annals of
 pure and applied logic

MANAGING EDTTORS

D. VAN DALEN Y. GUREVICH J. HARTMANIS

A. NERODE

A. PRESTEL

ADVISORY EDITORS

P. ACZEL
H.P. BARENDREGT
E. BÖRGER
J.N. CROSSLEY
E. ENGELER
P. HAJEK
B.A. KUSHNER
J.A. MAKOWSKY
G. METAKIDES
G.E. MINC
L. PACHOLSKI
H. SCHWICHTENBERG
R. SOARE
J. STERN
T. TUGUÉ
D. YANG
(Formerly: Annals of Mathematical Logic)

APALD7 32(3) (1986) 195-299

CONTENTS

W. BUCHHOLZ, A new system of proof-theoretic ordinal functions 195
J. CARTMELL, Generalized algebraic theories and contextual categories 209
J. C. E. DEKKER, Isols and Burnside's lemma 245
Y. GUREVICH and S. SHELAH, Fixed-point extensions of first-order logic 265
P. S. MULRY, Adjointness in recursion 281
A. SCEDROV, On the impossibility of explicit upper bounds on lengths of some provably finite algorithms in computable analysis 291
AUTHOR INDEX 299
LAST NUMBER OF THIS VOLUME

Volume 32
Numbrer 3, November 1986

A NEW SYSTEM OF PROOF-THEORETIC ORDINAL FUNCTIONS

W. BUCHHOLZ
Mathematisches Institut der Universität München, Theresienstrasse 39, D 8000 München 2, Fed. Rep. Germany

Communicated by D. van Dalen
Received 27 November 1984

In this paper we present a family of ordinal functions $\psi_{v}(v \leqslant \omega)$, which seems to provide the so far simplest method for denoting large constructive ordinals. These functions are a simplified version of the θ-functions, but nevertheless have the same strength as those. This will be shown at the end of the paper (Theorem 3.7) by using proof-theoretic results from [1], [2], [5]. - In Section 1 we define the functions ψ_{v} and prove their main properties. In Section 2 we define a primitive recursive notation system ($O T,<$) based on the functions ψ_{v}. This system has the great advantage that its ordering relation < is very simple and can be defined without reference to sets of coefficients or any similar concept. $O T$ is introduced as a subset of a larger set T of terms, which plays an important role in Section 3. There we show that the statement $\operatorname{PRWO}\left(\psi_{0} \Omega_{\omega}\right)$, which says that there exist no primitive recursive infinite descending sequences in ($\{x \in O T$: $\left.\left.x<\psi_{0} \Omega_{\omega}\right\},<\right)$, is not provable in $\Pi_{1}^{1}-\mathrm{CA}_{0}$. This result is essentially used in Simpson [6] to establish the unprovability of a certain theorem of finite combinatorics. The proof of $\Pi_{1}^{1}-\mathrm{CA}_{0} \nvdash \operatorname{PRWO}\left(\psi_{0} \Omega_{\omega}\right)$ is based on the following results from [1]:

$$
\mathrm{ID}_{v} \nvdash \forall n \exists k c_{v}^{n}(k)=0 \quad(v \leqslant \omega)
$$

where $c_{v}^{n}(k) \in T$, for all $n, k \in \mathbb{N}$; and every sequence $\left(c_{v}^{n}(k)\right)_{k \in \mathbb{N}}$ is primitive recursive.
In Section 3 we will prove $c_{v}^{n}(k) \in O T$ and $\left(c_{v}^{n}(k) \neq 0 \Rightarrow c_{v}^{n}(k+1)<c_{v}^{n}(k)\right)$. Since for all $v<\omega$ we have $c_{v}^{n}(k)<\psi_{0} \Omega_{\omega}$, it follows that $\operatorname{PRWO}\left(\psi_{0} \Omega_{\omega}\right)$ implies $\forall v<\omega \forall n \exists k c_{v}^{n}(k)=0$. Since this can be proved in Peano Arithmetic and since $\Pi_{1}^{1}-\mathrm{CA}_{0}$ is conservative over $\bigcup_{v<\omega} \mathrm{ID}_{v}$ with respect to arithmetic sentences, we obtain now $\Pi_{1}^{1}-\mathrm{CA}_{0} \nvdash \operatorname{PRWO}\left(\psi_{0} \Omega_{\omega}\right)$.

For readers unfamiliar with ordinal notations we give a short description of the basic ideas in the construction of Feferman's θ-functions and then indicate how our ψ-functions are related to this construction. The functions $\theta_{\alpha}: \mathrm{On} \rightarrow \mathrm{On}$ ($\alpha \in \mathrm{On}$) constitute a hierarchy of normal functions extending the usual Veblen 0168-0072/86/\$3.50 © 1986, Elsevier Science Publishers B.V. (North Holland)
hierarchy $\left(\varphi_{\alpha}\right)_{\alpha<r_{0}}$. Usually one writes $\theta \alpha \beta$ instead of $\theta_{\alpha}(\beta)$ and considers θ as a binary function. The ordinals $\theta \alpha \beta$ are defined by transfinite recursion on α in such a way that - intuitively spoken - as many ordinals as possible become denotable in terms of the constants $0, \aleph_{1}, \ldots, \aleph_{\omega}$ and the function symbols + and θ. Suppose that $\theta \xi \eta$ has been defined for all $\xi<\alpha, \eta \in O n$. Then for each $\beta \in$ On we consider the set $C(\alpha, \beta)$ of all ordinals γ which can be generated from ordinals $<\beta$ and the constants $0, \aleph_{1}, \ldots, \aleph_{\omega}$ by successive application of the functions + and $\theta \mid\{\xi: \xi<\alpha\} \times$ On. An ordinal β is called α-critical iff $\beta \notin C(\alpha, \beta)$, and $\theta_{\alpha}: \mathrm{On} \rightarrow \mathrm{On}$ is introduced as the ordering function of the class of all α-critical ordinals. After $\theta \alpha \beta$ has been defined for all $\alpha, \beta \in$ On let $\theta(\omega+1)$ denote the set of all ordinals representable in terms of $0, \kappa_{1}, \ldots, \kappa_{\omega}$, ,$+ \theta$. Surprisingly it turned out that the following subset $\theta^{*}(\omega+1)$ of $\theta(\omega+1)$ has essentially the same ordertype as $\theta(\omega+1)$:

Inductive definition of $\theta^{*}(\omega+1)$
(i) $0 \in \theta^{*}(\omega+1)$.
(ii) $\xi, \eta \in \theta^{*}(\omega+1) \Rightarrow \xi+\eta \in \theta^{*}(\omega+1)$.
(iii) $\alpha \in \theta^{*}(\omega+1) \& v \leqslant \omega \Rightarrow \theta \alpha \aleph_{v} \in \theta^{*}(\omega+1)$.

So by using only the functions $\alpha \mapsto \theta \alpha \aleph_{v}(v=0,1, \ldots, \omega)$ instead of $(\alpha, \beta) \mapsto$ $\theta \alpha \beta$ one obtains a system of ordinal notations which has almost the same strength as the full system $\theta(\omega+1)$. This suggests to define directly a family of ordinal functions $\psi_{v}(v \leqslant \omega)$ corresponding to $\alpha \mapsto \theta \alpha \aleph_{v}(v \leqslant \omega)$ such that the system of all ordinals representable in terms of $0,+, \psi_{0}, \ldots, \psi_{\omega}$ will be isomorphic to $\theta^{*}(\omega+1)$. So we are led to the following definition of $\psi_{v} \alpha$:

$$
\psi_{v} \alpha:=\min \left\{\gamma: \gamma \notin C_{v}(\alpha)\right\}
$$

where $C_{v}(\alpha)$ denotes the set of all ordinals which can be generated from ordinals $<\mathcal{N}_{v}$ by the functions + (addition) and $\psi_{u} \uparrow\{\xi: \xi<\alpha\}(u \leqslant \omega)$.

1. The functions $\psi_{v}(v \leqslant \omega)$

Preliminaries. We are working in ZFC. The letters $\alpha, \beta, \gamma, \delta, \xi, \eta, \zeta$ always denote ordinals. 'On' denotes the class of all ordinals and 'Lim' the class of all limit ordinals. Each ordinal α is identified with the set of its predecessors so that $\alpha=\{x \in \mathrm{On}: x<\alpha\}$ and $\alpha<\beta \Leftrightarrow \alpha \in \beta$. As usual $\alpha \mapsto \aleph_{\alpha}$ enumerates the class of all infinite cardinals. We define

$$
\Omega_{\xi}:= \begin{cases}1 & \text { if } \xi=0, \\ x_{\xi}, & \text { if } \xi>0 .\end{cases}
$$

We denote by P the class of all additive principal numbers, i.e.,

$$
P=\{\alpha \in \mathrm{On}: 0<\alpha \wedge \forall \xi, \eta<\alpha(\xi+\eta \in \alpha)\}=\left\{\omega^{\xi}: \xi \in \mathrm{On}\right\}
$$

Definition of $P(\alpha)$. (1) $P(0):=\emptyset$.
(2) For $\alpha>0$ there are uniquely determined $\alpha_{0}, \ldots, \alpha_{n} \in P$ with $\alpha=\alpha_{0}+$ $\cdots+\alpha_{n}$ and $\alpha_{n} \leqslant \cdots \leqslant \alpha_{0}$; we set $P(\alpha):=\left\{\alpha_{0}, \ldots, \alpha_{n}\right\}$.

Definition. For $\alpha_{0}, \ldots, \alpha_{n} \in P$ we set $\alpha_{0} \# \cdots \# \alpha_{n}:=\alpha_{\pi(0)}+\cdots+\alpha_{\pi(n)}$, where π is a permutation of $(0, \ldots, n)$ with $\alpha_{\pi(0)} \geqslant \cdots \geqslant \alpha_{\pi(n)}$.
1.1. Proposition. (a) $\alpha \notin P \Leftrightarrow P(\alpha) \subseteq \alpha$.
(b) $\gamma \in P \Rightarrow(P \alpha \subseteq \gamma \Leftrightarrow \alpha<\gamma)$.
(c) $P(\beta) \subseteq P(\alpha+\beta) \subseteq P(\alpha) \cup P(\beta)$.
(d) $\Omega_{\xi} \in P$, for all $\xi \in$ On.

Definition of sets of ordinals $C_{v}(\alpha)$ and ordinals $\psi_{v} \alpha(v \leqslant \omega)$
The definition proceeds by transfinite recursion on α simultaneously for all $v \leqslant \omega$. Suppose that $C_{v}(\xi)$ and $\psi_{v} \xi$ are defined for all $\xi<\alpha, v \leqslant \omega$.
Then we set

$$
C_{v}(\alpha):=\bigcup_{n<\omega} C_{v}^{n}(\alpha), \quad \psi_{v} \alpha:=\min \left\{\gamma: \gamma \notin C_{v}(\alpha)\right\},
$$

where $C_{v}^{n}(\alpha)$ is defined by induction on n as follows

$$
\begin{aligned}
& C_{v}^{0}(\alpha):=\Omega_{v} \\
& C_{v}^{n+1}(\alpha):=C_{v}^{n}(\alpha) \cup\left\{\gamma: P(\gamma) \subseteq C_{v}^{n}(\alpha)\right\} \\
& \\
& \cup\left\{\psi_{u} \xi: \xi \in \alpha \cap C_{v}^{n}(\alpha) \wedge \xi \in C_{u}(\xi) \wedge u \leqslant \omega\right\} .
\end{aligned}
$$

Remark. The condition " $\xi \in C_{u}(\xi)$ " in the definition of $C_{v}^{n+1}(\alpha)$ is included since it makes the important properties of the functions ψ_{v} easier to prove. But it can be shown that by omitting this condition one does not change the sets $C_{v}(\alpha)$. Hence $C_{v}(\alpha)$ can be characterized as the least set X with:
(C1) $\Omega_{v} \subseteq X$,
(C2) $\forall \xi, \eta \in X(\xi+\eta \in X)$,
(C3) $\forall \xi \in X \cap \alpha \forall u \leqslant \omega\left(\psi_{u} \xi \in X\right)$.
In the following the letters u, v, w shall always denote ordinals $\leqslant \omega$.
1.2. Lemma. (a) $\psi_{v} 0=\Omega_{v}$.
(b) $\psi_{v} \alpha \in P$.
(c) $\Omega_{v} \leqslant \psi_{v} \alpha<\Omega_{v+1}$.
(d) $\alpha \leqslant \beta \Rightarrow C_{v}(\alpha) \subseteq C_{v}(\beta)$ and $\psi_{v} \alpha \leqslant \psi_{v} \beta$.
(e) $\gamma \in C_{v}(\alpha) \Leftrightarrow P(\gamma) \subseteq C_{v}(\alpha)$.
(f) $\xi, \eta \in C_{v}(\alpha) \Rightarrow \xi+\eta \in C_{v}(\alpha)$.
(g) $\xi+\eta \in C_{v}(\alpha) \Rightarrow \eta \in C_{v}(\alpha)$.
(h) $\alpha_{0}<\alpha$ and $\forall \xi\left(\alpha_{0} \leqslant \xi<\alpha \Rightarrow \xi \notin C_{v}\left(\alpha_{0}\right)\right) \Rightarrow C_{v}\left(\alpha_{0}\right)=C_{v}(\alpha)$.

Proof. (a) By induction on n we get $C_{v}^{n}(0)=\Omega_{v}$.
(b) Assume $\psi_{v} \alpha \notin P$. Then $P\left(\psi_{v} \alpha\right) \subseteq \psi_{v} \alpha \subseteq C_{v}(\alpha)$ and thus $\psi_{v} \alpha \in C_{v}(\alpha)$. Contradiction.
(c) From $\Omega_{v} \subseteq C_{v}(\alpha)$ it follows that $\Omega_{v} \leqslant \psi_{v} \alpha$. Obviously the cardinality of $C_{v}(\alpha)$ is less than Ω_{v+1}. Hence there exists $\gamma<\Omega_{v+1}$ with $\gamma \notin C_{v}(\alpha)$ and therefore $\psi_{v} \alpha<\Omega_{v+1}$.
(d) Trivial.
(e) Using the fact that $\psi_{u} \xi \in P$ one proves $\forall \gamma \in C_{v}^{n}(\alpha)\left(P(\gamma) \subseteq C_{v}^{n}(\alpha)\right)$ by induction on n. On the other side, if $P(\gamma) \subseteq C_{v}(\alpha)$, then $P(\gamma) \subseteq C_{v}^{n}(\alpha)$ for some $n \in \mathbb{N}$ (since $P(\gamma)$ is finite and $C_{v}^{i}(\alpha) \subseteq C_{v}^{i+1}(\alpha)$) and thus $\gamma \in C_{v}^{n+1}(\alpha) \subseteq C_{v}(\alpha)$.
(f) From $\xi, \eta \in C_{v}(\alpha)$ we obtain $P(\xi+\eta) \subseteq P(\xi) \cup P(\eta) \subseteq C_{v}(\alpha)$ and then $\xi+\eta \in C_{v}(\alpha)$.
(g) From $\xi+\eta \in C_{v}(\alpha)$ we obtain $P(\eta) \subseteq P(\xi+\eta) \subseteq C_{v}(\alpha)$ and then $\eta \in$ $C_{v}(\alpha)$.
(h) Suppose $\alpha_{0}<\alpha$ and $\forall \xi\left(\alpha_{0} \leqslant \xi<\alpha \rightarrow \xi \notin C_{v}\left(\alpha_{0}\right)\right)$. Then we get $C_{v}\left(\alpha_{0}\right) \subseteq$ $C_{v}(\alpha)$ by $1.2(\mathrm{~d})$, and $\forall \gamma\left(\gamma \in C_{v}^{n}(\alpha) \rightarrow \gamma \in C_{v}\left(\alpha_{0}\right)\right)$ by induction on n.
1.3. Lemma. $\alpha<\beta$ and $\alpha \in C_{v}(\alpha) \Rightarrow \psi_{v} \alpha<\psi_{v} \beta$.

Proof. From the premise we conclude $\psi_{v} \alpha \leqslant \psi_{v} \beta$ and $\psi_{v} \alpha \in C_{v}(\beta)$. Hence $\psi_{\nu} \alpha<\psi_{v} \beta$, since $\psi_{v} \beta \notin C_{v}(\beta)$.
1.4. Lemma. (a) $\gamma=\psi_{u_{i}} \xi_{i}$ and $\xi_{i} \in C_{u_{i}}\left(\xi_{i}\right)$ for $i=0,1 \Rightarrow u_{0}=u_{1}, \xi_{0}=\xi_{1}$.
(b) $\gamma \in C_{v}(\alpha)$ and $\Omega_{v} \leqslant \gamma \in P \Rightarrow \exists u, \xi\left(\gamma=\psi_{u} \xi\right.$ and $\left.\xi \in \alpha \cap C_{v}(\alpha) \cap C_{u}(\xi)\right)$.
(c) $\Omega_{v} \leqslant \psi_{u} \xi \in C_{v}(\alpha)$ and $\xi \in C_{u}(\xi) \Rightarrow \xi \in \alpha \cap C_{v}(\alpha)$.

Proof. (a) follows immediately from 1.2(c) and 1.3.
(b) We have $P(\gamma)=\{\gamma\}$ and $\gamma \in C_{v}^{n+1}(\alpha) \backslash C_{v}^{n}(\alpha)$ for some $n \in \mathbb{N}$. Hence $\gamma=\psi_{u} \xi$ with $\xi \in \alpha \cap C_{v}^{n}(\alpha)$ and $\xi \in C_{u}(\xi)$.
(c) Let $\gamma:=\psi_{u} \xi$. By (b) we obtain $\gamma=\psi_{w} \zeta$ with $\zeta \in \alpha \cap C_{v}(\alpha) \cap C_{w}(\zeta)$. Now by (a) it follows that $w=u$ and $\xi=\zeta \in \alpha \cap C_{v}(\alpha)$
1.5. Lemma. $C_{v}(\alpha) \cap \Omega_{v+1}=\psi_{v} \alpha$.

Proof. $\psi_{v} \alpha \subseteq C_{v}(\alpha) \cap \Omega_{v+1}$ holds by definition and 1.2(c).
Now let $\gamma \in C_{v}(\alpha) \cap \Omega_{v+1}$. We have to show that $\gamma<\psi_{v} \alpha$.

1. $\gamma<\Omega_{v}$: Then $\gamma<\psi_{v} \alpha$ holds by 1.2(c).
2. $\gamma \in P$: Then $\gamma=\psi_{u} \xi$ with $\xi<\alpha$ and $\xi \in C_{u}(\xi)$ (1.4(b)).

By 1.2(c) we have $u \leqslant v$. If $u<v$, then $\gamma<\Omega_{u+1} \leqslant \Omega_{v} \leqslant \psi_{v} \alpha$. If $u=v$, then $\gamma=\psi_{v} \xi<\psi_{v} \alpha$ by 1.3.
3. $\Omega_{v} \leqslant \gamma \notin P$: Then $\gamma_{0}:=\max P(\gamma) \in C_{v}(\alpha) \cap \Omega_{v+1}$, and by 2 . we obtain $\gamma_{0}<\psi_{v} \alpha$. Hence $\gamma<\psi_{v} \alpha$, since $\psi_{v} \alpha \in P$.

1.6. Lemma

(a) $\psi_{v}(\alpha+1)= \begin{cases}\min \left\{\gamma \in P: \psi_{v} \alpha<\gamma\right\}, & \text { if } \alpha \in C_{v}(\alpha), \\ \psi_{v} \alpha, & \text { otherwise. }\end{cases}$
(b) $\alpha \in \operatorname{Lim} \Rightarrow \psi_{v} \alpha=\sup \left\{\psi_{v} \xi: \xi<\alpha\right.$ and $\left.\xi \in C_{v}(\xi)\right\}$.

Proof. (a) 1. $\alpha \in C_{v}(\alpha)$: by $1.2(\mathrm{~b})$ and 1.3 we have $\psi_{v} \alpha<\psi_{v}(\alpha+1) \in P$. Suppose $\psi_{v} \alpha \leqslant \gamma<\psi_{v}(\alpha+1)$ and $\gamma \in P$. Then by 1.4(b) we have $\gamma=\psi_{u} \xi$ with $\xi \leqslant \alpha$ and $\xi \in C_{u}(\xi)$. From $\psi_{v} \alpha \leqslant \psi_{u} \xi<\psi_{v}(\alpha+1)$ we get $u=v$. From $\psi_{v} \alpha \leqslant$ $\psi_{v} \xi$ and $\xi \in C_{v}(\xi)$ it follows by 1.3 that $\alpha \leqslant \xi$. Hence $\alpha=\xi$ and $\gamma=\psi_{v} \alpha$.
2. If $\alpha \notin C_{v}(\alpha)$, then $C_{v}(\alpha)=C_{v}(\alpha+1)$ by 1.2(h).
(b) By 1.3 we have $\psi_{v} \xi<\psi_{v} \alpha$ for all $\xi<\alpha$ with $\xi \in C_{v}(\xi)$. Suppose now that $\psi_{v} 0 \leqslant \gamma<\psi_{v} \alpha$, and let $\gamma_{0}:=\max P(\gamma)$. Then $\Omega_{v} \leqslant \gamma_{0} \in C_{v}(\alpha)$ and therefore $\gamma_{0}=\psi_{v} \xi$ with $\xi<\alpha$ and $\xi \in C_{v}(\xi)$. Since $1=\psi_{0} 0$ and $0 \in C_{0}(0) \subseteq C_{v}(\xi+1)$, we obtain $\xi+1 \in C_{v}(\xi+1)$. By 1.3 we also have $\gamma_{0}=\psi_{v} \xi<\psi_{v}(\xi+1)$ and therefore $\gamma<\psi_{v}(\xi+1)$.
1.7. Lemma. (a) $\alpha<\varepsilon_{0} \Rightarrow \alpha \in C_{0}(\alpha)$ and $\psi_{0} \alpha=\omega^{\alpha}$.
(b) $\alpha<\varepsilon_{\Omega_{v}+1}, v \neq 0 \Rightarrow \alpha \in C_{v}(\alpha)$ and $\psi_{v} \alpha=\omega^{\Omega_{v}+\alpha}$.

Proof. By transfinite induction on α : We set

$$
\varepsilon(v):=\left\{\begin{array}{ll}
\varepsilon_{0}, & \text { for } v=0, \\
\varepsilon_{\Omega_{v}+1}, & \text { for } v>0,
\end{array} \quad \alpha * v:= \begin{cases}\alpha, & \text { for } v=0, \\
\Omega_{v}+\alpha, & \text { for } v>0 .\end{cases}\right.
$$

1. We have $0 \in C_{v}(0)$ and $\psi_{v} 0=\Omega_{v}=\omega^{0 * v}$.
2. Suppose $\alpha \in C_{v}(\alpha)$ and $\psi_{v} \alpha=\omega^{\alpha * v}$. Then also $\alpha+1 \in C_{v}(\alpha+1)$ and $\psi_{\nu}(\alpha+1)=\omega^{\alpha * v+1}=\omega^{(\alpha+1) * v}$ by 1.6(a).
3. Suppose $\alpha \in \varepsilon(v) \cap \operatorname{Lim}$ and $\forall \xi<\alpha\left(\xi \in C_{v}(\xi) \wedge \psi_{v} \xi=\omega^{\xi * v}\right)$. Then by 1.6(b) we obtain $\psi_{v} \alpha=\sup \left\{\omega^{\xi * v}: \xi<\alpha\right\}=\omega^{\alpha * v}$. It remains to prove that $\alpha \in C_{v}(\alpha)$. For $\alpha<\Omega_{v}$ this is trivial. For $\alpha=\Omega_{v}$ we have $\alpha=\psi_{v} 0>0$ and thus $\alpha \in C_{v}(\alpha)$, since $0 \in C_{v}(0) \subseteq C_{v}(\alpha)$. For $\Omega_{v}<\alpha<\varepsilon(v)$ we have $P(\alpha) \subseteq \alpha$ and therefore by I.H. (induction hypothesis) $\xi \in C_{v}(\xi) \subseteq C_{v}(\alpha)$ for all $\xi \in P(\alpha)$. This yields $\alpha \in C_{v}(\alpha)$.
1.8. Lemma. (a) $C_{v}(\alpha) \subseteq \varepsilon_{\Omega_{\omega}+1}$.
(b) $\varepsilon_{\Omega_{w}+1} \leqslant \alpha \Rightarrow C_{v}\left(\varepsilon_{\Omega_{\omega}+1}\right)=C_{v}(\alpha)$.

Proof. (a) Using 1.7(b) and 1.2(c) one proves $C_{v}^{n}(\alpha) \subseteq \varepsilon_{\Omega_{\omega}+1}$ by induction on n.
(b) follows from (a) and 1.2(h).

Definition of $G_{u} \gamma$. For every $\gamma \in C_{0}\left(\varepsilon_{\Omega_{\Omega_{u}+1}}\right)$ we define a finite set $G_{u} \gamma \subseteq$ On in such a way that, for each $\alpha, \gamma \in C_{u}(\alpha) \Leftrightarrow G_{u} \gamma \subseteq \alpha$. These sets will be used in Section 2 to define the set OT of ordinal notations. The definition of $G_{u} \gamma$ proceeds by induction on $\min \left\{n \in \mathbb{N}: \gamma \in C_{0}^{n}\left(\varepsilon_{\Omega_{\omega}+1}\right)\right\}$:
(1) $\gamma \notin P: \quad G_{u} \gamma:=\bigcup\left\{G_{u} \xi: \xi \in P(\gamma)\right\}$.
(2) $\gamma=\psi_{v} \xi$ with $\xi \in C_{v}(\xi): \quad G_{u} \xi:=\left\{\begin{array}{ll}\{\xi\} \cup G_{u} \xi, & \text { if } u \leqslant v, \\ \emptyset, & \text { if } v<u,\end{array}\right.$.
1.9. Lemma. If $\gamma \in C_{0}\left(\varepsilon_{\Omega_{o}+1}\right)$, then $\gamma \in C_{u}(\alpha)$ holds if, and only if, $G_{u} \gamma \subseteq \alpha$.

Proof. By induction on $\min \left\{n \in \mathbb{N}: \gamma \in C_{0}^{n}\left(\varepsilon_{\Omega_{w}+1}\right)\right\}$:

1. $\gamma \notin P$: By I.H. we have $\xi \in C_{u}(\alpha) \Leftrightarrow G_{u} \xi \subseteq \alpha$, for every $\xi \in P(\gamma)$. Hence $P(\gamma) \subseteq C_{u}(\alpha) \Leftrightarrow G_{u} \gamma \subseteq \alpha$. By 1.2(e) we have $\gamma \in C_{u}(\alpha) \Leftrightarrow P(\gamma) \subseteq C_{u}(\alpha)$.
2. $\gamma=\psi_{v} \xi$ with $\xi \in C_{v}(\xi)$:
2.1. $u \leqslant v$: Then by I.H. we have $\xi \in C_{u}(\alpha) \Leftrightarrow G_{u} \xi \subseteq \alpha$, and by 1.4(c), $\gamma \in C_{u}(\alpha) \Leftrightarrow \xi \in \alpha \cap C_{u}(\alpha)$. From this we obtain $\gamma \in C_{u}(\alpha) \Leftrightarrow\{\xi\} \cup G_{u} \xi \subseteq \alpha$. But $G_{u} \gamma=\{\xi\} \cup G_{u} \xi$.
2.2. $v<u$: In this case we have $\gamma \in \Omega_{u} \subseteq C_{u}(\alpha)$ and $G_{u} \gamma=\emptyset$.

2. The notation system (OT, <)

In this section we introduce a primitive recursive set $O T$ of formal terms together with a primitive recursive ordering on $O T$ such that ($O T,<$) is isomorphic to $\left(C_{0}\left(\varepsilon_{\Omega_{\omega}+1}\right),<\right)$.

Let $D_{0}, D_{1}, \ldots, D_{\omega}$ be a sequence of formal symbols.

Inductive definition of a set T of terms

(T1) $0 \in T$.
(T2) If $a \in T$ and $v \leqslant \omega$, then $D_{v} a \in T$; we call $D_{v} a$ a principal term.
(T3) If $a_{0}, \ldots, a_{k} \in T$ are principal terms and $k \geqslant 1$, then $\left(a_{0}, \ldots, a_{k}\right) \in T$.

In the following the letters a, b, c, d will always denote elements of T.
For principal terms a we set: $(a):=a$.

Inductive definition of $a<b$ for $a, b \in T$

$(<1) b \neq 0 \Rightarrow 0<b$.
$(<2) u<v$ or $(u=v$ and $a<b) \Rightarrow D_{u} a<D_{v} b$.
(<3) Let $a=\left(a_{0}, \ldots, a_{n}\right), b=\left(b_{0}, \ldots, b_{m}\right), 1 \leqslant m+n$. Then $a<b$ iff one of the following two cases holds:
(i) $n<m$ and $a_{i}=b_{i}$ for $i \leqslant n$.
(ii) $\exists k \leqslant \min \{n, m\}\left(a_{k}<b_{k}\right.$ and $a_{i}=b_{i}$ for $\left.i<k\right)$.
2.1. Lemma. < is a linear ordering on T.

Proof. Straightforward.

Abbreviations. Let $a \in T$ and $M, M^{\prime} \subseteq T$:

$$
\begin{aligned}
M \leqslant M^{\prime} & : \Leftrightarrow \quad \forall x \in M \exists y \in M^{\prime}(x \leqslant y), \\
M<a & : \Leftrightarrow \forall x \in M(x<a), \\
a \leqslant M & : \Leftrightarrow \quad \exists x \in M(a \leqslant x) .
\end{aligned}
$$

Inductive definition of $G_{u} a \subseteq T$ for $a \in T$
(G1) $G_{u} 0:=\emptyset$.
(G2) $G_{u}\left(a_{0}, \ldots, a_{k}\right):=G_{u} a_{0} \cup \cdots \cup G_{u} a_{k}$.
(G3) $G_{u} D_{v} b:= \begin{cases}\{b\} \cup G_{u} b, & \text { if } u \leqslant v, \\ \emptyset, & \text { if } v<u .\end{cases}$

Inductive definition of the subset $O T$ of T
(OT1) $0 \in O T$.
(OT2) If $a_{0}, \ldots, a_{k} \in O T(k \geqslant 1)$ are principal terms with $a_{k} \leqslant \cdots \leqslant a_{0}$, then $\left(a_{0}, \ldots, a_{k}\right) \in O T$.
(OT3) If $b \in O T$ with $G_{v} b<b$, then $D_{v} b \in O T$.

The elements of $O T$ are called ordinal terms.

Proposition. $a \in O T \Rightarrow G_{u} a \subseteq O T$.
Inductive definition of an ordinal $o(a)$ for $a \in T$
(o.1) $o(0):=0$.
(o.2) $o\left(\left(a_{0}, \ldots, a_{k}\right)\right):=o\left(a_{0}\right) \# \cdots \# o\left(a_{k}\right)(k \geqslant 1)$.
(o.3) $o\left(D_{v} b\right):=\psi_{v} o(b)$.
2.2. Lemma. For $a, c \in O T$ we have:
(a) $o(a) \in C_{0}\left(\varepsilon_{\Omega_{\omega}+1}\right)$,
(b) $G_{u} o(a)=\left\{o(x): x \in G_{u} a\right\}$,
(c) $a<c \Rightarrow o(a)<o(c)$.

Proof. By induction on the length of a, simultaneously for (a), (b), (c): Let $\varepsilon:=\varepsilon_{\Omega_{\omega}+1}$.

1. $a=0$: trivial.
2. $a=D_{v} b$: Then $G_{v} b<b$ and $b \in O T$.
(a) By I.H. we have $o(b) \in C_{0}(\varepsilon)$ and $G_{v} o(b)=\left\{o(x): x \in G_{v} b\right\} \subseteq o(b)$. From this we obtain $o(b) \in \varepsilon \cap C_{v}(o(b))$ by 1.8, 1.9 and then $o(a)=\psi_{v} o(b) \in C_{0}(\varepsilon)$.
(b) Since $o(b) \in C_{v}(o(b))$, we have

$$
G_{u} o(a)= \begin{cases}\{o(b)\} \cup G_{u} o(b), & \text { if } u \leqslant v, \\ \emptyset, & \text { if } v<u .\end{cases}
$$

by I.H. we have $G_{u} o(b)=\left\{o(x): x \in G_{u} b\right\}$. Hence $G_{u} o(a)=\left\{o(x): x \in G_{u} a\right\}$.
(c) We make a subsidiary induction on the length of c :
(i) $c=D_{u} d$ with $v<u: o(a)<\Omega_{v+1} \leqslant \Omega_{u} \leqslant \psi_{u} o(d)=o(c)$.
(ii) $c=D_{v} d$ with $b<d$: By the I.H. we get $o(b)<o(d)$ and, as shown above, $o(b) \in C_{v}(o(b))$. This yields $\psi_{v} o(b)<\psi_{v} o(d)$.
(iii) $c=\left(c_{0}, \ldots, c_{m}\right)$ with $m \geqslant 1$ and $a \leqslant c_{0}$: By the subsidiary I.H. we get $o(a) \leqslant o\left(c_{0}\right)$ and thus $o(a)<o\left(c_{0}\right) \# o\left(c_{1}\right) \leqslant o(c)$.
3. $a=\left(a_{0}, \ldots, a_{n}\right)$ with $n \geqslant 1$ and $a_{n} \leqslant \cdots \leqslant a_{0}$:
(a) By I.H. we have $P(o(a))=\left\{o\left(a_{0}\right), \cdots, o\left(a_{n}\right)\right\} \subseteq C_{0}(\varepsilon)$ and therefore $o(a) \in C_{0}(\varepsilon)$.
(b) By I.H. we have $G_{u} o\left(a_{i}\right)=\left\{o(x): x \in G_{u}\left(a_{i}\right)\right\}$ for $i=0, \ldots, n$. Hence

$$
G_{u} o(a)=\bigcup_{i=0}^{n} G_{u} o\left(a_{i}\right)=\left\{o(x): x \in \bigcup_{i=0}^{n} G_{u} a_{i}\right\}=\left\{o(x): x \in G_{u} a\right\}
$$

(c) Let $c=\left(c_{0}, \ldots, c_{m}\right)$ with $m \geqslant 0$.
(i) $n<m$ and $a_{i}=c_{i}$ for $i \leqslant n: o(a)=o\left(c_{0}\right) \# \cdots \# o\left(c_{n}\right)<o(c)$.
(ii) $k \leqslant \min \{n, m\}$ with $a_{k}<c_{k}$ and $a_{i}=c_{i}$ for $i<k$: By I.H. we have $o\left(a_{n}\right) \leqslant \cdots \leqslant o\left(a_{k}\right)<o\left(c_{k}\right)$ and thus $o\left(a_{k}\right) \# \cdots \# o\left(a_{n}\right)<o\left(c_{k}\right) \leqslant o\left(c_{k}\right) \#$ $\cdots \# o\left(c_{m}\right)$. Hence

$$
o(a)=o\left(c_{0}\right) \# \cdots \# o\left(c_{k-1}\right) \# o\left(a_{k}\right) \# \cdots \# o\left(a_{n}\right)<o(c)
$$

2.3. Lemma. (a) $C_{0}\left(\varepsilon_{\Omega_{\omega}+1}\right)=\{o(x): x \in O T\}$
(b) For every $a \in O T$ with $a<D_{1} 0$ holds: $o(a)=$ the ordertype of $(\{x \in$ OT: $x<a\},<)$.
(c) $\psi_{0} \varepsilon_{\Omega_{\omega}+1}=$ the ordertype of $\left(\left\{x \in O T: x<D_{1} 0\right\},<\right)$.

Proof. Let $\varepsilon:=\varepsilon_{\Omega_{\omega}+1}$.
(a) By induction on n we prove: $\alpha \in C_{0}^{n}(\varepsilon) \Rightarrow \exists a \in O T(\alpha=o(a))$. (Together with 2.2(a) this yields $C_{0}(\varepsilon)=\{o(x): x \in O T\}$.) for $n=0$ the assertion is trivial. Let $\alpha \in C_{0}^{n+1}(\varepsilon) \backslash C_{0}^{n}(\varepsilon)$.

1. $\alpha=\alpha_{0}+\cdots+\alpha_{k}$ with $\alpha_{0}, \ldots, \alpha_{k} \in C_{0}^{n}(\varepsilon)$ and $\alpha_{k} \leqslant \cdots \leqslant \alpha_{0}$: By I.H. there are $a_{0}, \ldots, a_{k} \in O T$ with $o\left(a_{i}\right)=\alpha_{i}(i=0, \ldots, k)$. By 2.1 and 2.2(c) we obtain $a_{k} \leqslant \cdots \leqslant a_{0}$ and thus $a:=\left(a_{0}, \ldots, a_{k}\right) \in O T$. Now $o(a)=o\left(a_{0}\right) \# \cdots \# o\left(a_{k}\right)=$ α.
2. $\alpha=\psi_{v} \xi$ with $\xi \in C_{0}^{n}(\varepsilon) \cap C_{v}(\xi)$: By I.H. there exists $b \in O T$ with $o(b)=\xi$. By 2.2(b) and 1.9 we obtain $\left\{o(x): x \in G_{v} b\right\}=G_{v} \xi \subseteq \xi=o(b)$. Hence $G_{v} b<b$ by 2.1 and 2.2(c). It follows that $D_{v} b \in O T$ and $o\left(D_{v} b\right)=\alpha$.
(b), (c) By (a) and 2.2(c) the system ($\{x \in O T: x<a\},<$) is isomorphic to $\left(C_{0}(\varepsilon) \cap o(a),<\right)$, for each $a \in O T$. By 1.5 we have $C_{0}(\varepsilon) \cap o\left(D_{1} 0\right)=C_{0}(\varepsilon) \cap$ $\Omega_{1}=\psi_{0} \varepsilon$. This yields part (c). For $a<D_{1} 0$ we have $o(a) \in C_{0}(\varepsilon) \cap \Omega_{1}=\psi_{0} \varepsilon$ and thus $C_{0}(\varepsilon) \cap o(a)=o(a)$.

3. Unprovability of $\operatorname{PRWO}\left(\psi_{0} \Omega_{w}\right)$ in $\Pi_{1}^{1}-\mathbf{C A}_{0}$

Let $\alpha \leqslant \psi_{0} \varepsilon_{\Omega_{\omega}+1}$. By $\operatorname{PRWO}(\alpha)$ we denote the statement that there are no primitive recursive infinite descending sequences in ($\{x \in O T: o(x)<\alpha\},<$). Using a result from [1] we will prove the following theorem.

3.1. Theorem. $\mathrm{ID}_{v} \nvdash \operatorname{PRWO}\left(\psi_{0} \varepsilon_{\Omega_{\nu}+1}\right)(0<v \leqslant \omega)$.

Since $\psi_{0} \varepsilon_{\Omega_{v}+1}<\psi_{0} \Omega_{\omega}$, for all $v<\omega$, and since $\Pi_{1}^{1}-\mathrm{CA}_{0}$ proves the same arithmetic sentences as $\bigcup_{v<\omega} \mathrm{ID}_{v}$, we get from 3.1:

Corollary. $\Pi_{1}^{1}-\mathrm{CA}_{0} \nvdash \operatorname{PRWO}\left(\psi_{0} \Omega_{\omega}\right)$.
Remark. In Pohlers [5] it was shown that $\mathrm{TI}(v)$, i.e. the principle of transfinite induction up to $\theta \varepsilon_{\Omega_{v}+1} 0$, is not provable in ID_{v}, Theorem 3.1 improves this result (for $v \leqslant \omega$) in so far as $\operatorname{PRWO}\left(\psi_{0} \varepsilon_{\Omega_{\nu}+1}\right)$ is a Π_{2}^{0}-sentence while the complexity of $\operatorname{TI}(v)$ is Π_{1}^{1}. Moreover $\operatorname{PRWO}\left(\psi_{0} \varepsilon_{\Omega_{\nu}+1}\right)$ is a consequence of $\operatorname{TI}(v)$.

We repeat now some definitions from [1]. As before the letters a, b, c, d shall always denote elements of T.

Definition of $a+b$ and $a \cdot n$

$$
\begin{aligned}
& a+0:=0+a:=a, \\
& \left(a_{0}, \ldots, a_{n}\right)+\left(b_{0}, \ldots, b_{m}\right):=\left(a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{m}\right), \\
& a \cdot 0:=0, \quad a \cdot(n+1):=a \cdot n+a .
\end{aligned}
$$

Proposition. $(a+b)+c=a+(b+c)$.
Definition of T_{v} for $v \leqslant \omega$

$$
T_{v}:=\{0\} \cup\left\{\left(D_{u_{0}} a_{0}, \ldots, D_{u_{n}} a_{n}\right): n \geqslant 0, a_{0}, \ldots, a_{n} \in T, u_{0}, \ldots, u_{n} \leqslant v\right\} .
$$

Remark. T_{0} 〔 $T_{1} \subsetneq \cdots$ ㄷ $T_{\omega}=T$, and $T_{u}=\left\{x \in T: x<D_{u+1} 0\right\}$ for $u<\omega$.
Abbreviation. $1:=D_{0} 0$.
We idenitfy \mathbb{N} with the subset $\{0,1,1+1,1+1+1, \ldots\}$ of $O T \cap T_{0}$.
Definition of $\operatorname{dom}(a)$ and $a[z]$ for $a \in T, z \in \operatorname{dom}(a)$
([].0) $\operatorname{dom}(0):=\emptyset$.
([].1) $\operatorname{dom}(1):=\{0\} ; 1[0]:=0$.
$([] .2) \operatorname{dom}\left(D_{u+1} 0\right):=T_{u} ;\left(D_{u+1} 0\right)[z]:=z$.
([].3) $\operatorname{dom}\left(D_{\omega} 0\right):=\mathbb{N} ;\left(D_{\omega} 0\right)[n]:=D_{n+1} 0$.
([].4) Let $a=D_{v} b$ with $b \neq 0$:
(i) $\operatorname{dom}(b)=\{0\}: \operatorname{dom}(a):=\mathbb{N}: a[n]:=\left(D_{v} b[0] \cdot(n+1)\right.$.
(ii) $\operatorname{dom}(b)=T_{u}$ with $v \leqslant u<\omega: \operatorname{dom}(a):=\mathbb{N} ; a[n]:=D_{v} b\left[D_{u} b[1]\right]$.
(iii) $\operatorname{dom}(b) \in\{\mathbb{N}\} \cup\left\{T_{u}: u<v\right\}: \operatorname{dom}(a):=\operatorname{dom}(b) ; a[z]:=D_{v} b[z]$.
([].5) $a=\left(a_{0}, \ldots, a_{k}\right)(k \geqslant 1): \operatorname{dom}(a):=\operatorname{dom}\left(a_{k}\right)$;

$$
a[z]:=\left(a_{0}, \ldots, a_{k-1}\right)+a_{k}[z] .
$$

Definition. $0[n]:=0$, $a[n]:=a[0]$, if $\operatorname{dom}(a)=\{0\}$.
3.2. Lemma. (a) $z \in \operatorname{dom}(a) \Rightarrow a[z]<a$.
(b) $z, z^{\prime} \in \operatorname{dom}(a)=T_{u}$ and $z<z^{\prime} \Rightarrow a[z]<a\left[z^{\prime}\right]$.
(c) $0 \neq a \in T_{v} \Rightarrow \operatorname{dom}(a) \in\{\{0\}, \mathbb{N}\} \cup\left\{T_{u}: u<v\right\}$, and $a[z] \in T_{v}$ for all $z \in$ $\operatorname{dom}(a)$.

Proof. Straightforward by induction on the length of a.
3.3. Lemma. $a, z \in O T$ and $z \in \operatorname{dom}(a) \Rightarrow a[z] \in O T$.

Before we are going to prove this lemma we want to give the

Proof of Theorem 3.1. Let $0<v \leqslant \omega$,

$$
c_{v}^{n}:=D_{0} \overbrace{D_{v} \cdots D_{v}}^{n} 0, \quad c_{v}^{n}(k):=c_{v}^{n}[1][2] \cdots[k] .
$$

In [1, Corollary 4.0] we have shown:
$\mathrm{ID}_{v} \nvdash \forall n \exists k c_{v}^{n}(k)=0$.
One easily proves that $c_{v}^{n} \in O T \cap T_{0}$; this can be done in PA (Peano Arithmetic). Since the proofs of 3.2 and 3.3 can also be formalized in PA, we obtain:
(2) $\quad \mathrm{PA} \vdash \forall n \forall k\left(c_{v}^{n}(k) \in O T \wedge\left(c_{v}^{n}(k) \neq 0 \rightarrow c_{v}^{n}(k+1)<c_{v}^{n}(k)\right)\right)$.

Obviously the sequences $\left(c_{v}^{n}(k)\right)_{k \in \mathbb{N}}$ are primitive recursive, and by 1.3, 1.7 we have $o\left(c_{v}^{n}\right)<\psi_{0} \varepsilon_{\Omega_{v}+1}$. Together with (2) this yields:

$$
\begin{equation*}
\operatorname{PA} \vdash \operatorname{PRWO}\left(\psi_{0} \varepsilon_{\Omega_{v}+1}\right) \rightarrow \forall n \exists k c_{v}^{n}(k)=0 . \tag{3}
\end{equation*}
$$

From (1) and (3) we obtain Theorem 3.1.
For the proof of 3.3 we need the following definitions and lemmata.

Definition.

$$
\begin{aligned}
& G_{u}^{0} a:=G_{u} a \cup\{0\} \\
& b \triangleleft_{z} a: \Leftrightarrow b<a \quad \text { and } \quad \forall u \forall c\left(b \leqslant c \leqslant a \Rightarrow G_{u} b \leqslant G_{u} c \cup G_{u}^{0} z\right) .
\end{aligned}
$$

3.4. Lemma. $b \triangleleft_{z} a, G_{u} a<a, G_{u} z<b \Rightarrow G_{u} b<b$.

Proof. We have $G_{u} b \leqslant G_{u} a \cup G_{u}^{0} z<a$.
Assumption: $b \leqslant G_{u} b$. Then there exists a subterm d of b with minimal length such that $b \leqslant G_{u} d<a$. By the minimality of d we have $d=D_{v} c$ with $G_{u} c<b \leqslant$ $c<a$. Using $b \triangleleft_{z} a$ and $G_{u} z<b$ we obtain $G_{u} b \leqslant G_{u} c \cup G_{u}^{0} z<b$. Contradiction.
3.5. Lemma. $b_{0} \triangleleft_{z} b \Rightarrow a+b_{0} \triangleleft_{z} a+b$ and $D_{v} b_{0} \triangleleft_{z} D_{v} b$.

Proof. 1. Suppose $a+b_{0} \leqslant c \leqslant a+b$. Then $c=a+c_{0}$ with $b_{0} \leqslant c_{0} \leqslant b$. Hence

$$
G_{u}\left(a+b_{0}\right)=G_{u} a \cup G_{u} b_{0} \leqslant G_{u} a \cup G_{u} c_{0} \cup G_{u}^{0} z=G_{u} c \cup G_{u}^{0} z .
$$

2. Suppose $D_{v} b_{o} \leqslant c \leqslant D_{v} b$. Then $c=\left(D_{v} c_{0}\right)+c_{1}$ with $b_{0} \leqslant c_{0} \leqslant b$. Using the premise $b_{0} \triangleleft_{z} b$ we obtain $G_{u} b_{0} \leqslant G_{u} c_{0} \cup G_{u}^{0} z$. Now, for $v \geqslant u$, we have

$$
G_{u}\left(D_{v} b_{0}\right)=\left\{b_{0}\right\} \cup G_{u} b_{0} \leqslant\left\{c_{0}\right\} \cup G_{u} c_{0} \cup G_{u}^{0} z \subseteq G_{u} c \cup G_{u}^{0} z .
$$

If $v<u$, then $G_{u}\left(D_{v} b_{0}\right)=\emptyset$.
3.6. Lemma. $a \in T$ and $z \in \operatorname{dom}(a) \Rightarrow a[z] \triangleleft_{z} a$

Proof. By induction on the length of a:
By 3.2 we have $a[z]<a$. - Suppose $a[z] \leqslant c \leqslant a$. We have to prove $G_{u} a[z] \leqslant$ $G_{u} c \cup G_{u}^{0} z$.

1. $a=1$ or $a=D_{w+1} 0$: trivial.
2. $a=D_{\omega} 0: G_{u} a[z]=G_{u} D_{z+1} 0 \subseteq\{0\}$.
3. $a=D_{v} b$ with $\operatorname{dom}(b)=\{0\}$: Then $a[z]=\left(D_{v} b[0]\right) \cdot(z+1)$ and $G_{u} a[z]=$ $G_{u} D_{v} b[0]$. By I.H. and 3.5 we get $D_{v} b[0] \triangleleft_{0} D_{v} b=a$. We also have $D_{v} b[0]<$ $c \leqslant a$ and therefore $G_{u} D_{v} b[0] \leqslant G_{u} c \cup\{0\}$.
4. $a=D_{v} b$ and $\operatorname{dom}(b)=T_{w}$ and $v \leqslant w<\omega$: Then $a[z]=D_{v} b[x]$ with $x:=$ $D_{w} b[1]$. Suppose $u \leqslant v$, since otherwise $G_{u} a[z]=\emptyset$. From $a[z] \leqslant c \leqslant a$ it follows that $c=\left(D_{v} c_{0}\right)+c_{1}$ with $b[x] \leqslant c_{0} \leqslant b$. By I.H. we have $b[x] \triangleleft_{x} b, b[1] \triangleleft_{1} b$. Since $b[1] \leqslant b[x] \leqslant c_{0} \leqslant b$, we obtain

$$
\begin{aligned}
G_{u} a[z] & =\{b[x]\} \cup G_{u} b[x] \leqslant\left\{c_{0}\right\} \cup G_{u} c_{0} \cup G_{u}^{0} x \\
& =\left\{c_{0}\right\} \cup G_{u} c_{0} \cup\{b[1]\} \cup G_{u}^{0} b[1] \leqslant\left\{c_{0}\right\} \cup G_{u} c_{0} \cup G_{u}^{0} 1 \subseteq G_{u} c \cup G_{u}^{0} z .
\end{aligned}
$$

5. $a=D_{v} b$ and $\operatorname{dom}(b) \in\{\mathbb{N}\} \cup\left\{T_{w}: w<v\right\}$: By I.H. we get $b[z] \triangleleft_{z} b$ and then $a[z]=D_{v} b[z] \triangleleft_{z} D_{v} b=a$ by 3.5 .
6. $a=\left(a_{0}, \ldots, a_{k}\right)(k \geqslant 1)$: By I.H. we get $a_{k}[z] \triangleleft_{z} a_{k}$ and then $a[z]=$ $\left(a_{0}, \ldots, a_{k-1}\right)+a_{k}[z] \triangleleft_{z}\left(a_{0}, \ldots, a_{k-1}\right)+a_{k}=a$ by 3.5 .

Proof of Lemma 3.3. By induction on the length of a :

1. $a=\left(a_{0}, \ldots, a_{k}\right) \in O T$: Then $a_{0}, \ldots, a_{k} \in O T$ and $a_{k}[z]<a_{k} \leqslant \cdots \leqslant a_{0}$. By I.H. we have $a_{k}[z] \in O T$. Hence $a[z]=\left(a_{0}, \ldots, a_{k-1}\right)+a_{k}[z] \in O T$.
2. $a=D_{v} b \in O T$: Then $b \in O T$ and $G_{v} b<b$.
$2.1 \operatorname{dom}(b)=\{0\}$: By I.H. and 3.6 we obtain $b[0] \in O T$ and $b[0] \triangleleft_{0} b$. From $b[0] \triangleleft_{0} b$ and $G_{v} b<b$ we get $G_{v} b[0]<b[0]$ by 3.4. Hence $a[z]=\left(D_{v} b[0]\right) \cdot(z+$ 1) $\in O T$.
2.2. $\operatorname{dom}(b)=T_{u}$ with $v \leqslant u<\omega$: We have to show $D_{v} b[x] \in O T$, where $x:=D_{u} b[1]$. - By I.H. we have $b[1] \in O T$ and $(x \in O T \Rightarrow b[x] \in O T)$. By 3.6 we have $b[1] \triangleleft_{1} b$. From this together with $G_{v} b<b$ and $G_{v} 1<b$ [1] we obtain $G_{v} b[1]<b[1]$ by 3.4. Since $v \leqslant u, G_{u} b[1] \subseteq G_{v} b[1]$. Hence $x=D_{u} b[1] \in O T$, and therefore also $b[x] \in O T$. It remains to show that $G_{v} b[x]<b[x]$. But this follows immediately from $b[x] \triangleleft_{x} b(3.6), G_{v} b<b, G_{v} x=\{b[1]\} \cup G_{v} b[1] \leqslant b[1]<b[x]$ by 3.4 .
2.3. $\operatorname{dom}(b) \in\{\mathbb{N}\} \cup\left\{T_{u}: u<v\right\}:$ By I.H. and 3.6 we have $b[z] \in O T$ and $b[z] \triangleleft_{z} b$. Since $z \in \operatorname{dom}(b) \in\{\mathbb{N}\} \cup\left\{T_{u}: u<v\right\}$, we have $G_{v} z<b[z]$. By 3.4 from $b[z] \triangleleft_{z} b, G_{v} b<b, G_{v} z<b[z]$ we get $G_{v} b[z]<b[z]$. Hence $a[z]=$ $D_{v} b[z] \in O T$.

Finally we want to show that the ψ-functions have essentially the same strength as the θ-functions.
3.7. Theorem. $\theta \varepsilon_{\Omega_{v}+1} 0=\psi_{0} \varepsilon_{\Omega_{v}+1}(0<v \leqslant \omega)$

Proof. By [2] and [5] we have $\theta \varepsilon_{\Omega_{v}+1} 0=\left|\mathrm{ID}_{v}\right|$. The proof of $\theta \varepsilon_{\Omega_{v}+1} 0 \leqslant\left|\mathrm{ID}_{v}\right|$ given in [2] can easily be adapted to the ψ-functions; so we get $\psi_{0} \varepsilon_{\Omega_{\nu}+1} \leqslant\left|\mathrm{ID}_{\nu}\right|$, and its remains to prove $\left|\mathrm{ID}_{v}\right| \leqslant \psi_{0} \varepsilon_{\Omega_{v}+1}$.

In the appendix of [1] we have proved:

$$
\begin{equation*}
\left|\mathrm{ID}_{v}\right|=\sup \left\{\operatorname{rk}\left(c_{v}^{k}\right): k \in \mathbb{N}\right\}, \quad \text { where } c_{v}^{k}=D_{0} \overbrace{D_{v} \cdots D_{v}}^{k} 0, \tag{1}
\end{equation*}
$$

and $\operatorname{rk}(a)=\sup \{\operatorname{rk}(a[n])+1: n \in \operatorname{dom}(a)\}$, for all $a \in T_{0}$.
By 3.2 and 3.3 we have:

$$
\begin{equation*}
0 \neq a \in O T \cap T_{0} \Rightarrow a[n]<a \text { and } a[n] \in O T \cap T_{0} \tag{2}
\end{equation*}
$$

From (2) and 2.2(c) we obtain by transfinite induction on a :

$$
\begin{equation*}
\operatorname{rk}(a) \leqslant o(a), \quad \text { for all } a \in O T \cap T_{0} . \tag{3}
\end{equation*}
$$

From 1.2(d), 1.6(b), 1.7(b) we obtain:

$$
\begin{equation*}
\psi_{0} \varepsilon_{\Omega_{v}+1}=\sup \left\{o\left(c_{v}^{k}\right): k \in \mathbb{N}\right\} \tag{4}
\end{equation*}
$$

As already mentioned in the proof of 3.1 we have:

$$
\begin{equation*}
c_{v}^{k} \in O T \cap T_{0} \tag{5}
\end{equation*}
$$

Now from (1), (3), (4), (5) it follows that $\left|\mathrm{ID}_{v}\right| \leqslant \psi_{0} \varepsilon_{\Omega_{v}+1}$.

Remark. The functions $\psi_{v}(v \leqslant \omega)$ were first defined in an unpublished manuscript (1981) by the author. Later on this approach was extended by Jäger [4] and Schütte [3].

References

[1] W. Buchholz, An independence result for ($\left.\Pi_{1}^{1}-\mathrm{CA}\right)+B I$, Ann. Pure Appl. Logic, to appear.
[2] W. Buchholz and W. Pohlers, Provable wellorderings of formal theories for transfinitely iterated inductive definitions. J. Symbolic Logic 43 (1978) 118-125.
[3] W. Buchholz and K. Schütte, Ein Ordinalzahlensystem für die beweistheoretische Abgrenzung der Π_{2}^{1}-Separation und Bar-Induktion, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Naturw. Klasse, 1983.
[4] G. Jäger, ρ-inaccessible ordinals, collapsing functions, and a recursive notation system, Archiv f . math. Logik und Grundlagenf. 24 (1984) 49-62.
[5] W. Pohlers, Ordinals connected with formal theories for transfinitely iterated inductive definitions, J. Symbolic Logic 43 (1978) 161-182.
[6] S. Simpson, Nichtbeweisbarkeit von gewissen kombinatorischen Eigenschaften endlicher Bäume, Archiv f. math. Logik u. Grundlagenf. 25 (1985) 45-65.

