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Abstract

This thesis focuses on the comparison of three, recently developed, methods for the de-

tection of differential item functioning (DIF) in the measurement of latent traits, such as

abilities or attitudes in psychological or educational research. Identifying group differences

is crucial for the correct and unbiased assessment of questionnaires.

Over time, various methods have been proposed in literature to identify test items where

DIF is present, which range from test statistics to modeling approaches. Most of these

methods have some drawbacks in terms of usability or underlying assumptions, e.g. that

they cannot deal with multi-categorical variables or that they focus on the global test level

and do not identify DIF on the item level.

The methods presented in this thesis, however, represent an advancement in the sense,

that they try to overcome these problems and limitations. A commonality of the methods,

that are described in the following, is, that they can cope with both multiple, potentially

DIF-inducing, variables and any form of predictor variables, either metric or categorical.

The advantage is a flexible and less restricted approach for the detection of DIF.

The first considered method is called DIFlasso and is based on an extension of the widely-

known Rasch model, that involves additional group-specific parameters to incorporate

group differences. DIF-detection is performed using a penalized estimation approach. The

second method, DIFboost, uses boosting techniques to determine additional group-specific

parameters in the extended Rasch model by means of iterative updating of so-called base

learners. The third approach called DIFtree relies on model based recursive partitioning

resulting in a decision tree for every item that carries out DIF.

The aim of this thesis is to compare the three methods regarding their methodological

approaches and by means of both an extensive simulation study and an applied example.
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CHAPTER 1. INTRODUCTION

1. Introduction

Latent trait modeling is a common research problem in social or behavioral sciences, when

the constructs, variables or attributes of interest are not directly observable but have to be

inferred from responses to a set of questions or test items designed for the approximation

of the latent trait. Two different measurement frameworks exist: classical test theory

(CTT) and the more recent model-based item response theory (IRT). CTT focuses on the

global test level and is based on defining the test result of a person as function of the true

test score and some error term. IRT models are based on the idea that the probability

of a correct response to a test question is determined by the relationship between the

individual’s ability level and the level of difficulty of the item. Different IRT models exist.

Birnbaum (1968) developed the so-called three-parameter logistic (3PL) model, that, in

addition to the item difficulty, involves two other item parameters. One allows the items

to have different discriminatory power and the other is a pseudo-guessing parameter, that

accounts for the fact that in some cases a correct response can be given by simple guessing.

The Rasch model, another IRT model developed by Rasch (1960), does not take these two

additional parameters into account, relying exclusively on an item difficulty and a person

ability parameter. It can be seen as a special case of the 3PL model, even though the two

models were developed independently from a different point of origin.

The Rasch model is considered as a basis for all of the methods presented in this thesis

and is introduced in the following chapter. The second section of chapter 2 is dedicated to

the phenomenon of differential item functioning (DIF). Its detection is the primary goal

of the introduced procedures. DIF is present, when the probability of a correct response

for two test takers with the same individual ability is not equal, but varies depending on

their group membership. Groups can be formed by gender, race, social status, etc.. For

more information on DIF in general, see for example Millsap and Everson (1993). Tutz

and Schauberger (2015) introduce the DIF model, an extended version of the Rasch model,

that can incorporate those group differences and that serves as the underlying model for

all the presented methods, introduced in the subsequent chapters, that were developed for

an efficient and flexible model-based detection of differential item functioning. Chapter 3

describes the DIFlasso procedure (Tutz and Schauberger, 2015), where the DIF model is

estimated using lasso penalization. It is followed by a chapter on the DIFboost methodology

(Schauberger and Tutz, 2016), where parameters for group-specific differences are found

via boosting. Chapter 5 first gives an introduction of tree-based modeling in general and

for the detection of DIF in particular. Then, two existing concepts, Rasch trees (Strobl

et al., 2015) and item focussed trees (DIFtree) (Tutz and Berger, 2016; Berger and Tutz,

2016), are explained, whereas the focus is on the DIFtree procedure. Here, a tree is grown

for every item containing DIF.

A variety of other methods for the detection of DIF has been proposed in literature over

time, for a concise overview, see for example Magis et al. (2011). The methods presented

here have in common that they were developed to overcome the limitations of existing

methods regarding the type and number of predictor variables that can be included. Also,

they detect DIF not only on the global test level but on the item level, allowing a conclusion

about which items exhibit group differences. Each of the methods captured in this thesis

PAGE 1



CHAPTER 1. INTRODUCTION

was compared to the well-established methods in the respective introducing papers and it

was shown that they can compete with the established methods regarding their ability to

detect DIF. The aim here, however, is to compare the three methods among themselves,

both in theory as well as their practical performance, for a broader understanding. In

order to assess the practical performance, a simulation study with two different scenarios

and different strength of DIF is conducted and covered in chapter 6. Chapter 7 contains

an applied example, using a data set that assesses the mathematical abilities of 8th grade

students in Austria. This should give further insights regarding the practical performance

of the methods and how results differ between the methods in praxis. The thesis concludes

with a summarizing comparison of the three methods and an outlook in chapter 8.
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CHAPTER 2. BASIC CONCEPTS

2. Basic concepts

This chapter introduces the Rasch model, together with its model requirements and clarifies

the meaning of differential item functioning. Different types of DIF are described and

established methods that can be used for its detection.

2.1. The Rasch model

The Rasch model (Rasch, 1960) is a popular, widely-used model that provides an estimate

for a person’s probability of a correct response on a test question.

2.1.1. Model equation

The probability of a person p, p = 1, ..., P correctly solving item i, i = 1, ..., I is specified

by:

P (Ypi = 1) =
exp(θp − βi)

1 + exp(θp − βi)
(2.1)

Ypi denotes a dichotomous variable that indicates whether person p solved item i correctly

(Ypi = 1) or not (Ypi = 0). The probability of a correct response, P (Ypi = 1), depends on

two parameters: the person parameter θp, that represents the person ability and the item

parameter βi, that denotes the item difficulty. The person parameter varies over persons

and the item parameter over items, respectively. The model is not identifiable. Therefore,

one parameter (either a person or an item parameter) is commonly set to zero.

The Rasch model can alternatively be expressed in Logit notation:

log

(

P (Ypi = 1)

P (Ypi = 0)

)

= ηpi = θp − βi (2.2)

A commonly used tool to visualize the relation between the latent trait and the probability

of correctly solving an item in Rasch models are item characteristic curves (ICCs). The x-

axis usually corresponds to the person parameter θ and the y-axis displays the probability

of solving an item correctly. Then, the probability of a correct answer according to different

person probabilities for different items (with different item difficulties βi) can be represented

graphically. This is exemplarily shown for three fictitious items in figure 2.1. The three

curves represent three different items with three different item difficulties. The higher the

item difficulty the harder is the item to solve. Here, the item difficulty increases from left

to right, meaning that item 1 is the easiest to solve and item 3 the most difficult item.

This can be seen from the plot, if one takes a fixed person ability θ and reads off the

respective probabilities of solving the item correctly on the y-axis. For example, a person

with a personal ability θ of zero would have a 50 percent-chance to get item 2 (with item

difficulty β2 = 0) right.
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Figure 2.1.: Item characteristic curves for different items with different item difficulties

(Item 1: β1 = −1, Item 2: β2 = 0, Item 3: β3 = 1)

2.1.2. Model requirements

Using the Rasch model for the identification of a latent trait, the data should be col-

lected and organized such that five main requirements are fulfilled or at least sufficiently

approximated. These are, see Strobl (2012) or Lord (1980):

1. The marginal frequencies of the response matrix of a test are sufficient statistics

for the person ability and the item difficulty. In general, a statistic is sufficient if

it contains all the information about the quantity, that it is supposed to measure.

Here, the total score of a person Sp =
∑

i Ypi (the number of correctly solved items of

person p) is assumed to be a sufficient statistic for the person ability θp. Analogously,

Ri =
∑

p Ypi (the number of persons that solve item i) is a sufficient statistic for the

item difficulty βi.

2. Local stochastic independence: the probability of solving an item does not de-

pend on the ability to solve another item or on the fact that another person is able

to solve the item. Consequently, the overall probability of solving all items is the

product of the probabilities of the individual items.

3. Specific objectivity: For the comparison of two persons, it does not matter which

items (from the pool of possible items) are used. This should hold in the same manner

for the comparison of two items, in the sense that it does not depend on which two

persons are used for this purpose.

4. Unidimensionality presumes that all items of the questionnaire measure one single

dimension, one latent trait. Hence, person and item parameters are located on the

same latent dimension. An achievement test for example, that requires mathematical
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CHAPTER 2. BASIC CONCEPTS

skills and writing skills would not be uni-dimensional in that sense and the use of

multidimensional item response theory models would be required.

5. Monotonicity holds if with an increase of personal ability the probability for solving

an item increases continuously as well. In other words, monotonicity implies a strictly

increasing ICC, that is neither decreasing nor constant at any point of the ability

interval.

2.2. Differential Item Functioning (DIF)

2.2.1. Definition of DIF

Differential item functioning, also formerly known as item bias, describes the phenomenon

of differing probabilities for correctly solving an item among equally able individuals, de-

pending on their group membership. Accordingly, without the presence of DIF, "people

of the same ability or skill would have exactly the same chance of getting the item right,

regardless of their group membership" as expressed by Lord (1980). Group differences

occur for various reasons, e.g. due to cultural or socio-demographic differences between

the respondents, such as gender, race, age or religion. Neglecting those differences could

lead to misinterpretations of test results and possibly, depending on the purpose of the

test, unfair conclusions, see for example Millsap and Everson (1993).

2.2.2. Types of DIF

There are two different types of differential item functioning: uniform and non-uniform

DIF. Uniform DIF is present, when the probability of a correct answer in one group is

higher than the probability in the other group, independent of the person abilities. Figure

2.2 shows the ICCs for uniform and non-uniform DIF. For uniform DIF (left figure), the

ICC of group 1 is constantly above the ICC of group 2. If the ICCs cross each other at

some point (right figure), we speak of non-uniform DIF. This means that for some person

abilities the probability of solving an item correctly is higher for one group, whereas for

other person abilities it is the opposite way. In this thesis the focus is on uniform DIF

mainly.

2.2.3. Established methods for the detection of (uniform) DIF

A variety of methods for the detection of DIF has been proposed in literature over time,

some of which are IRT-based and some others that are not. All methods have in common,

that they were developed in the context of two-group comparisons, where a reference group

behaves differently than a focal group. Gender is the classical example of such a binary

group comparison. The most prevalent methods are (see Magis et al. (2011) for a good

overview):

1. Mantel-Haenszel procedure: The Mantel-Haenszel procedure is a non-IRT-based

method, that originates from Mantel and Haenszel (1959). It is used to test whether

there is a relation between the group membership of a person and their test answers,

given the total test score. Let s, s = 0, ..., I denote the number of correctly solved
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Figure 2.2.: Item characteristic curves for uniform DIF (left) and non-uniform DIF (right)

items for a person and Ts be the total number of persons with respective test score

s. Then, for an arbitrary item i, the contingency table for test score s can be written

as:

Item Score s

Right answer (R) Wrong answer(W) Total

Group 1 As Bs N1s

Group 2 Cs Ds N2s

Groups combined MRs MWs Ts

Table 2.1.: Two-by-two contingency table for the Mantel-Haenszel procedure for an arbi-

trary item i and test score s

The Mantel-Haenszel test statistic for an item i is computed as follows, taking into

account all different test scores s:

MH =

(

|
∑I

s=0As −
∑I

s=0 E(As)| − 0.5
)2

∑I
s=0 V ar(As)

(2.3)

with E(As) =
N1sMRs

Ts
, V ar(As) =

N1sN2sMRsMWs

T 2
s (Ts − 1)

Under the null hypothesis of no difference between group 1 and group 2 for item i,

the MH test statistic is asymptotically χ2-distributed with one degree of freedom.

IF MH is larger than a critical calue based on the asymptotic null distribution, DIF

is said to occur for item i.

In addition to this, a second test statistic based on the same contingency tables

exists: it compares the odds (the ratio of correct and incorrect answers for an item)

of two groups, building an odds-ratio across all test scores s:

αMH =

∑I
s=0AsDs/Ts

∑I
s=0BsCs/Ts

(2.4)
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Then, log(αMH) is approximately normally distributed under the same null hypoth-

esis as above. Values around zero indicate that there is no difference between the

odds of the two groups and therefore, that no DIF is present.

The Mantel-Haenszel procedure has been extended to include multiple group com-

parisons, see Penfield (2001).

2. The Logistic regression approach was first introduced by Swaminathan and

Rogers (1990) as a cost-effective alternative to IRT-based methods. It can incor-

porate uniform and non-uniform DIF. The probability of a person p solving an item

i is described as a function of the test score Sp ∈ 0, ..., I (serving as a proxy for the

person abilities), the group membership and a possible interaction between the test

score and the group membership:

log

(

P (Ypi = 1|Sp, g)

P (Ypi = 0|Sp, g)

)

= ηpi = β0i + Spβi + γig + Spαig (2.5)

g denotes the group, β0i the item-specific intercept, that represents the item difficul-

ties. βi is the slope of item i. γig is a group specific parameter, that comes into play

when group specific differences occur. Lastly, Spαig denotes the interaction term

between the individual test scores and the group membership or, in other words, a

group-specific slope. Therefore, γig and αig are the parameters that account for DIF

in the logistic regression approach. Uniform DIF is present, if γi 6= 0 and αi = 0,

whereas non-uniform DIF is said to occur if αi 6= 0 independent of whether γig equals

zero or not. Accordingly, if both parameters are zero, no DIF is found. This can be

tested by means of a Wald or a likelihood ratio test (Magis et al., 2011).

One version of DIFtree, a tree-based method for the detection of DIF, introduced

in the following, uses the logistic regression approach as a basis, but incorporates it

into a tree-framework. In this context, an extension of the logistic regression model

to the multi-group case is considered.

3. Lord’s χ2-test (Lord, 1980) can be used to test for group parameters in any IRT

model with item discrimination, item difficulty and pseudo-guessing parameters. For

a Rasch model, relying on item difficulty parameter βi exclusively, the test statistic

for item i reduces to:

χ2
i,Rasch =

β1i − β2i
σ̂2
1i + σ̂2

2i

(2.6)

where β1i and β2i are the item difficulties of group 1 and group 2, and σ̂2
1i, σ̂

2
2i the

estimated standard errors of the item difficulties of the two groups. The test statistic

is used to test the hypothesis of equal item parameters in both groups. Under the

null hypothesis, χ2
i,Rasch follows an asymptotic χ2 distribution, where the degrees

of freedom correspond to the number of estimated parameters in the model (Magis

et al., 2011).

As for the other presented methods, an extended version for the multi-group case

exist, see Kim et al. (1995).

The next chapters introduce three recently developed methods, that provide an alternative

and more flexible model-based detection of differential item functioning, starting with the

DIFlasso procedure.
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CHAPTER 3. DIFLASSO

3. DIFlasso

The DIFlasso procedure is based on an extension of the Rasch model. For simplicity,

this extension will be called DIF model in the following. DIF is represented by additional

group parameters γγγ for every item. Via penalization of the group parameters during the

joint likelihood estimation, those group parameters are set to zero when no DIF is present,

which allows a conclusion about DIF-free and DIF-containing items.

3.1. Model equation

To incorporate group-specific differences, the simple Rasch model (cf. eq. (2.2)) is extended

to include the term x
T
p γγγi (Tutz and Schauberger, 2015):

log

(

P (Ypi = 1)

P (Ypi = 0)

)

= θp − (βi + x
T
p γγγi) (3.1)

with x
T
p being the person-specific covariate vector for person p and γγγi being the item-

specific vector of group parameters for item i. If γγγi = 0 for an item i, the item is considered

to be DIF-free and model (3.1) reduces to the simple Rasch model. If γγγi 6= 0 for an item

i, the item is regarded as a DIF-item and thus, the overall item difficulty of item i, βi, is

complemented by the term γγγi, depending on the group membership of person p. Together,

these two terms form the individual, person-specific item difficulty for person p and item

i.

In the simplest case of one binary covariate, say gender, with male being the reference

category, the person-specific item difficulties for item i are βi for males and βi + γi for

females. Analogously one could also apply effect coding instead of reference coding. Then,

βi remains the overall item difficulty as known from the simple Rasch model and βi − γi

for males and βi + γi for females would be the person-specific item difficulties, which are

located symmetrically around the overall item difficulty βi.

This concept can easily be generalized. For a categorical variable with k categories γγγi

is of length k-1. Again, βi is the person-specific item difficulty for reference category k

and βi + γik define the person-specific item difficulties for every category 1, ..., k − 1. For

a metric covariate, say age, one γi is estimated and the person-specific item difficulty is

given by βi + agep γi, depending on the value of the covariate for person p (here the age

of person p).

3.2. Penalization for the detection of DIF

The motivation behind a penalization of parameters varies from setting to setting. In

high dimensional settings, the number of parameters gets very large which can lead to

unstable parameter estimates or sometimes, parameters cannot be estimated at all. This

makes regular maximum likelihood estimation problematic. Here, the motivation behind

penalization is a different. Parameters are penalized in order to detect DIF items and

variables. Consequently, penalization is only applied to the group parameters γγγ and the

person and item parameters are estimated regularly. Then, DIF is assumed to occur when

not all the entries of the group parameter vector γ for an item are shrunk to zero.
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CHAPTER 3. DIFLASSO

Instead of maximizing the log-likelihood l(ααα) with αααT = (θθθT ,βββT , γγγT1 , ..., γγγ
T
I ) during the

estimation process, a penalized version of the log-likelihood is maximized:

lp(ααα) = l(ααα)− λJ(ααα) (3.2)

with J(ααα) being a penalty term that penalizes certain structures in the parameter vector

and λ regulating the strength of the penalty term. The smaller the value of λ the smaller

is the penalization. In the extreme case of λ = 0, the penalty term drops out and the

regular likelihood is maximized. For λ → ∞, respectively large enough, all the parameters

associated with the penalty term are shrunk to zero. λ is a tuning parameter. The choice

of an optimal λ is covered in the next paragraph.

A common penalty term is J(ααα) = αααTααα, the squared length of the parameter vector, which

is known as Ridge penalty. The Ridge penalty reduces the size of the parameters. This

increases the stability of the parameters, but they cannot be reduced to zero completely.

Therefore, no parameter selection is possible. In the context of DIF detection, the lasso

(least absolute shrinkage operator) penalty seems conceptually more appropriate. For the

DIFlasso procedure, it is defined as:

J(ααα) =
I

∑

i=1

|γγγi| with |γγγi| = (|γi1|+ ...+ |γim|) (3.3)

Here, the absolute length of the group parameter vector is penalized. Each parameter of

a γγγi is treated independently. If one γij is unequal to zero, DIF is said to occur for the

respective item i and according to variable j. The penalty term includes the group-specific

parameters only. Person and item parameters are left out of the penalization and are fully

included into the model.

Yuan and Lin (2006) introduced a general group lasso penalty for situations where pe-

nalizing groups of parameters seems more appropriate than individual penalization. Tutz

and Schauberger (2015) present a version of the group lasso penalty for DIFlasso, where

grouping is based according to the items:

J(ααα) =
I

∑

i=1

||γγγi|| (3.4)

where ||γγγi|| = (γ2i1 + ... + γ2im)1/2. In this case, all γ-parameters for an item are treated

simultaneously and either all γ-parameters for an item are set to zero or none. If γγγi = 0,

the item is classified as free of DIF. If γγγi 6= 0, DIF is said to occur for the respective item i

and in model (3.1), the overall item difficulty βi is modified by the term x
T
p γγγi, resulting in

person-specific item difficulties for item i, depending on the group membership of the test

takers.

Choice of lambda

λ is a tuning parameter that needs to be chosen carefully, since it determines the choice

of the final model. In practice, the optimal λ is derived as a compromise between the

sparseness of the model and the model fit. Therefore, a range of λ-values is identified,

corresponding to different strengths of the penalization. The DIF model is estimated with
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each λ, yielding as many models as there are λ’s. Then, in a next step, the "optimal" λ is

determined by means of some criterion. Several criteria exist, like the Akaike information

criterion (AIC) or the Bayesian information criterion (BIC), which is used here:

BIC(λ) = −2 · l(ααα) + df(λ) · log(P · I) (3.5)

with degrees of freedom df(λ) = I + P + d̃fγγγ(λ)− 1 and

d̃fγγγ(λ) =
I

∑

i=1

I(||γγγi(λ)|| > 0) +

I
∑

i=1

||γγγi(λ)||
||γγγML

i (λ)||(m− 1) (3.6)

as proposed by Yuan and Lin (2006). The term d̃fγγγ(λ) consists of one degree of freedom

for every DIF item and a fraction of the number of covariates m minus one, depending on

the size of the L2 norm of the γ-parameters with penalization in relation to the L2 norm

without penalization. This fraction on itself is also implemented as another version of

calculating d̃fγγγ(λ), referred to as the L2 norm type of degrees of freedom in the following.

The BIC, in general, leads to more parsimonious models than the AIC. The smaller the

BIC the better. In the end, the model is chosen as the final model (and corresponding λ)

that has the smallest BIC-value of all considered models.

Figure 3.1 shows the course of ||γγγi|| over the different values of λ for two settings (weak

and strong DIF) from the following simulations (one randomly chosen iteration of scenario

1). λ ranges from 0 to the values where all ||γγγi|| are shrunk to zero. The larger the value

of λ the larger is the penalization. The four DIF items are indicated by the dotted lines.

The vertical dashed line marks the BIC-optimal model. For the strong DIF setting, all

γ-parameters except for the DIF items are shrunk to zero at that point yielding an optimal

detection rate. In the weak DIF setting, where group differences are small, only one of the

four DIF items is correctly diagnosed as such at BIC-optimal λ. Again, none of the items

is falsely identified as DIF item.

3.3. Identifiability issues

In the simple Rasch model, one item or person parameter has to be set to zero (cf. section

2.1.1) to ensure identifiability of the parameters. The DIF model (3.1) is overparameterized

as well, and therefore, parameters are again not identifiable. Reparametrization with a

constant vector c leads to the same model:

ηpi = θp − βi − x
T
p γγγi = θp − βi − x

T
p (γγγi − c)− x

T
p c

= θ̃p − βi − x
T
p γ̃γγi (3.7)

with θ̃p = θp − x
T
p c and γ̃γγi = γγγi − c. Therefore, in addition to the restriction from the

Rasch model, one γ-vector has to be set to zero.

During the DIFlasso procedure this is realized as follows: After the penalized estimation of

the DIF model, item i is identified, whose γ-parameters were shrunk to zero first as the size

of the penalty term λ increases. Subsequently, this item is defined as the reference item.

The corresponding γ-vector equals zero already. Its item difficulty βi is afterwards set to

zero, which makes the model identifiable and interpretable in relation to the reference item

i.
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Figure 3.1.: Exemplary visualization of the L2 norm of item-specific parameter estimates

over lambda in one iteration of simulation scenario 1

3.4. Model estimation

Different types of maximum likelihood (ML) estimations exist, such as the marginal, con-

ditional or joint ML estimation. Usually, all three of them give comparable results. The

DIFlasso procedure uses joint ML estimation. All parameters of interest are computed

simultaneously. This means that in every step of the iterative procedure, new values are

generated for all parameters.

3.5. GLM representation of the DIF model

The DIF model can be embedded into the framework of generalized linear models (GLMs).

In software, model estimation via GLMs is a common and well implemented way of model

fitting. This is also used for the DIFlasso procedure.

The general representation of a GLM is:

g(πpi) = zTpi α (3.8)

where g is a link function that links the outcome to the linear predictor zTpi α, containing

design matrix zTpi and vector of parameters α.

The DIF model can be expressed as a GLM with binary response and logit link. Equation

(3.1) can be written as, see Tutz and Schauberger (2015):

g(πpi) = log

(

P (Ypi = 1)

P (Ypi = 0)

)

= θp − (βi + x
T
p γγγi)

= 1
T
P(p)

θθθ − 1
T
I(i)

βββ − x
T
p γγγi (3.9)

= z
T
piααα
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Using this notation, 1TP(p)
= (0, ..., 0, 1, 0, ..., 0) and 1

T
I(i)

= (0, ..., 0, 1, 0, ..., 0) specify vec-

tors of length P resp. (I-1) and equal one at position p resp. i.

z
T
pi = (1TP(p)

,−1
T
I(i)

, 0, ..., 0,−x
T
p , 0, ..., 0) and ααα = (θθθT ,βββT , γγγT1 , ..., γγγ

T
I ) describes the param-

eter vector, as defined above.

For the simplified case of data set with two observations and two items, the response vector

yyy, design matrix Z containing all vectors z
T
pi and parameter vector ααα would be:

y =













y11

y12

y21

y22













, Z =













1 0 −1 −xT1
1 0 0 0

0 1 −1 −xT2
0 1 0 0













, α =













θ1

θ2

β1

γ1













In this notation, β1 = 0 and γ1 = 0 to ensure the identifiability of the parameters. There-

fore, item 2 would be the reference item.
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4. DIFboost

Same as DIFlasso, the DIFboost strategy aims at representing the data as a DIF model.

In contrast to DIFlasso, DIF parameters are not found via penalized model estimation

but via boosting. The idea behind boosting is to combine many "weak" learners to "form

a powerful committee" (Friedman et al., 2000). In an iterative procedure, a single weak

learner is fitted to the data in every step. The model output of the current iteration

does only depend on the output from the previous step and the weak base learner of the

current step. In the context of DIF detection, every parameter of the DIF model serves

as possible base learner. DIF items are determined by those group-specific parameters

that are selected during the boosting algorithm. The final model is then, in a second step,

estimated using regular maximum likelihood estimation.

4.1. The concept of boosting

Boosting is a general concept that can be used in many different, especially high-dimensional,

settings, where dimension or parameter reduction is of interest. Before linking the con-

cept of boosting to parameter selection in DIF research, this section should give a general

introduction. It follows the explanations of Friedman et al. (2000) and Friedman (2001)

and starts with an additive model for some quantitative response y, before proceeding to

the case where the response is restricted to be in [0, 1], as it is the case in item response

modeling. The predictor variables xj , j = 1, ..., p, and response y are supposed to have

some joint distribution. Let us consider an additive model, where we are interested in

modeling the mean E(y|x) = F (x). It has the form:

F (x) =

p
∑

j=1

fj(xj) (4.1)

Each of the m predictor variables xj is included in the model via a function fj(xj).

For more general additive models, those functions can be functions of potentially all of the

predictor variables x. Then,

fm(x) = βm h(x, αm) (4.2)

where fm(x), m = 1, ...,M , is taken to be a simple function h(x, αm) characterized by the

predictor variables and a set of parameters αm and a multiplier βm. The additive model

then becomes

FM (x) =
M
∑

m=1

βm h(x, αm) (4.3)

Parameters are usually estimated by minimizing some loss function L(y, F(x)). Boosting

can be seen a stagewise algorithm for fitting additive models. Then, for every parameter

iteration m=1,...,M

(βm, αm) = arg minβ,α

N
∑

i=1

L
(

yi, Fm(xi)
)

(4.4)

The current model Fm(x) of boosting step m is composed of Fm−1(x), the model of the

previous step (m-1) (also referred to as the offset), and the current update of step m:

Fm(x) = Fm−1(x) + βmh(x, αm) (4.5)
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In this stepwise approach, one parameter is updated in every boosting iteration. The

parameter is taken, that yields the greatest reduction in terms of the loss function. The

previous terms are not readjusted when a new term enters. For each iteration either a

parameter that is already included in the model is updated or a new one is added. The

choice of L(y,F(x)) depends on the application and leads to different boosting algorithms.

In the boosting terminology h(x, αm) are called base learners.

Fitting the data too closely can be counterproductive. A way to prevent overfitting is to

constrain the number of boosting iterations M. Different concepts for the determination

of the best value for M exist, details are given in section 4.3. In addition to that, it is

commonly believed that a better fit is achieved when the parameter updates are small.

This is realized with an additional shrinkage parameter ν:

Fm(x) = Fm−1(x) + ν · βmh(x, αm) 0 < ν ≤ 1 (4.6)

Each update is scaled by the value of the shrinkage parameter. Its value could be tuned,

but is commonly set to ν = 0.1 which is proven to yield sufficiently good results. Both,

M and ν control the degree of fit and thus affect each other. For example, increasing the

strength of shrinkage increases also the best value for M.

In item response modeling one is interested in the probability of a correct response of a

person to a test question. In cases when the response estimates are restricted to be in

[0, 1], logistic regression is a popular approach. An additive logistic model has the form:

ηpi = log

(

P (Ypi = 1)

P (Ypi = 0)

)

=
M
∑

m=1

fm(x) (4.7)

Solving (4.7) for P (Ypi = 1), yields:

πpi = P (Ypi = 1) =
eF (x)

1 + eF (x)
(4.8)

The procedure of finding parameter updates in every iteration by minimizing a loss function

works in the same way as described above. The Rasch model and also the DIF model (3.1)

are special cases of this general additive logistic model with components θ,−β (and −xTγ

for the DIF model). The appropriate loss function in this case is the negative likelihood

of a binomial logit model. In the next section, the estimation of the DIF model using

boosting is described in more detail.

4.2. Boosting for the detection of DIF

The DIFboost algorithm, proposed by Schauberger and Tutz (2016), proceeds as follows:

First, a simple Rasch model is fitted, yielding parameter estimates for the person and

item parameters. This ensures that parameter selection refers to DIF effects only and that

person and item parameters are always included in the model, as desired.

From the person and item parameter estimates, the linear predictor η̂pi = θ̂p − β̂i is

calculated for each combination of observation and item. These linear predictors from

the Rasch model are collected in η̂ηηRM = (η̂11, η̂12, ..., η̂IP ) and are used to initialize the
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boosting algorithm. η̂ηηRM is called the offset or base model for the boosting procedure and

is denoted as η(0).

For the boosting steps, the Rasch model is extended to the DIF model that also includes

group-specific coefficients. Each of the model components serves as a possible base learner:

η̃(xp, p, i) =



















θ̃p p = 1, ..., P − 1

β̃i i = 1, ..., I

x
T
p γ̃γγi i = 1, ..., I

(4.9)

Initially, before the first boosting iteration, all possible base learners θ̃p, β̃i and γ̃iγiγi are zero.

In every step of the procedure, one single parameter is updated. To determine which base

learner that is, one minimizes an adequate loss function L(Ypi, π̃pi) for every possible base

learner. π̃pi denotes the fitted probability of a person p to solve item i. Here, for a logit

model with binary response, the loss function is the negative likelihood of a binomial logit

model:

L(Ypi, π̃pi) = −(Ypi log(π̃pi) + (1− Ypi) log(1− π̃pi)) (4.10)

In every boosting step m,m = 1, ...,Mstop, the base learner is chosen that yields the

greatest reduction of the loss function:

η̃∗(xp, p, i) = arg minθ̃p,β̃i,xT
p γ̃iγiγi

∑

p,i

L(Ypi, π̃pi) (4.11)

Then, the model predictor of the current boosting step m is

η̃(m) = η̃(m−1) + ν η̃∗(xp, p, i) (4.12)

It consists of the predictor of the previous step (m− 1) and the currently considered base

learner. Parameter ν, 0 < ν < 1, regulates the extent to which each predictor η̃∗ updates

the model. It is used to avoid quick overfitting. To guarantee small step sizes, ν is taken

to be sufficiently small (typically ν = 0.1).

Lastly, the predictor η̃(m) is used to calculate the probability π̃pi of the current boosting

step:

π̃pi =
exp(η̃(l))

exp(1 + exp(η̃(l)))
(4.13)

This procedure of choosing base learners and model updating is repeated for a predefined

number of steps Mstop.

Boosting in this context is used for the selection of relevant model parameters and can

be seen as a method for the detection of DIF regarding the selection of group-specific

parameters. In order to determine which parameters are to be included in the final model,

one relies on the concept of stability selection, that is described in the following section.

Stability selection finds a set of stable parameters by repeating the boosting procedure on

subsamples of the original data. The final model from the DIFboost procedure includes

only these stable parameters. It is estimated in a second step using regular maximum

likelihood estimation.
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Remarks Even though the person and item parameters of the Rasch model are estimated

before the boosting procedure and serve as the base model, they are also included as

possible base learners in the boosting algorithm. Since additional group-specific parameters

may enter the boosting model, it might become necessary to also update person and item

parameters in a later iteration of the boosting algorithm to improve the model fit.

All base learners are linear. But since the different model components contain a different

number of model parameters, their chances of being chosen in the boosting iteration are

not the same. For example, it would be more likely to choose a person parameter than an

item parameter, because usually there are many more observations in the data set than

items. To avoid this problem, the degrees of freedom of the base learners can be regulated

using internal penalty terms. Here, a Ridge penalty is applied to every base learner to

restrict its degree of freedom to one. This keeps the degrees of freedom consistent over the

different parameters.

4.3. Stability selection

To prevent the boosting model from overfitting, a stopping criterion should be used, that

determines the number of boosting iterations and stops the procedure before the model

is possibly overfit after the prespecified Mstop boosting iterations. Also, in the context of

DIF detection, a main goal is parameter selection in order to determine which items are

DIF items. The estimation of a full model without parameter selection is not of interest.

A common way to achieve parameter selection is to stop the boosting procedure after an

appropriate number of iterations. This is often called "early stopping". The number of

iterations can be determined by crossvalidation techniques or an information criterion.

An alternative to early stopping, proposed by Meinshausen and Bühlmann (2010), is sta-

bility selection. The DIFboost procedure uses stability selection for the selection of the

model parameters. Stability selection is based on subsampling.

First, a random subset of half the size of the data set is drawn. Then, the boosting model

is fit on the subset. One does not proceed to the prespecified number of boosting iterations

Mstop, but stops as soon as q distinct base learners are selected for the subsample. q has

to be prespecified as well and is usually taken to be 0.6 · I, presuming that no more than

60% of the test items contain DIF. If the boosting algorithm proceeds to the maximal

number of boosting iterations without finding q base learners, a warning will be displayed

and Mstop should be increased.

The subsampling and model fitting by boosting is repeated a fixed number of times B. Let

Ŝb denote the set of selected base learners in replication b. Then, one computes for every

boosting step m the relative frequencies

Π̂m
i =

1

B

B
∑

b=1

Ii∈Ŝb,b
(4.14)

that, for every base learner i, indicate in how many of the replications the base learner was

chosen by the boosting algorithm. A cutoff point π0 is defined and with the aid of this

cutoff point, a set of stable base learners is given by

Ŝstable = {i : maxm=1,...,Mstop(Π̂
m
i ) ≥ π0} (4.15)
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This means that a base learner is included in the final model if its relative frequency over

all replications is larger than the cutoff point for at least one of the boosting iterations.

Meinshausen and Bühlmann (2010) propose to chose π0 ∈ (0.6, 0.9). Originally, π0 is a

tuning parameter, but values in the given range tend to give very similar results, which is

why π0 is usually fixed.

4.4. Identifiability issues

In section 3.3 it was shown that the DIF model is not identifiable. Additional parameters

have to be fixed. But the models are identifiable as long as at least the DIF parameters

for one item are not chosen during the boosting procedure, thus one item is DIF-free. In

practice, one defines one of the items as reference item, where no DIF parameters were

selected during the boosting procedure. Then, γγγR = 0 for the reference item, by nature.

For reasons of simplicity, the additional restriction is βR = 0 instead of θP = 0.

4.5. The DIFboost algorithm

The DIFboost algorithm proceeds as follows:

DIFboost

Step 1 (Initialization)

• Fit the Rasch model for given scores Ypi and initialize the offset η̃(0) = η̂RM

• Initialize θ̃p = 0, p = 1, ..., P − 1, β̃i = 0 and γγγi = 0, i = 1, ..., I

• Set m = 0

Step 2 (Iteration)

• m → m+ 1

• Fit a logit model for every possible base learner where η̃m−1 is used as offset

• Select the best base learner η∗(xp, p, i)

• Update the linear predictor by

η̃(m) = η̃(m−1) + νη̃∗(xp, p, i)

Step 3 (Stop)

• Iterate Step 2 until m = Mstop is reached

As described above, the procedure is replicated a fixed number of times relying on the

concept of stability selection, resulting in a set of stable base learners. The final model

is then estimated via regular maximum likelihood estimation using the set of previously

determined base learners.
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5. Tree-based DIF modeling

Tree-based modeling can be used for the detection of differential item functioning. The

general advantage over other existing methods is that groups do not have to be prespecified.

Moreover, in comparison to DIFlasso and DIFboost, non-linear DIF effects can be captured

as well and the tree structure simplifies the detection of interactions between the predictor

variables. Different concepts exist: Rasch trees (Strobl et al., 2015) build a single tree

for the complete test data. Hence, they indicate whether DIF is present in the test or

not and which variables are affected but they do not show the responsible items in a

very intuitive way. The DIFtree procedure (Tutz and Berger, 2016; Berger and Tutz,

2016) tries to overcome that limitation by building trees on the item level. If no DIF is

present, no tree is built for the respective item. In the following, the concept of tree-based

modeling in general is briefly introduced, followed by a subsection about Rasch trees. The

main part of the section is dedicated to item-focussed trees for the detection of differential

item functioning. The terms item focused trees and DIFtree thereby specify the same

methodological approach and are used interchangeably.

5.1. The concept of tree-based modeling

Tree-based modeling, in general, works as follows: a tree, either a regression or a classi-

fication tree, is built by recursively partitioning the feature space (the space spanned by

all the predictor variables) into a set of rectangular areas. Each partition is described by

a node in the resulting tree. The tree extends from the root node to the terminal nodes.

Each of the terminal nodes represents a unique partition in the feature space and in each

of the partitions, a simple model, in most cases a constant, is fitted. The two most popular

algorithms for tree-based modeling are the CART algorithm (Breiman et al., 1984) and

the C4.5 algorithm (Quinlan, 2014).

The partitioning of the feature space is achieved differently, depending on the type of co-

variate. For metric and ordinal variables, a cutoff point c based on one variable x is chosen.

The objects of node A are grouped into the two subcategories according to their value of

x in relation to the cutoff point c

A ∩ {x ≤ c}, A ∩ {x > c}.

Node A can represent the total feature space if the first split is considered or any partition

of the feature space in further steps of the splitting procedure.

For two-categorical variables, the objects are grouped according to the two categories.

For (unordered) categorical variables with k (k≥2) categories, two options exist: the C4.5

algorithm divides the objects into as many groups as there are categories, resulting in k

daughter nodes, while the CART algorithm produces binary splits, grouping categories

together, if necessary. In the following, the focus is on binary splitting exclusively. Here,

the partition of node A has the form

A ∩ S, A ∩ S̄,

where S is a non-empty subset S ⊂ {1, ..., k} and S̄ = {1, ..., k} \ S is the complement.

In each step, the splitting is conducted according to the combination of variable and
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split point that performs best in terms of a certain split selection criterion. One idea is to

choose the combination of variable and split point yielding the greatest impurity reduction.

Several measurements for the quantification of impurity exist, e.g. the Gini index or the

Shannon entropy. Other methods for the detection of the optimal split point are test-based,

as the concept of maximally selected statistics that is used in the following. It is never

advisable to grow trees to their maximal size, as they would most likely overfit and their

generalizability becomes questionable. Different concepts exist to determine the size of a

tree. Either all splits are performed, the tree is grown to its maximal size and pruning

is applied afterwards. Hereby, the tree is cut back to avoid that it is fit too closely to

the data. Another possibility is to test the significance of each split during the splitting

procedure and stop when no more splits are found to be significant.

Recursive partitioning for the detection of differential item functioning

Recursive partitioning of the feature space can be accomplished based on the values of

the response variable. Splitting is done when the outcome of the response variable varies

between groups formed by the predictor variables. A more flexible approach is model based

recursive partitioning, where splitting is performed when the parameters of a parametric

model vary between groups formed by predictor variables. In the context of DIF detection,

model-based recursive partitioning is used. DIF is detected, respectively a split is carried

out, when the item difficulty parameters of the model vary between subgroups.

Figure 5.1 shows four exemplary trees built by the DIFtree procedure in scenario 1 of the

simulations, each corresponding to one test item. The trees expand from the root node on

top to the terminal nodes. The terminal nodes contain a value for the item difficulty in the

corresponding subsample of the data. On each level, the splitting rule (splitting variable

and split point) is displayed. Here, the number of DIF variables varies between two and

three. Multiple splits can be conducted corresponding to the same variable (see item 2).

The number of splits also varies across items. The resulting item difficulties can only be

interpreted relatively to each other. A lower value is interpreted as a lower item difficulty

and therefore, a higher probability of solving the item correctly.

5.2. Rasch trees

The main motivation behind the concept of Rasch trees, as explained by the authors Strobl

et al. (2015), is to provide an easily interpretable representation of DIF, where groups

are not pre-specified and thus, to gain an understanding of the psychological sources of

differential item functioning. The main difference between Rasch trees and item-focussed

trees is the number of trees built. Whereas for Rasch trees a single tree for the whole

test is built, in the context of item-focussed trees, as many trees are built as there are

DIF items. Therefore, it should be kept in mind that the two concepts serve different

purposes: Rasch trees focus on the identification of variables that are responsible for DIF,

while item-focussed trees additionally help to also identify affected items.

First, the item parameters of the Rasch model are estimated jointly for the full sample.

PAGE 19



CHAPTER 5. TREE-BASED DIF MODELING

Item 1

-5.15

-3.88 -1.67

V4≤0.15 V4>0.15

V3≤1.24 V3>1.24

Item 2

-3.94

-2.03 -3.22

-4.37

V5≤0.28 V5>0.28

V4≤-0.44 V4>-0.44

V5≤-0.37 V5>-0.37

Item 3

-2 -1.08 -3.52

-2.88 -0.96

V3≤0.63 V3>0.63

V5≤0.05 V5>0.05

V5≤-0.13 V5>-0.13

V2=0 V2=1

Item 4

-2.56 -3.85

-1.88

V4≤0.23 V4>0.23

V2=0 V2=1

Figure 5.1.: Example of item focussed trees from simulation scenario 1 (logistic DIFtree

strong DIF setting)

Then, the stability of the item parameters is assessed with respect to each covariate. This

is done by calculating the deviations from the joint model for every person. The deviations

are ordered according to every covariate (for example for covariate age from the youngest

test taking person to the oldest). If the ordering exhibits a systematic change in the range

of possible values of the covariate instead of a random fluctuation, DIF is said to occur.

The sample is split according to the covariate with the greatest deviations, if they are

found to be significant by means of a generalized M-fluctuation test (for details, see Strobl

et al. (2015)). The cutoff point is chosen such that it leads to the highest improvement

of the model fit (equivalent to the greatest reduction of the likelihood). This procedure

is applied recursively in the resulting subsamples until no more significant changes in the

deviations are found.

Since the main focus of the methods presented in this thesis is to detect DIF on the item

level, Rasch trees are not included in the simulations. But they are computed in the

empirical example and their findings are briefly compared to the other methods in chapter

7.

5.3. DIFtree

Item focussed trees (IFT), introduced by Tutz and Berger (2016), combine the flexibility

aspect of decision trees (regarding the definition of subgroups) with the requirement of

detecting DIF on the item level. They can deal with uniform and non-uniform DIF. In
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the following, in coincidence with the other methods, the focus is on uniform DIF only.

Two different versions of item focussed trees/DIFtree exist: the first one is based on the

DIF model (called item focussed Rasch trees or IFRT in the following) and the second one

combines trees with the logistic regression methodology (called item focussed logistic trees

or IFLT in the following). In general, one global model (the Rasch model or a logistic

model, depending on the version of DIFtree) is built and in order to account for uniform

DIF, the item difficulty parameter is partitioned, such that there is one item difficulty

parameter for each subgroup in the resulting tree for the respective item.

5.3.1. Item focussed Rasch trees

Same as DIFlasso and DIFboost, item focussed Rasch trees are based on the extended Rasch

model (see (3.1)). Due to the nature of tree-based procedures, the model is sequentially

growing as the trees grow, including an additional binary split in every step. In the end, the

predictor includes a coefficient for every region of the predictor space, that is distinguished

by the terminal nodes of the trees.

Concept

First, a base model, the ordinary Rasch model with predictor ηpi = θp − βi, is estimated.

Then, the item difficulty part is recursively partitioned yielding varying item difficulties

for the different partitions of the feature space. The predictor after the first split, for a

metrically or ordinally scaled variable j according to split point cj , can be denoted as (see

Tutz and Berger (2016))

ηpi = θp − [γ
[1]
il I(xpj ≤ cj) + γ

[1]
ir I(xpj > cj)] . (5.1)

I(.) describes the indicator function, that is equal to one if the corresponding expression

is true and zero otherwise. It is used to choose the respective item difficulty γ
[1]
il or γ

[1]
ir for

every person depending on the group membership. In this case here, person p is assigned

to the left node if its value of the predictor variable j, xj , is below or equal to the threshold

value cj and to the right node if the value is above the threshold. Accordingly, the predictor

for a person in the left node would be ηpi = θp − γ
[1]
il and ηpi = θp − γ

[1]
ir otherwise.

Here, the differences to DIFlasso or DIFboost become apparent: the item difficulty for

metric covariates is not directly composed from the value of the predictor variable of person

p and item difficulty parameter γ, but all persons on the same side of the threshold value

are related to the same item difficulty. For categorical variables, persons will be grouped

into two categories since only binary splits are allowed. Of course, the same variable could

be split further in a subsequent step of the procedure.

If another split for item i is performed, be it in the proximate or in a later iteration, the

resulted left or right node of the first split would be further partitioned. For example, the

right node specified by I(xpj > cj) could be further split, this time according to categorical

variable s, where S is a subset containing one or more categories of variable s and S̄ is the

complement. This yields daughter nodes I(xpj > cj)I(xps ∈ S) and I(xpj > cj)I(xps ∈ S̄)
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and the linear predictor is given by

ηpi = θp − [γ
[1]
il I(xpj ≤ cj) + γ

[2]
il I(xpj > cj)I(xps ∈ S) + γ

[2]
ir I(xpj > cj)I(xps ∈ S̄)] , (5.2)

where γ
[2]
il , γ

[2]
ir are the weights on the new split, that replace γ

[1]
ir and define the new item

difficulties in the subregions of I(xpj > cj).

In every step of the procedure, every possible combination of item, variable and split point

is tested and the combination is chosen that is found to be most significant according to

a concept that uses maximal value statistics and a permutation test. Details of the proce-

dure, that determines whether to perform further splitting at all, and if so, according to

which combination of item, variable and split point, will be given in the next paragraph.

To facilitate the representation only metric or ordinal variables are considered in the fol-

lowing with a certain split point cj . In general, each node can be represented by a product

of several indicator functions:

node(xp) =
B
∏

b=1

I(xpjb ≤ cjb)
ab + I(xpjb > cjb)

1−ab (5.3)

where B is the number of indicator functions or branches of the tree, cjb describes the se-

lected cutoff point in variable jb and ab ∈ {0, 1} indicates, which of the indicator functions,

above or below threshold, is involved. Then, the final predictor for person p and item i

with terminal nodes l = 1, ..., Li can be denoted as:

ηpi = θp +

Li
∑

l=1

γil nodeil(xp) = θp + tri(xp) (5.4)

γil denotes the item difficulties in the terminal nodes. Let
∑Li

l=1 γil nodeil(xp) = tri(xp),

then tri(xp) takes the values of the respective item difficulties if a tree is built for item i. If

no tree is built for item i, tri(xp) equals βi, the item parameter of the simple Rasch model

over all persons p.

Splitting procedure

The iterative process of growing trees is mainly determined by the decision whether the

feature space should be further partitioned or not and, if so, according to which combina-

tion of item, variable and split point.

For both, item focused Rasch and item focused logistic trees, the same test-based concept

is used. The test statistic used here is the likelihood ratio test statistic. In every recursive

partitioning step, the value of the test statistic is obtained for every possible combination

of item, variable and split point. The corresponding null hypothesis is: H0 : γil = γir.

Note, that this is impossible for metric variables and therefore, 20 quantiles are used and

tested as possible split points. For every item and variable j the maximal value statistic

Tj = maxcjTj cj over all possible split points is computed. Then, a permutation test is

carried out for the combination of item and variable that has the largest Tj . A permutation

test is based on the intuition that if there are no group differences (resulting in the decision

that no further splitting is done) the value of the test statistic should be about the same
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as the test statistic after a random permutation of the persons’ group memberships under

which the statistic can be computed. Since the number of possible permutations gets very

large, usually a fixed number of permutations, say 1000, is computed. This results in a

distribution for the test statistic Tj based on the different values of Tj from the permuta-

tions. It is possible to obtain a p-value from the sample-specific permutation distribution,

that is the number of increasingly sorted permuted Tj ’s above the observed Tj without

permutation divided by number of permutations. In order to account for the number of

covariates, the significance level used here is the overall significance level alpha divided by

the number of covariates. If the p-value for the permutation test is significant, DIF is said

to occur for the respective item and variable. Further splitting is performed according to

the split point cj for which Tj cj , the test statistic for item i and variable j over all possible

split points cj , had the smallest p-value.

This proceeding is repeated until no more splits are found to be significant in the permu-

tation test.

Algorithm IFRT

Summarizing the previous subsections, the DIFtree algorithm for the detection of uniform

DIF and underlying Rasch model is defined as:

DIFtree (Rasch, Uniform DIF)

Step 1 (Initialization)

Set counter ν = 1

• For all item i = 1, ..., I fit all the candidate Rasch models with predictor

ηpi = θp + [γil I(xpj ≤ cijk) + γir I(xpj > cijk)],

j = 1, ...,m, k = 1, ...,Kj

• Select the model that has the best fit. Let ci1,j1,k1 denote the best split which is

found for item i1 and variable xj1

• Select the item and variable with the largest value of Tj . Carry out permutation test

for this combination with significance level α/m. If significant, fit the selected model

yielding estimates β̂i, γ̂i1 , γ̂i2 and nodes nodei1 , nodei2 , set ν = 2. If not significant,

stop (meaning no DIF detected)

Step 2 (Iteration)

• For all items i = 1, ..., I and already built nodes l = 1, ..., Liv, fit all the candidate

DIF models with new intercepts

γi,Liv+1 nodeil I(xpj ≤ cijk) + γi,Liv+2 nodeil I(xpj > cijk)

for all j and possible remaining split points cijk.

• Select the model that has the best fit, yielding split point ciν ,jν ,kν which is found for

item iν and variable xjν in node nodeiν ,lν
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• Select the item and variable with the largest value of Tj . Carry out permutation

test for this combination with significance level α/m. If significant, fit the selected

model yielding additional estimates γ̂iν ,Liν
, γ̂iν ,Liν

and nodes nodei1 , nodei2 and set

ν = ν + 1.

Step 3 (Stop)

• Stop if permutation test is not significant

5.3.2. Item focussed logistic trees

A second version of item focussed trees uses the logistic model as underlying model for the

DIFtree procedure.

Concept

The basic logistic model, as introduced in subsection 2.2.3 can be generalized to include

multiple, possibly continuous or categorical predictor variables, that might induce DIF. It

has the form (Berger and Tutz, 2016):

log

(

P (Ypi = 1|Sp,xp)

P (Ypi = 0|Sp,xp)

)

= ηpi = β0i + Spβi + x
T
p γγγi (5.5)

Again, β0i is the intercept parameter, Sp denotes the test score of person p, and x
T
p γγγi are

vectors including the person-specific covariate values and the DIF-parameters γ for item i.

The logistic model in the tree framework

If no split is found for item i and no tree is built, the predictor of model (5.5) reduces to

ηpi = β0i + Spβi. If a split is found, the first split corresponding to the logistic model and

according to a metric or categorical covariate xj in tree notation is:

ηpi = Spβi + [γ
[1]
il I(xpj ≤ cj) + γ

[1]
ir I(xpj > cj)] (5.6)

with the indicator function being defined as above. For IFLT, if a split is carried out, the

intercept parameter β0i is not estimated as a separate parameter, but is contained in the

item difficulty of the subgroups γil/γir.

In order to determine whether splitting is accomplished or not one relies again on the

concept of maximally selected statistics as described in the previous section.

Using node representation (5.3), the general predictor for item focussed logistic trees is:

ηpi = Spβi +

Li
∑

l=1

γil nodeil(xp) = Spβi + tri(xp) (5.7)
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Algorithm IFLT

The DIFtree algorithm, using an underlying logistic model, can be summarized as:

DIFtree (Logistic, Uniform DIF)

Step 1 (Initialization)

Set counter ν = 1

• For all item i = 1, ..., I fit all the candidate logistic models with predictor

ηpi = Spβi + [γil I(xpj ≤ cijk) + γir I(xpj > cijk)],

j = 1, ...,m, k = 1, ...,Kj

• Select the model that has the best fit. Let ci1,j1,k1 denote the best split which is

found for item i1 and variable xj1

• Select the item and variable with the largest value of Tj . Carry out permutation test

for this combination with significance level α/m. If significant, fit the selected model

yielding estimates β̂i, γ̂i1 , γ̂i2 and nodes nodei1 , nodei2 , set ν = 2. If not significant,

stop (meaning no DIF detected)

Step 2 (Iteration)

• For all items i = 1, ..., I and already built nodes l = 1, ..., Liv, fit all the candidate

logistic models with new intercepts

γi,Liv+1 nodeil I(xpj ≤ cijk) + γi,Liv+2 nodeil I(xpj > cijk)

for all j and possible remaining split points cijk.

• Select the model that has the best fit, yielding split point ciν ,jν ,kν which is found for

item iν and variable xjν in node nodeiν ,lν

• Select the item and variable with the largest value of Tj . Carry out permutation

test for this combination with significance level α/m. If significant, fit the selected

model yielding additional estimates γ̂iν ,Liν
, γ̂iν ,Liν

and nodes nodei1 , nodei2 and set

ν = ν + 1.

Step 3 (Stop)

• Stop if permutation test is not significant
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Logistic IFT for the detection of non-uniform DIF

One advantage of item focussed trees for the detection of differential item functioning is

their flexibility. In addition to uniform DIF, logistic IFTs can also detect non-uniform

DIF, which, for example, DIFlasso and DIFboost are not capable of. This is realized by

incorporating group specific slopes in the logistic model, for more information, see Berger

and Tutz (2016).
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6. Simulations

In the following, DIFlasso, DIFboost and DIFtree should be compared by means of a

simulation study. This chapter consists of three parts: in section 6.1, the general settings

are listed, that hold for both simulation scenarios as well as the considered criteria to

evaluate the performance of the different methods. Section 6.2 covers the first simulation

scenario, where data is generated according to the DIF model (3.1). In the second scenario,

that is discussed in section 6.3, the data is again generated according to the DIF model

but the underlying DIF structure is different.

All the analyses presented in this thesis were conducted with the R software (R Core Team,

2015), together with the packages "DIFlasso" (version 1.0-2), "DIFboost" (version 0.1) and

"DIFtree" (version 2.0.4).

6.1. Settings

Parameters

To ensure comparability, as many parameters as possible are kept consistent over both

settings. These are the number of observations P = 500, the number of items I = 20 and the

number of DIF items #IDIF = 4. Accordingly, 16 Items are DIF-free: #INO−DIF = 16.

In both settings, five covariates are considered (m=5), of which the first two ones are

binary distributed: x1 = x2 ∼ B(0.5) and the other three are metrically distributed,

drawn from a standard normal distribution: x3 = x4 = x5 ∼ N(0, 1). This is equal to

working with standardized person characteristics, where the variance of the components is

one. Both, person and item parameter are drawn from a standard normal distribution as

well. θp ∼ N(0, 1) and βi ∼ N(0, 1).

In both scenarios, the data is generated according to the DIF model, but the way how the

covariates account for DIF varies between the scenarios and is explained in the respective

sections. Each scenario is repeated 100 times.

Performance criteria

The performance of the methods will be evaluated using several different criteria, including

mean squared errors (mse’s) and detection rates.

In order to evaluate how well the person and item parameters are estimated (in terms of

how close they are to the true parameters), the respective mse’s are calculated. The mse

of the person parameter θp is defined as the squared difference between the estimated and

the true person parameters averaged over all persons: MSEθ =
∑

p(θp − θ̂p)
2/P . The

mse of the group-specific item difficulty is calculated by MSEβγ =
∑

p

∑

i[(βi + x
T
p γγγi) −

(β̂i + x
T
p γ̂γγi)]

2/(I · P ) and denotes the squared difference between the estimated and the

true person-specific item difficulty averaged over all persons and items. Note that for the

DIFtree procedure with underlying logistic model the mse’s can not be calculated.
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In addition to the mse’s, true and false positive rates are calculated:

• The true positive rate on the item level

TPRI = 1
#IDIF

∑

i:δi 6=0 I(δ̂i 6= 0)

describes the percentage of how many of the DIF items are correctly identified as

DIF items.

• The false positive rate on the item level

FPRI = 1
#INO−DIF

∑

i:δi=0 I(δ̂i 6= 0)

denotes the percentage of how many of the DIF-free items are falsely diagnosed as

DIF items.

• In addition, except for the DIFlasso procedure with group lasso penalty, the true

and false positive rates can also be calculated on the level of each item-variable

combination. The true positive rate on the level of each item-variable combination

is:

TPRIV = 1
#IDIF−V AR

∑

i,j:δi,j 6=0 I(δ̂i,j 6= 0)

with #IDIF−V AR = #IDIF ·mIDIF
and mIDIF

the number of DIF-inducing covariates

per item

• The false positive rate on the level of each item-variable combination is denoted as:

FPRIV = 1
#INO−DIF−V AR

∑

i,j:δi,j=0 I(δ̂i,j 6= 0)

with #INO−DIF−V AR = #INO−DIF ·m+#IDIF ·mINO−DIF
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6.2. Scenario 1

Data generation

In both scenarios, three different strength of DIF are considered (strong, medium, weak).

The strength of DIF is measured by:

1

#IDIF

IDIF
∑

i=1





1

m

√

√

√

√

m
∑

j=1

γ2ij



 (6.1)

For independent components, the variance of the person-specific item difficulties βi+xTp γi,

Vi = var(βi + xTp γi), takes the simple form Vi =
∑

j γ
2
ij . Standardized by the number of

covariates m and averaged over all DIF items, this gives a measure of the DIF strength in

the DIF items. The parameters of the γ-vectors are chosen such that (6.1) equals 0.25 in

the strong DIF setting. A DIF strength of 0.25 corresponds to a value of 0.05, if 1
m

√
Vi is

averaged over all items.

For every item, DIF is induced by three covariates. The chosen γ-vectors for the four

DIF items in the strong DIF setting are γ1 = (−0.5, 0, 0.8, 0.8, 0), γ2 = (0, 0.9, 0, 0.7,−0.8),

γ3 = (0, 0.8,−0.6, 0, 0.5), γ4 = (0.7,−0.7, 0, 0.8, 0). The γ-vectors for all other items equal

zero.

For the medium DIF setting, the strong γ-parameters are multiplied by 0.75, resulting in

a value of 0.1875 for the DIF strength (6.1). For the weak DIF setting, the parameters are

multiplied by 0.5 respectively.

For each of the methods, some input parameters have to be fixed: For the DIFlasso proce-

dure, both the group lasso penalty, as proposed by Tutz and Schauberger (2015), is used

(setting grouped=TRUE) and the lasso penalty (3.3). For simplicity the two methods are

referred to as the grouped and the ungrouped DIFlasso in the following. For the grouped

DIFlasso, the number of different penalization parameters λ that are used during the pro-

cedure is set to 30 (l.lambda=30) and the degrees of freedom of the BIC are calculated

according to Yuan and Lin (2006) (df ="YL"). For the ungrouped DIFlasso l.lambda=100,

because each group-specific parameter is treated independently during the penalization.

For DIFtree, trees are built with the DIF model as underlying model (model="Rasch")

and with the logistic model (model="logistic"), referred to as DIFtree Rasch and DIFtree

logistic in the following. The global level of significance for the permutation test is set to

alpha=0.05 and the number of performed permutation tests nperm=1000. Using DIFtree

Rasch, a small Ridge penalty is applied, ensuring the existence of all model parameters

(penalized=TRUE). For DIFtree logistic, the type of DIF has to be specified, which is uni-

form DIF here (type="udif"). Together with DIFboost, this leads to five different methods

according to which DIF detection was performed. For the DIFboost procedure, the number

of boosting iterations maximally performed in one iteration of the stability selection, is set

to 1000 (mstop=1000), each model parameter has to be chosen in at least 90% (cutoff =0.9)

of the 500 stability selection iterations (B=500) to enter the final model and the boosting

procedure is stopped for each stability selection iteration as soon as q=12 base learners are

found.
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Results of scenario 1

Figure 6.1 shows boxplots of the mean squared errors of the person parameter θ over all

simulation runs for the different methods. For most of the replications, the mse’s are small,

with only a few outliers. Overall, the differences between the methods are small.

Figure 6.2 displays boxplots of the mse’s of the person-specific item difficulty. The grouped

DIFlasso procedure has a little less outliers. The mse’s of the DIFboost procedure are

slightly higher than those of the other methods, but again, differences are small. The

mse’s of the person-specific item difficulty vary more over the different strengths of DIF.

The weaker the DIF the smaller the mse’s.

Table 6.1 displays the true and false positive rates for the different methods and settings

averaged over all 100 replications. In the strong DIF setting, all methods detect the DIF

items correctly in all replications, except for the DIFtree Rasch procedure (TPR of 99.8%).

The ungrouped DIFlasso has a higher average FPR than the other methods. For the

medium setting, DIFboost has the highest average TPR rate and the ungrouped DIFlasso

has the lowest with 96%. In the weak setting, DIFboost outperforms the other methods,

having an average TPR of 89.5%. DIFboost is followed by DIFtree with moderate DIF

rates of 73.5 and 75.2%. DIFlasso cannot compete with the other methods in the weak

setting of scenario 1, regarding the true positive rates.

Setting 1
DIFlasso

grouped

DIFlasso

ungrouped
DIFboost

DIFtree

Logistic

DIFtree

Rasch

strong DIF
TPR 1.000 1.000 1.000 1.000 0.998

FPR 0.022 0.116 0.037 0.067 0.026

medium DIF
TPR 0.978 0.960 0.992 0.982 0.975

FPR 0.008 0.066 0.035 0.056 0.031

weak DIF
TPR 0.095 0.338 0.895 0.735 0.752

FPR 0.000 0.006 0.031 0.048 0.034

Table 6.1.: True and false positive rates on the item level for setting 1

Figure 6.3 gives some more information about the true and false positive rates, showing

boxplots over the 100 simulation replications. In the strong DIF setting, the DIFtree Rasch

procedure detects only three out of four DIF items in one replication, leading to a true

positive rate of 99.8%. In the medium DIF setting, DIFboost and DIFtree do detect at least

75% of the DIF items correctly, whereas the DIFlasso procedure has also lower detection

rates (50%, 0%) for some replications. In the weak setting of scenario 1, one can see that

DIFboost still classifies all DIF items correctly in at least half of the replications, whereas

the median true positive rate for DIFtree is 75%. The differences between the FPR’s of

the two methods are small here.
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Figure 6.1.: Mean squared errors of the person parameter theta over all replications of

scenario 1 for the different methods
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Figure 6.2.: Mean squared errors of the item parameter beta over all replications of scenario

1 for the different methods
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Figure 6.3.: True and false positive rates over all replications of scenario 1 for the different

methods
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Except for the grouped DIFlasso and the DIFboost, where either all or none of the pa-

rameters of a γ-vector for an item equal zero by definition, the TPR and FPR on the

level of each combination of item and variable give additional information about how well

the methods are able to not only identify DIF items but also to indicate the responsible

variables on the item level:

Setting 1
DIFlasso

ungrouped

DIFtree

Logistic

DIFtree

Rasch

strong DIF
TPR 0.887 0.688 0.671

FPR 0.024 0.015 0.007

medium DIF
TPR 0.677 0.546 0.538

FPR 0.013 0.012 0.007

weak DIF
TPR 0.134 0.310 0.317

FPR 0.001 0.010 0.008

Table 6.2.: True and false positive rates for each item-variable combination for setting 1

For each item there are three DIF variables in scenario 1. In the strong and the medium

DIF setting, the ungrouped DIFlasso has the highest TPR rates. In the weak setting,

DIFtree slightly outperforms DIFlasso on the level of each item-variable combination, but

overall, the detection rates are low.

6.3. Scenario 2

Data generation

Same as in scenario 1, three different strengths of DIF are considered (strong, medium,

weak). Note that the DIF strength cannot be compared between the scenarios, meaning

that strong DIF in the first scenarios is not necessarily the same as strong DIF in the

second scenario.

In the tree framework, Vi = var(
∑

l γil nodeil) describes the variance of the group-specific

item parameters. Again, the average of Vi over the DIF items is used as a measure of the

DIF strength. The DIF structure is taken according to Tutz and Berger (2016), slightly

modified to incorporate one additional fifth covariate:

Item DIF structure

1 0.75c · I(x1 = 1) + 0.75c · I(x3 > 0.1)

2 −0.75c · I(x1 = 1)− 0.75c · I(x4 > 0.1)

3 0.8c · I(x2 = 1) + 0.8c · I(x5 > −0.1)

4 −0.8c · I(x3 > 0.1)− 0.8c · I(x5 > −0.1)

Table 6.3.: DIF structure of the strong setting of scenario 2
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Parameter c regulates the strength of the DIF. For strong DIF in scenario 2, parameter

c=1, leading to a DIF strength of 0.41. For medium DIF, c=0.75 (0.23) and for weak DIF,

c=0.5 (0.10). In scenario 2, there are two DIF variables per item and the DIF structure

follows a tree structure that represents interactions between the two DIF variables.

The input parameter for the different methods, as described in section 6.2, remain the

same in scenario 2.

Results of scenario 2

The mse’s of the person parameter do not vary much across the different methods, as can

be see from figure 6.4. Again, the grouped DIFlasso has slightly lower mse rates than the

other methods.

More variation can be seen regarding the group-specific item parameters in scenario 2.

In the strong and medium setting, the DIFlasso procedure has the lowest mse’s, followed

by DIFtree and DIFboost. The mse’s for DIFtree Rasch increase as the strength of DIF

decreases. The detection rates for the weak setting of scenario 2 are low. Taking a closer

look on the parameters, the mse is mostly increased, because the parameter estimates are

less close to the true parameters for the DIF items. This can be caused by unfavourable

splits, i.e at the margins of the range of a numerical variable for weak DIF on the one hand

and on the other hand, the fact that DIF items are not found has more influence on the

mse for the DIFtree Rasch procedure than for the other methods for weak DIF.

In the strong setting of scenario 2, DIFtree performs best, with an accuracy of 90% (logistic

DIFtree) and 87% (Rasch DIFtree), followed by DIFboost. DIFlasso does not perform very

well in scenario 2. In the medium and weak DIF settings, DIFboost slightly outperforms

DIFtree, which is a little surprising. In comparison to scenario 1, DIFtree holds the global

significance level of 0.05, with an FPR of at most 0.044.

Setting 2
DIFlasso

grouped

DIFlasso

ungrouped
DIFboost

DIFtree

Logistic

DIFtree

Rasch

strong DIF
TPR 0.128 0.458 0.820 0.898 0.868

FPR 0.001 0.006 0.036 0.042 0.041

medium DIF
TPR 0.005 0.160 0.620 0.552 0.525

FPR 0.000 0.004 0.036 0.031 0.026

weak DIF
TPR 0.002 0.070 0.345 0.248 0.228

FPR 0.000 0.013 0.044 0.039 0.029

Table 6.4.: True and false positive rates on the item level for setting 2

In scenario 2, DIFlasso can not compete with the other methods. This also holds for

the comparison on the level of each item-variable combination, as can be seen from table

6.5. For all strength of DIF, the logistic DIFtree procedure performs slightly better than

DIFtree Rasch.
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Figure 6.4.: Mean squared errors of the person parameter theta over all replications of

scenario 2 for the different methods
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Figure 6.5.: Mean squared errors of the item parameter beta over all replications of scenario

2 for the different methods
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Setting 2
DIFlasso

ungrouped

DIFtree

Logistic

DIFtree

Rasch

strong DIF
TPR 0.311 0.602 0.560

FPR 0.001 0.009 0.009

medium DIF
TPR 0.084 0.305 0.285

FPR 0.001 0.007 0.006

weak DIF
TPR 0.030 0.118 0.112

FPR 0.003 0.009 0.007

Table 6.5.: True and false positive rates for each item-variable combination for setting 2

6.4. Summary

Taking both scenarios into account, it seems that independent of the underlying DIF struc-

ture, DIFboost gives the best results in terms of how accurate DIF items are detected as DIF

items. DIFboost is followed by DIFtree. DIFtree with underlying logistic model performs

slightly better than with underlying Rasch model and the computation time is shorter.

The larger the group differences the more the DIFlasso methodology can compete with

the other methods. If the strength of DIF is considered to be weak, the true positives rates

are much lower than for the other methods. For strong DIF, all methods give comparable

results regarding true positive rates.

The mean squared errors of the person parameter do not vary much across the different

methods and settings. The mean squared error of the person-specific item difficulty has

some outliers when item focussed Rasch trees are used, especially when the group differ-

ences are small. This is when unfavourable splits might be found, i.e. at the margins of the

range of the numerical variables and the respective parameter estimates are not reliable

and lead to higher mse’s. Also, DIF items not being detected as DIF items increases the

mse’s for DIFtree Rasch in some iterations of the weak setting of scenario 2.
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7. Empirical example: Assessment of educational

standards

In the following chapter, the practical behaviour of all methods should be compared by

means of an empirical example using a data set from the Austrian "Bundesinstitut für Bil-

dungsforschung, Innovation und Entwicklung" (Bifie). Among others, quality development,

educational monitoring, conception of final examinations, applied educational research and

information and consultancy services belong to the core tasks of Bifie. Educational mon-

itoring includes the assessment of educational standards of all Austrian students in grade

4 (regarding areas of competence: German, Mathematics) and grade 8 (German, Math-

ematics, English). In a cycle of five years each area of competence is assessed once in a

comprehensive survey. Here, data from the 8th grade assessment of mathematics standards

from 2012 is analyzed (BIFIE, 2014).

In total, there are almost 80.000 8th grade students in Austria. A random sample of

851 surveyed students was provided. In addition to their performance on 48 test items,

socio-economical background variables were captured. Therefore, both students and their

parents answered additional questionnaires. For a detailed introductory documentation of

the 8th grade assessment of mathematics standards, refer to Schreiner and Breit (2012).

For a general technical documentation of the construction and design of standard tests, see

Itzlinger-Bruneforth et al. (2016) and Kiefer et al. (2016). Kuhn and Kiefer (2013) refer

to the test design of the standards assessment in mathematics more specifically.

The following section shortly describes the test design of the study, which is helpful for the

understanding of how the sample is drawn exactly. In section 7.2, the predictor variables

are explained and a descriptive overview of the data set is given. Section 7.3 covers the

results of the DIF analysis for each of the methods. The chapter concludes with a short

comparison of the empirical results.

7.1. Test design

The department of didactics in mathematics at the Alpen-Adria university Klagenfurt

developed a model, that divides the concept of "mathematical competence" into three di-

mensions (see figure 7.1): a content area, an operational area and the level of complexity

(Heugl et al., 2007). The content and operational dimensions have four different categories

each, dimension complexity has three. For example, the categories for the operational di-

mension are: illustrating/model building, calculating, interpreting and arguing/justifying.

Hence, the concept of "mathematical competence" is characterized by 4*4*3 = 48 different

areas, described by tripels of the three dimensions.

This model of mathematical competencies is used for the design of the student’s question-

naire for the assessment of mathematics standards. The test consists of 72 questions in

total. The amount of questions is too large to be answered by a single student. Therefore,

the items are divided into blocks. Every student answers a booklet of four out of six blocks

and the blocks vary over students, such that in the end every item is solved by the same

number of students. Every block was restricted to contain at least three items of each con-

tent area and of each operational area. In addition, at least four items of each complexity
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level should be present in each block (Kuhn and Kiefer, 2013). Some of the methods cannot

deal with missing values in the response matrix Y, thus one booklet ("Testheft 3") was

randomly selected, from which the 851 observations were drawn.

Figure 7.1.: A model of mathematical competencies (https://www.bifie.at/node/49)

7.2. Data description

In addition to 48 dichotomous variables that contain the test results for each of the students,

the data set includes information on five socio-economical covariates:

• female: indication whether a student is female or male

• language: a three-categorical variable that shows whether the student’s first lan-

guage is German or not

• migration: also a three-categorical variable that expresses whether parents are born

in Austria/Germany or not. Note that if the student’s native country is Germany,

this is not considered to be a migration background.

• HISEI: "Highest International Socio-Economic Index of occupational status". The

"International Socio-Economic Index of occupational status" (ISEI) is calculated for

both, father (FISEI) and mother (MISEI). The index takes the parents’ occupa-

tion, education and salary into account. The salary itself is not retrieved directly

from the parent’s questionnaire, but derived from the 2008 International Standard

Classification of Occupations. The HISEI is the highest parental ISEI.

• sstat: the social status is also not measured directly but derived from three covariates

taken from both student’s (SQ) and parent’s questionnaire (PQ). It takes into account

the number of books in the household (BOOK), parental education (PEDU) and

HISEI and is calculated by:

sstat =
1

6

(

HISEISQ + HISEIPQ + BOOKSQ + BOOKPQ

)

+
1

3
PEDUPQ

The three variables are z-standardized prior to calculation. Both, the social status

and the HISEI were anonymized by rank swap before the data was made available.

The correlation with the original variables is 0.98.
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The covariates are coded as described in table 7.1.

DIFlasso and DIFboost require a dummy-matrix as function input. Therefore, the two

multi-categorical variables migration and language were dummy-coded whereas the first

category serves as the reference category.

variable name variable values

female
0: male

1: female

language

1: first language of both parents is German

2: first language of either the father or the mother is German

3: both parents originally speak other languages than German

migration

1: inland, father and/or mother is born in Austria/Germany

2: second generation migrant

(parents born abroad but child is born in Austria/Germany)

3: first generation migrant

(parents and child born in a foreign country)

hisei numerical values between 0 and 100

sozstat numerical values between -2 and 2

Table 7.1.: Coding of the socio-economical predictor variables

Figure 7.2 shows the distribution of the test results and the five predictor variables in the

provided data sample. The distribution of the number of correctly solved items per stu-

dent approximately follows a normal distribution. Every student solved at least one item

correctly and at most 47 (out of 48) items. Most students are Austrian natives (84%). A

small amount of children is classified as a first generation migrant (12%) and 5% as a sec-

ond generation migrant. The first language of 78% of the students is Austrian. When the

parents are non-native speakers more often both parents are non-native speakers (15%)

than just mother or father (7%). Variable sstat is approximately normally distributed.

Note that all the displayed distributions and numbers refer to the sample data and do not

necessarily, without further information, represent the test population.

There is a high correlation between the variables sstat and HISEI (Pearson’s correlation

coefficient of 0.78) and between the variables migration and language (Spearman rank cor-

relation coefficient of 0.84). This should be kept in mind for the following DIF analysis,

because if a variable is identified as a DIF variable, there is a high chance that there are

also group differences for the correlated variable, even though it will not be assigned as a

DIF variable.

All objects that have missing values in one or more of the covariates were excluded, assum-

ing that the entries were missing at random. After removal, 773 of the 851 objects (91%)

remain for further analysis. The covariates were standardized prior to handing them over

to DIFlasso and DIFboost. In contrast, DIFtree requires un-standardized covariates.
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Figure 7.2.: Test results (upper left plot) and distribution of the five covariates

7.3. DIF analysis

In this section, the results of the DIF analysis are reported. Findings are displayed sepa-

rately for every method.

Rasch trees

Rasch trees are useful to find DIF inducing variables on the global test level. Here, they are

computed as a comparison to the other methods. However, they are less intuitive for the

detection of DIF items in particular. For the Rasch tree analysis, the R-function raschtree

is used, that is contained in the R-package psychotree (version 0.15-0) developed by Strobl

et al. (2015).

The raschtree method finds two DIF-variables, gender and social status. Gender is the

first splitting variable and social status the second splitting variable that comes into play

when the gender of the test taking person is female (see figure 7.3). In the end, two

big groups according to gender are formed and one very small group (n=30), containing

female students with a low social status. In this group, the coefficients for four of the

items (items 5, 8, 27, 45) can not be calculated, because none of the 30 students solved

the item correctly. In subplot "Node 4" of figure 7.3, these four items are the ones with

the lowest item parameters, but the value of -4.58 is somewhat misleading, since actually

no parameter is estimated here.
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Figure 7.3.: Final estimated tree of the raschtree procedure

DIFlasso

For the DIFlasso procedure, four different settings were considered. Both the grouped and

ungrouped lasso penalty were applied together with two different ways of calculating the

degrees of freedom for the BIC, that determines the final model. The types of degrees of

freedom are "Yuan-Lin" (YL) and "L2", see section 3.2.

Table 7.2 shows the number of DIF items that are found in the data set for each of the four

different settings. Using the setting originally proposed by Tutz and Schauberger (2015)

of a group lasso penalty and degrees of freedom according to Yuan and Lin (2006), no DIF

items are found at all. For the grouped lasso/L2 setting, four DIF items are detected. For

the ungrouped lasso/YL setting, one DIF item is found, which is item 5. In this context,

it does not seem very plausible that the ungrouped lasso/L2 finds 20 DIF items.

DIFlasso setting no. of DIF items item variable

grouped - df: YL 0 - -

grouped - df: L2 4 5, 28, 38, 41 all

ungrouped - df: YL 1 5 gender

ungrouped - df: L2 20 3,5,... ...

Table 7.2.: DIF items found by the DIFlasso procedure under different settings
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Figure 7.4 shows the findings for the ungrouped lasso/YL setting. The left plot of figure 7.4

visualizes the evolution of the γ-parameters for the different values of λ, that determine the

strength of the penalization. The BIC-optimal model is indicated by the vertical dashed

line. At this point, one DIF item (item 5) is detected in this setting. The right plot shows

the group-specific coefficients of item 5. All coefficients are zero except for the gender,

indicating that gender is the detected DIF variable. The group-specific coefficient for the

gender is positive, meaning that the item is more difficult to solve for female students than

for male students.
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Figure 7.4.: Findings for the ungrouped lasso/YL setting: L2 norm of γ-coefficients vs.

lambda (left) and γ-coefficients for the DIF item of the final model (right)

The grouped lasso/L2 setting detects four items as DIF items. The group-specific parame-

ters are displayed in figure 7.5. Same as for the ungrouped lasso/YL setting, item 5 shows

DIF and gender is again the variable with the largest group differences. Compared to item

5, the group differences for the other three items are relatively small. Since the variables

were standardized prior to the analysis, the size of the group coefficients can be compared

directly between variables. Item 28 is again more difficult to solve for female students.

The higher the social status, the higher is the probability of a correct answer for item 41.

The item difficulty is also higher if German is not the first language of the student.

DIFboost

For the DIFboost procedure it is important to keep parameter mstop sufficiently large

to guarantee that enough base learners are found for every subsample of the boosting

procedure. The larger the value of mstop, the higher is the time required for computing.

Here, even if mstop is chosen to be very large, say 5000, not enough base learners are found

according to parameter q, q = 0.6 ∗ I = 0.6 · 48 ≈ 29. This is why q was set to 24. This

means that at most 50% of the items can be classified as DIF items.

Using DIFboost, as developed by Schauberger and Tutz (2016), seven items (items 3, 5,

9, 12, 28, 38 and 41) are diagnosed as DIF items. For each item, all γ-parameters are
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Figure 7.5.: Findings for the grouped lasso/L2 setting: γ-coefficients for the four DIF items

of the final model
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unequal to zero. Figure 7.6 displays the γ-coefficients for four of the seven detected items.

These four items are chosen by other procedures as well and thus their classification as DIF

items is regarded to be more reliable than if an item is chosen by one method only. Same

as for DIFlasso, the DIFboost procedure detects item 5 (upper left plot) as a DIF item.

The variable with the largest group-specific parameter is again the gender of the student.

The direction conforms to the DIFlasso result as well. Item 9 is regarded as more difficult

for male students and first generation migrants. Item 28 is again easier to solve for male

students. For item 41, the results are similar to DIFlasso as well: the higher the social

status, the lower is the item difficulty. In addition, the item is more difficult to solve for

students whose first language is not German.
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Figure 7.6.: Results of DIFboost: γ-coefficients of four DIF items detected by the DIFboost

procedure
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DIFtree

The DIFtree procedure with underlying Rasch model detects six DIF items in total. Ap-

plying the DIFtree algorithm with underlying logistic model, seven DIF items are found.

Five of the items match for both settings and also the splitting variables are the same.

These are items 5,9,28,31 and 41. Mostly, gender and social status are responsible for DIF.

For each of the items, one DIF variable is found, except for item 41, where splitting is done

according to the social status first and if the social status is below 1.44, another split is

performed according to the migration background of the student. Figure 7.7 and 7.8 show

the findings for the two DIFtree settings in more detail.

Three of the six items detected with item focussed Rasch trees split the observations ac-

cording to the gender of the test taking student. Items 5 and 28 are easier to solve for

male students, item 9 is more difficult. This matches with the DIFlasso and DIFboost re-

sults. The DIF variable of item 31 and 38 is the social status. In comparison to the other

methods, where the relation between the test answer and the numerical variable social

status is linear, the trees split the observations into two subgroups. The group with the

higher social status has a higher probability of solving the item correctly. For item 41, the

DIFtree Rasch procedure splits twice. The first split is according to the social status and

the second split according to the migration background. However, the left node of the first

split (students with a very low social status) contains only 40 of 773 students. The right

node of the second split (students with a low social status and a migration background)

contains only 18 observations, that mostly did not solve the item correctly. This decreases

the reliability of the parameter estimates.

Item focussed logistic trees (figure 7.8) find seven DIF items. In addition to the items

detected by the other procedures as well, items 8 and 36 are classified as DIF items. For

item 31, two splits are carried out according to the same variable, social status. This

divides the observations into three groups. The item is most difficult for students with a

very low social status, followed by students with a social status above -0.57. The middle

group has the highest probability of solving the item correctly. Item 41 is split in the same

way as split by DIFtree Rasch, but the interpretation implied by the resulting coefficients

is slightly different. This shows again, that the parameter for students with a low social

status and a migration background (-20.9 for IFLT vs. 6.48 for IFRT) is not very reliable.

If one takes a closer look at the subgroup corresponding to the parameter estimate, almost

none of the students was able to solve item 41 correctly in this subgroup. Thus, DIFtree

detects a meaningful partition (students that are likely to fail at solving the item) even

though parameters are difficult to estimate. The DIFboost procedure finds social status

and language as DIF variables for item 41, but language and migration are correlated.
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7.4. Comparison of empirical results

Table 7.3 summarizes the findings of the empirical example. Two DIFlasso settings are not

displayed, since the grouped/L2 DIFlasso finds no DIF items at all and the ungrouped/YL

DIFlasso finds twenty DIF items, which does not seem plausible in comparison to the

results of the other methods.

Item
DIFlasso

DIFboost
DIFtree

∑

DIF

ungr/YL gr/L2 Rasch logistic classifications

3 x 1

5 x x x x x 5

8 x 1

9 x x x 3

12 x 1

28 x x x x 4

31 x x 2

36 x 1

38 x x x 3

41 x x x x 4

# DIF items 1 4 7 6 7

Table 7.3.: Overview of detected DIF items in the empirical example of the different

methods

Overall, the results differ depending on which method was used for the detection of dif-

ferential item functioning. Especially the sparseness in terms of how many items are

classified as DIF items varies between the methods. The DIFlasso procedure leads to more

sparse models than the other two procedures, except for the setting, where the regular lasso

penalty is used together with the L2 type degrees of freedom. If the degrees of freedom

for the BIC are calculated according to Yuan and Lin (2006), models are more restricted

than using the L2 norm. DIFboost and logistic DIFtree both detect seven DIF items.

Items 5, 28, 38 and 41 are the items that are classified as DIF items by DIFlasso, DIFboost

and DIFtree. Item 5 is the only item that is found by DIFlasso ungr/YL.

On the item level, the results are mostly in accordance with each other. DIF variables and

direction of influence match, when the item is detected by more than one procedure. Group

specific differences mostly correspond to the gender or the social status of the students.

The biggest difference between DIFtree and the other methods then is the treatment of

numerical covariates (with the latter finding binary splits for metric covariates in each step).

During the simulation study, DIFboost and DIFtree gave better results than DIFlasso. This

should be kept in mind for the interpretation of the empirical results as well.

As a conclusion, it seems advisable to apply more than one method to detect DIF and

compare the results between the methods. If items are chosen as DIF items by more than

one procedure, their classification as DIF items is more reliable than if an item is just

chosen by one procedure as one out of many items.
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8. Conclusion

This thesis presented and compared three methods developed for the detection of differ-

ential item functioning, including DIFlasso, an approach that estimates the DIF model

using lasso penalization in order to determine DIF items. The second method, DIFboost,

finds the model parameters related to DIF via boosting. DIFtree detects DIF via model-

based recursive partitioning, where the DIF model or the logistic model can be chosen as

underlying models. They have in common that they were developed to overcome the limi-

tations of existing methods regarding the type and number of predictor variables that can

be included. Also, they detect DIF not only on the global test level but on the item level,

allowing a conclusion about which items exhibit group differences. The main difference

between DIFlasso/DIFboost and DIFtree is the treatment of numerical variables. The first

two mentioned methods assume a linear effect on the success probabilities here. DIFtree

splits the predictor space into subregions, estimating one item difficulty in every subregion.

Subgroups of the predictor variables do not have to be prespecified here (i.e. split points

for metric variables are found by the procedure, starting with the most important variable

at the root of the tree). Trees might also be more capable of representing interactions

between the predictor variables.

Taking the aforementioned advantages and flexibility aspects into account, the application

of the presented method might be useful for researchers and practitioners in addition to the

well established methods introduced in chapter 2. The performance of the three methods

in relation to these established methods was investigated in the originating papers Tutz

and Schauberger (2015), Schauberger and Tutz (2016), Tutz and Berger (2016) and Berger

and Tutz (2016). Therefore, the thesis was intended to provide additional information on

the three methods, regarding their performance in relation to each other, both in simula-

tions as well as using a practical data set assessing the mathematical abilities of 8th grade

students in Austria.

The simulation study consisted of two different scenarios. In the first scenario, the data

was generated according to the DIF model including five binary and metric covariates. In

the second scenario, the data was again generated according to the DIF model but the

three metric covariates were binarized corresponding to a fixed split point before success

probabilities were calculated. From theoretical considerations, it was expected that in the

first scenario, DIFlasso and DIFboost would give better results, whereas in the second

scenario, the data structure should be better captured by DIFtree. In the strong and

medium setting of scenario 1, all methods perform very well in terms of their detection

rates and differences are small. Especially in the weak setting of scenario 1, DIFboost

outperforms the other methods clearly, followed by DIFtree. The second scenario leads

to lower true positive rates in general than the first scenario. In the strong DIF setting,

DIFtree outperforms the other methods, as was expected. Surprisingly, in the other two

settings of scenario 2, DIFboost leads to slightly higher true positive rates than DIFtree. In

both scenarios, DIFlasso cannot compete with the other methods, especially when group

differences are small. The DIFtree methodology with underlying logistic model performs

slightly better than with underlying Rasch model and has the advantage that computa-

tion times are much lower. The differences between the methods regarding mean squared
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errors of the person parameter and the group-specific item difficulty are small. The only

exception is the mse of the group-specific item difficulty for item focussed Rasch trees, that

has some outliers in a few of the simulation iterations. This increases the weaker the DIF

effects are in scenario 2. Overall, DIFboost and DIFtree perform comparably well during

the simulation study, whereas DIFlasso fails to detect DIF items, especially when the DIF

effects are small.

For the practical example, data from the Austrian 8th grade assessment of education stan-

dards in mathematics was provided. It included information on the performance of 851

students on 48 test items as well as five socio-economic background variables. Same as dur-

ing the simulation study, DIFboost and DIFtree give similar results, finding six to seven

DIF items. Detected items and directions of influence (as can be read from the size and

sign of the group parameters) mostly match. DIFlasso leads to more sparse model in terms

of the number of detected DIF items. Here, results vary more over the different parame-

ter settings of DIFlasso. DIFlasso with ungrouped lasso penalty and degrees of freedom

according to Yuan and Lin (2006) finds the most DIF items (20), whereas DIFlasso using

the group lasso penalty and degrees of freedom being the L2 norm of the group parameters

finds no DIF items at all.

It should be noted that for categorical predictor variables, the results of DIFlasso depend

on the chosen reference category. Choosing a different parameterization leads to different

results. This is why, in opposite to metric or binary variables, categorical predictors should

be included with care and keeping this effect in mind. Future research might be able to

overcome this problem. In addition, for most of the parameters, the default values were

handed over to the algorithms, meaning that there is also room for further explorations

to see how choosing other values would influence the results. Even though DIFboost and

DIFtree give similar results, it is advisable to apply different methods in order to find a

set of stable DIF items.
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APPENDIX A. CONTENTS OF ENCLOSED CD

A. Contents of enclosed CD

The enclosed CD includes a PDF-version of this thesis, the current gz archives of DIFlasso,

DIFboost and DIFtree, that were used for the practical considerations, as well as five folders

with the generated R-Code and graphics. The folders are named and structured as follows:

• 01_Intro_Plots: contains the R-code for the generation of the ICC plots in chapter

2

• 02_SIM_1: contains an R-script that generates the data of scenario 1 as well as

an R-script where the different methods are applied under the different settings

• 03_SIM_2: contains R-scripts for the data generation of scenario 2 as well as for

the application of the different methods under the different settings

• 04_Nach_SIM has two sub-folders:

– R-Skripte: R-scripts for the calculation of error rates and mean squared errors,

one for each scenario and method. Moreover, a script for the generation of the

plots and the tables and a short script that extracts the relevant information

from the large DIFboost simulation results for the further analysis, that needs

to be run before the characteristic numbers can be calculated

– TEX: contains the .tex-files, that will produce the graphics later in the latex

file, using R-package tikzDevice

• 05_Bifie

– R-Skripte: contains R-scripts for the data preparation, the DIF analysis and

the generation of the plots

– PDF: contains PDF- (raschtree plot) and .tex-files of the graphics produced for

the illustration of the empirical example
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