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PROVABLE WELLORDERINGS OF FORMAL THEORIES
FOR TRANSFINITELY ITERATED
INDUCTIVE DEFINITIONS

W. BUCHHOLZ and W. POHLERS

Introduction

By [12] we know that transfinite induction up to @gq,.,0 is not provable in
IDy, the theory of N-times iterated inductive definitions. In this paper we will
show that conversely transfinite induction up to any ordinal less than @¢q,.,0 is
provable in IDj, the intuitionistic version of IDy, and extend this result to
theories for transfinitely iterated inductive definitions.

In [14] Schiitte proves the wellordering of his notational systems 3(N) using
predicates B, (a) : > (aEM; A {x € M,: x < a}is wellordered) with M, := {x €
S(N): Bo(Kox) A -+ A Bui(Ki-1x)} and 0= k = N. Obviously the predicates
Bo, . . ., Bn-1 are definable in ID} with the defining axioms:

(B.1) Prog [M,, B.],

(Bi2) Prog [M,, F] = Vx (B (x) — F[x]),

where Prog [M;, X] means that X is progressive with respect to M,, i.e.
Prog [Mi, X]: o VxEM,(Vy €E M. (y <x — X(y))— X(x)).

The crucial point in Schiitte’s wellordering proof is Lemma 19 [14, p. 130]
which can be modified to

() TI[Mc,a], Sb=k B.(b)> B.((ab), for 0=sk=N-1,

where TI[M..,, a] is the scheme of transfinite induction over M., up to a’.
Checking the proof of (I) it turns out that besides (B.1l) and (B.2)
(0=k =N —1) only finitary methods (including mathematical induction) are
used. Since the proof uses ‘‘excluded middle’ only for decidable formulas it is
formalizable in ID}. Following the proof of Lemma 17 in [14] one gets

an IDWFBo(1) A« - A Bnoi(Qn-1) and

i IDNFTI{ My, Qn].

From (III) one derives in the well-known way (due to Gentzen [5])
(1A%) IDNFTI[Mn, c.] foreach n € N,

Received January S, 1976.
'K,.x is a finite set of subterms of x. B, (K,x) means Vy € K.x(B.(y)).
*For an exact definition see notational convention (5), page 3 of the present paper.

118
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WELLORDERINGS OF FORMAL THEORIES 119

where ¢o:= Qn, Cos1:=(1,¢0). By (I), (I), (IV) and the facts that M, =3(N)
and, B« (a) implies TI[M,, a] one gets

V) IDLFTI[Z(N),Q[c.,0]] foreachn € N,

where  Q[c,,0]:=((-* (Cn On-1), ..., ), 1).  Since  supnenQc,, 0] =
Q[(1 # 1,Qx),0] and the order type of {x € Z(N): x <Q[(1 # 1,Qx),0]} is
@ eq,+10%, transfinite induction up to any ordinal less than @ eq,..,0 is provable in
ID}, which we will abbreviate by IDyF+ TI[ < @eq,.10].

Similar considerations apply to the wellordering proof of the system ®({g})
given in [2]. We will prove the following results:

(A) ID.FTI[ < ®eq..,0]  for any countable v € O({g})*,
(B) IDL. FTI[ < ®&q, 017,

where ID! and IDL. are the intuitionistic versions of the theories ID, and ID.. de-
fined in [4, pp. 307—308] (see also the last paragraph of page 3 of the present paper).

ID., is defined to be the theory U,.,ID,. By ID we mean the theory of
autonomously iterated inductive definitions (i.e. if ID + TI{»] then ID, CID).
For a theory Th we take |Th|:=sup{¢€On: ThtTI[£]}. There are the
following ordinal theoretic relations:

(1) ®£nﬂ+|0 @8()“ +10 and ®€nv+10 @Sn +10 for V<®Qn10 (SO the
above derived results on transfinite induction in ID} (N < w) are special cases
of (A).)

(2) ©Q,0 = sup;<, Oeq .0 for limit v = Oy,0.

3) 0Q,0= v for v = 0Q,,0.

@) 0Q0,0 = sup.enva With vo:=1, v,.,:=0Q,,0.

By (A), (1)-(4) and [13] (cf. footnote 4) we get the equations:

(A1) [ID,|=|ID| = ®¢cq.0 for v < ©Na0.
(A2) |ID.,|=|ID%,| = ©Q.0 forlimit v < ©Q4,0.
(A3)

11D Soaq,0| = |ID®| = ©Q0,0 and ID® has the same theorems as ID%qq 0.

Preliminaries. In the sequel we assume an arithmetization of the notational
system ©({g}), such that all relevant ordinal sets, functions and relations of [2]
(asZ, K, K.a, S, +, 0, <, etc.) become primitive recursive®. We will identify
ordinal notations and thelr arithmetizations.

Though we presume some familiarity with [2], we will give a short
description of the system ©({g}). ©({g}) is a set T of ordinal notations ordered
by a relation <. Each element of T has the shape 0, a + b, ®ab or gab with

*Cf. [3]. Note that the system %(N) in [3] is a slight modification of that in [14]. In [3] the first
element of 3(N) is 0 instead of 1.

“Recently the second author [13] was able to show ID, ¥ TI[@sq,.,0].

*Kino’s wellordering proof for her ordinal diagrams Od(I) [8] is formalizable in ID%.. Hence
IDL.FTI[|Od(I), <.|]]. But as remarked in [2] |Od(I), <.[|=0Qq, (7 +1)<O(Qq,+1)0<
¢ 0,10 for [[I|=1+7<0(Qq,+ 1)0.

°For a subsystem of ®({g}) such an arithmetization will be carried out in [15].
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a,b € $. The symbols + (ordinal sum), ® and g denote 2-place ordinal
functions. So each term a € £ canonically represents an ordinal |a/, for
example |©00| =1, |®01| = w, |®10| = &,. For the order relation < we have
a<b e |a|€|b|. Terms of the shape ®ab or gab are called main terms; they
represent ordinals closed under +. & is the set of all terms gab € <; the
elements of § represent initial ordinals > w. There is a primitive recursive
order isomorphism a » Q, from T onto & := {0} UK with Qy=0and |Q,|=
Qy, for a# 0. For each a € £ there is exactly one x € & with Q, = a <Q,.;
we define Sa:= (), and call it the level (Stufe) of a. For all a, b € $ we have
S®ab = Sh,hence ®a0<Q,. Wedefine My:={x €T: Sx =0}= {xET:x <
Q,}. M, represents a segment of the countable ordinals, i.e.

(1) {£€0n: e<|al}={x]: x EMyax <a} for a € M,.

For a € & and u € &, K.a is a finite set of main terms with levels < u. The
sets K,a have the following properties:

(2) If Sa < u, then K.a is the set of components of a’.

(3) K.bCK.(a+ b)CK.a UK.,b.

@) w=varc€K,a—K.cCK,a

06) v<Q,.— K, Q.CK,a CK,Q, U{1}.

We fix the following notational conventions:

(1) a,b, ¢, x,y, z denote elements of &.

(2) u,v,w denote elements of K.

(3) R, X serve as syntactical variables for sets {x: F[x]} C &, where F[x]is a
formula of the theory considered.

@ XFna={xeX . x<a}, TNu :={xEX: Sx =u}.

(5) Prog[R,X] abbreviates the formula VxERRNxCF - x € X).
TI[R, X, a] abbreviates the fromula a € R A (Prog[R, ¥] >R Na CX), and
TI[R, a] denotes the scheme {TI{R, X, al}+ expressing the principle of trans-
finite induction over R up to a.

Transfinite inductions provable in ID; and IDL.. Our main tool in proving
transfinite inductions will be the concept of the accessible part W[R] of a set R,
usually defined by W[R]={x € R: RN x is wellordered}, which is a second-
order definition. This definition however can be replaced by an inductive
definition, which is expressible in a first-order language by the infinite list of
axioms:

(i) Prog[R, W[R]] and

(i) Prog[R, X¥]—> W[R]C ¥ for each X.

The theories 1D}, (with v € M,) and IDL. are formal theories for iterations of
such inductive definitions. They are first-order extensions of Heyting’s arithme-
tic, where 1D} allows iteration of monotone inductive definitions along the
segment M,N v, while IDL. allows iteration along the accessible part
Wo:= W[M,] of M,. Besides the axioms for iteration of inductive definitions
(cf. [4, p. 307, (i), (ii)]) there are the axioms:

(TL) Prog[Mo, ¥} > M,Nv C X for each X, in ID,

"For each a# 0 there are uniquely determined main terms a,= --- =a, (n=1) such that
a=a,+ - +a, We call a,,...,a, the components of a. 0 is defined to have no components.



WELLORDERINGS OF FORMAL THEORIES 121

asserting the wellordering of M,,
(We1) Prog[M,, W] and
(Ws2) Prog[Mo, X]—> W, CX for each X, in ID%-,

defining the accessible part W, of M.

In order to treat ID} and ID%. simultaneously as far as possible, we refer to
both as ID' and define A to be the set {Q,: x < v} in the case of ID} and the set
{Q,: x € Wy}in the case of ID%.. Then A is a segment of & N Qq, with 0 € A.

In the sequel u, v are reserved to denote elements of A'!

Define A[X,Y,x,y] to be the formula F[x] A Vxo<x(F[xo] > x0 € X),
where F[x] stands for Sx =Q, AVz, <y({(zo,21): 20 € Ko, x}CY). Then
A[X, Y, x,y] is an arithmetic formula such that each occurrence of X is
positive. To U corresponds a set constant P™ (cf. [4, p. 307]). We define

Wa, :={x: (x,y) € P"} and
M,:={x:Sx =u rVv<u(Kx CW,)}
Then the axioms (i) and (ii) of [4, p. 307] become

(W1) Yu € A(Prog[M., W.]) and
(W2) Yu € A(Prog[M.,, ¥]— W, C¥) for each X.

(W1) and (W2) assert that W, is the accessible part of M,. Clearly for u=0, M,
coincides with the previously defined set M, = £ N Q,, and in the case of ID%.
the set W, defined by (W1), (W2) coincides with the set W, defined by (W,1),
(Wi2). As immediate consequences of (W1), (W2) the following formulas are
provable in ID':

6) Vx e W, (x EM, A M, Nx = W,Nx), i.e. W, is a segment of M..

7) a€ W,»TI[M, X, al.
By (3) and the definition of M. we get

@8 abeM,—a+beM, anda+beEM,->bEM,.

The following lemmata 1-3 are straightforward modifications of correspond-
ing lemmata in [9], [10], [11] and [14].

Lemma 1. (a) a,bE W,—>a+b€E W, and

(b) Sa=u A K.a CW,— a € W, are provable in ID".

Proor. By (6) and (8). a,bE W.aVxEM. Nbla+x€EW,)>a+bE
M. AM, N (a+b)CW. Hence by (W1), a € W,— Prog[M.,{x: x + a € W,}]
and thence by (W2), q,b€ W,—>a+ b€ W,. Part (b) is an immediate
consequence of (a) and (2).

LemMma 2. (a) a€W,— K,a CW, and

(b) v<u—> W,=W,Nv" are provable in 1D".

PrROOF. Suppose a € W, A v =Q,. Using (TL,) or (Ws2) resp. we prove
K.aCW, by transfinite induction on x. For v <u we have K,a CW, by
a€ W,.CM,., From u=v we get M,Nu"CM, hence by (W1),
Prog[M.,{x: x € M, - x € W,}] and thence by (W2), W, C{x: xEM, > x €
W.}, i.e. W,NM, CW,. By the induction hypothesis we have K,aCW,, for all
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w < v and hence a € W,NM, C W,. By (2), (4) and (6) we then get K.aCM, N
(a +1)C W,. Part (b) follows from (a) by Lemma 1(b).

LemMA 3. u€W, is provable in ID'.

Proor. We have {x: Q, € A} C W,, which is trivial for ID%. and proved by
(TL) and (W1) in ID.. So for u = Q, we get x € W, and thence by (5) and
Lemma 2(a), K,u CK,x C W, for all v < u, which implies u € M,. Now suppose
a€M,Nu, then Sa € A Nu, Ks,aCW, and by the lemmata 1(b), 2(b),
a€W,. Hence M,Nu CW, and by (W1), u € W,.

DermNITION.  Q:= {x: Ju(x € W)} = U,ca W.; M:={x: Vo(K.x CW,)}.

Consequences. 1. Obviously Sa € A for all ¢ € Q. By Lemma 3 we then
have Vx(x € Q— Sx € Q) and Q N K= A. Hence by Lemma 2(b) for all
ueQ

9 ONu* =W,
and M,={x: Sx =u AVw(w € Q N u— K,x CQ)}. That means the set Q is
“ausgezeichnet” in the sense of [2, p. 18] with MINu* =M, and W=
W[MZNu*]= W.

2. By (6) and (9) Prog[Q, ¥]— Prog[M,,{x: x € W,— x € ¥}] and thence
by (W2)

(10) Prog[Q, ¥]— Q C X for each %,
which is the first-order formulation of the fact that Q is wellordered.

3. Since Q is ‘“ausgezeichnet” (provable in ID') we may follow the proof of
Theorem 15(b) in [2, p. 19] and get the formula

aEMAVxEMNa(QCR,)—Prog[Q,R.],

where R,:={y: ®ay € & — @ay € Q}. Here besides the premise “Q aus-
gezeichnet” only methods formalizable in Heyting’s arithmetic are used. By
(10) it follows

(11) Prog[M,{x: Vy € Q(@®xy € T —>0xy € Q)}].

4. From outside we know that ®({g}) = (, <) is wellordered and hence
W.=M, ={x: Sx = u}and M = & which implies Q = M N QQ,, o defined by:

DEFINITION.

v, in the case of ID,
o=

Q,, in the case of ID%..

Of course W,=M, ={x: Sx <u} is not provable in ID’, but the weaker
assertion Q = M N, is provable as the following theorem shows.

THEOREM 1. Q, €M and Q = M NQ, are provable in ID".

Proor. By Lemma 2(a) we have Q CM N Q.. If a € M and Sa € A we get
Ks. a CWs, and by Lemma 1(b), a € Ws,CQ. So we just have to prove
aEMNQ,—Sa€ A and Q, € M. The proofs differ for ID}, ID%..

1. ID;. Then A ={w: w <Q,} and trivially a EM NQ, — Sa € A holds.
By (TI1.) and (W1) we get o =v € W,. Hence by Lemma 2(a) and (5)
Vv (K,Q, CK,oc CW,) which means Q, € M.

®In [2] this formula is proved with Q in place of M, but an analysis of the proof shows that it is
enough to have the premise a EM AVx E M Na(Q CR,).
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2. IDL.. Suppose a EM NQ, Then Koa CW, and Sa = Q. for some
x <Q,= 0. By (5) Kox CKoQ, U{1}. Further K,Sa CK,a and 1€ W,. We
therefore get by Lemma 1(b) x € W, and thence Sa € A. For 0 < u, KoQq, =
and K,Qq, = {Q.}. Obviously ;€ A and hence 2, € Wy, by Lemma 3. By
Lemma 2(b) it follows Vu(K.Qqa, C W,), which means Q, = Qq, € M.

Now by (10) and Theorem 1 we get

(12) TI[M, Q. ].

Hence by (11) Vy € Q(®Q,y € T > 08Q,y € Q). Since 0E Q A BQ.0€
2 NQ, we obtain ©Q,0 € Q N Q,. Hence by (9) and (7) TI[M,, ®Q,0]. This
means we are able to collapse the wellordering M N Q. to the provable ordinal
0Q,0°. This is a special case of the following theorem, which is proved by the
above considerations with ¢ in place of Q..

THEOREM 2 (COLLAPSING PROPERTY). If TI[M,c] is provable in ID' and
Oc0E Z, then TI[M,,0c0] is provable in ID".

Starting from (12) we now prove TI[M, c] for each ¢ € M N B1Q, using
Gentzen’s [5] method for proving TI[ < &) in number theory.

DerinTion. £:={x: 01Q, <x vVy(M Ny C¥ - M N (y + B0x)C ¥)}.

LEmma 4. Vy(MNyCX—->MN(y+Q,)CX)—>Prog[M, %] is provable
in ID".

PrOOF. We have to prove M N (b+®0a)CX under the assumptions
1) VyMNyc¥F->MNy+Q,)Cc¥), Q) MNnacZ () a<01Q,
@GMnN>bCX

By (1) and (4) we get M N (b + £, - n) C X for all n € N using mathematical
induction. Hence M N (b + ®0Q,) C ¥ because of sup.en ., - n = B0Q,. Sup-
pose z € M N (b + ®0a). We may assume b + ©0Q, < z. By (3) z < b + 60a <
b+01Q,. Hence z = b+ 00a,-n+ z, with1=n €N, Q, <a,< a, z, <00a,.
By Vv(v <, = Sa,) and the definition of K, —it is the case that K.,a, =
K,00a, CK,z. So we get a, €E M N a since z € M is assumed. By (2), (3), (4)
we get MN(b+00a,-(n+1))CX using mathematical induction. Hence
z € X

DEFINITION.  Co:= Q,, Cps1:= O0C,.

One easily proves c, E M, ¢, < 01Q, = supience and Oc,0€ <.

THeoreM 3. TI[M, c.] is provable in 1D’ for each n € N.

ProoF. We prove the theorem by ‘metainduction’ on n. By (3)
it follows that a+bEM—->b€EM. Hence Prog[M,X]aMNaCcC
X > Prog[M,{x: a+x EM—a+x €ZX}] and thence by (12)

(*) Prog[M, ¥]>Vy(MNyCX¥->MnN(y +Q,)CX).

By (*) and ¢, = Q, € M we have TI[M, ¢,]. For n >0 we have the induction
hypothesis TI[M,c.-,]. Hence Prog[M,Z]—c...€ X which implies
Prog([M,¥]>MNc,CX. By (*) and Lemma 4 we get
Prog[M, ¥]— Prog[M, Z] and therefore Prog[M,¥]— M Nc, CX. Hence
TI[M, c.].

THEOREM 4. In ID', TI[M,, a] is provable for each a < ®(©1Q,)0.

“Remember that by (1) M, N 00,0 represents the ordinal 00,0.
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Proor. For a < ©(01Q,)0 there is an n € N with a < ®¢,0. By Theorem 3
we have TI[M, c.], which can be collapsed to TI[M,, ®c.0] by Theorem 2. So
TI[M,, a] holds.

Since M,N®(O®1Q,)0 represents the segment {£ € On: ¢ < @eq,.,0}, the
results (A) and (B) stated in the introduction follow from Theorem 4.

FinaL Remarks. The above proof of transfinite induction admits the
following generalization. Let Th be a theory containing Heyting’s arithmetic
and axioms for iterations of inductive definitions along a provably wellordered
subset A of &, Then the sets W,:=W[M,], M. ={x:Sx=<
urnVoeEANuKxCW,) weA), Q:={x:3ucA(KxeW) and
M:={x:Vu € A(K.x CW,)} are definable in Th, and if the formula Vu €
A(u€ W, AVx € W, (Sx € A)) is provable in Th, one gets:

I. Q is wellordered, i.c.

Tht+Prog[Q, X]— Q CX.
I1. Collapsing property.
Th+TI[M, c] > Th+TI[M,, ®c0] (for Oc0 € T).
II1. Extension to the next ¢-number.
Th+TI[M,Q.] > Th+TI[M,c] foreachc € M NBOI1Q..

From I, II, III it follows:
Iv. -
ThtQ. EMAMNQ,CQ > ThTI[<O(O10Q,)0]

for 8(®10Q.)0 € T

As an example we regard the following definition by transfinite recursion on
AS ,@ N Q]I
A(0):=0, Ag:=0.

)L(V + 1) = Q)‘(v)n, A=A U {Q,Z A(V) =x € W[MV]},
with M":={x: x <A(v +1)aVu € A,(K.x CW,)}
and W, defined as above by iteration of
inductive definitions along A.,.

A(v):=sup;<.A(£)°,  Av:=U,., A, for limit ordinals ».

Let ID3} be the theory, which allows to define A, and to iterate inductive
definitions along A, (IDY for example is ID..). Then by the above consider-
ations we get:

ID*+TI[ < ®(01Q,.,)0].
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