aethiopica and P. hamiltonii by comparing them to

Cucumis melo and the apicomplexan B. microti do not seem

capable of forming a typical cloverleaf structure. When blast-

ing (BLASTn, word size=7) the trnE genes of Cucumis and

Babesia against the plastomes of P. hamiltonii and P. aethio-

pica, there was no match with a score greater than 25. The

same searches against all de novo contigs hit a mitochondrial

contig of P. hamiltonii (number 198; table 2) with a bitscore of

104, but again it does not seem capable of forming a clover-

leaf secondary structure. No hit with a bitscore greater than 54

was found in P. aethiopica.

The Mitochondrial and Nuclear Genomes of Pilostyles
Contain Plastid Pseudogenes

Supplementary table S4, Supplementary Material online, sum-

marizes the presence/absence of plastid genes in the total de

novo contig sets of P. aethiopica and P. hamiltonii compared

with C. sativus. Of the 81 protein-coding genes present in

Cucumis, 30 had detectable traces in P. aethiopica and 34 in

P. hamiltonii, with 14 shared among them (not considering

the genes located in the plastomes). In P. aethiopica, five mi-

tochondrial contigs contained possibly functional plastid

genes (three copies of atpB, and petG, psbE, and psbZ), as

inferred from their length and absence of internal stop codons

(supplementary table S4, Supplementary Material online). In

P. hamiltonii, we also found five mitochondrial contigs con-

taining possibly functional orf56, psaC, psbH, psbJ, rpl36, and

rps11 (table 2). However, none of these genes matched the

transcriptome data from the American P. thurberi available

online (Matasci et al. 2014; https://www.bioinfodata.

org/Blast4OneKP/, last accessed December 27, 2015).

Many of the plastome-like sequences found in the nuclear

and the mitochondrial genomes of Pilostyles have their first

BLAST hit to Fabales (supplementary tables S2 and S3,

Supplementary Material online), suggesting horizontal trans-

fers from the host, but their shortness and high divergence

prevented reliable assessment of their origin.
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FIG. 2.—Read depth of Pilostyles contigs with plastome-like regions.

Unclear: Contigs with plastome-like regions whose flanking regions were

too short to infer their genomic location. Arrows indicate contigs that are

part of plastomes (Results). The means for P. aethiopica are based on 34

contigs located in the chondriome, 670 located in the nuclear genome, 38

inferred to be in the chondriome from their flanks, and 19 of unclear

location. The means for P. hamiltonii are based on 32 contigs located in

the chondriome, 369 located in the nuclear genome, 31 inferred to be in

the chondriome from their flanks, and 37 of unclear location.
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No Detectable Horizontal and Internal Gene Transfers
towards the Pilostyles Plastomes

The phylogenetic placement in Viridiplantae of each possibly

functional plastome gene was assessed by maximum likeli-

hood inference; results are shown in supplementary figure

S1, Supplementary Material online. In all trees, the two

Pilostyles species were sisters, with 100% or 90% (rps4) boot-

strap support (BP), and the branches leading to Pilostyles are

longer by at least one order of magnitude than other branches

in the respective phylogenies. The genes rps3, rps4, or rrn23

placed Pilostyles as sister to Silene, Welwitschia, or Psilotum,

always with low support (�32% BP). The tree obtained from

the rrn23 alignment does not fit currently accepted angio-

sperm relationships, while that from rps12 shows Pilostyles

as sister to land plants (with 76% BP) in a topology that oth-

erwise more or less fits expected relationships. The rrn16 gene

places Pilostyles closer to Cicer (Fabales; with 62% BP), and

together Pilostyles and Cicer are sister to the remaining

angiosperms (in which relationships are not well resolved).

When we blasted the rrn16 of Pilostyles against GenBank

(BLASTn at http://blast.ncbi.nlm.nih.gov/Blast.cgi, last accessed

April 2015), Fabales were not among the first hits, but instead

other sequences of Pilostyles, then Balanophora (a holopara-

site belonging to Santalales), and then Plasmodium (a

nonphotosynthetic apicomplexan). The accD tree, finally,

shows Pilostyles as sister to Cucumis (Cucurbitales; with

63% BP), and all three are located among other Rosales in a

well-resolved angiosperm phylogeny. BLASTn of each gene

against GenBank revealed the high divergence of the

Pilostyles plastome genes, with every gene except accD

having its first hit outside of angiosperms, always with a rel-

atively low bitscore compared with the length of the gene

(results available on request).

BLAST searches (BLASTn at http://blast.ncbi.nlm.nih.gov/

Blast.cgi, last accessed April 2015) of the non-coding

regions of the plastome of P. aethiopica revealed a

509 bp-long low-complexity region (12% GC) matching an

FIG. 3.—Map of the plastid genomes of P. aethiopica and P. hamiltonii. The skyline graphs represent the GC% with the minimum, mean, and maximum

values indicated on the right. The blue and red bands indicate identity greater than 70% for bitscores greater than 100, red bands show a match in the same

orientation whereas blue bands symbolize reversed-complement matches. The three bars above the gene labels refer to the reading frames; stop codons are

represented by vertical black bars, and start codons (methionine) by purple vertical bars. � means the gene is pseudogenized. Visualization obtained with the

Artemis Comparison Tool (Carver et al. 2005).
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un-annotated region of the genome of the worm Anisakis

simplex and then (only in 325 bp) an un-annotated nuclear

region of C. melo. It did not match mitochondrial genomes.

BLASTn searches for P. hamiltonii revealed a 377 bp-long

low complexity (15% GC) region matching the mitochon-

drial nad5 of the hymenoptera Paraligoneurus and a 479 bp-

long low-complexity region (14% GC) matching a noncod-

ing region of the mitochondrial genome of Ditaxis biseriata

(Euphorbiaceae).

DISCUSSION

Distinguishing a Plastome from Plastid-Like Regions
Located in the Nuclear or Mitochondrial Genomes, and
from Contaminations

Because of its high coverage and circularization, supported by

PCR amplification and Sanger resequencing in different indi-

viduals (supplementary fig. S2A–C, Supplementary Material

online), we are confident that the plastome of P. aethiopica

indeed forms a separate genomic compartment. The plas-

tome of P. hamiltonii, the circularization of which was also

supported by resequencing (supplementary fig. S2D,

Supplementary Material online), resembles the plastome of

P. aethiopica in structure and gene content despite these spe-

cies coming from different continents and having been se-

quenced separately (and by different companies). The

relatively low coverage of both plastomes (a bit higher than,

or of the same order of magnitude as, that of mitochondrial

contigs, fig. 2) may be due to the relatively old flowers used

for DNA extraction (in the case of P. hamiltonii). Coverage

ratios can also be modified by endopolyploidization (Barow

2006), ontogeny (Preuten et al. 2010), and may differ in

nonphotosynthetic tissues (Isono et al. 1997). In a less parsi-

monious explanation suggested by a reviewer of this article,

the circularized plastomes of P. aethiopica and P. hamiltonii

might be artifacts generated by plastid regions repeated in

tandem and integrated into the mitochondrial genome.

Cytological studies could distinguish between these alterna-

tives, but must await fresh anthers for pollen mother cell

counts (since there are no root tips).

Phylogenetic trees built from single plastid genes of

Pilostyles (supplementary fig. S1, Supplementary Material

online) reject the possibility that the plastomes retrieved here

result from contamination. Clear contaminations we detected

were the complete genome of a Pantoea species, a Gram-

negative bacterium of the family Enterobacteriaceae and

some host DNA. The distant affinity of the rrn16 of Pilostyles

to Plasmodium was not supported by further reassembly.

Such unexpected similarity illustrates how lack of function

can result in loss of complexity (low GC%) and nucleotide

convergence in unrelated organisms.

The plastomes of P. aethiopica and P. hamiltonii do not

harbor mitochondrial or nuclear regions; the only three

matches (one in P. aethiopica and two in P. hamiltonii) to

such regions were in low complexity stretches (<15%GC)

and probably represent noise. Incorporation of mitochondrial

or nuclear sequences into plastid genomes is rare (Iorizzo et al.

2012; Knox 2014), whereas the inverse is common (Notsu

et al. 2002; Goremykin et al. 2009; Rice et al. 2013). Fitting

with this, Pilostyles mitochondrial genomes have absorbed at

least 64–71 plastid regions (table 2). Mitochondrial genomes

of Cucurbita pepo, Citrullus lanatus, and Cucumis sativus also

contain numerous plastid and nuclear-derived sequences

(Alverson et al. 2010, 2011), and the dynamics of the
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mitochondrial genomes of Pilostyles may thus reflect a

Cucurbitales heritage rather than result from a parasitic way

of life.

Structure and Function of the Plastome of the Two
Pilostyles Species

Prior to this study, the most reduced plastomes known from

nonphotosynthetic angiosperms where those of Sciaphila

densiflora (Triuridaceae) and Epipogium aphyllum and E.

roseum (Orchidaceae), with 27–29 functional genes and

transfer RNAs (Lam et al. 2015; Schelkunov et al. 2015). The

plastomes of P. aethiopica and P. hamiltonii, with five or six

potentially functional genes (accD, rps3, rps4, rrn16, rrn23

and rps12 for P. hamiltonii) and two to three pseudogenes

(rpl2, rpoC2, and rps12 for P. aethiopica), retain only about

one-fifth of the genes of these previous smallest plastomes.

We were able to find these extremely reduced plastomes by

combining contig blasting at low stringencies, read-depth

analysis, analysis of flanking regions, and a range of assembly

strategies. That Molina et al. (2014) failed to identify a plastid

genome in R. lagascae, the only land plant so far reported as

possibly having lost its plastome, could be due to a similarly

divergent and small plastome that escaped detection; their

inference was based on coverage information and blasting

at relatively high stringencies. Successful PCR amplification

of the rrn16 gene from Rafflesia (Bendiksby et al. 2010)

indeed points to the presence of a plastome. Under the mi-

croscope, cells of both Rafflesiaceae and Apodanthaceae have

plastome-like compartments, suggesting a metabolic function

(Dell et al. 1982; Molina et al. 2014), and in the American

Pilostyles thurberi, the rrn16 and the rrn23 are expressed, de-

spite their unusual secondary structure (Nickrent et al. 1997;

Matasci et al. 2014).

Because the five or six potentially functional genes re-

maining in the Pilostyles plastome can all be transcribed

by a nuclear-encoded polymerase (NEP), at least in tobacco

(Liere et al. 2011), the loss of the rpo genes for the plastid-

encoded polymerase in Pilostyles probably does not prevent

their transcription. There is no consensus sequence for most

types of NEP promoters so they are not easily identifiable

from the DNA sequence only, and those of Pilostyles remain

to be characterized. Because we found no trace of func-

tional tRNAs in the Pilostyles plastomes, the tRNAs required

for the expression of the five or six retained plastome genes

must be imported from the cytosol, as seems to be the case

for other parasites, such as Epifagus virginiana (Wolfe et al.

1992).

Do the Plastomes of Endo- and Exoparasites Differ in
Their Function?

Plastids fulfill metabolic functions other than photosynthesis,

and of the approximately 116 land plant plastome genes, only

approximately 50 are involved in photosynthesis while most of

the remainder are involved in the modification of the RNAs or

proteins encoded by the first 50 (Bock 2007; Wicke et al.

2011). Including the two Apodanthaceae species studied

here, the plastid genomes of 26 nonphotosynthetic plants

from seven families have now been investigated (table 1).

Of these, 23 are exoparasites that still form vegetative

shoots, whereas three are endoparasites without any

shoots, namely the one Rafflesia (Molina et al. 2014) and

the two Pilostyles species investigated here.

The plastomes of the exoparasites still contain 27 to 92

protein-coding genes and RNAs, depending on the lineage

(fig. 4 adapted from Barrett et al. 2014), with 17 genes re-

tained in all of them: three tRNAs (trnE-UUC, trnfM-CAU,

andtrnI-CAU), ten ribosomal proteins, and four ribosomal

RNAs. A plastid location of the trnE might be essential for

biosynthesis of mitochondrial haem components (Barbrook

et al. 2006), but why the other two tRNAs are retained is

unclear. Other genes, namely accD, clpP, ycf1, and ycf2

(Krause 2012), have also been considered the raison d’être

of a plastome in nonphotosynthetic plants, even though they

have been lost in some (Li et al. 2013; Wicke et al. 2013). Of

these, accD functions in fatty-acids biosynthesis, clpP is likely

a protease and also involved in the import of proteins into

the plastid (Krause 2012), ycf1 functions in “photosynthetic

protein import, and [is] therefore essential for plant viability”

(Kikuchi et al. 2013. p. 573), and ycf2 has an unknown

function.

The plastomes of the two endoparasites studied here con-

tain a seemingly functional copy of the accD gene and lack a

functional nuclear copy, supporting that accD may be essen-

tial to plastome maintenance; the gene appears to play a role

in fatty-acid synthesis and leaf development (Kode et al.

2005). We could not detect a cloverleaf-forming trnE in

the plastome of any Pilostyles, which leaves open the mech-

anism of haem synthesis in these endoparasites. No trnE has

been detected in the only other endoparasite studied, R.

lagascae (Molina et al. 2014).

Living completely embedded in a photosynthetic host

might have reduced selection on plastome genes more

than is the case in exoparasites. The four families of endo-

parasites, Apodanthaceae, Cytinaceae, Mitrastemonaceae,

and Rafflesiaceae, are not closely related to each other or

to any exoparasites, and there is so far no scenario for how

endoparasitism evolved. Parasitism in the six families of exo-

parasites so far studied happens to be younger than it is in

the two lineages of endoparasites (table 1), and so age

per se might explain the less reduced plastomes in the

former. Studies of the plastomes of ancient exo-holopara-

sites, such as Balanophoraceae with a stem age of 110 Myr,

Cynomoriaceae with a stem age of 100 Myr, or Hydnoraceae

with a stem age of 101 Myr (Naumann et al. 2013), are

required to test if such old exoparasites have similarly re-

duced plastomes as Apodanthaceae.
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Supplementary Material

Supplementary figures S1 and S2 and tables S1–S4 are avail-

able at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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