annals of pure and applied logic

(Formerly: Annals of Mathematical Logic)

MANAGING EDITORS

D. VAN DALEN Y. GUREVICH J. HARTMANIS A. NERODE A. PRESTEL H. ROGERS, Jr.

ADVISORY EDITORS

P. ACZEL H.P. BARENDREGT E. BÖRGER J.N. CROSSLEY E. ENGELER P. HAJEK **B.A. KUSHNER** J.A. MAKOWSKY G. METAKIDES G.E. MINC L. PACHOLSKI H. SCHWICHTENBERG R. SOARE J. STERN T. TUGUÉ D. YANG APALD7 32(3) (1986) 195-299

CONTENTS

W. BUCHHOLZ, A new system of proof-theoretic ordinal functions	195
J. CARTMELL, Generalized algebraic theories and contextual categories	209
J. C. E. DEKKER, Isols and Burnside's lemma	245
Y. GUREVICH and S. SHELAH, Fixed-point extensions of first-order logic	265
P. S. MULRY, Adjointness in recursion	281
A. SCEDROV, On the impossibility of explicit upper bounds on lengths of some provably finite algorithms in computable analysis	291
AUTHOR INDEX	299

LAST NUMBER OF THIS VOLUME

Volume 32 Numbler 3, November 1986

NORTH-HOLLAND - AMSTERDAM

A NEW SYSTEM OF PROOF-THEORETIC ORDINAL FUNCTIONS

W. BUCHHOLZ

Mathematisches Institut der Universität München, Theresienstrasse 39, D 8000 München 2, Fed. Rep. Germany

Communicated by D. van Dalen Received 27 November 1984

In this paper we present a family of ordinal functions ψ_{i} ($v \le \omega$), which seems to provide the so far simplest method for denoting large constructive ordinals. These functions are a simplified version of the θ -functions, but nevertheless have the same strength as those. This will be shown at the end of the paper (Theorem 3.7) by using proof-theoretic results from [1], [2], [5]. — In Section 1 we define the functions ψ_n and prove their main properties. In Section 2 we define a primitive recursive notation system (OT, <) based on the functions ψ_{v} . This system has the great advantage that its ordering relation < is very simple and can be defined without reference to sets of coefficients or any similar concept. OT is introduced as a subset of a larger set T of terms, which plays an important role in Section 3. There we show that the statement $PRWO(\psi_0 \Omega_{\omega})$, which says that there exist no primitive recursive infinite descending sequences in $(\{x \in OT :$ $x < \psi_0 \Omega_{\omega}$, <), is not provable in Π_1^1 -CA₀. This result is essentially used in Simpson [6] to establish the unprovability of a certain theorem of finite combinatorics. The proof of Π_1^1 -CA₀ $\not\vdash$ PRWO($\psi_0 \Omega_\omega$) is based on the following results from [1]:

 $ID_{v} \not\vdash \forall n \; \exists k \; c_{v}^{n}(k) = 0 \quad (v \leq \omega)$

where $c_v^n(k) \in T$, for all $n, k \in \mathbb{N}$; and every sequence $(c_v^n(k))_{k \in \mathbb{N}}$ is primitive recursive.

In Section 3 we will prove $c_v^n(k) \in OT$ and $(c_v^n(k) \neq 0 \Rightarrow c_v^n(k+1) < c_v^n(k))$. Since for all $v < \omega$ we have $c_v^n(k) < \psi_0 \Omega_\omega$, it follows that $PRWO(\psi_0 \Omega_\omega)$ implies $\forall v < \omega \forall n \exists k c_v^n(k) = 0$. Since this can be proved in Peano Arithmetic and since Π_1^1 -CA₀ is conservative over $\bigcup_{v < \omega} ID_v$ with respect to arithmetic sentences, we obtain now Π_1^1 -CA₀ \notin PRWO($\psi_0 \Omega_\omega$).

For readers unfamiliar with ordinal notations we give a short description of the basic ideas in the construction of Feferman's θ -functions and then indicate how our ψ -functions are related to this construction. The functions $\theta_{\alpha}: On \rightarrow On$ ($\alpha \in On$) constitute a hierarchy of normal functions extending the usual Veblen 0168-0072/86/\$3.50 © 1986, Elsevier Science Publishers B.V. (North Holland)

hierarchy $(\varphi_{\alpha})_{\alpha < \Gamma_0}$. Usually one writes $\theta \alpha \beta$ instead of $\theta_{\alpha}(\beta)$ and considers θ as a binary function. The ordinals $\theta \alpha \beta$ are defined by transfinite recursion on α in such a way that—intuitively spoken—as many ordinals as possible become denotable in terms of the constants $0, \aleph_1, \ldots, \aleph_{\omega}$ and the function symbols + and θ . Suppose that $\theta \xi \eta$ has been defined for all $\xi < \alpha$, $\eta \in On$. Then for each $\beta \in On$ we consider the set $C(\alpha, \beta)$ of all ordinals γ which can be generated from ordinals $<\beta$ and the constants $0, \aleph_1, \ldots, \aleph_{\omega}$ by successive application of the functions + and $\theta \upharpoonright \{\xi : \xi < \alpha\} \times On$. An ordinal β is called α -critical iff $\beta \notin C(\alpha, \beta)$, and $\theta_{\alpha} : On \to On$ is introduced as the ordering function of the class of all α -critical ordinals. After $\theta \alpha \beta$ has been defined for all $\alpha, \beta \in On$ let $\theta(\omega + 1)$ denote the set of all ordinals representable in terms of $0, \aleph_1, \ldots, \aleph_{\omega}$, +, θ . Surprisingly it turned out that the following subset $\theta^*(\omega + 1)$ of $\theta(\omega + 1)$ has essentially the same ordertype as $\theta(\omega + 1)$:

Inductive definition of $\theta^*(\omega + 1)$ (i) $0 \in \theta^*(\omega + 1)$. (ii) $\xi, \eta \in \theta^*(\omega + 1) \Rightarrow \xi + \eta \in \theta^*(\omega + 1)$.

(iii) $\alpha \in \theta^*(\omega+1) \& v \leq \omega \Rightarrow \theta \alpha \aleph_v \in \theta^*(\omega+1).$

So by using only the functions $\alpha \mapsto \theta \alpha \aleph_v$ $(v = 0, 1, ..., \omega)$ instead of $(\alpha, \beta) \mapsto \theta \alpha \beta$ one obtains a system of ordinal notations which has almost the same strength as the full system $\theta(\omega + 1)$. This suggests to define directly a family of ordinal functions ψ_v $(v \leq \omega)$ corresponding to $\alpha \mapsto \theta \alpha \aleph_v$ $(v \leq \omega)$ such that the system of all ordinals representable in terms of $0, +, \psi_0, \ldots, \psi_\omega$ will be isomorphic to $\theta^*(\omega + 1)$. So we are led to the following definition of $\psi_v \alpha$:

$$\psi_{\nu}\alpha := \min\{\gamma : \gamma \notin C_{\nu}(\alpha)\},\$$

where $C_{\nu}(\alpha)$ denotes the set of all ordinals which can be generated from ordinals $\langle \aleph_{\nu} \rangle$ by the functions + (addition) and $\psi_{\mu} \upharpoonright \{\xi : \xi < \alpha\}$ $(u \leq \omega)$.

1. The functions ψ_{ν} ($\nu \leq \omega$)

Preliminaries. We are working in ZFC. The letters α , β , γ , δ , ξ , η , ζ always denote ordinals. 'On' denotes the class of all ordinals and 'Lim' the class of all limit ordinals. Each ordinal α is identified with the set of its predecessors so that $\alpha = \{x \in \text{On} : x < \alpha\}$ and $\alpha < \beta \Leftrightarrow \alpha \in \beta$. As usual $\alpha \mapsto \aleph_{\alpha}$ enumerates the class of all infinite cardinals. We define

$$\Omega_{\xi} := \begin{cases} 1 & \text{if } \xi = 0, \\ \aleph_{\xi}, & \text{if } \xi > 0. \end{cases}$$

We denote by P the class of all additive principal numbers, i.e.,

$$P = \{ \alpha \in \mathrm{On} : 0 < \alpha \land \forall \xi, \ \eta < \alpha \ (\xi + \eta \in \alpha) \} = \{ \omega^{\xi} : \xi \in \mathrm{On} \}.$$

Definition of $P(\alpha)$. (1) $P(0) := \emptyset$.

(2) For $\alpha > 0$ there are uniquely determined $\alpha_0, \ldots, \alpha_n \in P$ with $\alpha = \alpha_0 + \cdots + \alpha_n$ and $\alpha_n \leq \cdots \leq \alpha_0$; we set $P(\alpha) := \{\alpha_0, \ldots, \alpha_n\}$.

Definition. For $\alpha_0, \ldots, \alpha_n \in P$ we set $\alpha_0 \# \cdots \# \alpha_n := \alpha_{\pi(0)} + \cdots + \alpha_{\pi(n)}$, where π is a permutation of $(0, \ldots, n)$ with $\alpha_{\pi(0)} \ge \cdots \ge \alpha_{\pi(n)}$.

1.1. Proposition. (a) $\alpha \notin P \Leftrightarrow P(\alpha) \subseteq \alpha$.

- (b) $\gamma \in P \Rightarrow (P\alpha \subseteq \gamma \Leftrightarrow \alpha < \gamma).$
- (c) $P(\beta) \subseteq P(\alpha + \beta) \subseteq P(\alpha) \cup P(\beta)$.
- (d) $\Omega_{\xi} \in P$, for all $\xi \in On$.

Definition of sets of ordinals $C_{\nu}(\alpha)$ and ordinals $\psi_{\nu}\alpha$ ($\nu \leq \omega$)

The definition proceeds by transfinite recursion on α simultaneously for all $v \leq \omega$. Suppose that $C_{\nu}(\xi)$ and $\psi_{\nu}\xi$ are defined for all $\xi < \alpha$, $\nu \leq \omega$.

Then we set

$$C_{\nu}(\alpha) := \bigcup_{n < \omega} C_{\nu}^{n}(\alpha), \qquad \psi_{\nu} \alpha := \min\{\gamma : \gamma \notin C_{\nu}(\alpha)\},$$

where $C_v^n(\alpha)$ is defined by induction on *n* as follows

$$C_{v}^{0}(\alpha) := \Omega_{v},$$

$$C_{v}^{n+1}(\alpha) := C_{v}^{n}(\alpha) \cup \{\gamma : P(\gamma) \subseteq C_{v}^{n}(\alpha)\}$$

$$\cup \{\psi_{u}\xi : \xi \in \alpha \cap C_{v}^{n}(\alpha) \land \xi \in C_{u}(\xi) \land u \leq \omega\}.$$

Remark. The condition " $\xi \in C_u(\xi)$ " in the definition of $C_v^{n+1}(\alpha)$ is included since it makes the important properties of the functions ψ_v easier to prove. But it can be shown that by omitting this condition one does not change the sets $C_v(\alpha)$. Hence $C_v(\alpha)$ can be characterized as the least set X with:

(C1) $\Omega_{v} \subseteq X$, (C2) $\forall \xi, \eta \in X (\xi + \eta \in X)$, (C3) $\forall \xi \in X \cap \alpha \ \forall u \leq \omega (\psi_{u} \xi \in X)$.

In the following the letters u, v, w shall always denote ordinals $\leq \omega$.

1.2. Lemma. (a) $\psi_v 0 = \Omega_v$. (b) $\psi_v \alpha \in P$. (c) $\Omega_v \leq \psi_v \alpha < \Omega_{v+1}$. (d) $\alpha \leq \beta \Rightarrow C_v(\alpha) \subseteq C_v(\beta)$ and $\psi_v \alpha \leq \psi_v \beta$. (e) $\gamma \in C_v(\alpha) \Leftrightarrow P(\gamma) \subseteq C_v(\alpha)$. (f) $\xi, \eta \in C_v(\alpha) \Rightarrow \xi + \eta \in C_v(\alpha)$. (g) $\xi + \eta \in C_v(\alpha) \Rightarrow \eta \in C_v(\alpha)$. (h) $\alpha_0 < \alpha$ and $\forall \xi (\alpha_0 \leq \xi < \alpha \Rightarrow \xi \notin C_v(\alpha_0)) \Rightarrow C_v(\alpha_0) = C_v(\alpha)$. **Proof.** (a) By induction on *n* we get $C_v^n(0) = \Omega_v$.

(b) Assume $\psi_{\nu} \alpha \notin P$. Then $P(\psi_{\nu} \alpha) \subseteq \psi_{\nu} \alpha \subseteq C_{\nu}(\alpha)$ and thus $\psi_{\nu} \alpha \in C_{\nu}(\alpha)$. Contradiction.

(c) From $\Omega_{v} \subseteq C_{v}(\alpha)$ it follows that $\Omega_{v} \leq \psi_{v}\alpha$. Obviously the cardinality of $C_{v}(\alpha)$ is less than Ω_{v+1} . Hence there exists $\gamma < \Omega_{v+1}$ with $\gamma \notin C_{v}(\alpha)$ and therefore $\psi_{v}\alpha < \Omega_{v+1}$.

(d) Trivial.

(e) Using the fact that $\psi_u \xi \in P$ one proves $\forall \gamma \in C_v^n(\alpha) (P(\gamma) \subseteq C_v^n(\alpha))$ by induction on *n*. On the other side, if $P(\gamma) \subseteq C_v(\alpha)$, then $P(\gamma) \subseteq C_v^n(\alpha)$ for some $n \in \mathbb{N}$ (since $P(\gamma)$ is finite and $C_v^i(\alpha) \subseteq C_v^{i+1}(\alpha)$) and thus $\gamma \in C_v^{n+1}(\alpha) \subseteq C_v(\alpha)$.

(f) From $\xi, \eta \in C_{\nu}(\alpha)$ we obtain $P(\xi + \eta) \subseteq P(\xi) \cup P(\eta) \subseteq C_{\nu}(\alpha)$ and then $\xi + \eta \in C_{\nu}(\alpha)$.

(g) From $\xi + \eta \in C_{\nu}(\alpha)$ we obtain $P(\eta) \subseteq P(\xi + \eta) \subseteq C_{\nu}(\alpha)$ and then $\eta \in C_{\nu}(\alpha)$.

(h) Suppose $\alpha_0 < \alpha$ and $\forall \xi (\alpha_0 \leq \xi < \alpha \rightarrow \xi \notin C_{\nu}(\alpha_0))$. Then we get $C_{\nu}(\alpha_0) \subseteq C_{\nu}(\alpha)$ by 1.2(d), and $\forall \gamma (\gamma \in C_{\nu}^n(\alpha) \rightarrow \gamma \in C_{\nu}(\alpha_0))$ by induction on *n*.

1.3. Lemma. $\alpha < \beta$ and $\alpha \in C_{\nu}(\alpha) \Rightarrow \psi_{\nu} \alpha < \psi_{\nu} \beta$.

Proof. From the premise we conclude $\psi_v \alpha \leq \psi_v \beta$ and $\psi_v \alpha \in C_v(\beta)$. Hence $\psi_v \alpha < \psi_v \beta$, since $\psi_v \beta \notin C_v(\beta)$.

1.4. Lemma. (a) $\gamma = \psi_{u_i}\xi_i$ and $\xi_i \in C_{u_i}(\xi_i)$ for $i = 0, 1 \Rightarrow u_0 = u_1, \xi_0 = \xi_1$. (b) $\gamma \in C_v(\alpha)$ and $\Omega_v \leq \gamma \in P \Rightarrow \exists u, \xi \ (\gamma = \psi_u \xi \text{ and } \xi \in \alpha \cap C_v(\alpha) \cap C_u(\xi))$. (c) $\Omega_v \leq \psi_u \xi \in C_v(\alpha)$ and $\xi \in C_u(\xi) \Rightarrow \xi \in \alpha \cap C_v(\alpha)$.

Proof. (a) follows immediately from 1.2(c) and 1.3.

(b) We have $P(\gamma) = \{\gamma\}$ and $\gamma \in C_v^{n+1}(\alpha) \setminus C_v^n(\alpha)$ for some $n \in \mathbb{N}$. Hence $\gamma = \psi_u \xi$ with $\xi \in \alpha \cap C_v^n(\alpha)$ and $\xi \in C_u(\xi)$.

(c) Let $\gamma := \psi_u \xi$. By (b) we obtain $\gamma = \psi_w \zeta$ with $\zeta \in \alpha \cap C_v(\alpha) \cap C_w(\zeta)$. Now by (a) it follows that w = u and $\xi = \zeta \in \alpha \cap C_v(\alpha)$

1.5. Lemma. $C_{v}(\alpha) \cap \Omega_{v+1} = \psi_{v}\alpha$.

Proof. $\psi_{\nu} \alpha \subseteq C_{\nu}(\alpha) \cap \Omega_{\nu+1}$ holds by definition and 1.2(c).

Now let $\gamma \in C_{\nu}(\alpha) \cap \Omega_{\nu+1}$. We have to show that $\gamma < \psi_{\nu} \alpha$.

1. $\gamma < \Omega_v$: Then $\gamma < \psi_v \alpha$ holds by 1.2(c).

2. $\gamma \in P$: Then $\gamma = \psi_u \xi$ with $\xi < \alpha$ and $\xi \in C_u(\xi)$ (1.4(b)).

By 1.2(c) we have $u \leq v$. If u < v, then $\gamma < \Omega_{u+1} \leq \Omega_v \leq \psi_v \alpha$. If u = v, then $\gamma = \psi_v \xi < \psi_v \alpha$ by 1.3.

3. $\Omega_v \leq \gamma \notin P$: Then $\gamma_0 := \max P(\gamma) \in C_v(\alpha) \cap \Omega_{v+1}$, and by 2. we obtain $\gamma_0 < \psi_v \alpha$. Hence $\gamma < \psi_v \alpha$, since $\psi_v \alpha \in P$.

1.6. Lemma

(a)
$$\psi_{\upsilon}(\alpha+1) = \begin{cases} \min\{\gamma \in P : \psi_{\upsilon}\alpha < \gamma\}, & \text{if } \alpha \in C_{\upsilon}(\alpha), \\ \psi_{\upsilon}\alpha, & \text{otherwise.} \end{cases}$$

(b) $\alpha \in \lim \Rightarrow \psi_{\upsilon}\alpha = \sup\{\psi_{\upsilon}\xi : \xi < \alpha \text{ and } \xi \in C_{\upsilon}(\xi)\}. \end{cases}$

Proof. (a) 1. $\alpha \in C_{\nu}(\alpha)$: by 1.2(b) and 1.3 we have $\psi_{\nu}\alpha < \psi_{\nu}(\alpha+1) \in P$. Suppose $\psi_{\nu}\alpha \leq \gamma < \psi_{\nu}(\alpha+1)$ and $\gamma \in P$. Then by 1.4(b) we have $\gamma = \psi_{u}\xi$ with $\xi \leq \alpha$ and $\xi \in C_{u}(\xi)$. From $\psi_{\nu}\alpha \leq \psi_{u}\xi < \psi_{\nu}(\alpha+1)$ we get u = v. From $\psi_{\nu}\alpha \leq \psi_{\nu}\xi$ and $\xi \in C_{\nu}(\xi)$ it follows by 1.3 that $\alpha \leq \xi$. Hence $\alpha = \xi$ and $\gamma = \psi_{\nu}\alpha$.

2. If $\alpha \notin C_{\nu}(\alpha)$, then $C_{\nu}(\alpha) = C_{\nu}(\alpha + 1)$ by 1.2(h).

(b) By 1.3 we have $\psi_v \xi < \psi_v \alpha$ for all $\xi < \alpha$ with $\xi \in C_v(\xi)$. Suppose now that $\psi_v 0 \le \gamma < \psi_v \alpha$, and let $\gamma_0 := \max P(\gamma)$. Then $\Omega_v \le \gamma_0 \in C_v(\alpha)$ and therefore $\gamma_0 = \psi_v \xi$ with $\xi < \alpha$ and $\xi \in C_v(\xi)$. Since $1 = \psi_0 0$ and $0 \in C_0(0) \subseteq C_v(\xi+1)$, we obtain $\xi + 1 \in C_v(\xi+1)$. By 1.3 we also have $\gamma_0 = \psi_v \xi < \psi_v(\xi+1)$ and therefore $\gamma < \psi_v(\xi+1)$.

1.7. Lemma. (a)
$$\alpha < \varepsilon_0 \Rightarrow \alpha \in C_0(\alpha)$$
 and $\psi_0 \alpha = \omega^{\alpha}$.
(b) $\alpha < \varepsilon_{\Omega_v+1}, v \neq 0 \Rightarrow \alpha \in C_v(\alpha)$ and $\psi_v \alpha = \omega^{\Omega_v+\alpha}$.

Proof. By transfinite induction on α : We set

$$\varepsilon(v) := \begin{cases} \varepsilon_0, & \text{for } v = 0, \\ \varepsilon_{\Omega_v + 1}, & \text{for } v > 0, \end{cases} \qquad \alpha * v := \begin{cases} \alpha, & \text{for } v = 0, \\ \Omega_v + \alpha, & \text{for } v > 0. \end{cases}$$

1. We have $0 \in C_{\nu}(0)$ and $\psi_{\nu} 0 = \Omega_{\nu} = \omega^{0*\nu}$.

2. Suppose $\alpha \in C_{\nu}(\alpha)$ and $\psi_{\nu}\alpha = \omega^{\alpha*\nu}$. Then also $\alpha + 1 \in C_{\nu}(\alpha + 1)$ and $\psi_{\nu}(\alpha + 1) = \omega^{\alpha*\nu+1} = \omega^{(\alpha+1)*\nu}$ by 1.6(a).

3. Suppose $\alpha \in \varepsilon(v) \cap \text{Lim}$ and $\forall \xi < \alpha \ (\xi \in C_v(\xi) \land \psi_v \xi = \omega^{\xi * v})$. Then by 1.6(b) we obtain $\psi_v \alpha = \sup\{\omega^{\xi * v}: \xi < \alpha\} = \omega^{\alpha * v}$. It remains to prove that $\alpha \in C_v(\alpha)$. For $\alpha < \Omega_v$ this is trivial. For $\alpha = \Omega_v$ we have $\alpha = \psi_v 0 > 0$ and thus $\alpha \in C_v(\alpha)$, since $0 \in C_v(0) \subseteq C_v(\alpha)$. For $\Omega_v < \alpha < \varepsilon(v)$ we have $P(\alpha) \subseteq \alpha$ and therefore by I.H. (induction hypothesis) $\xi \in C_v(\xi) \subseteq C_v(\alpha)$ for all $\xi \in P(\alpha)$. This yields $\alpha \in C_v(\alpha)$.

1.8. Lemma. (a)
$$C_{\nu}(\alpha) \subseteq \varepsilon_{\Omega_{\omega}+1}$$
. (b) $\varepsilon_{\Omega_{\omega}+1} \leq \alpha \Rightarrow C_{\nu}(\varepsilon_{\Omega_{\omega}+1}) = C_{\nu}(\alpha)$.

Proof. (a) Using 1.7(b) and 1.2(c) one proves $C_{\nu}^{n}(\alpha) \subseteq \varepsilon_{\Omega_{\omega}+1}$ by induction on *n*. (b) follows from (a) and 1.2(h).

Definition of $G_u\gamma$. For every $\gamma \in C_0(\varepsilon_{\Omega_w+1})$ we define a finite set $G_u\gamma \subseteq On$ in such a way that, for each α , $\gamma \in C_u(\alpha) \Leftrightarrow G_u\gamma \subseteq \alpha$. These sets will be used in Section 2 to define the set OT of ordinal notations. The definition of $G_u\gamma$ proceeds by induction on min $\{n \in \mathbb{N} : \gamma \in C_0^n(\varepsilon_{\Omega_w+1})\}$:

(1) $\gamma \notin P$: $G_u \gamma := \bigcup \{G_u \xi : \xi \in P(\gamma)\}.$

(2)
$$\gamma = \psi_v \xi$$
 with $\xi \in C_v(\xi)$: $G_u \xi := \begin{cases} \{\xi\} \cup G_u \xi, & \text{if } u \leq v, \\ \emptyset, & \text{if } v < u, \end{cases}$

1.9. Lemma. If $\gamma \in C_0(\varepsilon_{\Omega_{\omega}+1})$, then $\gamma \in C_u(\alpha)$ holds if, and only if, $G_u \gamma \subseteq \alpha$.

Proof. By induction on $\min\{n \in \mathbb{N} : \gamma \in C_0^n(\varepsilon_{\Omega_w+1})\}$:

1. $\gamma \notin P$: By I.H. we have $\xi \in C_u(\alpha) \Leftrightarrow G_u \xi \subseteq \alpha$, for every $\xi \in P(\gamma)$. Hence $P(\gamma) \subseteq C_u(\alpha) \Leftrightarrow G_u \gamma \subseteq \alpha$. By 1.2(e) we have $\gamma \in C_u(\alpha) \Leftrightarrow P(\gamma) \subseteq C_u(\alpha)$.

2. $\gamma = \psi_{\upsilon} \xi$ with $\xi \in C_{\upsilon}(\xi)$:

2.1. $u \leq v$: Then by I.H. we have $\xi \in C_u(\alpha) \Leftrightarrow G_u \xi \subseteq \alpha$, and by 1.4(c), $\gamma \in C_u(\alpha) \Leftrightarrow \xi \in \alpha \cap C_u(\alpha)$. From this we obtain $\gamma \in C_u(\alpha) \Leftrightarrow \{\xi\} \cup G_u \xi \subseteq \alpha$. But $G_u \gamma = \{\xi\} \cup G_u \xi$.

2.2. v < u: In this case we have $\gamma \in \Omega_u \subseteq C_u(\alpha)$ and $G_u \gamma = \emptyset$.

2. The notation system (OT, <)

In this section we introduce a primitive recursive set OT of formal terms together with a primitive recursive ordering on OT such that (OT, <) is isomorphic to $(C_0(\varepsilon_{\Omega_w+1}), <)$.

Let $D_0, D_1, \ldots, D_{\omega}$ be a sequence of formal symbols.

Inductive definition of a set T of terms

- (T1) $0 \in T$.
- (T2) If $a \in T$ and $v \leq \omega$, then $D_v a \in T$; we call $D_v a$ a principal term.
- (T3) If $a_0, \ldots, a_k \in T$ are principal terms and $k \ge 1$, then $(a_0, \ldots, a_k) \in T$.

In the following the letters a, b, c, d will always denote elements of T. For principal terms a we set: (a) := a.

Inductive definition of a < b for $a, b \in T$

(<1) $b \neq 0 \Rightarrow 0 < b$. (<2) u < v or $(u = v \text{ and } a < b) \Rightarrow D_u a < D_v b$. (<3) Let $a = (a_0, \ldots, a_n), b = (b_0, \ldots, b_m), 1 \le m + n$. Then a < b iff one of the following two cases holds:

(i) n < m and $a_i = b_i$ for $i \le n$.

(ii) $\exists k \leq \min\{n, m\} (a_k < b_k \text{ and } a_i = b_i \text{ for } i < k).$

2.1. Lemma. \prec is a linear ordering on T.

Proof. Straightforward.

Abbreviations. Let $a \in T$ and $M, M' \subseteq T$:

$$\begin{array}{ll} M \leq M' & :\Leftrightarrow & \forall x \in M \; \exists y \in M' \; (x \leq y), \\ M \leq a & :\Leftrightarrow & \forall x \in M \; (x < a), \\ a \leq M & :\Leftrightarrow & \exists x \in M \; (a \leq x). \end{array}$$

Inductive definition of $G_u a \subseteq T$ for $a \in T$ (G1) $G_u 0 := \emptyset$. (G2) $G_u(a_0, \ldots, a_k) := G_u a_0 \cup \cdots \cup G_u a_k$. (G3) $G_u D_v b := \begin{cases} \{b\} \cup G_u b, & \text{if } u \leq v, \\ \emptyset, & \text{if } v < u. \end{cases}$

Inductive definition of the subset OT of T

(OT1) $0 \in OT$.

(OT2) If $a_0, \ldots, a_k \in OT$ $(k \ge 1)$ are principal terms with $a_k \le \cdots \le a_0$, then $(a_0, \ldots, a_k) \in OT$.

(OT3) If $b \in OT$ with $G_v b < b$, then $D_v b \in OT$.

The elements of OT are called ordinal terms.

Proposition. $a \in OT \Rightarrow G_u a \subseteq OT$.

Inductive definition of an ordinal o(a) for $a \in T$ (0.1) o(0) := 0. (0.2) $o((a_0, ..., a_k)) := o(a_0) \# \cdots \# o(a_k) \ (k \ge 1)$. (0.3) $o(D_v b) := \psi_v o(b)$.

2.2. Lemma. For $a, c \in OT$ we have:

(a) $o(a) \in C_0(\varepsilon_{\Omega_w+1}),$ (b) $G_u o(a) = \{o(x) : x \in G_u a\},$ (c) $a < c \Rightarrow o(a) < o(c).$

Proof. By induction on the length of *a*, simultaneously for (a), (b), (c): Let $\varepsilon := \varepsilon_{\Omega_{w}+1}$.

1. a = 0: trivial.

2. $a = D_v b$: Then $G_v b < b$ and $b \in OT$.

(a) By I.H. we have $o(b) \in C_0(\varepsilon)$ and $G_v o(b) = \{o(x) : x \in G_v b\} \subseteq o(b)$. From this we obtain $o(b) \in \varepsilon \cap C_v(o(b))$ by 1.8, 1.9 and then $o(a) = \psi_v o(b) \in C_0(\varepsilon)$.

(b) Since $o(b) \in C_{v}(o(b))$, we have

$$G_u o(a) = \begin{cases} \{o(b)\} \cup G_u o(b), & \text{if } u \leq v, \\ \emptyset, & \text{if } v < u. \end{cases}$$

by I.H. we have $G_u o(b) = \{o(x) : x \in G_u b\}$. Hence $G_u o(a) = \{o(x) : x \in G_u a\}$.

(c) We make a subsidiary induction on the length of c:

(i) $c = D_u d$ with v < u: $o(a) < \Omega_{v+1} \le \Omega_u \le \psi_u o(d) = o(c)$.

(ii) $c = D_v d$ with b < d: By the I.H. we get o(b) < o(d) and, as shown above, $o(b) \in C_v(o(b))$. This yields $\psi_v o(b) < \psi_v o(d)$.

(iii) $c = (c_0, \ldots, c_m)$ with $m \ge 1$ and $a \le c_0$: By the subsidiary I.H. we get $o(a) \le o(c_0)$ and thus $o(a) \le o(c_0) \# o(c_1) \le o(c)$.

3. $a = (a_0, \ldots, a_n)$ with $n \ge 1$ and $a_n \le \cdots \le a_0$:

(a) By I.H. we have $P(o(a)) = \{o(a_0), \dots, o(a_n)\} \subseteq C_0(\varepsilon)$ and therefore $o(a) \in C_0(\varepsilon)$.

(b) By I.H. we have $G_u o(a_i) = \{o(x) : x \in G_u(a_i)\}$ for $i = 0, \ldots, n$. Hence

$$G_{u}o(a) = \bigcup_{i=0}^{n} G_{u}o(a_{i}) = \left\{ o(x) : x \in \bigcup_{i=0}^{n} G_{u}a_{i} \right\} = \{ o(x) : x \in G_{u}a \}$$

(c) Let $c = (c_0, \ldots, c_m)$ with $m \ge 0$.

(i) n < m and $a_i = c_i$ for $i \le n$: $o(a) = o(c_0) \# \cdots \# o(c_n) < o(c)$.

(ii) $k \leq \min\{n, m\}$ with $a_k < c_k$ and $a_i = c_i$ for i < k: By I.H. we have $o(a_n) \leq \cdots \leq o(a_k) < o(c_k)$ and thus $o(a_k) \# \cdots \# o(a_n) < o(c_k) \leq o(c_k) \# \cdots \# o(c_m)$. Hence

$$o(a) = o(c_0) \# \cdots \# o(c_{k-1}) \# o(a_k) \# \cdots \# o(a_n) < o(c).$$

2.3. Lemma. (a) $C_0(\varepsilon_{\Omega_m+1}) = \{o(x) : x \in OT\}$

(b) For every $a \in OT$ with $a < D_10$ holds: $o(a) = the order type of ({x \in OT : x < a}, <).$

(c) $\psi_0 \varepsilon_{\Omega_w+1} = \text{the ordertype of } (\{x \in OT : x < D_10\}, <).$

Proof. Let $\varepsilon := \varepsilon_{\Omega_m+1}$.

(a) By induction on *n* we prove: $\alpha \in C_0^n(\varepsilon) \Rightarrow \exists a \in OT \ (\alpha = o(a))$. (Together with 2.2(a) this yields $C_0(\varepsilon) = \{o(x) : x \in OT\}$.) for n = 0 the assertion is trivial. Let $\alpha \in C_0^{n+1}(\varepsilon) \setminus C_0^n(\varepsilon)$.

1. $\alpha = \alpha_0 + \cdots + \alpha_k$ with $\alpha_0, \ldots, \alpha_k \in C_0^n(\varepsilon)$ and $\alpha_k \leq \cdots \leq \alpha_0$: By I.H. there are $a_0, \ldots, a_k \in OT$ with $o(a_i) = \alpha_i$ $(i = 0, \ldots, k)$. By 2.1 and 2.2(c) we obtain $a_k \leq \cdots \leq a_0$ and thus $a := (a_0, \ldots, a_k) \in OT$. Now $o(a) = o(a_0) \# \cdots \# o(a_k) = \alpha$.

2. $\alpha = \psi_v \xi$ with $\xi \in C_0^n(\varepsilon) \cap C_v(\xi)$: By I.H. there exists $b \in OT$ with $o(b) = \xi$. By 2.2(b) and 1.9 we obtain $\{o(x) : x \in G_v b\} = G_v \xi \subseteq \xi = o(b)$. Hence $G_v b < b$ by 2.1 and 2.2(c). It follows that $D_v b \in OT$ and $o(D_v b) = \alpha$.

(b), (c) By (a) and 2.2(c) the system $(\{x \in OT : x < a\}, <)$ is isomorphic to $(C_0(\varepsilon) \cap o(a), <)$, for each $a \in OT$. By 1.5 we have $C_0(\varepsilon) \cap o(D_10) = C_0(\varepsilon) \cap \Omega_1 = \psi_0 \varepsilon$. This yields part (c). For $a < D_10$ we have $o(a) \in C_0(\varepsilon) \cap \Omega_1 = \psi_0 \varepsilon$ and thus $C_0(\varepsilon) \cap o(a) = o(a)$.

3. Unprovability of PRWO($\psi_0 \Omega_{\omega}$) in Π_1^1 -CA₀

Let $\alpha \leq \psi_0 \varepsilon_{\Omega_{\omega}+1}$. By PRWO(α) we denote the statement that there are no primitive recursive infinite descending sequences in $(\{x \in OT : o(x) < \alpha\}, <)$. Using a result from [1] we will prove the following theorem.

3.1. Theorem. ID_v \nvDash PRWO($\psi_0 \varepsilon_{\Omega_v+1}$) (0 < v < ω).

Since $\psi_0 \varepsilon_{\Omega_v+1} < \psi_0 \Omega_\omega$, for all $v < \omega$, and since Π_1^1 -CA₀ proves the same arithmetic sentences as $\bigcup_{v < \omega} ID_v$, we get from 3.1:

Corollary. Π_1^1 -CA₀ \nvDash PRWO($\psi_0 \Omega_{\omega}$).

Remark. In Pohlers [5] it was shown that $TI(\mathbf{v})$, i.e. the principle of transfinite induction up to $\theta \varepsilon_{\Omega_v+1}0$, is not provable in ID_v , Theorem 3.1 improves this result (for $v \le \omega$) in so far as PRWO($\psi_0 \varepsilon_{\Omega_v+1}$) is a Π_2^0 -sentence while the complexity of $TI(\mathbf{v})$ is Π_1^1 . Moreover PRWO($\psi_0 \varepsilon_{\Omega_v+1}$) is a consequence of $TI(\mathbf{v})$.

We repeat now some definitions from [1]. As before the letters a, b, c, d shall always denote elements of T.

Definition of a + b and $a \cdot n$

a + 0 := 0 + a := a, $(a_0, \ldots, a_n) + (b_0, \ldots, b_m) := (a_0, \ldots, a_n, b_0, \ldots, b_m),$ $a \cdot 0 := 0, \qquad a \cdot (n+1) := a \cdot n + a.$

Proposition. (a + b) + c = a + (b + c).

Definition of T_v for $v \leq \omega$

$$T_{v} := \{0\} \cup \{(D_{u_{0}}a_{0}, \ldots, D_{u_{n}}a_{n}) : n \geq 0, a_{0}, \ldots, a_{n} \in T, u_{0}, \ldots, u_{n} \leq v\}.$$

Remark. $T_0 \subseteq T_1 \subseteq \cdots \subseteq T_{\omega} = T$, and $T_u = \{x \in T : x < D_{u+1}0\}$ for $u < \omega$.

Abbreviation. $1 := D_0 0$.

We idenite \mathbb{N} with the subset $\{0, 1, 1+1, 1+1+1, \ldots\}$ of $OT \cap T_0$.

Definition of dom(a) and a[z] for $a \in T$, $z \in dom(a)$

- ([].0) $dom(0) := \emptyset$.
- $([].1) \operatorname{dom}(1) := \{0\}; 1[0] := 0.$
- ([].2) dom $(D_{u+1}0) := T_u; (D_{u+1}0)[z] := z.$

([].3) dom $(D_{\omega}0) := \mathbb{N}; (D_{\omega}0)[n] := D_{n+1}0.$ ([].4) Let $a = D_{v}b$ with $b \neq 0$: (i) dom $(b) = \{0\}$: dom $(a) := \mathbb{N}: a[n] := (D_{v}b[0] \cdot (n+1).$ (ii) dom $(b) = T_{u}$ with $v \leq u < \omega$: dom $(a) := \mathbb{N}; a[n] := D_{v}b[D_{u}b[1]].$ (iii) dom $(b) \in \{\mathbb{N}\} \cup \{T_{u} : u < v\}$: dom(a) :=dom $(b); a[z] := D_{v}b[z].$ ([].5) $a = (a_{0}, \ldots, a_{k})(k \geq 1)$: dom(a) :=dom $(a_{k});$ $a[z] := (a_{0}, \ldots, a_{k-1}) + a_{k}[z].$

Definition. 0[n] := 0, a[n] := a[0], if dom $(a) = \{0\}$.

3.2. Lemma. (a)
$$z \in dom(a) \Rightarrow a[z] < a$$
.
(b) $z, z' \in dom(a) = T_u$ and $z < z' \Rightarrow a[z] < a[z']$.
(c) $0 \neq a \in T_v \Rightarrow dom(a) \in \{\{0\}, \mathbb{N}\} \cup \{T_u : u < v\}$, and $a[z] \in T_v$ for all $z \in dom(a)$.

Proof. Straightforward by induction on the length of *a*.

3.3. Lemma. $a, z \in OT$ and $z \in dom(a) \Rightarrow a[z] \in OT$.

Before we are going to prove this lemma we want to give the

Proof of Theorem 3.1. Let $0 < v \le \omega$,

$$c_{v}^{n} := D_{0} \overbrace{D_{v} \cdots D_{v}}^{n} 0, \qquad c_{v}^{n}(k) := c_{v}^{n}[1][2] \cdots [k].$$

In [1, Corollary 4.0] we have shown:

(1) $ID_{\nu} \not\vdash \forall n \exists k c_{\nu}^{n}(k) = 0.$

One easily proves that $c_v^n \in OT \cap T_0$; this can be done in PA (Peano Arithmetic). Since the proofs of 3.2 and 3.3 can also be formalized in PA, we obtain:

(2) PA $\vdash \forall n \forall k \ (c_v^n(k) \in OT \land (c_v^n(k) \neq 0 \rightarrow c_v^n(k+1) < c_v^n(k))).$

Obviously the sequences $(c_v^n(k))_{k \in \mathbb{N}}$ are primitive recursive, and by 1.3, 1.7 we have $o(c_v^n) < \psi_0 \varepsilon_{\Omega_v+1}$. Together with (2) this yields:

(3) $\operatorname{PA} \vdash \operatorname{PRWO}(\psi_0 \varepsilon_{\Omega_v+1}) \to \forall n \exists k c_v^n(k) = 0.$

From (1) and (3) we obtain Theorem 3.1.

For the proof of 3.3 we need the following definitions and lemmata.

Definition.

$$G_{u}^{0}a := G_{u}a \cup \{0\}$$

 $b \triangleleft_{z} a :\Leftrightarrow b \prec a \text{ and } \forall u \forall c \ (b \leq c \leq a \Rightarrow G_{u}b \leq G_{u}c \cup G_{u}^{0}z).$

3.4. Lemma. $b \triangleleft_z a$, $G_u a \prec a$, $G_u z \prec b \Rightarrow G_u b \prec b$.

Proof. We have $G_u b \leq G_u a \cup G_u^0 z < a$.

Assumption: $b \leq G_u b$. Then there exists a subterm d of b with minimal length such that $b \leq G_u d < a$. By the minimality of d we have $d = D_v c$ with $G_u c < b \leq c < a$. Using $b \leq_z a$ and $G_u z < b$ we obtain $G_u b \leq G_u c \cup G_u^0 z < b$. Contradiction.

3.5. Lemma. $b_0 \triangleleft_z b \Rightarrow a + b_0 \triangleleft_z a + b$ and $D_v b_0 \triangleleft_z D_v b$.

Proof. 1. Suppose $a + b_0 \le c \le a + b$. Then $c = a + c_0$ with $b_0 \le c_0 \le b$. Hence

$$G_u(a+b_0)=G_ua\cup G_ub_0\leqslant G_ua\cup G_uc_0\cup G_u^0z=G_uc\cup G_u^0z.$$

2. Suppose $D_v b_o \leq c \leq D_v b$. Then $c = (D_v c_0) + c_1$ with $b_0 \leq c_0 \leq b$. Using the premise $b_0 \leq z$ b we obtain $G_u b_0 \leq G_u c_0 \cup G_u^0 z$. Now, for $v \geq u$, we have

$$G_{u}(D_{v}b_{0}) = \{b_{0}\} \cup G_{u}b_{0} \leq \{c_{0}\} \cup G_{u}c_{0} \cup G_{u}^{0}z \subseteq G_{u}c \cup G_{u}^{0}z.$$

If v < u, then $G_u(D_v b_0) = \emptyset$.

3.6. Lemma. $a \in T$ and $z \in \text{dom}(a) \Rightarrow a[z] \triangleleft_z a$

Proof. By induction on the length of a:

By 3.2 we have a[z] < a. — Suppose $a[z] \le c \le a$. We have to prove $G_u a[z] \le G_u c \cup G_u^0 z$.

1. a = 1 or $a = D_{w+1}0$: trivial.

2. $a = D_{\omega}0$: $G_{u}a[z] = G_{u}D_{z+1}0 \subseteq \{0\}$.

3. $a = D_v b$ with dom $(b) = \{0\}$: Then $a[z] = (D_v b[0]) \cdot (z+1)$ and $G_u a[z] = G_u D_v b[0]$. By I.H. and 3.5 we get $D_v b[0] \triangleleft_0 D_v b = a$. We also have $D_v b[0] \lt c \le a$ and therefore $G_u D_v b[0] \le G_u c \cup \{0\}$.

4. $a = D_v b$ and dom $(b) = T_w$ and $v \le w < \omega$: Then $a[z] = D_v b[x]$ with $x := D_w b[1]$. Suppose $u \le v$, since otherwise $G_u a[z] = \emptyset$. From $a[z] \le c \le a$ it follows that $c = (D_v c_0) + c_1$ with $b[x] \le c_0 \le b$. By I.H. we have $b[x] \triangleleft_x b$, $b[1] \triangleleft_1 b$. Since $b[1] \le b[x] \le c_0 \le b$, we obtain

$$G_{u}a[z] = \{b[x]\} \cup G_{u}b[x] \leq \{c_{0}\} \cup G_{u}c_{0} \cup G_{u}^{0}x$$

= $\{c_{0}\} \cup G_{u}c_{0} \cup \{b[1]\} \cup G_{u}^{0}b[1] \leq \{c_{0}\} \cup G_{u}c_{0} \cup G_{u}^{0}1 \subseteq G_{u}c \cup G_{u}^{0}z$

5. $a = D_v b$ and dom $(b) \in \{\mathbb{N}\} \cup \{T_w : w < v\}$: By I.H. we get $b[z] \triangleleft_z b$ and then $a[z] = D_v b[z] \triangleleft_z D_v b = a$ by 3.5.

6. $a = (a_0, \ldots, a_k)$ $(k \ge 1)$: By I.H. we get $a_k[z] \triangleleft_z a_k$ and then $a[z] = (a_0, \ldots, a_{k-1}) + a_k[z] \triangleleft_z (a_0, \ldots, a_{k-1}) + a_k = a$ by 3.5.

Proof of Lemma 3.3. By induction on the length of *a*:

1. $a = (a_0, \ldots, a_k) \in OT$: Then $a_0, \ldots, a_k \in OT$ and $a_k[z] < a_k \le \cdots \le a_0$. By I.H. we have $a_k[z] \in OT$. Hence $a[z] = (a_0, \ldots, a_{k-1}) + a_k[z] \in OT$.

2. $a = D_v b \in OT$: Then $b \in OT$ and $G_v b < b$.

2.1 dom(b) = {0}: By I.H. and 3.6 we obtain $b[0] \in OT$ and $b[0] \triangleleft_0 b$. From $b[0] \triangleleft_0 b$ and $G_v b < b$ we get $G_v b[0] < b[0]$ by 3.4. Hence $a[z] = (D_v b[0]) \cdot (z + 1) \in OT$.

2.2. dom $(b) = T_u$ with $v \le u < \omega$: We have to show $D_v b[x] \in OT$, where $x := D_u b[1]$. — By I.H. we have $b[1] \in OT$ and $(x \in OT \Rightarrow b[x] \in OT)$. By 3.6 we have $b[1] \triangleleft_1 b$. From this together with $G_v b < b$ and $G_v 1 < b[1]$ we obtain $G_v b[1] < b[1]$ by 3.4. Since $v \le u$, $G_u b[1] \subseteq G_v b[1]$. Hence $x = D_u b[1] \in OT$, and therefore also $b[x] \in OT$. It remains to show that $G_v b[x] < b[x]$. But this follows immediately from $b[x] \triangleleft_x b$ (3.6), $G_v b < b$, $G_v x = \{b[1]\} \cup G_v b[1] \le b[1] < b[x]$ by 3.4.

2.3. dom(b) $\in \{\mathbb{N}\} \cup \{T_u : u < v\}$: By I.H. and 3.6 we have $b[z] \in OT$ and $b[z] \triangleleft_z b$. Since $z \in dom(b) \in \{\mathbb{N}\} \cup \{T_u : u < v\}$, we have $G_v z < b[z]$. By 3.4 from $b[z] \triangleleft_z b$, $G_v b < b$, $G_v z < b[z]$ we get $G_v b[z] < b[z]$. Hence $a[z] = D_v b[z] \in OT$.

Finally we want to show that the ψ -functions have essentially the same strength as the θ -functions.

3.7. Theorem. $\theta \varepsilon_{\Omega_{\nu}+1} 0 = \psi_0 \varepsilon_{\Omega_{\nu}+1} (0 < \nu \le \omega)$

Proof. By [2] and [5] we have $\theta \varepsilon_{\Omega_v+1} 0 = |ID_v|$. The proof of $\theta \varepsilon_{\Omega_v+1} 0 \le |ID_v|$ given in [2] can easily be adapted to the ψ -functions; so we get $\psi_0 \varepsilon_{\Omega_v+1} \le |ID_v|$, and its remains to prove $|ID_v| \le \psi_0 \varepsilon_{\Omega_v+1}$.

In the appendix of [1] we have proved:

$$|\mathrm{ID}_{\mathbf{v}}| = \sup\{\mathrm{rk}(c_{\mathbf{v}}^{k}) : k \in \mathbb{N}\}, \text{ where } c_{\mathbf{v}}^{k} = D_{0}\overline{D_{\mathbf{v}} \cdots D_{\mathbf{v}}}0, \tag{1}$$

and $\operatorname{rk}(a) = \sup \{\operatorname{rk}(a[n]) + 1 : n \in \operatorname{dom}(a)\}$, for all $a \in T_0$.

By 3.2 and 3.3 we have:

$$0 \neq a \in OT \cap T_0 \implies a[n] < a \text{ and } a[n] \in OT \cap T_0.$$
(2)

From (2) and 2.2(c) we obtain by transfinite induction on a:

 $\operatorname{rk}(a) \leq o(a), \quad \text{for all } a \in OT \cap T_0.$ (3)

From 1.2(d), 1.6(b), 1.7(b) we obtain:

$$\psi_0 \varepsilon_{\Omega_\nu + 1} = \sup\{o(c_\nu^k) : k \in \mathbb{N}\}.$$
(4)

As already mentioned in the proof of 3.1 we have:

$$c_{\nu}^{k} \in OT \cap T_{0}. \tag{5}$$

Now from (1), (3), (4), (5) it follows that $|ID_v| \leq \psi_0 \varepsilon_{\Omega_v+1}$.

Remark. The functions ψ_v ($v \le \omega$) were first defined in an unpublished manuscript (1981) by the author. Later on this approach was extended by Jäger [4] and Schütte [3].

References

- [1] W. Buchholz, An independence result for $(\Pi_1^1$ -CA) + BI, Ann. Pure Appl. Logic, to appear.
- [2] W. Buchholz and W. Pohlers, Provable wellorderings of formal theories for transfinitely iterated inductive definitions. J. Symbolic Logic 43 (1978) 118-125.
- [3] W. Buchholz and K. Schütte, Ein Ordinalzahlensystem für die beweistheoretische Abgrenzung der II¹₂-Separation und Bar-Induktion, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Naturw. Klasse, 1983.
- [4] G. Jäger, ρ-inaccessible ordinals, collapsing functions, and a recursive notation system, Archiv f. math. Logik und Grundlagenf. 24 (1984) 49-62.
- [5] W. Pohlers, Ordinals connected with formal theories for transfinitely iterated inductive definitions, J. Symbolic Logic 43 (1978) 161-182.
- [6] S. Simpson, Nichtbeweisbarkeit von gewissen kombinatorischen Eigenschaften endlicher Bäume, Archiv f. math. Logik u. Grundlagenf. 25 (1985) 45-65.